JP4445470B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP4445470B2
JP4445470B2 JP2005515003A JP2005515003A JP4445470B2 JP 4445470 B2 JP4445470 B2 JP 4445470B2 JP 2005515003 A JP2005515003 A JP 2005515003A JP 2005515003 A JP2005515003 A JP 2005515003A JP 4445470 B2 JP4445470 B2 JP 4445470B2
Authority
JP
Japan
Prior art keywords
voltage
load
phase inverter
power supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005515003A
Other languages
English (en)
Other versions
JPWO2005041384A1 (ja
Inventor
正樹 山田
明彦 岩田
善博 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2005041384A1 publication Critical patent/JPWO2005041384A1/ja
Application granted granted Critical
Publication of JP4445470B2 publication Critical patent/JP4445470B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Description

この発明は、電源装置に関し、特に系統に直列に直送スイッチを接続した電源装置に関するものである。
従来、系統電圧の遮断、変動等を補償する電源装置として種々の回路構成のものが提案されており、例えば特開平1−222635号公報(特許文献1参照)や特開平8−223822号公報(特許文献2参照)に示されるものがある。
特許文献1に示される従来の無瞬断電源装置は、交流入力電圧を一旦直流に変換した後、再び交流に逆変換して出力する定電圧定周波数電源装置(CVCF)と、このCVCFをバイパスする半導体スイッチからなるバイパス回路とを備えており、正常時も電圧低下時もコンバータを通して一旦交流を直流化し、その直流をインバータで交流化する構成を採っている。このため、正常時においても常に電流が半導体を通過することとなり、ロスが常に発生すると共に、装置全体の総合効率を低下させ、冷却のために装置が大型化する問題がある。また、インバータの出力はPWM制御された矩形波が必要となるため、その平滑のために大型のフィルタが必要となるという問題があった。
また、特許文献2に示される従来の無瞬断電源装置では、正常時には直送スイッチで商用ラインを負荷に直結しているが、商用ラインが一定電圧以下に低下した場合には、直送スイッチを切り離し、インバータと昇圧トランスを通してバッテリーの電力を負荷に供給する構成を採っている。このような構成の場合、昇圧トランスは、インバータにて発生する矩形電圧の平滑機能を備える必要があり、また商用周波数の電圧を伝達する必要があるため、電圧時間積(磁束量)の大きなものが要求されることとなり、そのため大型で高価なシステムとなる問題があった。
特開平1−222635号公報 特開平8−223822号公報
この発明は、上述のような課題を解決するためになされたもので、2種類の単相インバータの出力を組み合わせることにより、正常時における系統電圧の変動を補償すると共に、系統が所定電圧以下に低下して直送スイッチが切り離された後でも、負荷に所定電圧を供給するようにした電源装置を提供するものである。
第一の発明になる電源装置は、電源と負荷とを結ぶ系統に直列に接続され、前記電源から前記負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続された直流出力手段を備え、前記第一及び第二の単相インバータはそれぞれ異なる出力電圧が互いに重畳して前記負荷に供給されるように接続したことを特徴とするものである。
第二の発明になる電源装置は、電源と負荷とを結ぶ系統に直列に接続され、前記電源から前記負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続された直流出力手段を備え、前記第一及び第二の単相インバータは、系統電圧が低下し、前記直送スイッチが切り離された以降において、両者の出力電圧の組み合わせによって複数の出力レベルを持つ電圧波形からなる擬似正弦波を形成し、前記負荷に出力することを特徴とするものである。
第三の発明になる電源装置は、電源と負荷とを結ぶ系統に直列に接続され、前記電源から前記負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続された直流出力手段を備え、前記直流出力手段は、DC−DCコンバータとエネルギー蓄積手段により構成され、前記第一及び第二の単相インバータの少なくとも一方は、前記DC―DCコンバータを通して前記エネルギー蓄積手段に接続され、前記DC―DCコンバータを介して前記第一及び第二の単相インバータの直流出力部間においてエネルギーの授受を行うようにしたことを特徴とするものである。
第四の発明になる電源装置は、電源と負荷とを結ぶ系統に直列に接続され、前記電源から前記負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続された直流出力手段を備え、前記第一の単相インバータは、直流出力部に異なる電圧を持ち、かつ、直列接続された複数のインバータ群から構成されたことを特徴とするものである。
第五の発明になる電源装置は、電源と負荷とを結ぶ系統に直列に接続され、電源から負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続された直流出力手段を備え、前記第二の単相インバータは前記第一の単相インバータと電源との間に接続され、前記第一の単相インバータは、系統電圧が低下し、前記直送スイッチが切り離された以降において、複数の出力レベルを持つ電圧波形からなる擬似正弦波を形成し、前記負荷に出力することを特徴とするものである。
この発明の電源装置によれば、単相インバータの組み合わせにより、増電圧・減電圧補償を行うと共に、停電時の電圧補償が可能となり、いかなる電圧の状態においても負荷に安定した電圧を供給できる効果を有する。
実施の形態1.
図1は本発明の実施の形態1に係る無瞬断電源装置の概略構成図を示している。図1において、電源1は通常、系統電圧Vを有する商用交流電源であり、リレー等の機械式スイッチからなる直送スイッチ3を介して負荷2へ直接電力を供給している。上記負荷2には、それぞれの交流側端子が上記負荷と並列関係に挿入された第一の単相インバータ4と、上記負荷と直列関係に挿入された第二の単相インバータ5とが接続されている。この第一の単相インバータ4の直流側端子はコンデンサC1を介してDC−DCコンバータ6が、また第二の単相インバータ5の直流側端子はコンデンサC2を介してDC−DCコンバータ7がそれぞれ接続され、これら各DC−DCコンバータ6、7の他方端は例えばバッテリー8等のエネルギー蓄積手段に共通に接続されている。上記DC−DCコンバータ6、7とエネルギー蓄積手段8との組み合せは直流出力手段として把握されるものであり、後述するように各種変形例が存在する。
ここで単相インバータ4、5は単相ブリッジ接続された例えばMOSFETからなる半導体素子と、各素子に逆並列接続されたダイオードとからなる周知の構成であってよく、またDC−DCコンバータ6、7は、入力された直流電圧をMOSFETや制御ICからなるスイッチング回路により交流化し、更にトランスにより電圧変換したものを整流して入力とは異なる直流電圧を得るようにした周知の構成を用いることができる。また、9は平滑フィルタ、10は電圧異常低下検出回路を示している。なお、直送スイッチ3はリレー等の機械式スイッチ以外にサイリスタ等の半導体スイッチで構成してもよい。
以下、図1の無瞬断電源装置の動作について図2を参照しながら説明する。正常時においては、直送スイッチ3が閉じており、電源1から系統電圧Vが直接負荷へ供給されている。また、単相インバータ4、5を整流器として働かせ、DC−DCコンバータ6、7を通してバッテリー8を充電している。なお、図示していないが、損失を少なくするために、単相インバータ5の交流側端子を別のリレーで短絡しておき、単相インバータ4だけでバッテリー8を充電してもよい。
次に、電源1が停電したり、図2(a)のように時刻t0において系統電圧Vが異常に低下した場合の電圧補償動作について説明する。先ず、電圧異常低下検出回路10が働いてリレー3を切り離すようにするが、リレー3は電流が零にならないとアークが発生して電流が継続してしまうため、電流を零に制御する必要がある。そこで、第一の単相インバータ4によって電圧V1をPWM制御し、平滑フィルタ9によって平滑化して、系統Voと同じ電圧を出力するようにする。これによりリレーの両端には電圧が印加されなくなり、その後、電流が零となった時点でリレーが完全に開放される。
リレーが切り離されると、各単相インバータ4、5は完全なインバータ動作をするようになり、インバータ4、5にはバッテリー8からDC−DCコンバータ6、7を通して電圧V1、V2の直流電圧が印加されている。この場合、電圧V1は電圧V2より大きな値に設定されており、またV1+V2が大略Voの最大絶対電圧値(100V交流の場合は141V)になるように設定されている。時刻t1において、単相インバータ4、5は入力電圧V1、V2に見合った出力電圧VB1、VB2を出力し、この出力電圧は互いに重畳され、図2(a)に示すように擬似正弦波電圧を発生し負荷に供給し始める。すなわち、第一の単相インバータ4と第二の単相インバータ5との出力パターンの組み合わせにより、V2、V1−V2、V1、V1+V2の4種類の電圧が発生し、この4つの組み合わせにより、擬似正弦波を形成することができる。
図2(a)中、VB1、VB2のそれぞれの波形と、VB1+VB2の波形とから出力電圧の重畳によって擬似正弦波が作成されることが明らかである。なお、図2(b)中には、V1:V2の電圧関係によって得られる典型的な出力パターンを示しており、V1:V2=3:1の場合には、各電圧レベル間の変化は同じような擬似正弦波となる。
一方、V1:V2>3:1の場合には、中間電圧が間延びした擬似正弦波となる。以上のようにして、系統が所定電圧以下に低下して直送スイッチが切り離された後でも、負荷に所定電圧を供給するいわゆる電圧補償動作を行うことができる。
次に、図3を参照しながら系統電圧が低下もしくは増加した場合の電圧増減動作について説明する。図中、Voは系統電圧で、時間と共に低下しており、また、Vdは負荷に掛かる電圧で、VB1とVB2の波形と対照して示してある。
ここでは、時刻toにて電圧の異常(低下)を検出し始め、例えば時刻t1から電圧を補償する場合について示している。時刻t1から第二の単相インバータ5を負荷電圧が増加するように動作させる。それにより、負荷に供給される電圧の波高値は正常な系統電圧時のそれとほぼ等しくなる。図4にはいろいろなパターンでの増電圧波形を示している。
図4のAは正常時の系統電圧(破線)と電圧低下時の系統電圧Voが示されている。Bは低下した系統電圧の全域にVB2の電圧を均等に加算した場合の波形を示している。この場合、負荷に印加される電圧の実効値は正常時よりもやや大きめの値が得られる。Cは、正弦波の立ち上がり部分の途中から一定幅だけVB2を加算した例が示されている。この場合、VB2を出力するパルス幅を調整することにより、負荷への実効電圧は正常時の値と一致させることも可能であり、実効値が重要となる負荷にとっては非常に都合がよい。なお、B、Cの例では波形の最大値は正常の値と一致した例を示している。Dは波形の最大値が正常時の値より大きい場合の例を示している。この場合、負荷への実効電圧を調整するためにパルス幅をAおよびBより比較的狭く設定するとよい。更に、E、F、Gは、負荷への波形の最大値が一定となるよう、VB2の電圧をコントロールした場合の例(幅は一定)を示している。これにより、波形の最大値が重要な意味を持つ負荷に対して、確実に波形の補償が可能となる。
一方、図5には、系統電圧Voが所定値以上に増大した場合における種々のパターンでの減電圧波形を示している。図5のAは正常時の系統電圧(破線)と電圧増加時の系統電圧Voが示されている。Bは低下した系統電圧の全域にVB2の電圧を均等に減算した場合の波形を示している。この場合、負荷に印加される電圧の実効値は正常時よりもやや小さめの値が得られる。Cは、正弦波の立ち上がり部分の途中から一定幅だけVB2を減算した例が示されている。この場合、幅を調整することにより、負荷への実効電圧は正常時の値と一致させることも可能であり、実効値が重要となる負荷にとっては非常に都合がよい。なお、B、Cの例では波形の最大値は正常の値と一致した例を示している。Dは波形の最大値が正常時の値より大きい場合の例を示している。この場合、負荷への実効電圧を調整するためにパルス幅をAおよびBより比較的狭く設定するとよい。E、Fは、負荷への波形の最大値が一定となるよう、VB2の電圧をコントロールした場合の例を示している。これにより、波形の最大値が重要な意味を持つ負荷に対して、確実に波形の補償が可能となる。
実施の形態2.
図6は本発明の実施の形態2を示す図1の変形例であり、第二の単相インバータ5を直接バッテリー8に接続した以外は図1と全く同一のものである。電圧補償動作すなわち電圧増減動作は実施の形態1と同一である。このような構成とすれば、第二の単相インバータ5の入力電圧V2が一定となるため、上述したV1:V2の比を細かく設定することは出来ないものの、DC−DCコンバータ7を省略することにより、構成が簡単、安価になる特徴がある。
実施の形態3.
図7は本発明の実施の形態3に係る無瞬断電源装置の変形例を示す。
図1、図6においては、第二の単相インバータ5の接続位置は第一の単相インバータ4と負荷2との間であったが、図7では第二の単相インバータ5の位置は系統電源1と第一の単相インバータ4との間である。このような構成では、以下の動作が前述の実施の態様と異なってくる。すなわち、まず、系統の電圧が低下しリレーがオフ動作に入ったときにリレー電流を零に制御するモードにおいて、前述の実施の態様では、第一の単相インバータ4のみでPWM制御等を行っていたが、この実施の形態では、第一の単相インバータ4と第二の単相インバータ5の出力電圧の合計がリレーに印加されることとなり、各出力電圧を個別に制御することによって、きめ細かくリレー電流を制御することができるため、確実かつ高速にリレーを開放することが可能となる。
次に、リレー3が開放し、負荷の補償の電圧を供給するときには、第一の単相インバータ4のみが動作する。このとき単相インバータ4をPWM制御すれば、平滑フィルタ9の作用によって正弦波を出力することができる。また、PWM制御しなければ、矩形波を出力することが可能となる。これにより、実施の態様1、2のように第二の単相インバータ5を経由しないため、効率の良い装置が得られる。
なお、上記実施の形態1〜3の無瞬断電源装置においては、増減電圧動作時、電圧補償動作時に、各単相インバータ4、5の直流電圧V1、V2の電圧が所定の関係からずれる可能性がある。それは、各インバータ4、5の出力総電流が一致しないからである。それを補正するために、DC−DCコンバータ6、7を以下のように動作させる。
増電圧動作時には、必ずV2の電圧はより低下しようとする。そこで図1の例ではDC−DCコンバータ6から一旦バッテリー8にエネルギーを送り、DC−DCコンバータ7を経由してV2にエネルギーを補給する。その場合、V1の電圧は急激に低下しようとするが、系統電圧の瞬時値がV1より高いときに、単相インバータ4をオンすることにより、エネルギーを系統からV1へと供給することができる。反対に、減電圧動作時においては、V2の電圧はより増加しようとするが、DC−DCコンバータ7から一旦バッテリー8を経由し、DC−DCコンバータ6を経由してV1にエネルギーを供給する。V1に送られたエネルギーは単相インバータ4を通して、V1が系統電圧の瞬時値より高い時間帯に単相インバータ4をオンすることにより系統にエネルギーを返送する。
増電圧・減電圧動作において、図6に示す実施の形態2の場合にも同様の動作をするが、V2へのエネルギーの流入・流出はバッテリー8がバッファとして受け持つことになるから、電圧そのものはバッテリー電圧で支配される。バッテリー8のエネルギー変化が全体で零になるように、DC−DCコンバータ6によってV1にエネルギーを流出入し、また系統に流出入する。図7も図6の場合と同様な動作をする。このように、DC−DCコンバータを用いてバッテリー8に電流を蓄積せずまたはバッテリー電流を消費しない動作をすることにより、バッテリー実効電流を低下し劣化を防止できる効果がある。
なお、このDC−DCコンバータによるエネルギー流出入作用は、上記した電圧補償動作中においても機能させることができ、例えば実施の形態1(図1)ではDC−DCコンバータ6、7を、また、実施の形態2(図6)では、DC−DCコンバータ6を用いて上記V1、V2を安定化させるように動作させることにより、所定の補償電圧波形を維持できるものである。
実施の形態4.
本発明の形態4を図8について説明する。この形態においては、形態1における単相インバータ4部分が単相インバータ4a、4b、4cにて構成されている。図8において、4cの直流電源VB4はバッテリー8から双方向性DC−DCコンバータ6aを通して安定化されている。また、前記VB4と単相インバータ5、4a、4bの直流電源VB1、VB2、VB3は双方向性DC−DCコンバータ7aによって安定化されている。それにより単相インバータ4a、4b、4cの出力電圧は常に特定の関係となるようDC−DCコンバータ7aによって制御されている。
図9は、単相インバータ4a、4b、4cの出力電圧の関係およびその合計の出力レベルの一例を記載している。単相インバータ4a:4b:4cの出力電圧が1:2:4の関係(A)から1:3:9の関係(J)までの10種類について示している。1:3:9の関係の場合には、最も多くの出力レベルを出すことができ、図10にその場合の電圧パターンと正弦波出力時の波形イメージを示している。これにより、最大で13段階のレベル変更が可能となるため、比較的細かい波形制御ができ擬似正弦波を生成することができる。図11はさらに各出力レベルの間でPWM制御を施した場合の例であり、PWM制御は各出力レベルの変化を最小単位とし、レベルを上げ下げする頻度によって平均的な波形をコントロールすることができる。このような制御を施すことにより、VB2〜VB4までの全体の電圧波形は非常にきめ細かいものとなり、平滑フィルタ9は従来の場合に比べて格段に小さな容量で済む。
次に、系統が正常時の動作について説明する。系統が正常時には、単相インバータ4a、4b、4cは無効電力補償装置として動作する。その動作を図12に示す。図12(a)は負荷が遅れ負荷、すなわち系統電圧Vに対して、負荷電流Idの位相が遅れて動作する場合を示している。ここで、単相インバータ4a、4b、4cは、系統の電流Iが系統の電圧Vと同じ位相になるよう電流Ixを系統に流し込む動作を行う。すなわち、Ixが単相インバータ4a、4b、4cから系統に流れ込むように、各出力レベルをコントロールし、またはPWM制御を施し、平滑フィルタの効果によってIxを滑らかにする。これにより、系統電流と系統電圧とは位相が一致するようになるので、系統から見ると力率1の負荷が接続されているように見え、無効電力を補償できることとなり、また高調波成分による系統への逆流を防止することができる。更に、系統に流れる電流の実効値を低下することができるため、ケーブル等の損失が低下するものである。
図12(b)は、整流器負荷が接続された場合の動作例である。(a)の場合と同様に、単相インバータ4a、4b、4cは系統に力率1の電流Iが流れるよう、電流Ixを系統に流し込む。単相インバータ4a、4b、4cではきめ細かい波形の制御が可能であるため、整流器負荷等の電流変化が激しい場合でも、系統に力率1の電流Iが確実に流れるよう制御することが可能である。これは、フィルタ9が小さな容量で済むことにより制御系のゲインを上げることができることによる。このような動作においては、単相インバータ4a、4b、4cへ流入出する電流の量は異なる場合がほとんどであり、VB2〜VB4の電圧関係は容易に崩れてしまう。これを補正するために、先に説明したように、DC−DCコンバータ7aを動作させ、DC−DCコンバータ7aがVB2〜VB4の電圧がそれぞれ所定の値を保つようにエネルギーをやりとりする。
次に、単相インバータ5部分は実施の形態1における単相インバータ5と同じであり、従って、増電圧・減電圧機能における単相インバータ5の動作は実施の形態1と同じである。なお、増電圧・減電圧時にVB1の電圧の変化は、DC−DCコンバータ7aによって、VB4にエネルギーを流入出させることによって安定化させる。VB4に送られたエネルギーは、単相インバータ4a、4b、4cによる電流制御により系統に流出入する。なお、先に示した無効電力補償制御と、増電圧・減電圧制御を同時に行うことも可能である。増電圧機能と無効電力補償制御を同時に行うときは、無効電力分を補償するIxより低めの電流を系統に流入させればよい。また減電圧機能と無効電力制御を同時に行うときは、無効電力分を補償するIxより高めの電流を系統に流入させればよい。
次に、実施の形態4における電圧補償時の動作について図13を参照して説明する。図中、パターン(a)はPWM制御を併用しない場合を、パターン(b)はPWM制御を併用する場合の波形図を示している。今、時刻toにて系統電圧の低下を検出し、リレーをオフにすると同時に、リレーの電流を零に制御するように、系統電圧と同じ電圧を単相インバータ4a、4b、4cに発生させる。それにより、リレーの電流が次第に零に向かい、やがてリレーが完全に開放する。このときの状態をパターン(a)のTaにより現わしている。この動作において、単相インバータ4a、4b、4cの出力電圧を、PWM制御を併用することにより、よりきめ細かく制御するとパターン(b)のTcのようになり、リレーの電流を高速に零とすることができる。リレーが完全に開放した以降、時刻t1から負荷に補償の出力を供給する。負荷に供給する出力は、単相インバータ5、4a、4b、4cを使って供給することが可能である。この場合の波形をTb、Tdで示している。
上記単相インバータ5、4a、4b、4cの制御方法としてはいくつかのパターンが考えられる。例えば、単相インバータ5:4a:4b:4cの関係を1:3:9:27となるようDC−DCコンバータ7aにて制御すれば、最大40レベルの出力にて正弦波を形成できるため、ほとんど連続した波形出力を得ることができる。また、図14に示すように、5:4a:4b:4c=0.5:1:3:9とし、単相インバータ5をPWM制御すれば、フィルタ9による平滑作用も併せて、よりきめ細かい電圧波形を出力することができる。なお、このとき単相インバータ5の比率は0.5以上であっても、PWMにより波形を調整すれば同様な効果が得られる。その波形例は図13に示されている。5:4a:4b:4cの電圧関係の選び方はいろいろ考えられ、図9の中のいずれかのパターンであれば同様の効果を奏する。補償動作中においても、単相インバータの直流電源の電圧に流出入する電流のアンバランスは容易に生じるから、これを補正するためにDC−DCコンバータ7aが動作することは言うまでもない。
実施の形態5.
図15は本発明の実施の形態5を示す回路図であり、上記実施の形態4(図8)の変形例である。DC−DCコンバータ6aがなく、第一の単相インバータ4aを直接バッテリー8に接続した以外は図8と全く同一のものであり、従って電圧増減動作、電圧補償動作は実施の形態4と同一である。このような構成とすれば、単相インバータ4aは9種類の電圧比を持つ最も大きな電圧の単相インバータであり、エネルギーの流出入も最も大きい。そのため、特に補償時においてDC−DCコンバータ6aを通らずにバッテリー8から直接エネルギーを取り出せるので非常に効率が良くなり、その結果、装置が小形軽量となる効果を有する。
実施の形態6.
図16は本発明の実施の形態6を示す回路図であり、上記実施の形態4(図8)の変形例である。DC−DCコンバータ7aがバッテリーから直接接続されている以外は図8と全く同じである。バッテリー8の電圧は通常一定であるから、単相インバータ5、4a、4bの電圧のコントロールが容易となり、無駄の無いDC−DCコンバータ7aの設計が可能なり、装置が小形軽量となる特徴がある。
実施の形態7.
図17は本発明の実施の形態7を示す回路図であり、それぞれの単相インバータ5、4a、4b、4cの直流電源にはバッテリー8d、8a、8b、8cがそれぞれ接続されており、また、DC−DCコンバータ11は単相インバータ5、4a、4b、4cに共通に挿入され、それぞれの直流電圧の安定化が保たれている。しかし、各バッテリーへの電流の流入にアンバランスが生じると、バッテリーの電圧の上がり過ぎや下がり過ぎが生じてしまい、結果的に単相インバータ5、4a、4b、4cの電圧の関係も崩れてしまう。そのため、DC−DCコンバータ11により、バッテリーへの入力電流のアンバラスンを補正するよう、各バッテリー間でエネルギーのやりとりを行う。これにより、バッテリーへの電流の流出入のバランスがとれ、安定した動作を行うことができる。
実施の形態8.
図18は本発明の実施の形態8を示す回路図であり、単相インバータ5の位置が系統と単相インバータ4a、4b、4cのインバータ群の間に挿入された場合の例である。この構成においては、リレー電流を零にするために制御において単相インバータ5、4a、4b、4cの4つを使えるのでよりきめ細かい電流制御が可能となる。また、リレー開放後の補償動作時点では負荷への電圧の供給は単相インバータ4a、4b、4cのみで行うこととなり、そのときの電流が単相インバータ5を経由しないので、損失の発生が少なく、装置効率が増加し、小形軽量化が図れる効果を有する。
なお、上述の各実施形態においては、無瞬断電源装置を例にとって説明したが、系統電圧の遮断、変動等を補償するその他の電源装置にも適用できるのは言うまでもなく、またエネルギー蓄積手段としてバッテリー8を用いた例を説明したが、これに限らず、電気重層コンデンサなどのコンデンサや、太陽光発電、燃料電池などの直流を発電する装置、更には風力などの交流を発電した後に直流に変換する装置などが代替的に用いられるものである。
[図1]本発明の実施の形態1に係る無瞬断電源装置の概略構成図である。
[図2]図1に示す無瞬断電源装置の電圧補償動作についての説明図である。
[図3]図1に示す無瞬断電源装置の電圧増減動作についての説明図である。
[図4]図1に示す無瞬断電源装置の増電圧波形のパターンを示す図である。
[図5]図1に示す無瞬断電源装置の減電圧波形のパターンを示す図である。
[図6]本発明の実施の形態2に係る無瞬断電源装置の変形例を示す回路図である。
[図7]本発明の実施の形態3に係る無瞬断電源装置の変形例を示す回路図である。
[図8]本発明の実施の形態4に係る無瞬断電源装置の変形例を示す回路図である。
[図9]本発明の実施の形態4において、単相インバータ群を構成する各インバータの出力電圧の関係およびその合計の出力レベルの一例を記載した図表である。
[図10]本発明の実施の形態4において、電圧パターンと正弦波出力時の波形イメージの関係の一例を示す図である。
[図11]本発明の実施の形態4において、各出力レベルの間でPWM制御を施した場合の例を示す図である。
[図12]発明の実施の形態4において、単相インバータ群を無効電力補償装置として動作させた場合の波形図である。
[図13]本発明の実施の形態4において、電圧補償動作を行う場合の波形説明図である。
[図14]本発明の実施の形態4において、各インバータの動作と出力波形の関係を示す波形図である。
[図15]本発明の実施の形態5に係る無瞬断電源装置の変形例を示す回路図である。
[図16]本発明の実施の形態6に係る無瞬断電源装置の変形例を示す回路図である。
[図17]本発明の実施の形態7に係る無瞬断電源装置の変形例を示す回路図である。
[図18]本発明の実施の形態8に係る無瞬断電源装置の変形例を示す回路図である。
符号の説明
1 交流電源 2 負荷
3 直送スイッチ 4 第一の単相インバータ
5 第二の単相インバータ 6、6a DC−DCコンバータ
7、7a DC−DCコンバータ 8 バッテリー

Claims (6)

  1. 電源と負荷とを結ぶ系統に直列に接続され、前記電源から前記負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続され、DC―DCコンバータとエネルギー蓄積手段により構成された直流出力手段を備え、前記第一及び第二の単相インバータはそれぞれ異なる出力電圧が互いに重畳して前記負荷に供給されるように接続したことを特徴とする電源装置。
  2. 前記第一及び第二の単相インバータは、系統電圧が低下し、前記直送スイッチが切り離された以降において、両者の出力電圧の組み合わせによって複数の出力レベルを持つ電圧波形からなる擬似正弦波を形成し、前記負荷に出力することを特徴とする請求項1に記載の電源装置。
  3. 電源と負荷とを結ぶ系統に直列に接続され、前記電源から前記負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続され、DC―DCコンバータとエネルギー蓄積手段により構成された直流出力手段を備え、前記第一及び第二の単相インバータは、系統電圧が低下し、前記直送スイッチが切り離された以降において、両者の出力電圧の組み合わせによって複数の出力レベルを持つ電圧波形からなる擬似正弦波を形成し、前記負荷に出力することを特徴とする電源装置。
  4. 前記第二の単相インバータは、正常運転時の系統電圧変動に対し、その出力電圧のパルス幅あるいは電圧値を制御することにより、前記変動分を補償する電圧を前記系統に重畳するようにしたことを特徴とする請求項1乃至3のいずれか1項に記載の電源装置。
  5. 前記第二の単相インバータは、前記第一の単相インバータと前記電源との間に接続されたことを特徴とする請求項1に記載の電源装置。
  6. 前記直送スイッチは機械式リレーあるいは半導体スイッチで構成されたことを特徴とする請求項1乃至のいずれか1項に記載の電源装置。
JP2005515003A 2003-10-27 2004-10-26 電源装置 Expired - Fee Related JP4445470B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003366077 2003-10-27
JP2003366077 2003-10-27
PCT/JP2004/015851 WO2005041384A1 (ja) 2003-10-27 2004-10-26 電源装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009095959A Division JP2009201350A (ja) 2003-10-27 2009-04-10 電源装置

Publications (2)

Publication Number Publication Date
JPWO2005041384A1 JPWO2005041384A1 (ja) 2007-04-26
JP4445470B2 true JP4445470B2 (ja) 2010-04-07

Family

ID=34510214

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005515003A Expired - Fee Related JP4445470B2 (ja) 2003-10-27 2004-10-26 電源装置
JP2009095959A Pending JP2009201350A (ja) 2003-10-27 2009-04-10 電源装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009095959A Pending JP2009201350A (ja) 2003-10-27 2009-04-10 電源装置

Country Status (4)

Country Link
US (2) US7964990B2 (ja)
JP (2) JP4445470B2 (ja)
CN (1) CN100414811C (ja)
WO (1) WO2005041384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364243B1 (ko) 2012-09-27 2014-02-17 삼성중공업 주식회사 풍력발전기용 전력변환 장치

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493460B2 (ja) * 2004-10-06 2010-06-30 三菱電機株式会社 電力変換装置
US7485987B2 (en) 2006-02-23 2009-02-03 Mitsubishi Denki Kabushiki Kaisha Power converting device
US7688048B2 (en) * 2007-02-21 2010-03-30 American Power Conversion Corporation 3-phase high power UPS
JP4669860B2 (ja) * 2007-07-06 2011-04-13 三菱電機株式会社 無停電電源装置
US7714461B2 (en) * 2007-10-17 2010-05-11 Gm Global Technology Operations, Inc. Apparatus and methods for reducing resonance in multiple inverter systems
US8385091B2 (en) 2009-08-20 2013-02-26 Electric IT Corporation 3-phase high-power UPS
US8503201B2 (en) * 2009-12-03 2013-08-06 Schneider Electric It Corporation Transient clamping circuitry for voltage converter
CN102195465B (zh) * 2010-03-09 2015-11-25 理察·蓝德立·葛瑞 功率因素补偿方法
DE102010013862A1 (de) * 2010-04-01 2011-10-06 Gottfried Wilhelm Leibniz Universität Hannover Transformatorloser Direktumrichter
JP5333867B2 (ja) * 2010-11-15 2013-11-06 京都電機器株式会社 瞬時電圧低下保護装置
WO2014032302A1 (en) 2012-09-03 2014-03-06 Schneider Electric It Corporation Method and apparatus for controlling distribution of power
JP6139111B2 (ja) * 2012-11-15 2017-05-31 株式会社東芝 無効電力補償装置
JP6056010B2 (ja) * 2013-02-28 2017-01-11 パナソニックIpマネジメント株式会社 電源装置
US10014718B2 (en) * 2014-06-26 2018-07-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power source
CN106464001B (zh) * 2014-06-26 2019-02-26 东芝三菱电机产业系统株式会社 不间断电源装置
US9584034B2 (en) 2014-09-08 2017-02-28 Infineon Technologies Austria Ag Power converter circuit and method with asymmetrical half bridge
US9929662B2 (en) 2014-09-08 2018-03-27 Infineon Technologies Austria Ag Alternating average power in a multi-cell power converter
US9762134B2 (en) 2014-09-08 2017-09-12 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
US9837921B2 (en) 2014-09-08 2017-12-05 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
US20160072395A1 (en) * 2014-09-08 2016-03-10 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
WO2017208322A1 (ja) * 2016-05-31 2017-12-07 株式会社日立製作所 電力変換器セル及び電力変換装置
JP7180112B2 (ja) * 2018-05-15 2022-11-30 日新電機株式会社 無停電電源装置
CN108808887A (zh) * 2018-05-22 2018-11-13 广西电网有限责任公司电力科学研究院 一种并联多逆变无线电能传输系统
US11121551B2 (en) * 2018-08-23 2021-09-14 Smart Wires Inc. Modular time synchronized injection modules
JP7401793B2 (ja) 2019-07-01 2023-12-20 日新電機株式会社 無停電電源装置
US20220190638A1 (en) * 2019-09-02 2022-06-16 Ravisekhar Nadimpalli Raju System to provide AC or DC power to electronic equipment

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87200105U (zh) * 1987-01-10 1988-02-24 郁开发 不间断供电装置
JP2645058B2 (ja) 1988-02-29 1997-08-25 株式会社東芝 無停電電源装置
JPH0356046A (ja) 1989-07-21 1991-03-11 Nissin Electric Co Ltd 瞬時電圧低下補償装置
US5115386A (en) * 1990-10-15 1992-05-19 Hitachi, Ltd. Circuit for controlling an electric power supply apparatus, a method therefor and an uninterruptible power supply
AU646957B2 (en) * 1991-07-01 1994-03-10 Superconductivity, Inc. Shunt connected superconducting energy stabilizing system
US5570004A (en) * 1994-01-03 1996-10-29 Seiko Instruments Inc. Supply voltage regulator and an electronic apparatus
DE69524465T2 (de) * 1994-04-08 2002-05-23 Vlt Corp Effiziente Leistungsumwandlung
JPH08223822A (ja) 1995-02-10 1996-08-30 Fuji Electric Co Ltd 無停電電源装置の制御方法
JP3805835B2 (ja) * 1996-07-23 2006-08-09 関西電力株式会社 配電線電圧及び無効電力調整装置
DE19709766C1 (de) 1997-03-10 1998-09-03 Siemens Ag Verfahren zum Ansteuern mehrerer Endstufen, Steuermodul und Leistungsverstärker
US5866506A (en) * 1997-06-25 1999-02-02 Eastman Kodak Company Assemblage and Process for thermal dye transfer
JPH1189242A (ja) * 1997-09-08 1999-03-30 Yaskawa Electric Corp 電力変換装置
US5808452A (en) 1997-09-15 1998-09-15 Gyugyi; Laszlo Power flow controller with dc-to-dc converter linking shunt and series connected inverters
JPH11178216A (ja) 1997-12-11 1999-07-02 Hitachi Ltd 無停電電源装置
JPH11178244A (ja) * 1997-12-17 1999-07-02 Hitachi Ltd 無停電電源装置の切換スイッチの制御装置
JP3148171B2 (ja) * 1998-01-12 2001-03-19 株式会社日本プロテクター スイッチングレギュレータ
JP2000184622A (ja) 1998-12-09 2000-06-30 Hitachi Ltd 無停電電源装置
JP4156150B2 (ja) * 1999-11-01 2008-09-24 東京瓦斯株式会社 無停電電源システム
JP4108899B2 (ja) * 2000-03-30 2008-06-25 東京瓦斯株式会社 無停電電源システム
US6753622B2 (en) * 2001-03-02 2004-06-22 Powerware Corporation Uninterruptible power supply systems and methods using rectified AC with current control
EP1253706B1 (de) 2001-04-25 2013-08-07 ABB Schweiz AG Leistungselektronische Schaltungsanordnung und Verfahren zur Uebertragung von Wirkleistung
JP2002325465A (ja) * 2001-04-26 2002-11-08 Hitachi Ltd 交流電源装置
JP2003259567A (ja) * 2002-03-06 2003-09-12 Fuji Electric Co Ltd 無停電電源装置
JP3585896B2 (ja) * 2002-03-28 2004-11-04 株式会社東芝 電力変換装置
JP3825020B2 (ja) * 2002-08-01 2006-09-20 株式会社アイ・ヒッツ研究所 分散給電システム
US6906435B1 (en) * 2003-12-02 2005-06-14 Handsun Electronic Enterprise Co., Ltd. Uninterruptible power system with two current conversion units
US7158393B2 (en) * 2005-03-11 2007-01-02 Soft Switching Technologies Corporation Power conversion and voltage sag correction with regenerative loads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364243B1 (ko) 2012-09-27 2014-02-17 삼성중공업 주식회사 풍력발전기용 전력변환 장치

Also Published As

Publication number Publication date
CN1748349A (zh) 2006-03-15
JPWO2005041384A1 (ja) 2007-04-26
US20110215648A1 (en) 2011-09-08
US8502415B2 (en) 2013-08-06
US20070164613A1 (en) 2007-07-19
CN100414811C (zh) 2008-08-27
JP2009201350A (ja) 2009-09-03
WO2005041384A1 (ja) 2005-05-06
US7964990B2 (en) 2011-06-21

Similar Documents

Publication Publication Date Title
JP4445470B2 (ja) 電源装置
JP2680494B2 (ja) 単相交流電力変換装置
US6256213B1 (en) Means for transformer rectifier unit regulation
JP5929703B2 (ja) Dc/dcコンバータ
JP4882266B2 (ja) 交流−交流変換装置
US7391132B2 (en) Methods and apparatus providing double conversion/series-parallel hybrid operation in uninterruptible power supplies
JP5565527B2 (ja) 電力変換装置
WO2011151940A1 (ja) 電力変換装置
US9692310B2 (en) Power converter
JPWO2013121665A1 (ja) Dc/dcコンバータ
JPH03173354A (ja) 電力変換回路
US20230275521A1 (en) Power supply with active power buffer
EP1511166B1 (en) Power converter
KR101027988B1 (ko) 직렬 보상 정류기 및 이를 포함하는 직렬 보상 무정전 전원장치
US8305781B2 (en) Inverter with high frequency isolation transformer
US9705362B2 (en) Power converter
EP2677651B1 (en) Synchronized isolated AC-AC converter with variable regulated output voltage
JP2005229666A (ja) 無停電電源装置
JP3816487B2 (ja) 無停電電力供給機能を付加した交流電圧制御装置
JP2014014232A (ja) 直流電源装置
JP2017175917A (ja) 直流電源装置
CA3205529A1 (en) Dc power supply device and railway substation incorporating it
JPH01202164A (ja) 直流電源装置
JP2017175689A (ja) 電力変換装置
KR20160076824A (ko) 양방향 하이브리드 전원 장치의 제어 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R151 Written notification of patent or utility model registration

Ref document number: 4445470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees