WO2015107597A1 - 赤外線センサ及びその製造方法 - Google Patents

赤外線センサ及びその製造方法 Download PDF

Info

Publication number
WO2015107597A1
WO2015107597A1 PCT/JP2014/006179 JP2014006179W WO2015107597A1 WO 2015107597 A1 WO2015107597 A1 WO 2015107597A1 JP 2014006179 W JP2014006179 W JP 2014006179W WO 2015107597 A1 WO2015107597 A1 WO 2015107597A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
infrared
infrared absorption
interlayer insulating
forming
Prior art date
Application number
PCT/JP2014/006179
Other languages
English (en)
French (fr)
Inventor
裕一 樋口
秀幸 新井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2015107597A1 publication Critical patent/WO2015107597A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity

Definitions

  • the present invention relates to an infrared sensor and a manufacturing method thereof.
  • thermal infrared sensor that detects infrared rays by converting incident infrared rays into heat using an infrared absorber and converting the change in the heat into a change such as an electric signal.
  • a thermal infrared sensor is formed using a micromachining technique or the like.
  • the infrared absorption rate of the detection unit that absorbs infrared rays is required to be high.
  • the prior art discloses a structure in which an absorption layer made of titanium (Ti, hereinafter also referred to as “titanium”) is provided in the infrared detection unit in order to increase the absorption rate of infrared rays (see, for example, Non-Patent Document 1). .
  • FIG. 9 is a schematic cross-sectional view of a conventional infrared sensor described in Non-Patent Document 1.
  • an infrared absorption portion 3 made of a thin film structure having a space portion 2 provided immediately below is provided on one surface side of a substrate 1 made of single crystal silicon. Via the support portion 14 on the substrate 1.
  • the support leg 4 includes a thermopile for detecting a temperature change due to infrared absorption.
  • the infrared absorbing portion 3 is composed of a laminated film of a support film 5, an interlayer insulating film 7, a first protective film 12a, an infrared absorbing film 8, and a second protective film 12b.
  • the support leg 4 includes a support film 5, a thermocouple wire 6, an interlayer insulating film 7, a first protective film 12a, and a second protective film 12b. Between the interlayer insulating film 7 and the first protective film 12a, a metal wiring 9 that is electrically connected to the thermocouple element 6 is formed.
  • the support portion 14 is formed of a laminated film of the support film 5, the interlayer insulating film 7, the first protective film 12a, and the second protective film 12b.
  • the infrared detection sensitivity as a sensor can be improved by forming an infrared absorption film having a high infrared absorption rate in the infrared absorption section.
  • a support film 5 is formed by forming a laminated film such as a silicon oxide (SiO 2 ) film or a silicon nitride (SiN) film on one surface side of a substrate 1 made of a silicon substrate.
  • a polysilicon film is patterned at a predetermined position on the support film 5, and an impurity is doped into the polysilicon film using an ion implantation method or the like, so that the thermocouple element 6 Form.
  • an insulating film such as a silicon oxide (SiO 2 ) film is deposited on the substrate 1 to form an interlayer insulating film 7.
  • thermocouple element 6 in the interlayer insulating film 7
  • aluminum (Al) or the like is formed at a predetermined position on the interlayer insulating film 7.
  • a metal wiring 9 electrically connected to the thermocouple wire 6 is formed by patterning the metal film.
  • an insulating film such as a silicon oxide (SiO 2 ) film is deposited to form a first protective film 12a.
  • an infrared absorption film 8 is formed by patterning a metal film such as Ti at a predetermined position.
  • FIG. 10E an insulating film such as a silicon oxide (SiO 2 ) film is deposited to form a first protective film 12a.
  • an infrared absorption film 8 is formed by patterning a metal film such as Ti at a predetermined position.
  • an insulating film such as a silicon oxide (SiO 2 ) film is deposited to form a second protective film 12b.
  • an opening 13 that penetrates the protective film 12 and the support film 5 in the thickness direction is formed by dry etching or the like.
  • an etching solution such as a tetramethylammonium (TMAH) solution is introduced through the opening 13 to form the space 2 in the substrate 1 under the support film 5.
  • TMAH tetramethylammonium
  • Non-Patent Document 1 the conventional infrared sensor and the manufacturing method thereof disclosed in Non-Patent Document 1 require a new additional process for forming an infrared absorption film. Therefore, there is a problem that the manufacturing process becomes long and the manufacturing cost increases.
  • the present invention has an object to provide an infrared sensor and a method for manufacturing the same that include an infrared absorption film for increasing the detection sensitivity of infrared rays and that can shorten the manufacturing process and reduce the manufacturing cost.
  • an infrared sensor includes a substrate, and an infrared ray including a thin film structure including a support leg and an infrared absorber formed on the substrate on one surface side of the substrate.
  • an infrared ray including a thin film structure including a support leg and an infrared absorber formed on the substrate on one surface side of the substrate.
  • a space is provided between the substrate and the thin film structure, and a support film, an interlayer insulating film, and a first infrared absorption film are formed in order from the lower layer in the infrared absorption section.
  • the support leg, the support film, the thermocouple wire, the interlayer insulating film and the metal wiring are formed in order from the lower layer, the metal wiring is electrically connected to the thermocouple wire
  • the first infrared absorption film and the barrier film are formed of the same material and the same film thickness.
  • the first infrared sensor manufacturing method of the present invention includes a step of forming a support film on one surface of a substrate, a step of forming a thermocouple wire on the support film, and a step on the thermocouple wire.
  • a barrier film Forming a barrier film, forming a conductive film on the barrier film, continuously patterning the barrier film and the conductive film to form a metal wiring, and at the same time, absorbing infrared rays comprising the barrier film
  • a step of leaving the film and the conductive film on the infrared absorption film a step of removing only the conductive film from the infrared absorption film and the conductive film on the infrared absorption film; and Removing the interlayer insulating film and the support film formed on the peripheral edge of the infrared absorbing film to expose the substrate; etching and removing the exposed substrate to a predetermined depth; and Forming a space portion directly below the infrared absorption film, and forming a support leg and an infrared absorption portion.
  • the second infrared sensor manufacturing method of the present invention includes a step of forming a support film on one surface of a substrate, a step of forming a thermocouple wire on the support film, and a step on the thermocouple wire.
  • the infrared absorption film made of the barrier film remains in the region where the infrared absorption film is formed.
  • the interlayer formed on the periphery of the thermocouple wire and the infrared absorption film A step of exposing the substrate by removing the insulating film and the support film; and etching and removing the exposed substrate to a predetermined depth to form a space immediately below the thermocouple wire and the infrared absorption film. Forming a support leg and an infrared ray absorbing portion.
  • the barrier film constituting the metal wiring is also used as the infrared absorbing film, it is not necessary to separately form the infrared absorbing film as compared with the prior art, and the manufacturing process is shortened. The manufacturing cost can be reduced.
  • FIG. 1 is a plan view showing an infrared sensor according to the first embodiment of the present invention.
  • FIG. 2 is a view showing a cross section taken along line AA shown in FIG.
  • FIG. 3 is a diagram showing infrared absorption spectra in various infrared absorption films.
  • FIG. 4A is a process cross-sectional view illustrating the manufacturing method of the infrared sensor according to the first embodiment of the present invention.
  • FIG. 4B is a process sectional view showing the method for manufacturing the infrared sensor according to the first embodiment of the present invention (continuation of FIG. 4A).
  • FIG. 4C is a process sectional view illustrating the method for manufacturing the infrared sensor according to the first embodiment of the present invention (continuation of FIG. 4B).
  • FIG. 4A is a process cross-sectional view illustrating the manufacturing method of the infrared sensor according to the first embodiment of the present invention.
  • FIG. 4B is a process sectional view showing the method for manufacturing
  • FIG. 4D is a process sectional view illustrating the method for manufacturing the infrared sensor according to the first embodiment of the present invention (continuation of FIG. 4C).
  • FIG. 4E is a process sectional view illustrating the method for manufacturing the infrared sensor according to the first embodiment of the present invention (continuation of FIG. 4D).
  • FIG. 4F is a process sectional view showing the method for manufacturing the infrared sensor according to the first embodiment of the present invention (continuation of FIG. 4E).
  • FIG. 4G is a process cross-sectional view illustrating the method for manufacturing the infrared sensor according to the first embodiment of the present invention (continuation of FIG. 4F).
  • FIG. 4H is a process sectional view illustrating the method for manufacturing the infrared sensor according to the first embodiment of the present invention (continuation of FIG. 4G).
  • FIG. 5A is a process cross-sectional view illustrating a modified example of the manufacturing method of the infrared sensor according to the first embodiment of the present invention.
  • FIG. 5B is a process cross-sectional view illustrating a modified example of the infrared sensor manufacturing method (continuation of FIG. 5A) according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an infrared sensor according to a modification of the first embodiment of the present invention.
  • FIG. 7A is a cross-sectional view showing an infrared sensor according to the second embodiment of the present invention.
  • FIG. 7B is a process sectional view showing the method for manufacturing the infrared sensor according to the second embodiment of the present invention.
  • FIG. 8A is a cross-sectional view showing an infrared sensor according to a third embodiment of the present invention.
  • FIG. 8B is a process sectional view showing the method for manufacturing the infrared sensor according to the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a conventional infrared sensor.
  • FIG. 10A is a process cross-sectional view illustrating a method for manufacturing a conventional infrared sensor.
  • FIG. 10B is a process cross-sectional view illustrating a conventional method for manufacturing an infrared sensor (continuation of FIG. 10A).
  • FIG. 10C is a process cross-sectional view illustrating a conventional method for manufacturing an infrared sensor (continuation of FIG. 10B).
  • FIG. 10D is a process cross-sectional view illustrating a conventional method for manufacturing an infrared sensor (continuation of FIG. 10C).
  • FIG. 10E is a process cross-sectional view illustrating a conventional method for manufacturing an infrared sensor (continuation of FIG. 10D).
  • FIG. 10F is a process cross-sectional view illustrating a conventional method for manufacturing an infrared sensor (continuation of FIG. 10E).
  • FIG. 1 is a plan view showing a configuration of an infrared sensor according to the present embodiment.
  • FIG. 2 is a view showing a cross section taken along line AA of the infrared sensor shown in FIG.
  • the infrared sensor includes a substrate 1, a space portion 2 provided on one surface side of the substrate 1, and a thin film structure provided on the space portion 2.
  • the thin film structure includes an infrared absorbing portion 3 that absorbs infrared rays, and a support leg 4 provided across the substrate 1 and the infrared absorbing portion 3.
  • the thin film structure is held on the space 2 by a part of the thin film structure being continuous with the support 14 on the substrate 1 by the support legs 4.
  • the support leg 4 includes a thermopile composed of a thermocouple wire 6 to be described later.
  • an opening 13 for forming the space 2 is provided so as to surround the thin film structure.
  • the infrared sensor includes the substrate 1 and a thin film structure including the support leg 4 and the infrared absorbing portion 3 formed on the substrate 1 on one surface side of the substrate 1.
  • a space 2 is provided between the substrate 1 and the thin film structure.
  • a support film 5, an interlayer insulating film 7, and a first infrared absorbing film (infrared absorbing film 8) are formed in order from the lower layer.
  • a support film 5, a thermocouple element 6, an interlayer insulating film 7 and a metal wiring 9 are formed in order from the lower layer.
  • the metal wiring 9 is formed of a laminated film composed of a barrier film 10a electrically connected to the thermocouple element 6 and a conductive film (low resistance film 10b).
  • the first infrared absorption film (infrared absorption film 8) and the barrier film 10a are formed with the same material and the same film thickness.
  • the substrate 1 functions as a heat sink, and converts the temperature difference from the substrate 1 generated by the infrared absorption part 3 absorbing infrared rays into an electrical signal by the thermopile in the support leg 4 to detect infrared rays.
  • the thin film structure is thermally separated from the substrate 1 by providing the space 2 and the opening 13. Thereby, the heat insulation between the board
  • the substrate 1 may be, for example, an n-type single crystal silicon (Si) substrate having a ⁇ 100 ⁇ plane on one surface.
  • the infrared absorbing portion 3 includes a support film 5, an interlayer insulating film 7, and an infrared absorbing film 8.
  • the support film 5 and the interlayer insulating film 7 may be formed of an insulating film such as a silicon oxide (SiO 2 ) film as an example.
  • a silicon oxide (SiO 2 ) film As an example, the present invention is not limited to this, and other silicon nitride (SiN) films are used.
  • SiON silicon oxynitride
  • SiC silicon carbide
  • An infrared absorption film 8 is formed on the interlayer insulating film 7.
  • a laminated film (Ti / TiN film) of titanium (Ti) and titanium nitride (TiN) can be used, but the present invention is not limited to this.
  • the support leg 4 includes a support film 5, a thermocouple element 6, an interlayer insulating film 7, and a metal wiring 9 that electrically connects the thermocouple elements 6.
  • the support leg 4 is formed adjacent to the infrared absorption part 3 and straddling the infrared absorption part 3 and the support part 14 on the substrate 1.
  • the support film 5 in the support leg 4 is composed of substantially the same material and the same film thickness within the range of process variations as the support film 5 constituting the infrared absorbing portion 3 described above.
  • “same” includes within the range of process variation.
  • thermocouple element 6 made of, for example, polysilicon is formed on the support film 5 in the support leg 4.
  • the thermocouple wire 6 is formed as a thermopile composed of an n-type polysilicon layer 6a and a p-type polysilicon layer 6b.
  • the material which comprises the thermocouple strand 6 is not restricted to this, If it is a material which has a Seebeck effect, such as a polysilicon, a polygermanium, a polysilicon germanium, it can be used.
  • interlayer insulating film 7 is formed on the thermocouple element 6.
  • the interlayer insulating film 7 in the support leg 4 is composed of the same material and the same film thickness as the interlayer insulating film 7 constituting the infrared absorbing portion 3 described above.
  • a metal wiring 9 is formed on the interlayer insulating film 7.
  • Metal wiring 9 electrically connects n-type polysilicon layer 6a and p-type polysilicon layer 6b through a contact hole provided in interlayer insulating film 7 to form a thermopile.
  • the metal wiring 9 is formed of a laminated film of a barrier film 10a and a low resistance film 10b.
  • the barrier film 10a is composed of the same material and the same film thickness as the infrared absorption film 8 in the infrared absorption section 3 described above.
  • the low resistance film 10b is made of, for example, a metal film containing aluminum (Al).
  • the support portion 14 includes a support film 5 and an interlayer insulating film 7 on one surface side of the substrate 1.
  • a support film 5 is formed on the substrate 1 in the support portion 14.
  • the support film 5 in the support part 14 is comprised with the same material and the same film thickness as the support film 5 which comprises the infrared rays absorption part 3 mentioned above.
  • interlayer insulating film 7 is formed on the support film 5 in the support portion 14.
  • the interlayer insulation film 7 in the support part 14 is comprised with the same material and the same film thickness as the interlayer insulation film 7 which comprises the infrared rays absorption part 3 mentioned above.
  • FIG. 3 shows an infrared absorption spectrum of the single-layer film or laminated film infrared absorption film 8 formed on the single crystal silicon substrate.
  • a silicon oxide film (“SiO 2 ” in the figure, thickness is set to 200 nm)
  • a silicon nitride film (“SiN” in the figure, thickness is set to 200 nm)
  • Ti / TiN film (“Ti / TiN” in the figure, thickness is 5 nm / 10 nm) (absorption rate).
  • the absorption rate of light in the infrared absorption film increases as the film thickness increases when reflection at the interface is not considered.
  • the Ti / TiN film is a thin film having a total film thickness of 15 nm
  • the Ti / TiN film covers the entire wavelength region as compared with the silicon oxide film or silicon nitride film having a film thickness of 200 nm.
  • the absorption rate is stable and high. Therefore, by using a metal film such as a Ti / TiN film as the absorption film, the infrared absorption rate can be increased. Further, the infrared absorption rate can be further increased by oxidizing a metal such as Ti.
  • the thickness of the barrier film should be in the range of 5 nm to 100 nm from the viewpoint of the barrier property and infrared absorption efficiency. preferable. That is, the thickness of the first infrared absorption film (infrared absorption film 8) is preferably in the range of 5 nm to 100 nm.
  • a support film 5 made of, for example, a silicon oxide film having a thickness of 300 nm is formed on the entire surface of one surface of the substrate 1 by using a thermal oxidation method or the like.
  • a non-doped polysilicon film of, eg, a 300 nm-thickness is formed on the support film 5 by using LPCVD (Low Pressure Chemical Vapor Deposition) method or the like. Thereafter, patterning is performed using a photolithography technique and an etching technique so that a portion to be the thermocouple wire 6 remains in the non-doped polysilicon film. Thereafter, of the non-doped polysilicon film that becomes the thermocouple wire 6, ion implantation of a p-type impurity such as boron is performed on the portion that becomes the p-type polysilicon layer 6 b, and then the n-type polysilicon layer 6 a.
  • LPCVD Low Pressure Chemical Vapor Deposition
  • thermocouple wire 6 is formed on the support film 5.
  • a film thickness of, for example, 600 nm is formed on the entire surface of the surface of the substrate 1 on which the p-type polysilicon layer 6b and the n-type polysilicon layer 6a to be the thermocouple wires 6 are formed by a CVD method or the like.
  • An interlayer insulating film 7 is formed by depositing a silicon oxide film.
  • the contact hole 11 is formed by opening the p-type polysilicon layer 6b and the n-type polysilicon layer 6a in the interlayer insulating film 7 by using a photolithography technique and an etching technique.
  • a titanium (Ti) film having a thickness of, for example, 5 nm and a film having a thickness of, for example, 10 nm are formed on the entire surface of the interlayer insulating film 7 in which the contact holes 11 are formed by a PVD (Physical Vapor Deposition) method or the like.
  • a titanium nitride (TiN) film is deposited to form a barrier film 10a. That is, the conductive barrier film 10 a is formed on the interlayer insulating film 7 including the contact hole 11.
  • an aluminum (Al) film having a thickness of, for example, 1000 nm is deposited on the barrier film 10a by a PVD method or the like to form a low resistance film (conductive film) 10b. That is, the low resistance film (conductive film) 10b is formed on the barrier film 10a.
  • the barrier film is a titanium (Ti) film and a titanium nitride (TiN) film, but is not limited thereto, and is formed of a titanium (Ti) film, a tantalum (Ta) film, or a nitride or oxide thereof. It may be. Further, the film thickness is not limited to the above value, but is preferably in the range of 5 nm to 100 nm.
  • patterning is performed using the photolithography technique and the etching technique so that the barrier film 10a and the low resistance film 10b remain in the portions corresponding to the metal wiring 9 and the infrared absorption film 8.
  • dry etching using a reactive gas containing chlorine or the like can be used.
  • the metal wiring 9 and the infrared absorption film 8 can be formed. That is, the barrier film 10a and the low resistance film (conductive film) 10b are continuously patterned to form the metal wiring 9, and at the same time, the infrared absorption film 8 made of the barrier film 10a and the low resistance film (conductive) on the infrared absorption film 8 are formed.
  • Membrane) 10b is left.
  • the barrier film 10a corresponding to the infrared absorption film 8 is left and only the low resistance film 10b is selectively removed. Then, the infrared absorption film 8 is exposed. That is, only the low resistance film (conductive film) 10b is removed from the infrared absorption film 8 and the low resistance film (conductive film) 10b on the infrared absorption film 8.
  • a heated mixed solution of phosphoric acid, nitric acid, and acetic acid can be used.
  • a step of intentionally oxidizing the infrared absorption film 8 by an ashing step may be used.
  • predetermined regions of the interlayer insulating film 7 and the support film 5 are etched, and reach the substrate 1 for forming the space 2 later. Opening 13 is formed.
  • the substrate 1 is exposed by removing the interlayer insulating film 7 and the support film 5 formed on the periphery of the thermocouple element 6 and the infrared absorption film 8.
  • dry etching using a reactive gas containing carbon tetrafluoride (CF 4 ) or the like can be used.
  • an etchant is introduced through the opening 13 to anisotropically etch the substrate 1, thereby forming a space 2 in the substrate 1. That is, the exposed substrate 1 is etched and removed to a predetermined depth, the space 2 is formed immediately below the thermocouple wire 6 and the infrared absorption film 8, and the support leg 4 and the infrared absorption portion 3 are formed.
  • the etching solution for example, an alkaline solution such as a tetramethylammonium hydroxide (TMAH) solution can be used.
  • TMAH tetramethylammonium hydroxide
  • the etching rate of the alkaline solution varies depending on the crystal plane of silicon, and the etching rate of the ⁇ 111 ⁇ plane is lower than that of the ⁇ 100 ⁇ plane. Therefore, when a ⁇ 111 ⁇ surface having a slow etching rate appears in the etched recess, the etching stops, and as a result, the space 2 is formed in a V shape.
  • the infrared sensor shown in this embodiment can be manufactured.
  • the low resistance of other regions is used so that the low resistance film 10b remains in the portion corresponding to the metal wiring 9 by using the photolithography technique and the etching technique.
  • Patterning is performed to selectively remove only the film. That is, only the low resistance film (conductive film) 10b of the barrier film 10a and the low resistance film (conductive film) 10b is patterned to leave the low resistance film (conductive film) 10b above the support film 5 and at the same time, In the region where the absorption film 8 is formed, the low resistance film (conductive film) 10b is removed.
  • a heated mixed solution of phosphoric acid, nitric acid, and acetic acid can be used for the selective etching. At this point, the barrier film 10a remains on the entire surface.
  • patterning is performed using the photolithography technique and the etching technique so that the barrier film 10a remains in the portions corresponding to the metal wiring 9 and the infrared absorption film 8. That is, after the step of removing the low resistance film (conductive film) 10b, the barrier exposed on the interlayer insulating film 7 so that the infrared absorption film 8 made of the barrier film 10a remains in the region where the infrared absorption film 8 is formed. The film 10a is removed. At this time, for example, only a portion corresponding to the infrared absorption film 8 may be covered with a resist mask (not shown), and a portion corresponding to the metal wiring 9 may be etched using a low resistance film as a hard mask. For the etching, for example, hydrogen fluoride (HF) can be used. In this way, the metal wiring 9 and the infrared absorption film 8 are formed.
  • HF hydrogen fluoride
  • the infrared sensor shown in this embodiment can be manufactured using the same method as that shown in FIGS. 4G and 4H shown in the manufacturing method of this embodiment.
  • the patterning for forming the infrared absorption film 8 is performed by the etching process of the low resistance film 10b and the barrier film 10a and the selective removal of the barrier film 10a.
  • the infrared absorption film 8 can be formed by patterning the barrier film 10a only once. Therefore, as compared with the manufacturing method of the present embodiment described above, it is possible to reduce dimensional variations during patterning of the infrared absorbing film 8 and variations due to overlay deviation between patterning steps.
  • the size variation margin of the infrared absorption film 8 can be reduced, the area occupied by the infrared absorption film 8 in the infrared absorption section 3 can be increased, and as a result, the infrared detection sensitivity can be increased.
  • the barrier film which comprises metal wiring can be used together as an infrared absorption film. Therefore, it is not necessary to form a separate infrared absorption film, and the manufacturing process can be shortened. Therefore, it is possible to realize an infrared sensor that has an infrared absorption film and has reduced manufacturing costs.
  • FIG. 6 is a cross-sectional view showing an infrared sensor according to a modification of the first embodiment of the present invention.
  • a modification of the infrared sensor of the present embodiment shown in FIG. 6 has a protective film 12 on the upper layer of the infrared absorbing portion 3, the support leg 4 and the support portion 14 of the infrared sensor of the present embodiment shown in FIGS. It is. That is, in this modification, the single-layer protective film 12 made of an insulating film is formed on the thin film structure of the infrared sensor of the above embodiment.
  • the protective film 12 may be formed of an insulating film such as a silicon oxide (SiO 2 ) film as an example, but is not limited thereto, and is not limited to this, but a silicon nitride (SiN) film or a silicon oxynitride (SiON) film.
  • a silicon carbide (SiC) film or the like can be used, or a laminated film thereof can be used.
  • the upper protective film 12 of the low resistance film 10 b in the support leg 4, the upper protective film 12 of the infrared absorbing film 8 in the infrared absorbing portion 3, and the upper protective film 12 of the interlayer insulating film 7 in the supporting portion 14. Is made of the same material formed simultaneously.
  • the infrared sensor for example, a film covering the interlayer insulating film 7, the metal wiring 9, and the infrared absorption film 8 between FIGS. 4F and 4G.
  • the protective film 12 made of a silicon nitride film having a thickness of 500 nm, in FIG. 4G
  • the photolithography technique and the etching technique the predetermined regions of the protective film 12, the interlayer insulating film 7, and the support film 5 are etched, What is necessary is just to form the opening part 13 which reaches
  • dry etching using a reactive gas containing carbon tetrafluoride (CF 4 ) or the like can be used.
  • CF 4 reactive gas containing carbon tetrafluoride
  • the structure of a modification of the infrared sensor of the present embodiment shown in FIG. 8 can be manufactured.
  • the first protective film between the infrared absorption film and the metal wiring which has been conventionally required in the case of the structure in which the infrared absorption film is disposed above the metal wiring, is provided.
  • the second protective film on the infrared absorption film only needs to be formed on the infrared absorption film, the protective film can be formed into a single layer and the film thickness can be reduced. In addition, the manufacturing process can be shortened.
  • FIG. 7A is a cross-sectional view showing an infrared sensor according to the second embodiment of the present invention.
  • FIG. 7B is a process sectional view showing the method for manufacturing the infrared sensor according to the second embodiment of the present invention.
  • the infrared sensor of the present embodiment shown in FIG. 7A is an infrared absorbing film 8 in the infrared absorbing portion 3 of the infrared sensor of the first embodiment shown in FIGS.
  • the second infrared absorption film 6c is provided below the film). That is, in this embodiment, in the infrared absorption part 3 in the first embodiment, the second infrared absorption made of the same material and the same film thickness as the thermocouple element 6 between the support film 5 and the interlayer insulating film 7.
  • the film 6c is interposed.
  • the second infrared absorption film 6c is made of polysilicon, for example, and is a film having the same material and the same film thickness that is formed simultaneously with the film constituting the thermocouple element 6 in the support leg 4.
  • the manufacturing method of the infrared sensor of the present embodiment is different only in the process of FIG. 4B in the manufacturing method of the infrared sensor of the first embodiment.
  • the region where the first infrared absorption film 8 is to be formed on the upper side later is also formed.
  • the second infrared absorption film 6c may be simultaneously formed as an n-type polysilicon layer.
  • the second infrared absorption film 6c may be formed as a p-type polysilicon layer simultaneously with the formation of the p-type polysilicon layer 6b.
  • the structure of the infrared sensor of this embodiment shown in FIG. 7A can be manufactured by using the same manufacturing method as that of FIGS. 4C to 4H in the method of manufacturing the infrared sensor of this embodiment.
  • the barrier film constituting the metal wiring can be used in combination as the first infrared absorption film. Therefore, it is not necessary to form the first infrared absorption film separately, and the manufacturing process can be shortened. Therefore, it is possible to realize an infrared sensor that has a first infrared absorption film and has reduced manufacturing costs.
  • the second infrared absorption film 6c can be provided without adding any manufacturing process as compared with the manufacturing method of the first embodiment. Compared with the embodiment, the infrared absorption rate can be further increased without increasing the manufacturing cost, and as a result, the infrared detection sensitivity can be further increased.
  • FIG. 8A is a cross-sectional view showing an infrared sensor according to a third embodiment of the present invention.
  • FIG. 8B is a process sectional view showing the method for manufacturing the infrared sensor according to the third embodiment of the present invention.
  • the infrared sensor of this embodiment shown in FIG. 8A has a concave portion in a region that is a base of the infrared absorption film 8 in the interlayer insulating film 7 in the infrared absorption part 3 of the infrared sensor of the first embodiment shown in FIGS. And an infrared absorption film 8 is formed thereon. For this reason, the infrared absorption film 8 has a stepped shape having an uneven shape.
  • the infrared absorption film 8 in the infrared absorption section 3 is composed of the same material and the same film thickness that are formed simultaneously with the barrier film 10a.
  • the first infrared absorbing film (infrared absorbing film 8) is formed in an uneven step shape. Further, an uneven step is formed immediately below the first infrared absorption film (infrared absorption film 8) in the interlayer insulating film 7.
  • the manufacturing method of the infrared sensor of the present embodiment is different only in the process of FIG. 4C in the manufacturing method of the infrared sensor of the first embodiment.
  • the contact hole 11 when the contact hole 11 is formed by opening the p-type polysilicon layer 6b and the n-type polysilicon layer 6a in the interlayer insulating film 7 using the photolithography technique and the etching technique.
  • the contact hole 11 may be simultaneously formed in the infrared absorbing portion 3 in the interlayer insulating film 7.
  • the contact hole 11 formed in the infrared absorbing portion 3 is intended to have a concavo-convex step shape, and therefore the support film 5 does not necessarily have to be exposed.
  • the infrared sensor of this embodiment shown in FIG. 8A can be manufactured.
  • the barrier film which comprises metal wiring can be used together as an infrared absorption film. Therefore, it is not necessary to form a separate infrared absorption film, and the manufacturing process can be shortened. Therefore, it is possible to realize an infrared sensor that has an infrared absorption film and has reduced manufacturing costs.
  • an infrared absorbing film having an uneven step shape can be formed without any increase in manufacturing steps as compared with the manufacturing method of the first embodiment.
  • the surface area of the infrared absorption film 8 can be increased without increasing the manufacturing cost, and the infrared absorption film 8 can be effectively used for obliquely incident infrared rays. . Therefore, the infrared absorption rate can be further increased, and as a result, the infrared detection sensitivity can be further increased.
  • the infrared sensor and the manufacturing method thereof according to the present invention include an infrared absorption film for increasing the detection sensitivity of infrared rays, and can shorten the manufacturing process and reduce the manufacturing cost.
  • the detection cost is high and the detection sensitivity is high. It is useful in an infrared sensor and its manufacturing method.

Abstract

 赤外線の検出感度を高めるための赤外線吸収膜を備えつつも、製造工程が短縮され製造コストが低減できる赤外線センサを提供する。基板と、基板の一表面側において、基板上に形成された支持脚および赤外線吸収部を含む薄膜構造体とを備えた赤外線センサである。ここで、基板と薄膜構造体との間には空間部が設けられており、赤外線吸収部には、支持膜、層間絶縁膜および金属配線が下層より順に形成されており、金属配線は、熱電対素線に電気的に接続されたバリア膜と導電膜とで構成された積層膜からなり、第1の赤外線吸収膜とバリア膜とは、同一材料かつ同一膜厚で形成されている。

Description

赤外線センサ及びその製造方法
 本発明は、赤外線センサ及びその製造方法に関する。
 従来から、赤外線吸収体を用いて入射赤外線を熱に変換し、その熱の変化を電気信号などの変化に変換して赤外線を検出する熱型の赤外線センサが提案されている。このような熱型の赤外線センサは、マイクロマシンニング技術などを利用して形成される。
 このような原理に基づく熱型赤外線センサでは、検出感度を高めるため、赤外線を吸収する検知部の赤外線吸収率が高いことが求められる。
 そこで、従来技術では、赤外線の吸収率を高めるためにチタニウム(Ti、以下「チタン」ともいう)からなる吸収層を赤外線検知部に設ける構造が開示されている(例えば、非特許文献1参照)。
 以下、非特許文献1に開示された赤外線センサについて、図面を参照しながら説明する。図9は、非特許文献1に記載された従来の赤外線センサの断面模式図である。
 図9に示すように、従来の赤外線センサにおいては、単結晶シリコンからなる基板1の一表面側で、直下に空間部2が設けられた薄膜構造体からなる赤外線吸収部3が、支持脚4を介して、基板1上の支持部14に支持されている。支持脚4は、赤外線の吸収による温度変化を検知するためのサーモパイルを備えている。
 赤外線吸収部3は、支持膜5、層間絶縁膜7、第1の保護膜12a、赤外線吸収膜8、第2の保護膜12bの積層膜からなる。また、支持脚4は、支持膜5、熱電対素線6、層間絶縁膜7、第1の保護膜12a、第2の保護膜12bからなる。層間絶縁膜7と第1の保護膜12aの間には、熱電対素線6に電気的に接続する金属配線9が形成されている。支持部14は、支持膜5、層間絶縁膜7、第1の保護膜12a、第2の保護膜12bの積層膜からなる。
 この構造では、赤外線吸収率の高い赤外線吸収膜を赤外線吸収部に形成することにより、センサとしての赤外線検出感度を向上させることができる。
 次に、図9に示す赤外線センサの製造方法の概要について、図10A~図10Fに示す断面工程図を用いて説明する。
 まず、図10Aに示すように、シリコン基板からなる基板1の一表面側に酸化シリコン(SiO)膜、窒化シリコン(SiN)膜などの積層膜を形成することにより、支持膜5を形成する。次に、図10Bに示すように、支持膜5上の所定の位置にポリシリコン膜をパターニング形成し、イオン注入法などを用いてポリシリコン膜に不純物をドーピングすることで、熱電対素線6を形成する。次に、図10Cに示すように、基板1上に酸化シリコン(SiO)膜などの絶縁膜を堆積して層間絶縁膜7を形成する。その後、層間絶縁膜7における熱電対素線6上の所定の位置にコンタクトホール11を形成し、次に、図10Dに示すように、層間絶縁膜7上の所定の位置にアルミニウム(Al)などの金属膜をパターニング形成することにより、熱電対素線6に電気的に接続する金属配線9を形成する。次に、図10Eに示すように、酸化シリコン(SiO)膜などの絶縁膜を堆積して第1の保護膜12aを形成する。その後、Tiなどの金属膜を所定の位置にパターニング形成することにより、赤外線吸収膜8を形成する。次に、図10Fに示すように、酸化シリコン(SiO)膜などの絶縁膜を堆積して第2の保護膜12bを形成する。その後、ドライエッチングなどにより、保護膜12と支持膜5を厚み方向に貫通する開口部13を形成する。次に、開口部13を通じて、エッチング液、例えば、テトラメチルアンモニウム(TMAH)溶液を導入して、支持膜5下の基板1に空間部2を形成する。これにより、図9に示す赤外線吸収部3、支持脚4が形成される。
MEMS2011 Micro Mirror Arrays For Improved Sensitivity of Thermopile Infrared Sensors (M. Ohira, et al.)
 しかしながら、上記非特許文献1に開示されたような従来の赤外線センサおよびその製造方法では、赤外線吸収膜を形成するための新たな追加工程が必要となる。そのため、製造工程が長くなり、製造コストが増大するという課題がある。
 そこで、本発明は、上記課題に鑑みて、赤外線の検出感度を高めるための赤外線吸収膜を備えつつも、製造工程が短縮され製造コストが低減できる赤外線センサ及びその製造方法を提供することを目的とする。
 上記の課題を解決するために、本発明の赤外線センサは、基板と、前記基板の一表面側において、前記基板上に形成された支持脚および赤外線吸収部を含む薄膜構造体とを備えた赤外線センサであって、前記基板と前記薄膜構造体との間には空間部が設けられており、前記赤外線吸収部には、支持膜、層間絶縁膜および第1の赤外線吸収膜が下層より順に形成されており、前記支持脚には、前記支持膜、熱電対素線、前記層間絶縁膜および金属配線が下層より順に形成されており、前記金属配線は、前記熱電対素線に電気的に接続されたバリア膜と導電膜とで構成された積層膜からなり、前記第1の赤外線吸収膜と前記バリア膜とは、同一材料かつ同一膜厚で形成されている。
 また、本発明の第1の赤外線センサの製造方法は、基板の一表面上に支持膜を形成する工程と、前記支持膜上に熱電対素線を形成する工程と、前記熱電対素線上を含む前記支持膜上に層間絶縁膜を形成する工程と、前記層間絶縁膜に前記熱電対素線に達するコンタクトホールを形成する工程と、前記コンタクトホール上を含む前記層間絶縁膜上に、導電性のバリア膜を形成する工程と、前記バリア膜上に導電膜を形成する工程と、前記バリア膜および前記導電膜を連続してパターニングし、金属配線を形成すると同時に、前記バリア膜からなる赤外線吸収膜および前記赤外線吸収膜上の前記導電膜を残存させる工程と、前記赤外線吸収膜と前記赤外線吸収膜上の前記導電膜のうち前記導電膜のみを除去する工程と、前記熱電対素線および前記赤外線吸収膜の周縁部に形成された前記層間絶縁膜および前記支持膜を除去して前記基板を露出する工程と、露出した前記基板を所定の深さまでエッチング除去して、前記熱電対素線および前記赤外線吸収膜の直下に空間部を形成し、支持脚および赤外線吸収部を形成する工程とを備える。
 また、本発明の第2の赤外線センサの製造方法は、基板の一表面上に支持膜を形成する工程と、前記支持膜上に熱電対素線を形成する工程と、前記熱電対素線上を含む前記支持膜上に層間絶縁膜を形成する工程と、前記層間絶縁膜に前記熱電対素線に達するコンタクトホールを形成する工程と、前記コンタクトホール上を含む前記層間絶縁膜上に、導電性のバリア膜を形成する工程と、前記バリア膜上に導電膜を形成する工程と、前記バリア膜および前記導電膜のうち前記導電膜のみをパターニングし、前記支持膜の上方の前記導電膜を残存させると同時に、赤外線吸収膜を形成する領域では前記導電膜を除去する工程と、前記導電膜を除去する工程の後に、前記赤外線吸収膜を形成する領域に前記バリア膜からなる赤外線吸収膜を残存させるように、前記層間絶縁膜上に露出した前記バリア膜を除去する工程と、前記バリア膜を除去する工程の後に、前記熱電対素線および前記赤外線吸収膜の周縁部に形成された前記層間絶縁膜および前記支持膜を除去して前記基板を露出する工程と、露出した前記基板を所定の深さまでエッチング除去して、前記熱電対素線および前記赤外線吸収膜の直下に空間部を形成し、支持脚および赤外線吸収部を形成する工程と、を備える。
 上記の赤外線センサおよびその製造方法によれば、金属配線を構成するバリア膜を赤外線吸収膜としても用いるため、従来技術と対比して赤外線吸収膜を別途形成する必要が無く、製造工程を短縮し、製造コストを低減することができる。
図1は、本発明の第1の実施形態に係る赤外線センサを示す平面図である。 図2は、図1に示すA-A線に沿った断面を示す図である。 図3は、各種の赤外線吸収膜における赤外線吸収スペクトルを示す図である。 図4Aは、本発明の第1の実施形態に係る赤外線センサの製造方法を示す工程断面図である。 図4Bは、本発明の第1の実施形態に係る赤外線センサの製造方法(図4Aの続き)を示す工程断面図である。 図4Cは、本発明の第1の実施形態に係る赤外線センサの製造方法(図4Bの続き)を示す工程断面図である。 図4Dは、本発明の第1の実施形態に係る赤外線センサの製造方法(図4Cの続き)を示す工程断面図である。 図4Eは、本発明の第1の実施形態に係る赤外線センサの製造方法(図4Dの続き)を示す工程断面図である。 図4Fは、本発明の第1の実施形態に係る赤外線センサの製造方法(図4Eの続き)を示す工程断面図である。 図4Gは、本発明の第1の実施形態に係る赤外線センサの製造方法(図4Fの続き)を示す工程断面図である。 図4Hは、本発明の第1の実施形態に係る赤外線センサの製造方法(図4Gの続き)を示す工程断面図である。 図5Aは、本発明の第1の実施形態に係る赤外線センサの製造方法の変形例を示す工程断面図である。 図5Bは、本発明の第1の実施形態に係る赤外線センサの製造方法(図5Aの続き)の変形例を示す工程断面図である。 図6は、本発明の第1の実施形態の変形例に係る赤外線センサを示す断面図である。 図7Aは、本発明の第2の実施形態に係る赤外線センサを示す断面図である。 図7Bは、本発明の第2の実施形態に係る赤外線センサの製造方法を示す工程断面図である。 図8Aは、本発明の第3の実施形態に係る赤外線センサを示す断面図である。 図8Bは、本発明の第3の実施形態に係る赤外線センサの製造方法を示す工程断面図である。 図9は、従来の赤外線センサを示す断面図である。 図10Aは、従来の赤外線センサの製造方法を示す工程断面図である。 図10Bは、従来の赤外線センサの製造方法(図10Aの続き)を示す工程断面図である。 図10Cは、従来の赤外線センサの製造方法(図10Bの続き)を示す工程断面図である。 図10Dは、従来の赤外線センサの製造方法(図10Cの続き)を示す工程断面図である。 図10Eは、従来の赤外線センサの製造方法(図10Dの続き)を示す工程断面図である。 図10Fは、従来の赤外線センサの製造方法(図10Eの続き)を示す工程断面図である。
 以下、本発明に係る赤外線センサ及びその製造方法について、図面を参照しながら詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。
 (第1の実施形態)
 以下、本発明の第1の実施形態について、図1、図2、図3、図4A~図4Hおよび図5A、図5Bを参照しながら説明する。
 図1は、本実施形態における赤外線センサの構成を示す平面図である。また、図2は、図1に示す赤外線センサのA-A線に沿った断面を示す図である。
 図1、図2に示すように、本実施形態に係る赤外線センサは、基板1と、基板1の一表面側に設けられた空間部2と、空間部2上に設けられた薄膜構造体からなる。薄膜構造体は、赤外線を吸収する赤外線吸収部3と、基板1と赤外線吸収部3に亘って設けられた支持脚4からなる。薄膜構造体は、支持脚4によってその一部が基板1上の支持部14と連続することで空間部2上に保持されている。支持脚4は、後述する熱電対素線6からなるサーモパイルを含んでいる。平面視において、薄膜構造体を囲うように、空間部2を形成するための開口部13が設けられている。
 つまり、本実施形態に係る赤外線センサは、基板1と、基板1の一表面側において、基板1上に形成された支持脚4および赤外線吸収部3を含む薄膜構造体とを備える。基板1と薄膜構造体との間には空間部2が設けられている。赤外線吸収部3には、支持膜5、層間絶縁膜7および第1の赤外線吸収膜(赤外線吸収膜8)が下層より順に形成されている。支持脚4には、支持膜5、熱電対素線6、層間絶縁膜7および金属配線9が下層より順に形成されている。金属配線9は、熱電対素線6に電気的に接続されたバリア膜10aと導電膜(低抵抗膜10b)とで構成された積層膜からなる。第1の赤外線吸収膜(赤外線吸収膜8)とバリア膜10aとは、同一材料かつ同一膜厚で形成されている。以下、本実施形態に係る赤外線センサの構成について、詳細に説明する。
 基板1はヒートシンクとして機能し、赤外線吸収部3が赤外線を吸収することにより生じた基板1との温度差を、支持脚4内のサーモパイルにより電気的信号に変換し、赤外線を検知する。空間部2及び開口部13を設けることで、薄膜構造体を基板1から熱的に分離している。これにより、基板1と赤外線吸収部3との間の断熱性を向上させ、検出感度を高めている。
 以下、基板1、赤外線吸収部3、支持脚4および支持部14のそれぞれの構造について詳述する。
 基板1は、例えばn型で一表面が{100}面の単結晶シリコン(Si)基板を用いることが可能である。
 赤外線吸収部3は、図2に示すように、支持膜5と、層間絶縁膜7と、赤外線吸収膜8とを含んで構成されている。
 ここで、支持膜5および層間絶縁膜7は、一例として酸化シリコン(SiO)膜などの絶縁膜で形成されておればよいが、これに限るものではなく、他に窒化シリコン(SiN)膜、酸窒化シリコン(SiON)膜、あるいは炭化シリコン(SiC)膜などを用いることができ、また、それらの積層膜であってもよい。
 層間絶縁膜7上には、赤外線吸収膜8が形成されている。赤外線吸収膜8は、例えば、チタン(Ti)と窒化チタン(TiN)の積層膜(Ti/TiN膜)を用いることができるが、これに限るものではなく、他にチタン(Ti)、タンタル(Ta)などの金属およびその窒化物または酸化物のいずれかを含んでいてもよい。つまり、第1の赤外線吸収膜(赤外線吸収膜8)は、チタニウム、タンタル、もしくはその窒化物または酸化物のいずれかを含んでもよい。
 支持脚4は、図2に示すように、支持膜5と、熱電対素線6と、層間絶縁膜7と、熱電対素線6どうしを電気的に接続する金属配線9とを含んで構成されている。また、支持脚4は、図1に示すように、赤外線吸収部3に隣接すると共に赤外線吸収部3と基板1上の支持部14にまたがって形成されている。
 ここで、支持脚4における支持膜5は、前述した赤外線吸収部3を構成する支持膜5と工程のばらつき範囲内で実質的に同一材料、同一膜厚で構成される。以下、「同一」は工程のばらつき範囲内を含んでいる。
 支持脚4における支持膜5上には、例えばポリシリコンなどからなる熱電対素線6が形成されている。熱電対素線6は、本実施形態ではn型ポリシリコン層6a及びp型ポリシリコン層6bからなるサーモパイルとして形成されている。なお、熱電対素線6を構成する材料はこれに限るものではなく、ポリシリコン、ポリゲルマニウム、ポリシリコンゲルマニウムなど、ゼーベック効果を有する材料であれば使用することができる。
 熱電対素線6上には、層間絶縁膜7が形成されている。ここで、支持脚4における層間絶縁膜7は、前述した赤外線吸収部3を構成する層間絶縁膜7と同一材料、同一膜厚で構成される。
 層間絶縁膜7上には、金属配線9が形成されている。金属配線9は、層間絶縁膜7内に設けられたコンタクトホールを介して、n型ポリシリコン層6aとp型ポリシリコン層6bとを電気的に接続し、サーモパイルを形成する。
 ここで、金属配線9は、バリア膜10aと低抵抗膜10bとの積層膜からなる。バリア膜10aは、前述した赤外線吸収部3における赤外線吸収膜8と同一材料、同一膜厚で構成される。また、低抵抗膜10bは、例えばアルミニウム(Al)を含む金属膜からなる。
 支持部14は、図2に示すように、基板1の一表面側に、支持膜5と、層間絶縁膜7とを含んで構成されている。
 支持部14における基板1上には支持膜5が形成されている。ここで、支持部14における支持膜5は、前述した赤外線吸収部3を構成する支持膜5と同一材料、同一膜厚で構成される。
 支持部14における支持膜5上には、層間絶縁膜7が形成されている。ここで、支持部14における層間絶縁膜7は、前述した赤外線吸収部3を構成する層間絶縁膜7と同一材料、同一膜厚で構成される。
 次に、赤外線吸収膜8の特性について説明する。
 図3に、単結晶シリコン基板上に形成された単層膜もしくは積層膜の赤外線吸収膜8の赤外線吸収スペクトルを示す。図3では、赤外線センサによく用いられる赤外線吸収膜8として、酸化シリコン膜(図中の「SiO」、厚みを200nmとする)、窒化シリコン膜(図中の「SiN」、厚みを200nmとする)、およびTi/TiN膜(図中の「Ti/TiN」、厚みを5nm/10nmとする)の結果(吸収率)を示している。
 赤外線吸収膜中での光の吸収は、界面での反射を考慮しない場合、膜厚が厚いほどその吸収率が高くなる。図3からわかるように、Ti/TiN膜は合計膜厚が15nmという薄膜であっても、膜厚が200nmという厚膜の酸化シリコン膜や窒化シリコン膜と対比して、全波長域に亘って安定して高い吸収率を示している。従って、Ti/TiN膜などの金属膜を吸収膜として用いることにより、赤外線の吸収率を高めることができる。また、Tiなどの金属を酸化させることにより、赤外線の吸収率をさらに高めることができる。
 一方、Ti/TiN膜などの金属膜からなる赤外線吸収膜8をバリア膜として併用する場合、そのバリア性と赤外線吸収効率の観点から、バリア膜の膜厚は5nmから100nmの範囲にすることが好ましい。つまり、第1の赤外線吸収膜(赤外線吸収膜8)の膜厚は、5nm以上かつ100nm以下の範囲であるのが好ましい。
 次に、本実施形態の赤外線センサの製造方法について、図4A~図4Hを参照しながら説明する。
 まず、図4Aに示すように、例えば基板1の一表面上の全面に、熱酸化法などを用いて、例えば膜厚300nmの酸化シリコン膜からなる支持膜5を形成する。
 次に、図4Bに示すように、LPCVD(Low Pressure Chemical Vapor Deposition)法などを用いて、支持膜5上に例えば膜厚300nmのノンドープポリシリコン膜を形成する。その後、フォトリソグラフィ技術及びエッチング技術を利用して、ノンドープポリシリコン膜のうち熱電対素線6となる部分が残るようにパターニングする。その後、熱電対素線6となるノンドープポリシリコン膜のうち、p型ポリシリコン層6bとなる部分に例えばホウ素などのp型不純物のイオン注入を行い、続いて、n型ポリシリコン層6aとなる部分に例えばリンなどのn型不純物のイオン注入を行う。その後、ドライブインアニールを行うことにより、熱電対素線6となるp型ポリシリコン層6bとn型ポリシリコン層6aを形成する。このようにして、支持膜5上に熱電対素線6を形成する。
 次に、図4Cに示すように、熱電対素線6となるp型ポリシリコン層6bとn型ポリシリコン層6aを形成した基板1の表面側の全面に、CVD法などにより例えば膜厚600nmの酸化シリコン膜を堆積して層間絶縁膜7を形成する。その後、フォトリソグラフィ技術及びエッチング技術を利用して、層間絶縁膜7におけるp型ポリシリコン層6b上とn型ポリシリコン層6a上を開口し、コンタクトホール11を形成する。
 次に、図4Dに示すように、コンタクトホール11を形成した層間絶縁膜7上の全面に、PVD(Physical Vapour Deposition)法などにより例えば膜厚5nmのチタン(Ti)膜と例えば膜厚10nmの窒化チタン(TiN)膜を堆積し、バリア膜10aを形成する。つまり、コンタクトホール11上を含む層間絶縁膜7上に、導電性のバリア膜10aを形成する。その後、バリア膜10a上に、PVD法などにより例えば膜厚1000nmのアルミニウム(Al)膜を堆積し、低抵抗膜(導電膜)10bを形成する。つまり、バリア膜10a上に低抵抗膜(導電膜)10bを形成する。なお、バリア膜はチタン(Ti)膜および窒化チタン(TiN)膜としたが、これに限るものではなく、チタン(Ti)膜、タンタル(Ta)膜、もしくはその窒化物または酸化物で形成されていてもよい。また、膜厚も上述の値に限るものではないが、5nm~100nmの範囲とすることが望ましい。
 次に、図4Eに示すように、フォトリソグラフィ技術及びエッチング技術を利用して、金属配線9及び赤外線吸収膜8に対応する部分に、バリア膜10aと低抵抗膜10bが残存するようにパターニングする。エッチングには、塩素などを含む反応性ガスを用いたドライエッチングを用いることができる。これにより、金属配線9および赤外線吸収膜8を形成することができる。つまり、バリア膜10aおよび低抵抗膜(導電膜)10bを連続してパターニングし、金属配線9を形成すると同時に、バリア膜10aからなる赤外線吸収膜8および赤外線吸収膜8上の低抵抗膜(導電膜)10bを残存させる。
 次に、図4Fに示すように、フォトリソグラフィ技術及びエッチング技術を利用して、赤外線吸収膜8に対応する部分のバリア膜10aを残して、低抵抗膜10bのみを選択的に除去することで、赤外線吸収膜8を露出する。つまり、赤外線吸収膜8と赤外線吸収膜8上の低抵抗膜(導電膜)10bのうち低抵抗膜(導電膜)10bのみを除去する。選択的エッチングには、例えば、燐酸、硝酸、酢酸の加熱混合溶液を用いることができる。また、アッシング工程により、赤外線吸収膜8を意図的に酸化する工程を用いてもよい。
 次に、図4Gに示すように、フォトリソグラフィ技術及びエッチング技術を利用して、層間絶縁膜7及び支持膜5の所定領域をエッチングし、後に空間部2を形成するための基板1に到達する開口部13を形成する。つまり、熱電対素線6および赤外線吸収膜8の周縁部に形成された層間絶縁膜7および支持膜5を除去して基板1を露出させる。エッチングには、四フッ化炭素(CF)などを含む反応性ガスを用いたドライエッチングを用いることができる。
 次に、図4Hに示すように、開口部13を通じてエッチング液を導入して、基板1を異方性エッチングすることにより、基板1内に空間部2を形成する。つまり、露出した基板1を所定の深さまでエッチング除去して、熱電対素線6および赤外線吸収膜8の直下に空間部2を形成し、支持脚4および赤外線吸収部3を形成する。エッチング液には、例えば水酸化テトラメチルアンモニウム(TMAH)溶液などのアルカリ系溶液を用いることができる。
 アルカリ系溶液のエッチングレートは、シリコンの結晶面によって異なり、{100}面に比べて、{111}面のエッチングレートが低い。そのため、エッチングされた凹部では、エッチングレートの遅い{111}面が現れると、エッチングが停止し、結果として、空間部2がV字型に形成される。
 以上の製造方法により、本実施形態に示す赤外線センサを作製することができる。
 次に、本実施形態の赤外線センサの製造方法の変形例について、図5A、図5Bを参照しながら説明する。
 本実施形態の赤外線センサの製造方法の変形例は、上記した本実施形態の赤外線センサの製造方法に示した図4Dまでは全く同一の製造工程であるため、繰り返しの説明は省略する。
 4Dの工程まで終了した後、図5Aに示すように、フォトリソグラフィ技術及びエッチング技術を利用して、金属配線9に対応する部分に、低抵抗膜10bが残存するように他の領域の低抵抗膜のみを選択的に除去するパターニングを行う。つまり、バリア膜10aおよび低抵抗膜(導電膜)10bのうち低抵抗膜(導電膜)10bのみをパターニングし、支持膜5の上方の低抵抗膜(導電膜)10bを残存させると同時に、赤外線吸収膜8を形成する領域では低抵抗膜(導電膜)10bを除去する。選択的エッチングには、例えば、燐酸、硝酸、酢酸の加熱混合溶液を用いることができる。この時点では、バリア膜10aは全面に残存している。
 次に、図5Bに示すように、フォトリソグラフィ技術及びエッチング技術を利用して、金属配線9および赤外線吸収膜8に対応する部分に、バリア膜10aが残存するようにパターニングする。つまり、低抵抗膜(導電膜)10bを除去する工程の後に、赤外線吸収膜8を形成する領域にバリア膜10aからなる赤外線吸収膜8を残存させるように、層間絶縁膜7上に露出したバリア膜10aを除去する。この際、例えば、赤外線吸収膜8に対応する部分のみをレジストマスクで覆い(図示せず)、金属配線9に対応する部分は低抵抗膜をハードマスクとして用いてエッチングしてもよい。エッチングには、例えばフッ化水素(HF)などを用いることができる。このようにして、金属配線9と赤外線吸収膜8を形成する。
 以降の工程は、本実施形態の製造方法に示した図4G、図4Hと全く同様の方法を用いて、本実施形態に示す赤外線センサを作製することができる。
 さらに、本変形例の特有の効果として、上記した本実施形態の製造方法では、赤外線吸収膜8を形成するためのパターニングを、低抵抗膜10b及びバリア膜10aのエッチング工程とバリア膜10a選択除去工程との連続した2回で実施する必要があることに対して、本変形例では、バリア膜10aのエッチング工程1回のみのパターニングで、赤外線吸収膜8を形成することができる。そのため、上記した本実施形態の製造方法に比べて、赤外線吸収膜8のパターニング時の寸法ばらつきやパターニング工程間での重ね合わせずれによるばらつきを小さくすることができる。
 言い換えれば、赤外線吸収膜8の寸法ばらつきマージンを縮小することができ、赤外線吸収部3における赤外線吸収膜8の占める領域を大きくすることができ、結果として、赤外線の検出感度を高めることができる。
 以上に示した本実施形態の赤外線センサおよびその製造方法を用いれば、金属配線を構成するバリア膜を赤外線吸収膜として併用することができる。そのため、赤外線吸収膜を別途、膜形成する必要が無く、製造工程を短縮することができる。そのため、赤外線吸収膜を有しつつも、製造コストを抑制した赤外線センサを実現することができる。
 次に、本実施形態の赤外線センサの変形例について、図6を参照しながら説明する。
 図6は、本発明の第1の実施形態の変形例に係る赤外線センサを示す断面図である。図6に示す本実施形態の赤外線センサの変形例は、図1、図2に示す本実施形態の赤外線センサの赤外線吸収部3、支持脚4および支持部14の上層に保護膜12を有するものである。つまり、本変形例では、上記実施形態の赤外線センサの薄膜構造体上に絶縁膜からなる単層の保護膜12が形成されている。
 保護膜12は、一例として酸化シリコン(SiO)膜などの絶縁膜で形成されておればよいが、これに限るものではなく、他に窒化シリコン(SiN)膜、酸窒化シリコン(SiON)膜、あるいは炭化シリコン(SiC)膜などを用いることができ、また、それらの積層膜であってもよい。
 ここで、支持脚4における低抵抗膜10bの上層の保護膜12と、赤外線吸収部3における赤外線吸収膜8の上層の保護膜12と、支持部14における層間絶縁膜7の上層の保護膜12とは、同時形成された同一材料で形成されている。
 次に、本実施形態の赤外線センサの変形例を作製するための製造方法について説明する。
 特に図示はしないが、上記した本実施形態の赤外線センサの製造方法において、図4Fと図4Gとの間に、層間絶縁膜7上、金属配線9上および赤外線吸収膜8上を覆う、例えば膜厚500nmの窒化シリコン膜からなる保護膜12を形成した後、図4Gにおいて、フォトリソグラフィ技術及びエッチング技術を利用して、保護膜12、層間絶縁膜7及び支持膜5の所定領域をエッチングし、後に空間部2を形成するための基板1に到達する開口部13を形成すればよい。エッチングには、四フッ化炭素(CF)などを含む反応性ガスを用いたドライエッチングを用いることができる。
 以降は、本実施形態の赤外線センサの製造方法における図4Hと同様の製造方法を用いることで、図8に示す本実施形態の赤外線センサの変形例の構造を作製することができる。
 このような構成とすることで、従来、金属配線よりも上層に赤外線吸収膜を配置していた構造の場合に必要とされていた、赤外線吸収膜と金属配線との間の第1の保護膜および赤外線吸収膜の上の第2の保護膜が、赤外線吸収膜の上の第2の保護膜のみの形成で済むため、保護膜の単層化および膜厚低減を図ることができ、結果的に製造工程を短縮することができる。
 (第2の実施形態)
 以下、本発明の第2の実施形態について、図7Aおよび図7Bを参照しながら説明する。図7Aは、本発明の第2の実施形態に係る赤外線センサを示す断面図である。図7Bは、本発明の第2の実施形態に係る赤外線センサの製造方法を示す工程断面図である。
 図7Aに示す本実施形態の赤外線センサは、図1、図2に示す第1の実施形態の赤外線センサの赤外線吸収部3における赤外線吸収膜8(以降、本実施形態において、第1の赤外線吸収膜と称する)の下方に第2の赤外線吸収膜6cを備えたものである。つまり、本実施形態では、第1の実施形態における赤外線吸収部3において、支持膜5と層間絶縁膜7との間に熱電対素線6と同一材料かつ同一膜厚からなる第2の赤外線吸収膜6cが介在している。
 第2の赤外線吸収膜6cは、例えばポリシリコンからなり、支持脚4における熱電対素線6を構成する膜と同時形成された同一材料および同一膜厚を有する膜である。
 次に、本実施形態の赤外線センサを作製するための製造方法について説明する。
 本実施形態の赤外線センサの製造方法は、第1の実施形態における赤外線センサの製造方法における図4Bの工程のみが異なっている。
 図7Bに示すように、熱電対素線6となるp型ポリシリコン層6bとn型ポリシリコン層6aを形成する際に、後に上方に第1の赤外線吸収膜8を形成する領域にも、例えばn型ポリシリコン層6a形成時に、同時に第2の赤外線吸収膜6cをn型ポリシリコン層として形成すればよい。勿論、p型ポリシリコン層6b形成時に、同時に第2の赤外線吸収膜6cをp型ポリシリコン層として形成しても良い。
 以降は、本実施形態の赤外線センサの製造方法における図4C~図4Hと同様の製造方法を用いることで、図7Aに示す本実施形態の赤外線センサの構造を作製することができる。
 以上に示した本実施形態の赤外線センサおよびその製造方法を用いれば、金属配線を構成するバリア膜を第1の赤外線吸収膜として併用することができる。そのため、第1の赤外線吸収膜を別途、膜形成する必要が無く、製造工程を短縮することができる。そのため、第1の赤外線吸収膜を有しつつも、製造コストを抑制した赤外線センサを実現することができる。
 さらに、本実施形態特有の効果として、第1の実施形態の製造方法と対比して、何らの製造工程の追加なしに、第2の赤外線吸収膜6cを設けることができるため、第1の実施形態に比べて、製造コストの増加無く、さらに赤外線の吸収率を高めることができ、結果として、赤外線の検出感度をより高めることができる。
 (第3の実施形態)
 以下、本発明の第3の実施形態について、図8Aおよび図8Bを参照しながら説明する。図8Aは、本発明の第3の実施形態に係る赤外線センサを示す断面図である。図8Bは、本発明の第3の実施形態に係る赤外線センサの製造方法を示す工程断面図である。
 図8Aに示す本実施形態の赤外線センサは、図1、図2に示す第1の実施形態の赤外線センサの赤外線吸収部3において、層間絶縁膜7における赤外線吸収膜8の下地となる領域に凹部を形成し、その上に赤外線吸収膜8を形成したものである。このため、赤外線吸収膜8は凹凸状を有する段差形状となる。勿論、第1の実施形態と同様、赤外線吸収部3における赤外線吸収膜8は、バリア膜10aと同時形成された同一材料、同一膜厚の膜で構成される。つまり、本実施形態では、第1の実施形態の赤外線吸収部3において、第1の赤外線吸収膜(赤外線吸収膜8)が凹凸状の段差形状に形成されている。さらに、層間絶縁膜7における第1の赤外線吸収膜(赤外線吸収膜8)の直下に凹凸状の段差が形成されている。
 次に、本実施形態の赤外線センサを作製するための製造方法について説明する。
 本実施形態の赤外線センサの製造方法は、第1の実施形態における赤外線センサの製造方法における図4Cの工程のみが異なっている。
 図8Bに示すように、フォトリソグラフィ技術及びエッチング技術を利用して、層間絶縁膜7におけるp型ポリシリコン層6b上とn型ポリシリコン層6a上を開口し、コンタクトホール11を形成する際に、層間絶縁膜7における赤外線吸収部3にも同時にコンタクトホール11を形成すればよい。この際、赤外線吸収部3に形成するコンタクトホール11は凹凸状の段差形状とすることが目的であるため、必ずしも支持膜5を露出させる必要はない。
 以降は、本実施形態の赤外線センサの製造方法における図4D~図4Hと同様の製造方法を用いることで、図8Aに示す本実施形態の赤外線センサを作製することができる。
 以上に示した本実施形態の赤外線センサおよびその製造方法を用いれば、金属配線を構成するバリア膜を赤外線吸収膜として併用することができる。そのため、赤外線吸収膜を別途、膜形成する必要が無く、製造工程を短縮することができる。そのため、赤外線吸収膜を有しつつも、製造コストを抑制した赤外線センサを実現することができる。
 さらに、本実施形態特有の効果として、第1の実施形態の製造方法と対比して、何らの製造工程の増加なしに、凹凸状の段差形状を有する赤外線吸収膜を形成することができるため、第1の実施形態に比べて、製造コストの増加無く、赤外線吸収膜8の表面積を増やすことができ、また斜めに入射した赤外線に対しても、赤外線吸収膜8を有効に活用することができる。したがって、より赤外線の吸収率を高めることができ、結果として、赤外線の検出感度をより高めることができる。
 なお、本発明の第1から第3の実施形態に開示された構成は互いに組み合わせることが可能であり、また、第1の実施形態で開示した赤外線吸収膜の構成材料および膜厚は第2および第3の実施形態でも成立する。
 本発明の赤外線センサ及びその製造方法は、赤外線の検出感度を高めるための赤外線吸収膜を備えつつも、製造工程が短縮され製造コストが低減できるものであり、特に、低コストで検出感度の高い赤外線センサ及びその製造方法において有用である。
1 基板
2 空間部
3 赤外線吸収部
4 支持脚
5 支持膜
6 熱電対素線
6a n型ポリシリコン層
6b p型ポリシリコン層
6c 第2の赤外線吸収膜
7 層間絶縁膜
8 赤外線吸収膜
9 金属配線
10a バリア膜
10b 低抵抗膜(導電膜)
11 コンタクトホール
12 保護膜
12a 第1の保護膜
12b 第2の保護膜
13 開口部
14 支持部

Claims (10)

  1.  基板と、前記基板の一表面側において、前記基板上に形成された支持脚および赤外線吸収部を含む薄膜構造体とを備えた赤外線センサであって、
     前記基板と前記薄膜構造体との間には空間部が設けられており、
     前記赤外線吸収部には、支持膜、層間絶縁膜および第1の赤外線吸収膜が下層より順に形成されており、
     前記支持脚には、前記支持膜、熱電対素線、前記層間絶縁膜および金属配線が下層より順に形成されており、
     前記金属配線は、前記熱電対素線に電気的に接続されたバリア膜と導電膜とで構成された積層膜からなり、
     前記第1の赤外線吸収膜と前記バリア膜とは、同一材料かつ同一膜厚で形成されている赤外線センサ。
  2.  前記赤外線吸収部において、前記支持膜と前記層間絶縁膜との間に前記熱電対素線と同一材料かつ同一膜厚からなる第2の赤外線吸収膜が介在している請求項1に記載の赤外線センサ。
  3.  前記赤外線吸収部において、前記第1の赤外線吸収膜が凹凸状の段差形状に形成されている請求項1又は2に記載の赤外線センサ。
  4.  前記層間絶縁膜における前記第1の赤外線吸収膜の直下に凹凸状の段差が形成されている請求項3に記載の赤外線センサ。
  5.  前記薄膜構造体上に絶縁膜からなる単層の保護膜が形成されている請求項1~4のうちのいずれか1項に記載の赤外線センサ。
  6.  前記保護膜は絶縁膜からなる請求項1~5のうちのいずれか1項に記載の赤外線センサ。
  7.  前記第1の赤外線吸収膜の膜厚が5nm以上かつ100nm以下の範囲である請求項1~6のうちのいずれか1項に記載の赤外線センサ。
  8.  前記第1の赤外線吸収膜が、チタニウム、タンタル、もしくはその窒化物または酸化物のいずれかを含む請求項1~7のうちのいずれか1項に記載の赤外線センサ。
  9.  基板の一表面上に支持膜を形成する工程と、
     前記支持膜上に熱電対素線を形成する工程と、
     前記熱電対素線上を含む前記支持膜上に層間絶縁膜を形成する工程と、
     前記層間絶縁膜に前記熱電対素線に達するコンタクトホールを形成する工程と、
     前記コンタクトホール上を含む前記層間絶縁膜上に、導電性のバリア膜を形成する工程と、
     前記バリア膜上に導電膜を形成する工程と、
     前記バリア膜および前記導電膜を連続してパターニングし、金属配線を形成すると同時に、前記バリア膜からなる赤外線吸収膜および前記赤外線吸収膜上の前記導電膜を残存させる工程と、
     前記赤外線吸収膜と前記赤外線吸収膜上の前記導電膜のうち前記導電膜のみを除去する工程と、
     前記熱電対素線および前記赤外線吸収膜の周縁部に形成された前記層間絶縁膜および前記支持膜を除去して前記基板を露出する工程と、
     露出した前記基板を所定の深さまでエッチング除去して、前記熱電対素線および前記赤外線吸収膜の直下に空間部を形成し、支持脚および赤外線吸収部を形成する工程と、を備える赤外線センサの製造方法。
  10.  基板の一表面上に支持膜を形成する工程と、
     前記支持膜上に熱電対素線を形成する工程と、
     前記熱電対素線上を含む前記支持膜上に層間絶縁膜を形成する工程と、
     前記層間絶縁膜に前記熱電対素線に達するコンタクトホールを形成する工程と、
     前記コンタクトホール上を含む前記層間絶縁膜上に、導電性のバリア膜を形成する工程と、
     前記バリア膜上に導電膜を形成する工程と、
     前記バリア膜および前記導電膜のうち前記導電膜のみをパターニングし、前記支持膜の上方の前記導電膜を残存させると同時に、赤外線吸収膜を形成する領域では前記導電膜を除去する工程と、
     前記導電膜を除去する工程の後に、前記赤外線吸収膜を形成する領域に前記バリア膜からなる赤外線吸収膜を残存させるように、前記層間絶縁膜上に露出した前記バリア膜を除去する工程と、
     前記バリア膜を除去する工程の後に、前記熱電対素線および前記赤外線吸収膜の周縁部に形成された前記層間絶縁膜および前記支持膜を除去して前記基板を露出する工程と、
     露出した前記基板を所定の深さまでエッチング除去して、前記熱電対素線および前記赤外線吸収膜の直下に空間部を形成し、支持脚および赤外線吸収部を形成する工程と、を備える赤外線センサの製造方法。
PCT/JP2014/006179 2014-01-20 2014-12-11 赤外線センサ及びその製造方法 WO2015107597A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-007491 2014-01-20
JP2014007491A JP2015135306A (ja) 2014-01-20 2014-01-20 赤外線センサ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015107597A1 true WO2015107597A1 (ja) 2015-07-23

Family

ID=53542522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006179 WO2015107597A1 (ja) 2014-01-20 2014-12-11 赤外線センサ及びその製造方法

Country Status (2)

Country Link
JP (1) JP2015135306A (ja)
WO (1) WO2015107597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181261A (ja) * 2016-03-30 2017-10-05 能美防災株式会社 炎検知器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091919A (zh) * 2021-04-12 2021-07-09 上海芯物科技有限公司 一种热电堆传感器及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065842A (ja) * 2001-06-15 2003-03-05 Mitsubishi Electric Corp 赤外線検出器
JP2007121047A (ja) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd 赤外線センサ
JP2011054974A (ja) * 2009-09-02 2011-03-17 Korea Electronics Telecommun ボロメータ用抵抗材料、それを用いた赤外線検出器用ボロメータ、及びその製造方法
JP2012173156A (ja) * 2011-02-22 2012-09-10 Panasonic Corp 赤外線センサモジュール
JP2012215531A (ja) * 2011-04-01 2012-11-08 Panasonic Corp 赤外線センサ
JP2013051233A (ja) * 2011-08-30 2013-03-14 Panasonic Corp 熱電変換デバイス
JP2013190239A (ja) * 2012-03-12 2013-09-26 Ricoh Co Ltd 熱型赤外線センサー及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065842A (ja) * 2001-06-15 2003-03-05 Mitsubishi Electric Corp 赤外線検出器
JP2007121047A (ja) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd 赤外線センサ
JP2011054974A (ja) * 2009-09-02 2011-03-17 Korea Electronics Telecommun ボロメータ用抵抗材料、それを用いた赤外線検出器用ボロメータ、及びその製造方法
JP2012173156A (ja) * 2011-02-22 2012-09-10 Panasonic Corp 赤外線センサモジュール
JP2012215531A (ja) * 2011-04-01 2012-11-08 Panasonic Corp 赤外線センサ
JP2013051233A (ja) * 2011-08-30 2013-03-14 Panasonic Corp 熱電変換デバイス
JP2013190239A (ja) * 2012-03-12 2013-09-26 Ricoh Co Ltd 熱型赤外線センサー及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181261A (ja) * 2016-03-30 2017-10-05 能美防災株式会社 炎検知器

Also Published As

Publication number Publication date
JP2015135306A (ja) 2015-07-27

Similar Documents

Publication Publication Date Title
JP4315832B2 (ja) 熱型赤外センサ素子および熱型赤外センサアレイ
JP4978501B2 (ja) 熱型赤外線検出器及びその製造方法
US7928388B2 (en) Infrared detection sensor and method of fabricating the same
JP6291760B2 (ja) 熱電対、サーモパイル、赤外線センサー及び赤外線センサーの製造方法
US7888762B2 (en) Infrared detector and fabricating method of infrared detector
EP2261617B1 (en) Photodetector
JP3604130B2 (ja) 熱型赤外線検出素子およびその製造方法ならびに熱型赤外線検出素子アレイ
JP2006300623A (ja) 赤外線センサ
JP6770840B2 (ja) ファブリペロー干渉フィルタ及び光検出装置
WO2015107597A1 (ja) 赤外線センサ及びその製造方法
US7884328B2 (en) Microbolometer with improved mechanical stability and method of manufacturing the same
WO2010103932A1 (ja) 非冷却赤外線イメージセンサ
JP2009222489A (ja) 赤外線検出素子およびその製造方法
JP5067209B2 (ja) ファブリペロー干渉計
JP5369196B2 (ja) 赤外線撮像素子及びその製造方法
JP2009031197A (ja) 赤外線検出素子およびその製造方法
JP5302596B2 (ja) 固体真空デバイス
JP6440805B1 (ja) 熱型赤外線検出器およびその製造方法
JP6197312B2 (ja) センサ素子およびセンサ素子の製造方法
JP2015169533A (ja) 熱型赤外線センサー及び熱型赤外線センサーの製造方法
CN106920806B (zh) 光感测元件及其制造方法
JP2008209161A (ja) 赤外線センサおよびその製造方法
TWI815153B (zh) 雙吸收層的遠紅外光感測器及其製造方法
JP5008580B2 (ja) 赤外線撮像素子の製造方法および赤外線撮像素子
JP2011214857A (ja) 赤外線センサ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878867

Country of ref document: EP

Kind code of ref document: A1