JP4528720B2 - 赤外線検出素子およびその製造方法と赤外線カメラ - Google Patents

赤外線検出素子およびその製造方法と赤外線カメラ Download PDF

Info

Publication number
JP4528720B2
JP4528720B2 JP2005378445A JP2005378445A JP4528720B2 JP 4528720 B2 JP4528720 B2 JP 4528720B2 JP 2005378445 A JP2005378445 A JP 2005378445A JP 2005378445 A JP2005378445 A JP 2005378445A JP 4528720 B2 JP4528720 B2 JP 4528720B2
Authority
JP
Japan
Prior art keywords
support
support legs
semiconductor substrate
detection cell
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005378445A
Other languages
English (en)
Other versions
JP2007178323A (ja
Inventor
多 浩 大 本
原 郁 夫 藤
田 正 弘 桑
西 桂 増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005378445A priority Critical patent/JP4528720B2/ja
Priority to US11/616,660 priority patent/US7345278B2/en
Publication of JP2007178323A publication Critical patent/JP2007178323A/ja
Application granted granted Critical
Publication of JP4528720B2 publication Critical patent/JP4528720B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/023Particular leg structure or construction or shape; Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/0235Spacers, e.g. for avoidance of stiction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • G01J5/24Use of specially adapted circuits, e.g. bridge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、支持部で検出セルを支持するような構造の赤外線検出素子およびその製造方法と赤外線カメラに関する。
非冷却型(熱型)赤外線センサは、集光した赤外線を赤外線検出部で吸収して、輻射エネルギーを電気信号に変換するデバイスである。赤外線の吸収材と熱電変換素子からなる検出セルが外系と熱的に隔離されていることが特徴である。このような構造を実現するには、表面微細構造あるいはバルク微細構造形成技術が必要される。非冷却型赤外線センサは高価で大きな冷却器を必要とする冷却型赤外線センサとは異なり、安価で小型化が可能という利点がある。
熱隔離を行うには、検出セルを真空中に設置することと、検出セルと基板を物理的・電気的に接続する支持構造の熱コンダクタンスを低くすることが重要である。支持構造の熱コンダクタンスは構造が微細であればあるほど小さくなるため、上記構造形成プロセスのデザインルールを縮小することが本センサの感度向上につながる(特許文献1参照)。
特許文献1の場合、検出セルを支持する支持脚の断面構造は配線部とそれを保護する絶縁部で構成されているが、配線部が左右のいずれかにずれて形成された場合、支持脚は基板表面方向で歪んでしまい、物理的接触を起こしてしまう。上記のようなずれは、特に支持脚溝形成プロセスにおけるマスク合わせずれによって生じる。支持脚の幅は1μm以下であるが、例えば配線部が0.1μm偏った場合でも大きな歪みを生じるため、0.1μm以下の合わせ精度が要求される。
特開2002−107224号公報
非冷却赤外線センサの感度は支持脚の熱コンダクタンスに逆比例するが、熱の伝達経路の途中で支持脚が他部位と接触してしまうと、検出セルの断熱性が著しく低下する。このような構造エラーは衝撃や濡れ等の外部要因で生じる他に、構造そのものが持つ応力によっても生じる。
応力には、構造形成時のプロセス温度とデバイス動作温度の差から生じる熱応力と、構造を構成する材料そのものが持つ内部応力がある。構造が空間的に対称であればこれら応力は内部でキャンセルされるが、非対称であれば、非対称性を持つ方向に構造が変形してしまう。
特許文献1の場合、支持脚の断面構造は配線部とそれを保護する絶縁部から構成されるが、配線部が左右いずれかにずれて形成された場合、支持構造は基板表面方向で歪んでしまい、物理的接触を起こす。上記のようなずれは、特に支持脚溝形成プロセスにおけるマスク合わせずれによって発生する。支持脚の幅は1μm以下であるが、例えば配線部が0.1μm偏った場合でも大きな歪みを生じ、0.1μm以下の合わせ精度が要求される。
上記のような厳しい合わせ精度要求を回避するため、内部応力による歪みを抑えるようなロバストな支持脚構造が必須となる。
本発明は、応力がかかっても検出セルの断熱性が損なわれることがない赤外線検出素子およびその製造方法を提供するものである。
本発明の一態様では、半導体基板上に空間を介して形成された熱電変換部および赤外線吸収層を有する検出セルと、
前記半導体基板上に形成された第1の配線部と、
前記半導体基板上に空間を介して形成され、前記検出セルを支持する支持部と、を備え、
前記支持部は、
前記第1の配線部と前記検出セルとを電気的に接続する第2の配線部と、この第2の配線部の周囲を覆う絶縁部とをそれぞれ有する複数の支持脚と、
前記複数の支持脚同士を相互に連結する絶縁材料からなり、互いに略同一の間隔で配置される複数の連結部と、を有し、
前記連結部は、前記半導体基板上に空間を隔てて略平行に配置される2本の前記支持脚同士を、これら支持脚の延在方向に略直交する方向に連結し、
前記連結部は、個々の前記支持脚における温度が略同一の領域同士を相互に連結することを特徴とする赤外線検出素子が提供される。
本発明の一態様では、半導体基板上に空間を介して形成された熱電変換部および赤外線吸収層を有する検出セルと、
前記半導体基板上に形成された第1の配線部と、
前記半導体基板上に空間を介して形成され、前記検出セルを支持する支持部と、を備え、
前記支持部は、
前記第1の配線部と前記検出セルとを電気的に接続する第2の配線部と、この第2の配線部の周囲を覆う絶縁部とをそれぞれ有する複数の支持脚と、
前記複数の支持脚同士を相互に連結する絶縁材料からなり、互いに略同一の間隔で配置される複数の連結部と、を有し、
前記連結部は、前記半導体基板上に空間を隔てて略平行に配置される2本の前記支持脚同士を、これら支持脚の延在方向に略直交する方向に連結し、
前記支持部は、前記検出セルの一端部側のみ支持することを特徴とする赤外線検出素子が提供される。
本発明の一態様では、半導体基板上に空間を介して形成された熱電変換部および赤外線吸収層を有する検出セルと、
前記半導体基板上に形成された第1の配線部と、
前記半導体基板上に空間を介して形成され、前記検出セルを支持する支持部と、を備え、
前記支持部は、
前記第1の配線部と前記検出セルとを電気的に接続する第2の配線部と、この第2の配線部の周囲を覆う絶縁部とをそれぞれ有する複数の支持脚と、
前記複数の支持脚同士を相互に連結する絶縁材料からなり、互いに略同一の間隔で配置される複数の連結部と、を有し、
前記連結部は、前記半導体基板上に空間を隔てて略平行に配置される2本の前記支持脚同士を、これら支持脚の延在方向に略直交する方向に連結し、
前記支持部は、前記検出セルを対向する二つの端部側でそれぞれ支持することを特徴とする赤外線検出素子が提供される。
本発明によれば、応力がかかっても検出セルの断熱性が損なわれることがない赤外線検出素子を作製することができる。
以下、図面を参照しながら、本発明の一実施形態について説明する。
(第1の実施形態)
図1は本発明の第1の実施形態に係る赤外線検出素子の平面図、図2は図1のA−A線断面図である。これらの図に示す赤外線検出素子は、半導体基板1上に形成された凹部2と、凹部2の周囲の半導体基板1上に形成された配線部3と、配線部3の周囲を覆う絶縁材料からなる配線保護部8と、凹部2内または凹部2上に形成された支持部4と、凹部2内または凹部2上に配置されて支持部4により支持される検出セル5とを備えている。
検出セル5は、赤外線を吸収して熱を発生する赤外線吸収層6と、赤外線吸収層6で発生された熱を電気信号に変換する熱電変換部7とを有する。
熱電変換部7はpn接合を有し、pn接合の順方向特性の温度依存性を利用し、電流一定の条件下で順方向電圧の変化を読み出す。単位面積当たりの入射赤外線パワーをIlight、吸収効率をγ、単位画素当たりの赤外線吸収面積をAD、検出セル5から半導体基板1への熱コンダクタンスをGth、pn接合の熱電変換係数をdV/dTとすると、熱電変換部7の出力信号は(1)式で表される。
Figure 0004528720
(1)式において、Gthは支持部4の熱コンダクタンスであり、(2)式で表される。
thκNA/L …(2)
(2)式において、κは支持部4の材料に依存する熱伝導率、Aは支持部4の断面積、Lは支持部4の長さ、Nは支持部4の本数である。
上述した(1)式が赤外線検出素子の感度を表す。この感度は、(1)式から明らかように、検出セル5と半導体基板1との間の熱コンダクタンスGthに反比例する。したがって、半導体基板1上の凹部2により、検出セル5と支持部4を半導体基板1と配線部3から熱分離することで、赤外線検出素子の感度を向上できる。
図1に示すように、支持部4は、2本の支持脚11と、これら支持脚11同士を連結する絶縁材料からなる複数の連結部12とを有する。各支持脚11は、配線部3と検出セル5とを電気的に接続する支持配線部13と、支持配線部13の周囲を覆う支持絶縁部14とを有する。
支持配線部13は導電材料(例えば、金属)で形成され、その熱伝導率をκM、支持絶縁部14の熱伝導率をκIとすると、支持配線部13の単位長さ当たりの熱コンダクタンスgthは(3)式で表される。
th=AM κ M +AIκI(3)
ここで、支持配線部13をポリシリコンで形成し、支持絶縁部14を二酸化シリコンで形成する場合、κM=20W/m・K、κI=1.4W/m・Kとなる。AMとAIが同程度であるとすると、(3)式からわかるように、熱伝導を担うのはほぼ支持配線部13である。
支持脚11の断面形状が非対称的、すなわち支持脚11内の支持配線部13が中央よりも偏った位置に形成されている場合、その断面と平行な方向に働く応力により、基板平面方向または深さ方向に歪みが生じる。この応力は、熱応力と内部応力を含んでいる。熱応力は、支持配線部13と支持絶縁部14の形成温度と動作温度の差から熱膨張(熱収縮)が生じる際に、支持配線部13と支持絶縁部14の各材料間の熱膨張係数(CTE)の差により発生する応力である。また、内部応力は、支持配線部13と支持絶縁部14が元々有する応力である。
支持脚11の断面積が小さくなるほど、また支持脚11内での支持配線部13の位置が中心からずれるほど、応力による変位量は大きくなる。
このような応力が生じると、例えば図3に示すように、支持配線部13が基板面方向に歪んでしまい、一部の場所15で支持脚11が半導体基板1と接触するおそれがある。支持脚11が半導体基板1と接触すると、断熱性が損なわれ、熱コンダクタンスが非常に大きくなってしまう。
支持脚11の断面サイズは1μm×1μm以下で、長さは数10μmであることが望ましいが、支持配線部13のずれ量が基板面方向に0.1μmであったとすると、20μmの支持脚11は基板面方向に約1μm変位してしまう。これは、凹部2を形成するために用いられる後述する通孔を形成する際のマスクの合わせずれ精度は、0.1μm以下にする必要があることを意味している。
そこで、本実施形態では、このような内部応力による歪みを解消するために、2本の支持脚11の間に連結部12を設けて、マスクの合わせずれ精度を高くする必要がないようにしている。連結部12は、支持脚11の延在方向に略直交する方向に一定間隔で列設されている。なお、連結部12の数、配置場所および配置間隔には特に制限はない。
連結部12は2本の支持脚11間に略直角に配置されており、連結部12の両端の支持脚11の温度はほぼ一定である。したがって、連結部12には温度差による熱はほとんど生じない。したがって、2本の支持脚11の間に連結部12を配置しても、支持部4全体の熱コンダクタンスは増えない。
図4は連結部12の間隔と支持脚11の基板面方向の変位量との関係をシミュレーションにより求めた結果を示すグラフである。横軸は1μm当たりの連結部12の数を示し、縦軸は支持脚11の変位量(μm)を示している。ここでは、詳しいシミュレーション条件は省略するが、連結部12を4μmピッチ、すなわち総延長が20μmの支持脚11に5本程度の連結部12を等間隔で形成すると、基板面方向の変位量を十分に抑制できることがわかる。
また、2本の支持脚11間に複数の連結部12を等間隔で形成した場合には、連結部12の位置は支持脚11の歪みに影響しなくなり、マスク合わせの精度も要求されなくなる。
図5〜図9は本実施形態に係る赤外線検出素子の製造工程の手順を示す断面図である。まず、半導体基板1上に保護絶縁部21を形成し、その上に熱電変換部7と保護絶縁部22を互いに隣接して形成する。半導体基板1としてSOI基板を用いた場合には、SOI基板の埋め込み酸化膜を保護絶縁部21として用いてもよい。熱電変換部7は、例えば単結晶シリコンを材料とするpnダイオードである。熱電変換部7に隣接して形成される保護絶縁膜22は、例えば二酸化シリコンを材料とする素子分離領域として作用する。
次に、保護絶縁部22の上に金属膜を形成してパターニングすることにより支持配線部13を形成する。金属膜の材料は、例えばトランジスタのゲート材料として用いられる高不純物濃度のポリシリコンである(図5)。
次に、支持配線部13が形成された基板全面に保護絶縁膜23を形成し、その上に金属膜を形成してパターニングすることにより、配線部3を形成する。その後、再び基板全面に保護絶縁膜23を形成する(図6)。
次に、凹部2を形成するために、基板の一部に例えばRIE等の異方性エッチングによって通孔24を形成し、半導体基板1の表面を露出させる(図7)。この工程により、検出セル5が形成される領域25と、支持部4が形成される領域26とが互いに分離して形成され、この際に支持脚11および連結部12を形成するためのパターニングが行われる。この通孔24を形成するためのレジスト露光工程は、一般的には、厳しいマスク合わせ精度を要求する。
次に、例えばRIE等の異方性エッチングにより、支持部4内に支持絶縁部14および連結部12を形成するために保護絶縁部23の一部を深さ方向に削る(図8)。この工程は、支持脚11の熱コンダクタンスを低減するためのものである。
次に、通孔24の底面から半導体基板1を徐々にエッチングし、凹部2を形成する(図9)。この工程に用いられるエッチング液として、例えばTMAHやKOH等の異方性エッチング溶剤が用いられる。
凹部2を形成した後、必要に応じて、支持脚11および連結部12を構成する支持配線部13と連結部12の形状を成形するスリミング処理を行う。例えば、支持絶縁部14が二酸化シリコンの場合、フッ酸処理によりスリミングを行い、熱コンダクタンスを低下させる。
このように、第1の実施形態では、検出セル5を支持する支持部4を、2本の支持脚11と、これら支持脚11に等間隔で接続される複数の連結部12とで構成するため、支持脚11の基板面方向における歪みを抑制でき、支持脚11が基板に接触しなくなり、熱コンダクタンスが低下するおそれもなくなる。したがって、検出セル5の感度が低下するおそれもなく、ロバストな非冷却型赤外線検出素子を作製できる。
また、本実施形態では、凹部2形成用の通孔24の形成位置が多少ずれても、支持脚11が基板に接触するおそれがないため、通孔24を形成する際のマスク合わせ精度がそれほど要求されず、製造工程の簡略化と歩留まり向上が図れる。
(第2の実施形態)
第2の実施形態は、連結部12の形状が第1の実施形態とは異なることを特徴とする。
図10は本発明の第2の実施形態に係る赤外線検出素子の平面図である。図10では、図1と共通する構成部分には同一の符号を付しており、以下では相違点を中心に説明する。図10の赤外線検出素子は、連結部12の形状が図1と異なっており、それ以外は図1と同様の構造を有する。
図11は図10の連結部12の拡大図である。図示のように、連結部12は網目状になっており、図1の連結部12よりも多くの場所で2本の支持脚11同士が接続される。したがって、第1の実施形態よりも、より堅固に2本の支持脚11同士が連結されて、支持脚11の基板面方向の歪みをより低減できる。
網目により形成された隙間が絶縁物等で埋もれてしまうと、その部分に熱流が分岐し、断熱性が悪くなる。したがって、図11に示す網目構造を形成する場合には、網目の隙間が埋もれないようにする必要がある。
第2の実施形態に係る赤外線検出素子は、図5〜図9とほぼ同様の製造工程にて作製される。図8の工程で連結部12を形成する際、網目状のマスクパターンを用いてRIE等によるエッチングを行うことで、網目状の連結部12を形成できる。
このように、第2の実施形態では、網目状の連結部12により2本の支持脚11を接続するため、支持脚11同士をより堅固に接続することができ、支持脚11の基板面方向の歪みをより低減できる。
なお、網目の形状は図11のような格子状であってもよいし、それ以外に、菱形形状やランダム形状でもよい。
(第3の実施形態)
第3の実施形態は、支持脚11がジグザグ状に形成されていることを特徴とする。
図12は本発明の第3の実施形態に係る赤外線検出素子の平面図である。図12では、図1と共通する構成部分には同一符号を付しており、以下では相違点を中心に説明する。図12の赤外線検出素子は、折り返し構造すなわちジグザグ状に形成された2本の支持脚11と、これら支持脚11の延在方向に略直交する方向に一定間隔で配置された複数の連結部12とを有する。
第1および第2の実施形態と異なり、図12の支持脚11は、長い辺を持たないため、応力による変位量が必然的に少なくなる。このようなジグザグ状の支持脚11を設けることに加えて、支持脚11同士を連結部12で接続することにより、支持脚11の基板面方向への歪みをより低減できる。
(第4の実施形態)
第1〜第3の実施形態は、検出セル5を片側だけで支持する片持ち構造であったが、第4の実施形態は、検出セル5を対向する両辺側で支持する両持ち構造であることを特徴とする。
図13は本発明の第4の実施形態に係る赤外線検出素子の平面図である。図13では、図1と共通する構成部分には同一符号を付しており、以下では相違点を中心に説明する。図13の赤外線検出素子は、検出セル5の中心線B−Bを軸として対称的な構造を有する。
2本の支持脚11も、中心線B−Bを軸として対称的に配置されている。2本の支持脚11とも検出セル5の対向する二辺の近傍に接続されており、両持ち構造になっている。
図13の構造の場合、二本の支持脚11の基端部、すなわち支持脚11の検出セル5との接続点からの距離が等しい位置同士を連結部12で接続している。支持脚11は対称構造であるため、連結部12の両端位置での温度は等しくなり、支持部4の熱コンダクタンスは増大しない。
連結部12を設けることで、支持脚11の歪みは軽減されるが、半導体基板1の深さ方向の歪みも軽減する必要があることから、検出セル5の対向する二辺の近傍に支持脚11を接続して対称構造にしている。検出セル5は、支持部4に比べて応力に対する歪みが非常に小さいため、検出セル5の対向する二辺の近傍に二本の支持脚11を接続することで、支持脚11の半導体基板1の深さ方向における歪みを抑制できる。
図13の赤外線検出素子の製造工程は、第1〜第3の実施形態の製造工程とほぼ同様であり、図7および図8で用いるマスクパターンを変えるだけで対応可能である。
このように、第4の実施形態では、二本の支持脚11を対称的に配置し、これら支持脚11を検出セル5の対向する二辺の近傍に接続するため、支持脚11の基板面方向の歪みを抑制できるだけでなく、基板の深さ方向の歪みも抑制できる。
(第5の実施形態)
第5の実施形態は、検出セル5と支持部4を上下に配置することを特徴とする。
図14は本発明の第5の実施形態に係る赤外線検出素子の平面図、図15は図14のA−A線断面図である。
本実施形態の支持部4は、折り返し構造すなわちジグザグ状に形成された二本の支持脚11と、これら支持脚11同士を一定間隔で接続する複数の連結部12とを有する。支持脚11は、凹部2内の隅部で上方に延びるコンタクト31を介して、凹部2の上方に配置された検出セル5に接続されている。検出セル5は、図14の点線で示すように、凹部2全体を覆うサイズを有する。
第1〜第3の実施形態よりも検出セル5のサイズを大型化できるため、赤外線の吸収面積を広げることができ、上述した(2)式のLを大きくすることができる。これにより、熱コンダクタンスがより小さくなる。
なお、支持脚11の形状は、必ずしも図14のような折り返し構造でなくてもよく、図1、図10または図13のような形状でもよい。
図16〜図19は第5の実施形態に係る赤外線検出素子の製造工程を示す断面図である。まず、半導体基板1上に、保護絶縁膜を形成した後、その上に支持配線部13、支持絶縁部14、、連結部12および配線部3の形成領域を形成した後、凹部2用の通孔24を形成する。次に、通孔24の内部を含めて、基板上面全体に絶縁材料からなる犠牲層32を形成する(図16)。
次に、犠牲層32の一部をエッチング除去してトレンチを形成し、このトレンチ内に導電材料を充填してコンタクト31を形成する(図17)。
次に、犠牲層32の上に熱電変換部7と赤外線吸収層6を順に形成する。また、必要に応じて、エッチングにより枠を形成する(図18)。
次に、犠牲層32を例えばドライエッチングにより除去し、通孔24を露出させる。そして、通孔24の底面に接する半導体基板1を徐々にエッチングし、凹部2を形成する(図19)。この場合に用いるエッチング液は、TMAHやKOHなどが望ましい。これにより、図14および図15の構造の赤外線検出素子が得られる。
このように、第5の実施形態では、支持部4の上方に検出セル5を配置するため、検出セル5のサイズを凹部2よりも大きくでき、赤外線の吸収面積が広がることから、赤外線の検出感度が向上する。また、支持部4は、二本の支持脚11と、両者を接続する複数の連結部12とで構成されるため、支持脚11が基板面方向に歪むおそれがなくなり、検出セル5の感度が低下するおそれもなく、ロバストな非冷却型赤外線検出素子を作製できる。
(第6の実施形態)
第6の実施形態は、第1〜第5の実施形態のいずれかにおける赤外線検出素子を用いて赤外線カメラを構成するものである。
図20は本発明の第6の実施形態に係る赤外線カメラの概略構成を示すブロック図である。図20の赤外線カメラは、赤外線撮像装置41と、信号処理回路42とを備えている。赤外線撮像装置41は、縦横に複数個ずつ列設された第1〜第5の実施形態のいずれかにおける複数の赤外線検出素子43と、これら赤外線検出素子43を行単位で選択する垂直選択回路44と、複数の赤外線検出素子43の各列に対応して設けられる複数の増幅回路45と、これら増幅回路45の出力を順に選択する水平選択回路46とを有する。
信号処理回路42は、赤外線撮像装置41の出力信号を増幅する第1増幅器47と、非撮像時の固定パターン成分を除去する背景除去部48と、背景除去部48の出力信号を増幅する第2増幅器49と、第2増幅器49の出力信号に対してA/D変換を行うA/D変換器50と、A/D変換器50から出力されたデジタル信号に基づいて画像補正処理等を行う画像処理演算器51とを備えている。画像処理演算器51の出力信号は、例えば不図示の表示装置に表示される。
図20の赤外線撮像装置41内の垂直選択回路44は、1行単位で赤外線検出素子43の出力信号を選択し、バイアス電圧を印加していく。水平選択回路46は、垂直選択回路44で選択された特定の行の赤外線検出素子43の出力信号を順に選択して出力する。信号処理回路42は、画面を水平方向に走査しながら1画素ごとに表示装置に表示を行う。
このように、第6の実施形態によれば、第1〜第5の実施形態による赤外線検出素子43を縦横に列設することにより、赤外線カメラを構成することができる。
本発明の第1の実施形態に係る赤外線検出素子の平面図。 図1のA−A線断面図。 支持配線部が歪む様子を示す図。 連結部12の間隔と支持脚11の基板面方向の変位量との関係をシミュレーションにより求めた結果を示すグラフ。 本実施形態に係る赤外線検出素子の製造工程の手順を示す断面図。 図5に続く工程断面図。 図6に続く工程断面図。 図7に続く工程断面図。 図8に続く工程断面図。 本発明の第2の実施形態に係る赤外線検出素子の平面図。 図10の連結部12の拡大図。 本発明の第3の実施形態に係る赤外線検出素子の平面図。 本発明の第4の実施形態に係る赤外線検出素子の平面図。 本発明の第5の実施形態に係る赤外線検出素子の平面図。 図14のA−A線断面図。 第5の実施形態に係る赤外線検出素子の製造工程を示す断面図。 図16に続く工程断面図。 図17に続く工程断面図。 図18に続く工程断面図。 本発明の第6の実施形態に係る赤外線カメラの概略構成を示すブロック図。
符号の説明
1 半導体基板
2 凹部
3 配線部
4 支持部
5 検出セル
6 赤外線吸収層
7 熱電変換部
8 配線保護部
11 支持脚
12 連結部
13 支持配線部
14 支持絶縁部
21〜23 保護絶縁部
24 通孔
31 コンタクト
32 犠牲層

Claims (6)

  1. 半導体基板上に空間を介して形成された熱電変換部および赤外線吸収層を有する検出セルと、
    前記半導体基板上に形成された第1の配線部と、
    前記半導体基板上に空間を介して形成され、前記検出セルを支持する支持部と、を備え、
    前記支持部は、
    前記第1の配線部と前記検出セルとを電気的に接続する第2の配線部と、この第2の配線部の周囲を覆う絶縁部とをそれぞれ有する複数の支持脚と、
    前記複数の支持脚同士を相互に連結する絶縁材料からなり、互いに略同一の間隔で配置される複数の連結部と、を有し、
    前記連結部は、前記半導体基板上に空間を隔てて略平行に配置される2本の前記支持脚同士を、これら支持脚の延在方向に略直交する方向に連結し、
    前記連結部は、個々の前記支持脚における温度が略同一の領域同士を相互に連結することを特徴とする赤外線検出素子。
  2. 半導体基板上に空間を介して形成された熱電変換部および赤外線吸収層を有する検出セルと、
    前記半導体基板上に形成された第1の配線部と、
    前記半導体基板上に空間を介して形成され、前記検出セルを支持する支持部と、を備え、
    前記支持部は、
    前記第1の配線部と前記検出セルとを電気的に接続する第2の配線部と、この第2の配線部の周囲を覆う絶縁部とをそれぞれ有する複数の支持脚と、
    前記複数の支持脚同士を相互に連結する絶縁材料からなり、互いに略同一の間隔で配置される複数の連結部と、を有し、
    前記連結部は、前記半導体基板上に空間を隔てて略平行に配置される2本の前記支持脚同士を、これら支持脚の延在方向に略直交する方向に連結し、
    前記支持部は、前記検出セルの一端部側のみ支持することを特徴とする赤外線検出素子。
  3. 半導体基板上に空間を介して形成された熱電変換部および赤外線吸収層を有する検出セルと、
    前記半導体基板上に形成された第1の配線部と、
    前記半導体基板上に空間を介して形成され、前記検出セルを支持する支持部と、を備え、
    前記支持部は、
    前記第1の配線部と前記検出セルとを電気的に接続する第2の配線部と、この第2の配線部の周囲を覆う絶縁部とをそれぞれ有する複数の支持脚と、
    前記複数の支持脚同士を相互に連結する絶縁材料からなり、互いに略同一の間隔で配置される複数の連結部と、を有し、
    前記連結部は、前記半導体基板上に空間を隔てて略平行に配置される2本の前記支持脚同士を、これら支持脚の延在方向に略直交する方向に連結し、
    前記支持部は、前記検出セルを対向する二つの端部側でそれぞれ支持することを特徴とする赤外線検出素子。
  4. 前記連結部は、網目状あるいは格子状に形成されており、前記複数の支持脚同士を複数箇所で相互に連結することを特徴とする請求項1乃至のいずれかに記載の赤外線検出素子。
  5. 前記支持脚は、延在方向が複数箇所で変化する折り返し構造を有し、個々の延在方向に略直交する方向に前記連結部が配置されることを特徴とする請求項1乃至のいずれかに記載の赤外線検出素子。
  6. 前記支持部よりも上方で前記半導体基板の一主面に略平行に配置される前記検出セルと、前記支持部と、を接続する上下に延在するコンタクトを備えることを特徴とする請求項1乃至のいずれかに記載の赤外線検出素子。
JP2005378445A 2005-12-28 2005-12-28 赤外線検出素子およびその製造方法と赤外線カメラ Expired - Fee Related JP4528720B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005378445A JP4528720B2 (ja) 2005-12-28 2005-12-28 赤外線検出素子およびその製造方法と赤外線カメラ
US11/616,660 US7345278B2 (en) 2005-12-28 2006-12-27 Infrared ray detection device, method of fabricating the same and infrared ray camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378445A JP4528720B2 (ja) 2005-12-28 2005-12-28 赤外線検出素子およびその製造方法と赤外線カメラ

Publications (2)

Publication Number Publication Date
JP2007178323A JP2007178323A (ja) 2007-07-12
JP4528720B2 true JP4528720B2 (ja) 2010-08-18

Family

ID=38284616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378445A Expired - Fee Related JP4528720B2 (ja) 2005-12-28 2005-12-28 赤外線検出素子およびその製造方法と赤外線カメラ

Country Status (2)

Country Link
US (1) US7345278B2 (ja)
JP (1) JP4528720B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221424B2 (ja) 2006-08-09 2009-02-12 株式会社東芝 固体撮像素子及びその製造方法並びに撮像装置
JP2008241465A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 固体撮像装置およびその駆動方法
JP2009174917A (ja) 2008-01-22 2009-08-06 Oki Semiconductor Co Ltd 赤外線検出素子、及び赤外線検出素子の製造方法
JP2009229260A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 赤外線センサ素子
JP2010078449A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 赤外線撮像素子及びその製造方法
JP5645240B2 (ja) * 2009-03-31 2014-12-24 パナソニックIpマネジメント株式会社 赤外線アレイセンサ
US8426864B2 (en) 2008-09-25 2013-04-23 Panasonic Corporation Infrared sensor
CN102197290A (zh) * 2008-09-25 2011-09-21 松下电工株式会社 红外线传感器
DE102010042108B4 (de) * 2010-01-18 2013-10-17 Heimann Sensor Gmbh Thermopile-Infrarot-Sensor in monolithischer Si-Mikromechanik
JP5143176B2 (ja) 2010-03-31 2013-02-13 株式会社東芝 赤外線撮像素子およびその製造方法
JP5738225B2 (ja) * 2012-03-22 2015-06-17 三菱電機株式会社 熱型赤外線固体撮像素子およびその製造方法
WO2014080577A1 (ja) * 2012-11-26 2014-05-30 パナソニック株式会社 赤外線検出装置
KR20180021965A (ko) * 2016-08-22 2018-03-06 삼성디스플레이 주식회사 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198474A (ja) * 1993-12-27 1995-08-01 Nippondenso Co Ltd 赤外線センサ
JPH08285680A (ja) * 1995-02-16 1996-11-01 Mitsubishi Electric Corp 赤外線検出装置とその製造方法、および赤外線検出装置製造のためのエッチングモニタ
JP2000111396A (ja) * 1998-10-06 2000-04-18 Nissan Motor Co Ltd 赤外線検出素子およびその製造方法
JP2000186958A (ja) * 1998-12-24 2000-07-04 Sharp Corp 熱型赤外線検出素子
JP2000292257A (ja) * 1999-02-04 2000-10-20 Nec Corp 熱型赤外線センサ
JP2001091265A (ja) * 1999-07-22 2001-04-06 Nippon Soken Inc 半導体力学量センサ
JP2002107224A (ja) * 2000-09-29 2002-04-10 Toshiba Corp 赤外線センサ及びその製造方法
JP2002533668A (ja) * 1998-12-18 2002-10-08 デーウー・エレクトロニクス・カンパニー・リミテッド 構造的に安定した赤外線ボロメーター
JP2003106894A (ja) * 2001-09-28 2003-04-09 Toshiba Corp 赤外線センサ装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153720A (ja) * 1999-11-30 2001-06-08 Nec Corp 熱型赤外線検出器
JP3589997B2 (ja) * 2001-03-30 2004-11-17 株式会社東芝 赤外線センサおよびその製造方法
JP2004245692A (ja) * 2003-02-13 2004-09-02 Toshiba Corp 赤外線撮像素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198474A (ja) * 1993-12-27 1995-08-01 Nippondenso Co Ltd 赤外線センサ
JPH08285680A (ja) * 1995-02-16 1996-11-01 Mitsubishi Electric Corp 赤外線検出装置とその製造方法、および赤外線検出装置製造のためのエッチングモニタ
JP2000111396A (ja) * 1998-10-06 2000-04-18 Nissan Motor Co Ltd 赤外線検出素子およびその製造方法
JP2002533668A (ja) * 1998-12-18 2002-10-08 デーウー・エレクトロニクス・カンパニー・リミテッド 構造的に安定した赤外線ボロメーター
JP2000186958A (ja) * 1998-12-24 2000-07-04 Sharp Corp 熱型赤外線検出素子
JP2000292257A (ja) * 1999-02-04 2000-10-20 Nec Corp 熱型赤外線センサ
JP2001091265A (ja) * 1999-07-22 2001-04-06 Nippon Soken Inc 半導体力学量センサ
JP2002107224A (ja) * 2000-09-29 2002-04-10 Toshiba Corp 赤外線センサ及びその製造方法
JP2003106894A (ja) * 2001-09-28 2003-04-09 Toshiba Corp 赤外線センサ装置及びその製造方法

Also Published As

Publication number Publication date
JP2007178323A (ja) 2007-07-12
US20070170361A1 (en) 2007-07-26
US7345278B2 (en) 2008-03-18

Similar Documents

Publication Publication Date Title
JP4528720B2 (ja) 赤外線検出素子およびその製造方法と赤外線カメラ
KR100376925B1 (ko) 적외선 고체 촬상소자
JP5645240B2 (ja) 赤外線アレイセンサ
WO2010035738A1 (ja) 赤外線センサ
JP5264597B2 (ja) 赤外線検出素子及び赤外線固体撮像装置
JP2010032410A (ja) イメージセンサおよびその製造方法
US8338902B2 (en) Uncooled infrared image sensor
WO2010035739A1 (ja) 赤外線センサ
JP2010237118A (ja) 赤外線アレイセンサ
KR20110088422A (ko) 열형 광검출기, 열형 광검출 장치 및 전자기기
JP2009229260A (ja) 赤外線センサ素子
JP2010048803A (ja) 赤外線センサの製造方法、赤外線センサ
WO2010103932A1 (ja) 非冷却赤外線イメージセンサ
US6504153B1 (en) Semiconductor infrared detecting device
JPH11211558A (ja) センサ及びセンサアレイ
JP5428535B2 (ja) 赤外線撮像素子及びその製造方法
JP2007333558A (ja) 赤外線検出装置
KR102439210B1 (ko) 고체 촬상 장치
JP5669654B2 (ja) 赤外線撮像素子の製造方法および赤外線撮像素子
JP2006300816A (ja) 赤外線検出器および赤外線固体撮像装置
JP2006138747A (ja) 赤外線検出素子およびその製造方法
JP2006194894A (ja) 赤外線撮像装置とその製造方法
JP4622511B2 (ja) 赤外線センサー
KR20150096501A (ko) 복수의 열전기쌍들 및 캐리어 엘리먼트를 가진 미세구조를 갖는 적외선 센서
WO2009096310A1 (ja) 熱検出センサアレイ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees