WO2010103932A1 - 非冷却赤外線イメージセンサ - Google Patents

非冷却赤外線イメージセンサ Download PDF

Info

Publication number
WO2010103932A1
WO2010103932A1 PCT/JP2010/052943 JP2010052943W WO2010103932A1 WO 2010103932 A1 WO2010103932 A1 WO 2010103932A1 JP 2010052943 W JP2010052943 W JP 2010052943W WO 2010103932 A1 WO2010103932 A1 WO 2010103932A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
row selection
group
readout signal
line group
Prior art date
Application number
PCT/JP2010/052943
Other languages
English (en)
French (fr)
Inventor
鎬楠 権
和拓 鈴木
浩大 本多
啓太 佐々木
英之 舟木
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2010103932A1 publication Critical patent/WO2010103932A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/023Particular leg structure or construction or shape; Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Definitions

  • the present invention relates to an uncooled infrared image sensor.
  • an uncooled infrared image sensor is provided with a plurality of row selection lines formed in a row direction and a plurality of readout signal lines formed in a column direction on a silicon substrate.
  • a pixel portion having at least one diode is provided corresponding to a region where the readout signal line and the readout signal line intersect.
  • the uncooled infrared image sensor is provided with an infrared absorption part that absorbs infrared rays and converts the infrared rays into heat, and a change in the heat converted by the infrared absorption part is detected by the diode.
  • the area occupied by the pixel portion, that is, the diode is increased, and the direction in which the wiring extends in the substrate region where the row selection line and the readout signal line are placed is substantially orthogonal It is set as the structure using at least one of making width
  • JP 2001-267542 A Japanese Patent No. 3040356
  • the uncooled infrared image sensor includes a semiconductor substrate having a plurality of support portions provided on the surface and a plurality of cavities arranged in a matrix on the surface portion, and the plurality of cavities.
  • a plurality of pixel groups provided above the plurality of cavities corresponding to each of the portions, each pixel group having the same number of pixels arranged in a matrix, and each pixel is incident
  • An infrared absorbing film that absorbs the generated infrared light and converts the absorbed infrared light into heat, and a thermoelectric conversion element that is electrically insulated from the infrared absorbing film and generates an electric signal by detecting heat from the infrared absorbing film
  • a row selection line group and a readout signal line group provided between the pixel groups adjacent in the row direction and having the same number of readout signal lines as the number of pixels arranged in the same row direction in each pixel group;
  • One of the two row selection line groups of the two row selection line groups provided corresponding to the pixels, one end of which is electrically connected to the corresponding pixel and the other end adjacent to the pixel group including the corresponding pixel.
  • a first support leg having a first wiring electrically connected to the row selection line, a first insulating film covering the first wiring, and one end electrically connected to the corresponding pixel.
  • Each pixel is supported above the corresponding cavity by corresponding first and second support legs, and an intersection between the row selection line group and the readout signal line group is a support part of the semiconductor substrate. It is characterized by being supported by.
  • the manufacturing process can be prevented from becoming complicated.
  • Sectional drawing of the uncooled infrared image sensor of 1st Embodiment. Sectional drawing of the uncooled infrared image sensor of 1st Embodiment.
  • Sectional drawing of the uncooled infrared image sensor of 1st Embodiment. Sectional drawing of the uncooled infrared image sensor of 1st Embodiment.
  • Sectional drawing of the uncooled infrared image sensor of 1st Embodiment. Sectional drawing of the uncooled infrared image sensor of 1st Embodiment.
  • FIG. 1 A plan view of an uncooled infrared image sensor according to the first embodiment of the present invention is shown in FIG.
  • FIG. 1 an infrared absorption film described later is not shown.
  • the sections cut along the cutting lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. 1 are shown in FIGS. 2, 3, 4, 5, respectively.
  • FIG. 2 to 6 the cross section cut along each cutting line is enlarged and displayed.
  • FIG. 7 shows a cross section taken along the cutting line FF ′ in FIG.
  • the uncooled infrared image sensor of this embodiment has a plurality of pixel groups 4 arranged in a matrix on a substrate (for example, a silicon substrate) 2.
  • Each pixel group 4 has a plurality of pixels 4a, 4b, 4c, and 4d (in this embodiment, a total of four pixels of 2 rows ⁇ 2 columns) arranged in a matrix.
  • a row selection line group 6 is provided between adjacent pixel groups 4 in the column direction.
  • Each row selection line group 6 has row selection lines 6a and 6b for selecting pixels adjacent in the column direction among the pixel groups adjacent in the column direction.
  • the row selection line 6a is a row selection line for selecting the pixels 4a and 4b of the pixel group 4 shown in the center of FIG.
  • a readout signal line group 8 is provided between the pixel groups 4 adjacent in the row direction.
  • Each readout signal line group 8 includes readout signal lines 8a and 8b for reading out signals from pixels adjacent in the row direction in the pixel groups adjacent in the row direction.
  • the readout signal line 8a is a readout signal line for reading out signals from the pixels 4a and 4c of the pixel group 4 shown in the center of FIG. 1, and the readout signal 8b is on the left side of the pixel group 4 shown in the center of FIG.
  • Read signal lines 8a and 8b included in the same read signal line group are arranged side by side in the column direction.
  • a cavity 3 is provided in the surface region of the substrate 2 corresponding to each pixel group 4 (see FIG. 2).
  • corresponding to each pixel in each pixel group 4 for example, the pixel 4a, one end is connected to the pixel 4a and the other end is connected to the corresponding row selection line 6a.
  • a support leg 10b having one end connected to the pixel 4a and the other end connected to the corresponding readout signal line 8a.
  • These support legs 10a and 10b have a planar shape formed in a ninety-nine fold or meander shape.
  • Each pixel in each pixel group 4, for example, the pixel 4a is configured to be supported by the corresponding support legs 10a and 10b above the corresponding cavity 3.
  • the support leg 10a includes an insulating film 12b, a wiring 15a formed on the insulating film 12b, and an insulating film 16b formed so as to cover the wiring 15a.
  • the support leg 10b includes an insulating film 12c, a wiring 15b formed on the insulating film 12c, and an insulating film 16c formed so as to cover the wiring 15b.
  • One end of the wiring 15a of the support leg 10a is connected to one end of the thermal diode of the corresponding pixel, and the other end is electrically connected to the corresponding row selection line.
  • the wiring 15b of the support leg 10b has one end connected to the other end of the thermal diode of the corresponding pixel and the other end electrically connected to the corresponding readout signal line.
  • the row selection lines 6a and 6b of the row selection line group 6 are provided on the insulating film 12d and covered with the insulating film 16d (see FIG. 4).
  • the read signal lines 8a and 8b of the read signal line group 8 are provided on the insulating film 12e and covered with the insulating film 16e.
  • the hollow portions 3 corresponding to the adjacent pixel groups 4 are connected to each other. This is because in this embodiment, the row selection line group 6 is wider than the readout signal line group 8 because the row selection line is wider than the readout signal line.
  • a gas for example, XeF 2 gas
  • the substrate region immediately below the read signal line group 8 is directly below the row selection line 6. This is because the etching is performed earlier than the substrate region. Since gaps are provided between the adjacent infrared absorption films 18, between the infrared absorption film 18 and the support legs 10a and 10b, and between the support legs corresponding to the pixels, the etchant passes through these gaps.
  • the cavity 3 is formed.
  • the diameter d1 of the inscribed circle 20 in the plane of the intersecting portion is equal to the diameter d2 of the inscribed circle 22 in the plane of each pixel of each pixel group 4. It is necessary to be larger than.
  • the operation of the uncooled infrared image sensor of this embodiment will be described.
  • the infrared rays from the outside are irradiated onto the infrared absorption film 18, the infrared rays are converted into heat by the infrared absorption film 18.
  • the converted heat is transmitted to the thermal diode 14 through the insulating film 16a, and is converted into an electric signal by the thermal diode 14. That is, as the resistance of the thermal diode 14 changes in accordance with the temperature change of the thermal diode 14, the current flowing through the thermal diode 14 or the voltage between the terminals of the thermal diode 14 changes, and this change is detected through the readout signal line. .
  • the size in the extending direction (row direction) of the row selection line of each pixel of each pixel group 4 is X1, and each pixel is supported.
  • the size in the row direction of the support leg 10a is Y1
  • the size in the row direction of the support leg 10b is Y2
  • the size (width) in the row direction of the read signal lines 8a and 8b is a
  • one read signal line for example, a read signal
  • the size in the row direction between the line 8a) and the end face of the insulating film 16e covering the signal line is b, and the size in the row direction between the two signal lines 8a and 8b in the same read signal line group 6
  • (interval) is c
  • the size in the row direction between adjacent support legs 10a in the same pixel group 4 is e
  • one row selection line 6a is provided in the row direction between adjacent pixels, and one readout signal line is provided in the column direction between adjacent pixels.
  • a set of 4 pixels in 2 rows and 2 columns is considered to correspond to the pixel group of the present embodiment, and the pitch in the row direction of a pixel group consisting of 4 pixels in 2 rows and 2 columns is set.
  • the size of the row selection line of each pixel in the extending direction (row direction) is X2
  • the size of the support leg 10a supporting each pixel in the row direction is Y1
  • the size of the support leg 10b in the row direction is Y2.
  • the size (width) in the row direction of the signal line 8a is a
  • the size in the row direction between the read signal line 8a and the end face of the insulating film 16e covering the signal line is b
  • the interval between adjacent pixels in the same pixel group in the column direction the interval between the pixel and the support leg, the interval between the pixel and the row selection line group, the interval between the support leg and the readout signal line group, and the same row
  • the interval is preferably 0.2 ⁇ m or more and 2 ⁇ m or less.
  • the width of the insulating film is desirably 0.3 ⁇ m or more and 3 ⁇ m or less.
  • each row selection line group 6 is provided with two row selection lines 6a and 6b
  • each readout signal line group 8 is provided with two readout signal lines 8a and 8b.
  • the number of row selection lines or readout signal lines corresponding to the number of pixels in each pixel group can be used.
  • FIGS. 10 to 13 are cross sections taken along the cutting line A-A 'in FIG.
  • the insulating film 12 is formed on the silicon substrate 2, and the first insulating film 16 having good thermal conductivity is formed on the insulating film 12.
  • a thermal diode 14 constituting a pixel is formed, and readout signal lines 8a and 8b are formed.
  • a second insulating film 16 having a good thermal conductivity is formed so as to cover the thermal diode 14 and the read signal lines 8a and 8b, and row selection lines 6a and 6b are formed on the second insulating film 16.
  • a third insulating film 16 having good thermal conductivity is formed so as to cover these row selection lines 6a and 6b.
  • the first to third insulating films are denoted by reference numeral 16.
  • a plurality of openings reaching the upper surface of the substrate 2 from the upper surface of the insulating film 16 are formed.
  • the pixel, the support leg, the row selection line group, and the readout signal line group are patterned into respective shapes.
  • a sacrificial layer 17 is formed on the insulating film 16 so as to fill these openings.
  • an infrared absorption film 18 is formed on the region of the insulating film 16 that becomes each pixel.
  • the sacrificial layer 17 is removed by wet etching.
  • an opening 30 leading to the surface of the substrate 2 exists at the trace where the sacrificial layer 17 is removed.
  • isotropic etching using a gas for example, XeF 2 gas
  • isotropic etching using a gas for example, XeF 2 gas
  • a gas for example, XeF 2 gas
  • the formation of the cavity 3 is started on the surface of the substrate 2.
  • the etching of the substrate 2 proceeds by performing isotropic etching using the above gas.
  • the cavity 3 is formed in the substrate region immediately below each pixel group 4.
  • a plurality of row selection lines are arranged in parallel to form one row selection line group, and a plurality of readout signal lines are arranged in parallel to form one readout signal line group.
  • the number of thermal diodes in each pixel can be increased, and the sensitivity of the image sensor can be increased.
  • the uncooled infrared image sensor of the present embodiment is a support leg 10a provided corresponding to each pixel in the uncooled infrared image sensor of the first embodiment shown in FIG. 1, and supporting the corresponding pixel on the cavity,
  • the configuration is such that the shape of 10b is changed from a spiral ninety-nine fold or meander shape to a spiral shape around the corresponding pixel.
  • At least the row selection line group is used in order to perform isotropic etching without forming an etching stop layer around the cavity.
  • 6 and the readout signal line group 8 need to have a support portion 2a that supports the row selection line group 6 and the readout signal line group 8 from the substrate 2 side.
  • the diameter of the inscribed circle in the plane of the intersection is required to be larger than the diameter of the inscribed circle in the plane of each pixel of each pixel group. .
  • the uncooled infrared image sensor of the present embodiment can prevent the manufacturing process from becoming complicated as in the first embodiment.
  • a plurality of row selection lines are arranged in parallel to form one row selection line group, and a plurality of readout signal lines are arranged in parallel to form one readout signal line group.
  • the number of thermal diodes in each pixel can be increased, and the sensitivity of the image sensor can be increased.
  • FIG. 15 shows a plan view of an uncooled infrared image sensor according to the third embodiment of the present invention.
  • the uncooled infrared image sensor of the present embodiment is a support leg 10a provided corresponding to each pixel in the uncooled infrared image sensor of the second embodiment shown in FIG. 14, and supporting the corresponding pixel on the cavity.
  • the shape of 10b is changed to a spiral shape different from that of the second embodiment.
  • the pixels 4a and 4b are arranged on the pixel group in FIG.
  • the pixels 4a and 4c are respectively connected to the row selection lines 6a and 6b of the row selection line group 6 located on the lower side, and the pixels 4c and 4d are selected by the row selection line group 6 located on the upper side of the pixel group 4 in FIG.
  • the wires 6b and 6a are connected to the support legs 10a, respectively.
  • the pixels 4a and 4c are positioned on the right side of the pixel group 4 on FIG. 15 by the respective support legs 10b.
  • At least the row selection line group is used in order to perform isotropic etching without forming an etching stop layer around the cavity.
  • 6 and the readout signal line group 8 need to have a support portion 2a that supports the row selection line group 6 and the readout signal line group 8 from the substrate 2 side.
  • the diameter of the inscribed circle in the plane of the intersection is required to be larger than the diameter of the inscribed circle in the plane of each pixel of each pixel group. .
  • the uncooled infrared image sensor of this embodiment can prevent the manufacturing process from becoming complicated as in the second embodiment.
  • a plurality of row selection lines are arranged in parallel to form one row selection line group, and a plurality of readout signal lines are arranged in parallel to form one readout signal line group.
  • FIG. 1 the top view of the uncooled infrared image sensor by 4th Embodiment of this invention is shown in FIG.
  • the uncooled infrared image sensor of the present embodiment is the same as the uncooled infrared image sensor of the first embodiment shown in FIG. 1, but each pixel group 4 composed of a total of four pixels of 2 rows ⁇ 2 columns is arranged in the column direction.
  • the read signal line group having two read signal lines provided between the pixel groups 4 adjacent to each other in the row direction is replaced with the pixel group 4 including the two pixels 4 a and 4 b in total of 2 rows ⁇ 1 column. 6 is replaced with a read signal line group composed of one read signal line.
  • the row selection line group 6 has the same configuration as the row selection line group 6 in the first embodiment.
  • each pixel group is configured to include a total of two pixels of 1 row ⁇ 2 columns, each row selection line group is configured from one row selection line, and each readout signal
  • the line group is composed of two readout signal lines, and the two pixels in each pixel group are electrically connected to the same row selection line and are electrically connected to different readout signal lines. It may be.
  • the uncooled infrared image sensor of this embodiment has a configuration in which the size of the intersection between the row selection line group 6 and the readout signal line group 8 is increased in the uncooled infrared image sensor of the first embodiment shown in FIG. ing. This can be achieved by increasing the width of the insulating film covering the row selection line group 6 at the intersection (the size in the direction substantially perpendicular to the direction in which the row selection lines extend).
  • the uncooled infrared image sensor of the present embodiment can prevent the manufacturing process from becoming complicated as in the first embodiment.
  • a plurality of row selection lines are arranged in parallel to form one row selection line group, and a plurality of readout signal lines are arranged in parallel to form one readout signal line group.
  • the number of thermal diodes in each pixel can be increased, and the sensitivity of the image sensor can be increased.
  • the cavity 3 is formed by isotropic etching using a gas as an etchant, but can also be formed by anisotropic wet etching.
  • each pixel preferably has a plurality of thermal diodes connected in series in order to increase the sensitivity of the uncooled infrared image sensor.
  • the pitch of each pixel is desirably any size between 10 ⁇ m and 50 ⁇ m.
  • the thickness of the thermal diode constituting the pixel is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the material of the infrared absorption film is a silicon oxide film, a silicon nitride film, or a laminated film thereof, and the thickness is desirably 0.1 ⁇ m or more and 5 ⁇ m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[課題]製造工程が煩雑となるのを防止することを可能にする。 [解決手段]半導体基板の表面部分に設けられた複数の空洞部のそれぞれに対応して前記複数の空洞部の上方に設けられた複数の画素群であって、各画素群はそれぞれマトリクス状に配列された同じ個数の画素を有し、各画素は、入射された赤外線を吸収しこの吸収した赤外線を熱に変換する赤外線吸収膜と、前記赤外線吸収膜と電気的に絶縁され前記赤外線吸収膜からの熱を検出することにより電気信号を生成する熱電変換素子と、を有する、画素群と、列方向において隣接する前記画素群間に設けられ、前記各画素群において同一列方向に配列された画素の個数と同じ本数の行選択線を有する行選択線群と、行方向において隣接する前記画素群間に設けられ、前記各画素群において同一行方向に配列された画素の個数と同じ本数の読み出し信号線を有する読み出し信号線群と、を備え、前記行選択線群と前記読み出し信号線群との交差部は、前記半導体基板の支持部によって支持されている。

Description

非冷却赤外線イメージセンサ
 本発明は、非冷却赤外線イメージセンサに関する。
 一般に、非冷却赤外線イメージセンサには、シリコン基板上に、行方向に形成される複数の行選択線と、列方向に形成される複数の読み出し信号線とが設けられるとともに、これらの行選択線と読み出し信号線とが交差する領域に対応して、少なくとも1個のダイオードを有する画素部が設けられている。更に、この非冷却赤外線イメージセンサには、赤外線を吸収して熱に変換する赤外線吸収部が設けられ、この赤外線吸収部によって変換された熱の変化が上記ダイオードによって検知される。そして、この非冷却赤外線イメージセンサには、画素部の下方の基板領域に空洞部を形成することにより、基板からの熱の影響をダイオードが受けるのを排除し、感度を高めている。なお、画素部は、一端が基板に接続され他端が画素部に接続される支持脚によって空洞部の上方に支持された構成となっている。
 また、感度を良くするために、画素部、すなわちダイオードの占める面積を大きくすることおよび、行選択線および読み出し信号線が載置される基板領域における、配線が延在する方向と略直交する方向の幅を狭くすることの少なくとも一方を用いた構成としている。このため、空洞部を形成する際には、行選択線および読み出し信号線が載置される基板領域が更に狭くなるのを防止するために、アルカリ溶液を用いたウェットエッチングにより基板を異方的にエッチングしている(例えば、特許文献1参照)。
 また、ウェットエッチングを用いた場合は、空洞部を形成した後、空洞部を薬液等で洗浄し、乾燥させる必要がある(例えば、特許文献2参照)。この乾燥の工程において、画素部および支持脚の一方が他方に張り付いてしまう可能性がある。これを回避するために、XeFガス等を用いた等方性ドライエッチングでシリコン基板をエッチングして空洞部を形成することが望ましい。そこで、特許文献2においては、行選択線および読み出し信号線が載置される基板領域が更に狭くなるのを防止するために、空洞部の周囲にエッチングストップ層を形成しているか、エッチングホールを空洞部の中心付近に設けている。
特開2001-267542号公報 特許3040356号公報
 上述したように、空洞部の形成にウェットエッチングを用いた場合には、画素部および支持脚の一方が他方に張り付いてしまうことを回避する必要があり、製造工程が煩雑となる。また、等方性ドライエッチングを用いた場合は、空洞部の周囲にエッチングストップ層またはエッチングホールを形成する必要があり、製造工程が煩雑となる。
 本発明は、上記事情を考慮してなされたものであって、製造工程が煩雑となるのを防止することのできる非冷却赤外線イメージセンサを提供することを目的とする。
 本発明の第1の態様による非冷却赤外線イメージセンサは、表面に複数の支持部が設けられるとともに表面部分にマトリクス状に配列された複数の空洞部が設けられた半導体基板と、前記複数の空洞部のそれぞれに対応して前記複数の空洞部の上方に設けられた複数の画素群であって、各画素群はそれぞれマトリクス状に配列された同じ個数の画素を有し、各画素は、入射された赤外線を吸収しこの吸収した赤外線を熱に変換する赤外線吸収膜と、前記赤外線吸収膜と電気的に絶縁され前記赤外線吸収膜からの熱を検出することにより電気信号を生成する熱電変換素子と、を有する、複数の画素群と、列方向において隣接する前記画素群間に設けられ、前記各画素群において同一列方向に配列された画素の個数と同じ本数の行選択線を有する行選択線群と、行方向において隣接する前記画素群間に設けられ、前記各画素群において同一行方向に配列された画素の個数と同じ本数の読み出し信号線を有する読み出し信号線群と、各画素に対応して設けられ、一端が対応する画素に電気的に接続し他端が前記対応する画素を含む画素群に隣接する2つの行選択線群の一方の行選択線群中の1本の行選択線に電気的に接続する第1配線と、この第1配線を覆う第1絶縁膜とを有する第1支持脚と、各画素に対応して設けられ、一端が対応する画素に電気的に接続し他端が前記対応する画素を含む画素群に隣接する2つの読み出し信号線群の一方の読み出し信号線群中の1本の読み出し信号線に電気的に接続する第2配線と、この第2配線を覆う第2絶縁膜とを有する第2支持脚と、を備え、各画素は、対応する第1および第2支持脚によって、対応する前記空洞部の上方に支持され、前記行選択線群と前記読み出し信号線群との交差部は、前記半導体基板の支持部によって支持されていることを特徴とする。
 本発明によれば、製造工程が煩雑となるのを防止することができる。
第1実施形態による非冷却赤外線イメージセンサの平面図。 第1実施形態の非冷却赤外線イメージセンサの断面図。 第1実施形態の非冷却赤外線イメージセンサの断面図。 第1実施形態の非冷却赤外線イメージセンサの断面図。 第1実施形態の非冷却赤外線イメージセンサの断面図。 第1実施形態の非冷却赤外線イメージセンサの断面図。 第1実施形態の非冷却赤外線イメージセンサの断面図。 第1実施形態による非冷却赤外線イメージセンサの画素群の平面図。 比較例による非冷却赤外線イメージセンサの画素群の平面図。 第1実施形態の非冷却赤外線イメージセンサの製造工程断面図。 第1実施形態の非冷却赤外線イメージセンサの製造工程断面図。 第1実施形態の非冷却赤外線イメージセンサの製造工程断面図。 第1実施形態の非冷却赤外線イメージセンサの製造工程断面図。 第2実施形態による非冷却赤外線イメージセンサの平面図。 第3実施形態による非冷却赤外線イメージセンサの平面図。 第4実施形態による非冷却赤外線イメージセンサの平面図。 第5実施形態による非冷却赤外線イメージセンサの平面図。
 以下、図面を参照しながら本発明の実施形態を説明する。
(第1実施形態)
 本発明の第1実施形態による非冷却赤外線イメージセンサの平面図を図1に示す。なお、この図1においては、後述する赤外線吸収膜は示されていない。また、図1における切断線A-A’、B-B’、C-C’、D-D’、およびE-E’で切断した断面をそれぞれ図2、図3、図4、図5、および図6に示す。なお、図2乃至図6においては、各切断線で切断した断面を拡大して表示している。また、図2における切断線F-F’で切断した断面を図7に示す。
 本実施形態の非冷却赤外線イメージセンサは、基板(例えば、シリコン基板)2上に、マトリクス状に配列された複数の画素群4を有している。各画素群4は、マトリクス状に配列された複数(本実施形態では、2行×2列の計4個)の画素4a、4b、4c、4dを有している。列方向において隣接する画素群4の間には行選択線群6が設けられている。各行選択線群6は、列方向において隣接する画素群中の列方向において隣接する画素を選択するための行選択線6a、6bを有している。例えば、行選択線6aは図1の中央に示す画素群4の画素4a、4bを選択するための行選択線であり、行選択線6bは図1の中央に示す画素群4の上方において隣接する画素群4の画素4c、4dを選択するための行選択線である。同一の行選択線群に含まれる行選択線6a、6bは、行方向に並んで配置される。
 また、行方向において隣接する画素群4の間には読み出し信号線群8が設けられている。各読み出し信号線群8は、行方向において隣接する画素群中の行方向において隣接する画素からの信号を読み出すための読み出し信号線8a、8bを有している。例えば、読み出し信号線8aは図1の中央に示す画素群4の画素4a、4cからの信号を読み出すための読み出し信号線であり、読み出し信号8bは図1の中央に示す画素群4の左方において隣接する画素群4の画素4b、4dからの信号を読み出すための読み出し信号線である。
同一の読み出し信号線群に含まれる読み出し信号線8a、8bは、列方向に並んで配置される。
 更に、各画素群4に対応して、基板2の表面領域には空洞部3が設けられている(図2参照)。また、図1に示すように、各画素群4中の各画素、例えば画素4aに対応して、一端がこの画素4aに接続され他端が対応する行選択線6aに接続される支持脚10aと、一端が上記画素4aに接続され他端が対応する読み出し信号線8aに接続される支持脚10bとが設けられている。これらの支持脚10a、10bは、九十九折りまたはミアンダー状に曲がりくねって形成された平面形状を有している。そして、各画素群4中の各画素、例えば画素4aは、対応する空洞部3の上方に、対応する支持脚10a、10bによって支持されるように構成されている。
 図2に示すように、各画素は、絶縁膜12aと、この絶縁膜12a上に形成された感熱ダイオード(熱電変換素子)14と、この感熱ダイオード14を覆うように形成された赤外線吸収率が高い絶縁膜16aと、この絶縁膜16a上に形成され、入射する赤外線を更に高率に吸収して熱に変換する赤外線吸収膜18と、を備えている。この赤外線吸収膜18は、対応する画素ばかりでなく、対応するように設けられた支持脚10a、10b、行選択線、および読み出し信号線をも覆うように形成される。
 また、図2に示すように、支持脚10aは、絶縁膜12bと、この絶縁膜12b上に形成された配線15aと、この配線15aを覆うように形成された絶縁膜16bとを備えている。また同様に、支持脚10bも、絶縁膜12cと、この絶縁膜12c上に形成された配線15bと、この配線15bを覆うように形成された絶縁膜16cとを備えている。支持脚10aの配線15aは、一端が対応する画素の感熱ダイオードの一端に接続され、他端が対応する行選択線に電気的に接続される。一方、支持脚10bの配線15bは、一端が対応する画素の感熱ダイオードの他端に接続され、他端が対応する読み出し信号線に電気的に接続される。
 また同様に、行選択線群6の行選択線6a、6bは、絶縁膜12d上に設けられて、絶縁膜16dによって覆われている(図4参照)。読み出し信号線群8の読み出し信号線8a、8bは、絶縁膜上12e上に設けられて、絶縁膜16eによって覆われている。
 本実施形態においては、行選択線群6は、読み出し信号群8の上方に設けられている。
そして、行選択線群6および読み出し信号線群8は、少なくとも行選択線群6と読み出し信号線群8との交差部において、基板2の支持部2aによって支持された構成となっている(図2、図4参照)。なお、本実施形態においては、この支持部2aは、行選択線群6の直下にも設けられているが(図5、図6、図7参照)、上記交差部以外の読み出し信号線群8の直下には設けられていない(図3参照)。すなわち、列方向に配列された隣接する画素群4のそれぞれに対応する空洞部3は行選択線群6の直下にも設けられた支持部2aによって遮られて連結しないが、行方向に配列された隣接する画素群4のそれぞれに対応する空洞部3は、連結した形態となっている。この理由は、本実施形態においては、読み出し信号線よりも行選択線の幅を広くなるように構成しているので、読み出し信号線群8よりも行選択線群6の幅が広くなり、この結果、空洞部3を形成する際のエッチャントとして気体(例えば、XeFガス)を用いた等方性エッチングを行った場合に、読み出し信号線群8直下の基板領域が、行選択線6直下の基板領域よりも早くエッチングされるためである。なお、隣接する赤外線吸収膜18間、赤外線吸収膜18と支持脚10a、10bとの間、および画素と対応する支持脚との間にそれぞれ隙間が設けられているので、これらの隙間を通じて、エッチャントとなる気体が基板表面に流れてエッチングが行われることにより、空洞部3が形成される。この説明からわかるように、空洞部3を形成する場合に、エッチングストッパを空洞部3の周囲に形成することなく、エッチャントとして気体を用いた等方性エッチングを行うことが可能となり、製造工程が煩雑となるのを防止することができる。
 このような等方性エッチングを行った場合に、少なくとも行選択線群6と読み出し信号線群8との交差部に、行選択線群6および読み出し信号線群8を基板2側から支持する支持部2aが存在するためには、図1に示すように、上記交差部の平面内における内接円20の直径d1が、各画素群4の各画素の平面内における内接円22の直径d2よりも大きいことが必要となる。
 次に、本実施形態の非冷却赤外線イメージセンサの動作について説明する。外部からの赤外線が赤外線吸収膜18に照射されると、赤外線吸収膜18によって赤外線が熱に変換される。この変換された熱は、絶縁膜16aを通じて感熱ダイオード14に伝わり、感熱ダイオード14によって電気信号に変換される。すなわち、感熱ダイオード14の温度変化に応じて感熱ダイオード14の抵抗が変化することにより、感熱ダイオード14を流れる電流または感熱ダイオード14の端子間の電圧が変化し、この変化を読み出し信号線を通じて検出する。
 また、図8に示すように、本実施形態の非冷却赤外線イメージセンサにおいて、各画素群4の各画素の行選択線の延在する方向(行方向)のサイズをX1、各画素を支持する支持脚10aの行方向のサイズをY1、支持脚10bの行方向のサイズをY2、読み出し信号線8a、8bの行方向のサイズ(幅)をa、一本の読み出し信号線(例えば、読み出し信号線8a)とこの信号線を覆うっている絶縁膜16eの端面との間の行方向のサイズをb、同一の読み出し信号線群6おける2本の信号線8a、8b間の行方向のサイズ(間隔)をc、同一の画素群4中の隣接する支持脚10a間の行方向のサイズをe、画素群4の行方向のピッチを2Pとすると、下記の(1)式
 2P=2a+2b+c+2Y1+2Y2+e+2X1  ・・・ (1)
を満たす。
 一方、本実施形態の比較例として、図9に示すように、隣接する画素間の行方向に1本の行選択線6aが設けられ、隣接する画素間の列方向に1本の読み出し信号線8aが設けられた非冷却赤外線イメージセンサを考える。この比較例において、2行2列の4個の画素の集合を、本実施形態の画素群に対応すると考え、2行2列の4個の画素の集合からなる画素群の行方向のピッチを2P、各画素の行選択線の延在する方向(行方向)のサイズをX2、各画素を支持する支持脚10aの行方向のサイズをY1、支持脚10bの行方向のサイズをY2、読み出し信号線8aの行方向のサイズ(幅)をa、読み出し信号線8aとこの信号線を覆うっている絶縁膜16eの端面との間の行方向のサイズをb、同一の画素群中の隣接する支持脚10a間の行方向のサイズをe、とすると、下記の(2)式
 2P=2a+4b+2Y1+2Y2+2e+2X1  ・・・ (2)
を満たす。
 上記(1)式と(2)式から
 2(X1-X2)=2b+e-c ・・・ (3)
が得られる。この(3)式から分かるように、下記条件
  2b+e-c>0  
すなわち、
  2b+e>c  ・・・ (4)
を満たせば、
  X1>X2
となる。このことは、本実施形態と比較例において、画素群が同じピッチを有するようにした場合に、(4)式の条件を満たせば、本実施形態における各画素を、比較例における画素よりも、大きくすることができることを意味する。すなわち、(4)式の条件を満たせば、画素の面積を増大させることが可能となるので、各画素における感熱ダイオードの個数を増大させることができ、イメージセンサの感度を高めることが可能となる。この効果は、本実施形態のように、複数の行選択線を並列に配列して一つの行選択線群とするとともに、複数の読み出し信号線を並列に配列して一つの読み出し信号線群とした構成とすることにより得られる。
 なお、同一の画素群における列方向に隣接する画素間の間隔、画素と支持脚との間隔、画素と行選択線群との間隔、支持脚と読み出し信号線群との間隔、および同一の行選択線群における行選択線の間隔は大きいほど相互に熱の伝達および混信が小さくなるが、集積密度が低下するので、感度が低下する。これに対して、上記間隔が小さすぎると、製作が困難である。このため、上記間隔は、0.2μm以上2μm以下が望ましい。
 また、行選択線を覆っている絶縁膜は幅が大きいほど絶縁性、製作段階の安定性、機械的安定性が増大するが、集積密度が低下するので、感度が低下する。これに対して、上記絶縁膜の幅が小さすぎると、製作が困難である。このため、上記絶縁膜の幅は、0.3μm以上3μm以下が望ましい。
 なお、本実施形態においては、各行選択線群6には2本の行選択線6a、6bが設けられ、各読み出し信号線群8には2本の読み出し信号線8a、8bが設けられていたが、各画素群内の画素の個数に応じた個数の行選択線または読み出し信号線とすることが可能である。
 次に、本実施形態による非冷却赤外線イメージセンサの製造方法を図10乃至図13を参照して説明する。なお、図10乃至図13は、図1における切断線A-A’で切断した断面である。
 まず、図10に示すように、シリコン基板2上に絶縁膜12を形成し、この絶縁膜12上に熱伝導率のよい第1絶縁膜16を形成する。この第1絶縁膜16上に、画素を構成する感熱ダイオード14を形成するとともに、読み出し信号線8a、8bを形成する。その後、これらの感熱ダイオード14および読み出し信号線8a、8bを覆うように、熱伝導率のよい第2絶縁膜16を形成し、この第2絶縁膜16上に行選択線6a、6bを形成する。その後、これらの行選択線6a、6bを覆うように、熱伝導性のよい第3絶縁膜16を形成する。なお、説明を簡単にするために上記第1乃至第3絶縁膜を符号16で示している。続いて、この絶縁膜16の上面から基板2の上面に達する複数の開口を形成する。
この開口の形成によって、画素、支持脚、行選択線群、読み出し信号線群がそれぞれの形状にパターニングされる。その後、これらの開口を埋め込むように、犠牲層17を絶縁膜16上に形成する。そして、この犠牲層17をパターニングした後、絶縁膜16の各画素となる領域上に赤外線吸収膜18を形成する。
 次に、図11に示すように、犠牲層17をウェットエッチングにより除去する。これにより、犠牲層17が除去された跡には、基板2の表面に通じる開口30が存在する。続いて、図12に示すように、上記開口30を通じて、エッチャントとして気体(例えば、XeFガス)を用いた等方性エッチングを行うと、開口30の底部に露出した基板2の表面からエッチングされ、基板2の表面に空洞部3の形成が開始される。更に、上記気体を用いた等方性エッチングを行うことにより、基板2のエッチングが進行する。そして、このエッチングを終了することにより、各画素群4の直下の基板領域に空洞部3が形成される。
 以上説明したように、本実施形態よれば、製造工程が煩雑となるのを防止することができる。また、複数の行選択線を並列に配列して一つの行選択線群とするとともに、複数の読み出し信号線を並列に配列して一つの読み出し信号線群とした構成となっているので、画素の面積を増大させることが可能となって各画素における感熱ダイオードの個数を増大させることができ、イメージセンサの感度を高めることが可能となる。
(第2実施形態)
 次に、本発明の第2実施形態による非冷却赤外線イメージセンサの平面図を図14に示す。本実施形態の非冷却赤外線イメージセンサは、図1に示す第1実施形態の非冷却赤外線イメージセンサにおいて、各画素に対応して設けられ、対応する画素を空洞部上で支持する支持脚10a、10bの形状を、曲がりくねった九十九折りまたはミアンダー形状から対応する画素の周りを廻るスパイラル形状に変更した構成となっている。
 なお、本実施形態においても、第1実施形態と同様に、空洞部の周囲にエッチングストップ層を形成することなく、等方性エッチングを行うことが可能にするためには、少なくとも行選択線群6と読み出し信号線群8との交差部に、行選択線群6および読み出し信号線群8を基板2側から支持する支持部2aが存在する必要がある。このためには、第1実施形態と同様に、上記交差部の平面内における内接円の直径が、各画素群の各画素の平面内における内接円の直径よりも大きいことが必要となる。
 本実施形態の非冷却赤外線イメージセンサも第1実施形態と同様に、製造工程が煩雑となるのを防止することができる。また、複数の行選択線を並列に配列して一つの行選択線群とするとともに、複数の読み出し信号線を並列に配列して一つの読み出し信号線群とした構成となっているので、画素の面積を増大させることが可能となって各画素における感熱ダイオードの個数を増大させることができ、イメージセンサの感度を高めることが可能となる。
(第3実施形態)
 次に、本発明の第3実施形態による非冷却赤外線イメージセンサの平面図を図15に示す。本実施形態の非冷却赤外線イメージセンサは、図14に示す第2実施形態の非冷却赤外線イメージセンサにおいて、各画素に対応して設けられ、対応する画素を空洞部上で支持する支持脚10a、10bの形状を、第2実施形態とは異なるスパイラル形状に変更した構成となっている。この第3実施形態においては、第2実施形態と異なり、同一画素群4の画素4a、4b、4c、4dのうち、画素4a、4bは、それぞれの支持脚10aによって、図15上で画素群4の下側に位置する行選択線群6の行選択線6a、6bにそれぞれ接続され、画素4c、4dは、図15上で画素群4の上側に位置する行選択線群6の行選択線6b、6aに支持脚10aによってそれぞれ接続される。また、第2実施形態と異なり、同一画素群4の画素4a、4b、4c、4dのうち、画素4a、4cは、それぞれの支持脚10bによって、図15上で画素群4の右側に位置する読み出し信号線群8の読み出し信号線8a、8bにそれぞれ接続され、画素4b、4dは、図15上で画素群4の左側に位置する読み出し信号線群8の行選択線8b、8aに支持脚10bによってそれぞれ接続される。すなわち、本実施形態においては、各画素群4中の各画素は、それぞれが異なる行選択線に接続されるとともに、それぞれが異なる読み出し信号線に接続される。
 なお、本実施形態においても、第1実施形態と同様に、空洞部の周囲にエッチングストップ層を形成することなく、等方性エッチングを行うことが可能にするためには、少なくとも行選択線群6と読み出し信号線群8との交差部に、行選択線群6および読み出し信号線群8を基板2側から支持する支持部2aが存在する必要がある。このためには、第1実施形態と同様に、上記交差部の平面内における内接円の直径が、各画素群の各画素の平面内における内接円の直径よりも大きいことが必要となる。
 本実施形態の非冷却赤外線イメージセンサも第2実施形態と同様に、製造工程が煩雑となるのを防止することができる。また、複数の行選択線を並列に配列して一つの行選択線群とするとともに、複数の読み出し信号線を並列に配列して一つの読み出し信号線群とした構成となっているので、画素の面積を増大させることが可能となって各画素における感熱ダイオードの個数を増大させることができ、イメージセンサの感度を高めることが可能となる。
(第4実施形態)
 次に、本発明の第4実施形態による非冷却赤外線イメージセンサの平面図を図16に示す。本実施形態の非冷却赤外線イメージセンサは、図1に示す第1実施形態の非冷却赤外線イメージセンサにおいて、2行×2列の計4個の画素からなる各画素群4を、列方向に配列された2行×1列の計2個の画素4a、4bからなる画素群4に換えるとともに、行方向に隣接する画素群間に設けられている2本の読み出し信号線を有する読み出し信号線群6を、1本の読み出し信号線からなる読み出し信号線群に換えた構成となっている。なお、行選択線群6は第1実施形態における行選択線群6と同じ構成となっている。
 なお、本実施形態においても、第1実施形態と同様に、空洞部の周囲にエッチングストップ層を形成することなく、等方性エッチングを行うことが可能にするためには、少なくとも行選択線群6と読み出し信号線群8との交差部に、行選択線群6および読み出し信号線群8を基板2側から支持する支持部2aが存在する必要がある。このためには、第1実施形態と同様に、上記交差部の平面内における内接円の直径が、各画素群の各画素の平面内における内接円の直径よりも大きいことが必要となる。
 本実施形態の非冷却赤外線イメージセンサも第1実施形態と同様に、製造工程が煩雑となるのを防止することができる。また、複数の行選択線を並列に配列して一つの行選択線群とした構成となっているので、画素の面積を増大させることが可能となって各画素における感熱ダイオードの個数を増大させることができ、イメージセンサの感度を高めることが可能となる。
 なお、本実施形態の変形例として、各画素群を1行×2列の計2個の画素からなるように構成し、各行選択線群が一本の行選択線から構成され、各読み出し信号線群が2本の読み出し信号線から構成され、各画素群中の2つの画素は、同一の行選択線に電気的に接続されるとともにそれぞれが異なる読み出し信号線に電気的に接続されるようにしてもよい。
(第5実施形態)
 次に、本発明の第5実施形態による非冷却赤外線イメージセンサの平面図を図17に示す。本実施形態の非冷却赤外線イメージセンサは、図1に示す第1実施形態の非冷却赤外線イメージセンサにおいて、行選択線群6と読み出し信号線群8との交差部のサイズを大きくした構成となっている。これは、交差部における、行選択線群6を覆っている絶縁膜の幅(行選択線が延在する方向と略直交する方向のサイズ)を大きくすることによって可能となる。
 なお、本実施形態においても、第1実施形態と同様に、空洞部の周囲にエッチングストップ層を形成することなく、等方性エッチングを行うことが可能にするためには、少なくとも行選択線群6と読み出し信号線群8との交差部に、行選択線群6および読み出し信号線群8を基板2側から支持する支持部2aが存在する必要がある。このためには、第1実施形態と同様に、上記交差部の平面内における内接円の直径が、各画素群の各画素の平面内における内接円の直径よりも大きいことが必要となる。
 本実施形態の非冷却赤外線イメージセンサも第1実施形態と同様に、製造工程が煩雑となるのを防止することができる。また、複数の行選択線を並列に配列して一つの行選択線群とするとともに、複数の読み出し信号線を並列に配列して一つの読み出し信号線群とした構成となっているので、画素の面積を増大させることが可能となって各画素における感熱ダイオードの個数を増大させることができ、イメージセンサの感度を高めることが可能となる。
 なお、上記第1乃至第5実施形態においては、空洞部3はエッチャントとして気体を用いた等方性エッチングによって形成していたが、異方性ウェットエッチングによって形成することも可能である。
 また、上記第1乃至第5実施形態においては、非冷却赤外線イメージセンサの感度を高めるために、各画素は複数の感熱ダイオードが直列に接続された構成することが好ましい。
 また、非冷却赤外線イメージセンサの実装のため、各画素のピッチは大きすぎると得られる画像が荒くなる傾向がある。また、ピッチが小さすぎると感度の低下が生じる。したがって、各画素のピッチは10μmから50μmの間のいずれの大きさが望ましい。
 また、画素を構成する感熱ダイオードは、その厚さが厚すぎると、感度が低下するとともに、支持脚などの製作が困難となる。また、その厚さが薄すぎる感熱ダイオードの製作が困難となる。したがって、感熱ダイオードの厚みは0.1μm以上10μm以下が望ましい。
 また、赤外線吸収膜はその厚さが厚すぎると製作が困難であるとともに感度が低下する。一方、その厚さが薄すぎると、赤外吸収効率が低下する。したがって、赤外線吸収膜の材料は酸化シリコン膜、窒化シリコン膜、またはこれらの積層膜を用い、その厚さは0.1μm以上5μm以下が望ましい。
 なお、上記第1乃至第5実施形態においては、行選択線群の幅を読み出し信号線群の幅よりも大きかったが、読み出し信号線の幅を行選択線の幅よりも大きくし、これにより読み出し信号線群の幅を行選択線群の幅よりも大きくなるようにしてもよい。
2 基板(シリコン基板)
2a 支持部
3 空洞部
4 画素群
4a、4b、4c、4d 画素
6 行選択線群
6a 行選択線
6b 行選択線
8 読み出し信号線群
8a 読み出し信号線
8b 読み出し信号線
12 絶縁膜
12a 絶縁膜
12b 絶縁膜
12c 絶縁膜
12d 絶縁膜
14 感熱ダイオード
16 絶縁膜
16a 絶縁膜
16b 絶縁膜
16c 絶縁膜
16d 絶縁膜
16e 絶縁膜
18 赤外線吸収膜

Claims (9)

  1.  表面に複数の支持部が設けられるとともに表面部分にマトリクス状に配列された複数の空洞部が設けられた半導体基板と、
     前記複数の空洞部のそれぞれに対応して前記複数の空洞部の上方に設けられた複数の画素群であって、各画素群はそれぞれマトリクス状に配列された同じ個数の画素を有し、各画素は、入射された赤外線を吸収しこの吸収した赤外線を熱に変換する赤外線吸収膜と、前記赤外線吸収膜と電気的に絶縁され前記赤外線吸収膜からの熱を検出することにより電気信号を生成する熱電変換素子と、を有する、複数の画素群と、
     列方向において隣接する前記画素群間に設けられ、前記各画素群において同一列方向に配列された画素の個数と同じ本数の行選択線を有する行選択線群と、
     行方向において隣接する前記画素群間に設けられ、前記各画素群において同一行方向に配列された画素の個数と同じ本数の読み出し信号線を有する読み出し信号線群と、
     各画素に対応して設けられ、一端が対応する画素に電気的に接続し他端が前記対応する画素を含む画素群に隣接する2つの行選択線群の一方の行選択線群中の1本の行選択線に電気的に接続する第1配線と、この第1配線を覆う第1絶縁膜とを有する第1支持脚と、 各画素に対応して設けられ、一端が対応する画素に電気的に接続し他端が前記対応する画素を含む画素群に隣接する2つの読み出し信号線群の一方の読み出し信号線群中の1本の読み出し信号線に電気的に接続する第2配線と、この第2配線を覆う第2絶縁膜とを有する第2支持脚と、
     を備え、
     各画素は、対応する第1および第2支持脚によって、対応する前記空洞部の上方に支持され、
     前記行選択線群と前記読み出し信号線群との交差部は、前記半導体基板の支持部によって支持されていることを特徴とする非冷却赤外線イメージセンサ。
  2.  各画素群は2行×2列に配列された4個の画素を有し、各行選択線群は2本の行選択線を有し、各読み出し信号線群は2本の読み出し信号線を有し、各画素群中の同一行方向に配列された2つの画素は、同じ行選択線に電気的に接続されるとともにそれぞれ異なる読み出し信号線に電気的に接続されることを特徴とする請求項1記載の非冷却赤外線イメージセンサ。
  3.  各画素群は2行×2列に配列された4個の画素を有し、各行選択線群は2本の行選択線を有し、各読み出し信号線群は2本の読み出し信号線を有し、各画素群中の各画素は、それぞれが異なる行選択線に電気的に接続されるとともに、それぞれが異なる読み出し信号線に電気的に接続されることを特徴とする請求項1記載の非冷却赤外線イメージセンサ。
  4.  前記第1および第2支持脚はスパイラル形状であることを特徴とする請求項2記載の非冷却赤外線イメージセンサ。
  5.  各画素群は2行×1列に配列された2個の画素を有し、各行選択線群は2本の行選択線を有し、各読み出し信号線群は1本の読み出し信号線を有し、各画素群中の2つの画素は、それぞれが異なる行選択線に電気的に接続されるとともに同一の読み出し信号線に電気的に接続されることを特徴とする請求項1記載の非冷却赤外線イメージセンサ。
  6.  各画素群は1行×2列に配列された2個の画素を有し、各行選択線群は1本の行選択線を有し、各読み出し信号線群は2本の読み出し信号線を有し、各画素群中の2つの画素は、同一の行選択線に電気的に接続されるとともにそれぞれが異なる読み出し信号線に電気的に接続されることを特徴とする請求項1記載の非冷却赤外線イメージセンサ。
  7.  前記第1および第2支持脚はミアンダー形状であることを特徴とする請求項2記載の非冷却赤外線イメージセンサ。
  8.  前記行選択線群と前記読み出し信号線群との交差部のそれぞれは、平面内における前記交差部の内接円の直径が、平面内における各画素の内接円の直径よりも大きいことを特徴とする請求項1記載の非冷却赤外線イメージセンサ。
  9.  前記熱電変換素子は直列に接続された複数の感熱ダイオードを有することを特徴とする請求項1記載の非冷却赤外線イメージセンサ。
PCT/JP2010/052943 2009-03-13 2010-02-25 非冷却赤外線イメージセンサ WO2010103932A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009060569A JP2010216819A (ja) 2009-03-13 2009-03-13 非冷却赤外線イメージセンサ
JP2009-060569 2009-03-13

Publications (1)

Publication Number Publication Date
WO2010103932A1 true WO2010103932A1 (ja) 2010-09-16

Family

ID=42728222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052943 WO2010103932A1 (ja) 2009-03-13 2010-02-25 非冷却赤外線イメージセンサ

Country Status (2)

Country Link
JP (1) JP2010216819A (ja)
WO (1) WO2010103932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169857A (ja) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp 赤外線撮像素子
JP2020153746A (ja) * 2019-03-19 2020-09-24 株式会社東芝 受光装置及び距離測定装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576312B2 (en) * 2009-02-04 2013-11-05 Rosnes Corporation Solid-state image pickup device with particular pixel arrangement
US8547458B2 (en) 2009-02-04 2013-10-01 Rosnes Corporation Solid-state image pickup device
JP5738225B2 (ja) * 2012-03-22 2015-06-17 三菱電機株式会社 熱型赤外線固体撮像素子およびその製造方法
EP4350308A1 (en) * 2021-06-03 2024-04-10 Mitsubishi Electric Corporation Semiconductor sensor and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055652A (ja) * 1990-04-24 1993-01-14 Thorn Emi Plc 熱検知装置およびその製造方法
JPH1140539A (ja) * 1997-07-18 1999-02-12 Mitsuteru Kimura フローティング部を有する半導体装置及びフローティング単結晶薄膜の形成方法
JP2000230857A (ja) * 1999-02-12 2000-08-22 Nissan Motor Co Ltd 熱型赤外線センサおよび熱型赤外線アレイ素子
JP2003106894A (ja) * 2001-09-28 2003-04-09 Toshiba Corp 赤外線センサ装置及びその製造方法
JP2007187495A (ja) * 2006-01-12 2007-07-26 Nissan Motor Co Ltd 赤外線検出素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055652A (ja) * 1990-04-24 1993-01-14 Thorn Emi Plc 熱検知装置およびその製造方法
JPH1140539A (ja) * 1997-07-18 1999-02-12 Mitsuteru Kimura フローティング部を有する半導体装置及びフローティング単結晶薄膜の形成方法
JP2000230857A (ja) * 1999-02-12 2000-08-22 Nissan Motor Co Ltd 熱型赤外線センサおよび熱型赤外線アレイ素子
JP2003106894A (ja) * 2001-09-28 2003-04-09 Toshiba Corp 赤外線センサ装置及びその製造方法
JP2007187495A (ja) * 2006-01-12 2007-07-26 Nissan Motor Co Ltd 赤外線検出素子およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169857A (ja) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp 赤外線撮像素子
JP2020153746A (ja) * 2019-03-19 2020-09-24 株式会社東芝 受光装置及び距離測定装置
JP7273565B2 (ja) 2019-03-19 2023-05-15 株式会社東芝 受光装置及び距離測定装置

Also Published As

Publication number Publication date
JP2010216819A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4315832B2 (ja) 熱型赤外センサ素子および熱型赤外センサアレイ
WO2010103932A1 (ja) 非冷却赤外線イメージセンサ
JP5455844B2 (ja) 非冷却赤外線イメージセンサ
JP5143368B2 (ja) ボロメータ検出器、そのような検出器を使用して赤外線を検出するための装置、およびこの検出器の製造方法
JP6758053B2 (ja) 向上した機械的強度を有する封入構造を有する放射検出装置
US8350350B2 (en) Optical sensor
JP4528720B2 (ja) 赤外線検出素子およびその製造方法と赤外線カメラ
CN102901567A (zh) 热电堆红外探测器、阵列及其制备方法
EP2261617B1 (en) Photodetector
JP2008039684A (ja) 固体撮像素子及びその製造方法並びに撮像装置
JP2006220555A (ja) 非冷却赤外線検出素子
KR20150090028A (ko) Cmos 볼로미터
JP2003166876A (ja) 熱型赤外線検出素子およびその製造方法ならびに熱型赤外線検出素子アレイ
US20080265168A1 (en) Radiation sensor element, method for producing a radiation sensor element and sensor field
JPH11211558A (ja) センサ及びセンサアレイ
JP5214690B2 (ja) 赤外線検出素子
CN115060371B (zh) 一种微测辐射热计、制作方法及红外探测器
JP2010276516A (ja) 赤外線撮像素子及びその製造方法
JP2000230857A (ja) 熱型赤外線センサおよび熱型赤外線アレイ素子
JP4661207B2 (ja) 赤外線センサの製造方法
WO2015107597A1 (ja) 赤外線センサ及びその製造方法
WO2019179046A1 (zh) 一种红外传感器结构
KR101331996B1 (ko) 써모파일 센서 및 그 제조방법
JP2006138747A (ja) 赤外線検出素子およびその製造方法
WO2009096310A1 (ja) 熱検出センサアレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750686

Country of ref document: EP

Kind code of ref document: A1