JP4397964B2 - 送信方法、受信方法、伝送方法および受信装置 - Google Patents

送信方法、受信方法、伝送方法および受信装置 Download PDF

Info

Publication number
JP4397964B2
JP4397964B2 JP2009000659A JP2009000659A JP4397964B2 JP 4397964 B2 JP4397964 B2 JP 4397964B2 JP 2009000659 A JP2009000659 A JP 2009000659A JP 2009000659 A JP2009000659 A JP 2009000659A JP 4397964 B2 JP4397964 B2 JP 4397964B2
Authority
JP
Japan
Prior art keywords
symbol
frequency
carrier
signal
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009000659A
Other languages
English (en)
Other versions
JP2009071883A (ja
Inventor
泰男 原田
知弘 木村
裕司 林野
裕司 大植
矢壽弘 宇野
康男 長石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009000659A priority Critical patent/JP4397964B2/ja
Publication of JP2009071883A publication Critical patent/JP2009071883A/ja
Application granted granted Critical
Publication of JP4397964B2 publication Critical patent/JP4397964B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2679Decision-aided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2682Precision
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

本発明は、直交周波数多重信号の伝送方法およびその受信装置に関し、より特定的には、所定の伝送路を介し、送信側から受信側に対して、所定長のシンボル毎に直交周波数分割多重信号を伝送する方法およびその受信装置に関する。
近年、移動体向けディジタル音声放送や、地上ディジタルテレビ放送等において、直交周波数多重(Orthogonal Frequency Division Multiplexing;以下、OFDMと称す)信号を用いた通信が注目されている。なぜならば、OFDM信号は、周波数の利用効率が良く、多量のデータの高速伝送が可能で、波形等化器なしでも反射波による特性劣化が少ないからである。また、その信号波形がランダム雑音に近い形となるので、他のサービスに混信妨害を与えにくいからである。このような特質を有するOFDM信号を用いた伝送方式は、特開平5−167633号公報(以下、第1の先行技術と称する)、1993年2月15日付け発行の日経エレクトロニクス(no.574)の第101〜124頁に記載された「家庭の次世代サービスはテレビを越える」(以下、第2の先行技術と称する)および1994年9月14日付けのEIAJ技術セミナー資料の第1〜15頁においてNHK放送技術研究所の斉藤正典により書かれた「OFDM方式とその開発動向」(以下、第3の先行技術と称する)に開示されている。
図11は、従来のOFDM信号の構成を示す図であり、特に、図11(a)はOFDM信号の各シンボルを時間軸に沿って示し、図11(b)は図11(a)の部分αを拡大して示している。図11(a)に示すように、OFDM信号Sは、シンボルSm (m=1,2,…)を時間軸に沿って並べることにより構成されている。各シンボルSm は、周波数の異なる複数(数十〜数千、例えば512)のキャリア(シンボル時間ts において互いに直交している)を、それぞれ伝送すべきデータでデジタル変調(例えば、QPSK変調,16QAM等)し、変調された各キャリアを逆FFT(高速逆フーリエ変換)演算によって周波数軸上で多重することにより構成されている。このため、各シンボルSm は、図11(b)に示すように、全て、ランダム状の振幅分布を示す。なお、このようなOFDM信号Sは、伝送路上においては、各シンボルSm について、実数部と虚数部とを重畳した複素信号の形態をとる。
ところで、このようなOFDM信号は、有線や無線の伝送路を介して送信側から受信側に送られる。有線の伝送路においては、伝送路の伝送特性からその占有周波数帯が規制される。また、無線の伝送路においては、法規制によりその占有周波数帯が規制される。このため、送信側は、OFDM信号を中間周波数帯から伝送路の占有周波数帯に変換するようにしている。一方、受信側では、データの復調にあたって、受信したOFDM信号を伝送路の占有周波数帯から復調作業のための中間周波数帯に変換するようにしている。
前述の第1の従来技術には、送信側から送信されたOFDM信号をベースバンドのOFDM信号に変換するためのバンドパスフィルタ,周波数変換器およびローパスフィルタと、ベースバンドのOFDM信号を標本化してデジタル信号に変換するA/D変換器と、時間軸データをフーリエ変換して各搬送波ごとの周波数軸上データを得るFFT復調器と、各搬送波ごとの複素平面上での振幅と位相を判定して複素データを得る信号点座標判定回路と、複素データをデジタルデータに変換するとともに、各搬送波で送信されたビット数に応じてデータを結合し、ビットストリームを生成する受信データ結合回路と、ビットストリームにデインタリーブと誤り訂正とを施すことにより受信データを得るデインターリーブマトリクスおよび誤り訂正符号回路とを備えた受信装置が開示されている。
前述の第3の従来技術には、送信側から送信されたOFDM信号をベースバンドのOFDM信号に変換するためのバンドパスフィルタ,直交検波器およびローパスフィルタと、ベースバンドのOFDM信号を標本化してデジタル信号に変換するA/D変換器と、時間軸データをフーリエ変換して各搬送波ごとの周波数軸上データを得るFFT復調器と、周波数軸上の並列データを直列に変換することにより受信データを得る並列直列変換回路とを備えた受信装置が開示されている。
図12は、上記第1および第3の従来技術から容易に類推されるOFDM信号の受信装置の構成を示すブロック図である。図12において、この受信装置は、受信したOFDM信号が入力される入力端子Iと、周波数変換器100と、直交検波器300と、フーリエ変換器400と、復調データ検出器500とを備える。直交検波器300は、分波器301と、検波器302,303と、キャリア再生器304とを含む。
受信装置で受信した図11に示す伝送路の占有周波数帯(中心周波数fr )のOFDM信号は、入力端子Iを介して周波数変換器100に入力される。周波数変換器100は、予め定められた固定の周波数だけシフトすることにより、伝送路の占有周波数帯のOFDM信号を、中間周波数帯(中心周波数fc )のOFDM信号に変換する。
直交検波器300の分波器301は、周波数変換器100から出力されたOFDM信号を2つの信号に分波し、分波したOFDM信号を検波器302および303にそれぞれ出力する。キャリア再生器304は、検波器302に対し中心周波数fc の同相キャリアを出力し、検波器303に対し中心周波数fc の直交キャリアを出力する。検波器302は、分波器301から出力されたOFDM信号に同相キャリアを乗算することにより、OFDM信号の実数部を出力する。検波器303は、分波器301から出力されたOFDM信号に直交キャリアを乗算することにより、OFDM信号の虚数部を出力する。すなわち、直交検波器300は、中間周波数帯のOFDM信号をベースバンドのOFDM信号に変換する。
フーリエ変換器400は、検波器302から出力されたOFDM信号の実数部および検波器303から出力されたOFDM信号の虚数部に対し、一括してフーリエ変換演算を施すことにより、周波数軸上で多重されている各デジタル変調波の実数部および虚数部をそれぞれ分離する。復調データ検出器500は、各デジタル変調波の実数部および虚数部を複素平面にマッピングし、その内部に設定されたしきい値に従い、そのマッピング位置から各キャリアを変調したデータを復調し、出力端子Oから復調したデータを出力する。
特開平5−167633号公報 「家庭の次世代サービスはテレビを越える」 日経エレクトロニクス(no.574),1993年2月15日,第101〜124頁 斉藤正典 「OFDM方式とその開発動向」 NHK放送技術研究所,1994年9月14日,EIAJ技術セミナー資料の第1〜15頁
上記のようなOFDM信号は、無線または有線の伝送路を介して、送信装置から受信装置に伝送されるが、いずれの伝送路においてもOFDM信号の減衰が生じる。OFDM信号の減衰量は、無線伝送路ではその距離の変化に応じて変化し、有線伝送路では伝送路の分岐数等に応じて変化する。OFDM信号の減衰量が変化すると、受信装置では、OFDM信号の受信レベルに変動が生じる。しかしながら、図12の受信装置は、OFDM信号の受信レベルに変動が生じても、何ら補正することなくデータの復調処理を行っている。
そのため、復調データ検出器500において頻繁に復調データの誤判定が生じるという問題点があった。
ところで、FM受信器等では、受信信号のエンベロープの変動に基づいて、受信レベルの変動を補正するような、自動利得制御増幅器が設けられている。このような補正の手法を図12の受信装置に適用することも考えられるが、単一キャリアのFM信号と異なり、OFDM信号では、多数の変調キャリアが周波数軸上で多重されているため、各シンボル区間における振幅,位相のパターンがランダムに変化する。このため、OFDM信号のエンベロープ波形も時間軸上で頻繁に変化し、そのようなエンベロープ波形に基づいて自動利得制御増幅器を制御すると、自動利得制御増幅器の利得が不安定になり、安定した制御が行えない。また、OFDM信号では、各キャリアの変調データが互いに異なるため、エンベロープ波形の変動と受信レベルの変動とが必ずしも相関するとは限らない。したがって、FM受信器におけるレベル補正の手法をOFDM信号の受信装置に適用しても、受信レベルの変動を精度良く補正することができない。
また、図12の受信装置では、周波数変換器100における周波数シフト量が固定的に設定されているため、周波数帯のずれ、すなわち周波数帯の変動が生じても、この周波数帯の変動を補正できない。そのため、頻繁に復調データの誤判定が生じるという問題点があった。
ところで、AM受信器等では、受信信号の周波数弁別の変動に基づいて周波数帯の変動を補正するような周波数変換器が設けられている。このような補正の手法を図12の受信装置に適用することも考えられるが、単一キャリアのAM信号と異なり、OFDM信号では、多数の変調キャリアが周波数軸上で多重されているため、各シンボル区間における振幅,位相のパターンがランダムに変化する。このため、OFDM信号の周波数弁別波形も周波数軸上で頻繁に変化し、そのような周波数弁別波形に基づいて周波数変換器を制御すると、周波数変換器の周波数シフト量が不安定になり、安定した制御が行えない。また、OFDM信号では、各キャリアの変調データが互いに異なるため、周波数弁別波形の変動と周波数シフト量の変動とが必ずしも相関するとは限らない。したがって、AM受信器における周波数シフト量補正の手法をOFDM信号の受信装置に適用しても、周波数帯の変動を精度良く補正することができない。
それ故に、本発明の目的は、受信レベルの変動を精度良く補正でき、結果として復調データの誤判定が生じることのない直交周波数多重信号の伝送方法およびその受信装置を提供することである。
本発明の他の目的は、周波数帯の変動を精度良く補正でき、結果として復調データの誤判定が生じることのない直交周波数多重信号の伝送方法およびその受信装置を提供することである。
上記目的を達成するために、本発明の第1の局面は、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に直交周波数分割多重信号として送信する方法に向けられている。送信方法は、第1のシンボルを送信し、さらに、第2のシンボルを送信する。ここで、第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、さらに、第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている。
また、本発明の第2の局面は、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を受信する方法に向けられている。受信方法は、第1のシンボルを受信し、さらに、第2のシンボルを受信する。ここで、第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、さらに、第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている。受信方法はさらに、受信した第1のシンボルにより得られた同期情報に基づいて、第2のシンボルを復調し送信データを得る。
また、受信方法はさらに、受信した第1のシンボルに基づいて、周波数帯の変動を補正する。
また、本発明の第3の局面は、有線または無線の伝送路を介し、送信側から受信側に対して、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に直交周波数分割多重信号として伝送する方法に向けられている。送信側は、第1のシンボルを送信し、さらに、第2のシンボルを送信する。ここで、第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、さらに、第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている。また、受信側は、第2のシンボルを受信し、さらに、第1のシンボルを受信する。ここで、受信側はさらに、受信した第1のシンボルにより得られた同期情報に基づいて、第2のシンボルを復調し送信データを得る。
また、受信側はさらに、受信した第1のシンボルに基づいて、周波数帯の変動を補正する。
また、本発明の第4の局面は、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を送信する送信装置に向けられている。送信装置は、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含む第1のシンボルを生成する手段と、送信データにより変調されるキャリアを含む第2のシンボルを生成する手段とを備える。
また、本発明の第5の局面は、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を受信する受信装置に向けられている。受信装置は、直交周波数分割多重信号を受信する受信手段を備える。ここで、直交周波数分割多重信号は、第1のシンボルと第2のシンボルとを含んでおり、第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、さらに、第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている。受信装置はさらに、受信した第1のシンボルにより得られた同期情報に基づいて、第2のシンボルを復調し送信データを得る復調手段を備える。
また、受信装置は、受信した第1のシンボルに基づいて、周波数帯の変動を補正する。
また、本発明の第6の局面は、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を生成する方法に向けられている。生成方法は、第1のシンボルを生成し、さらに、第2のシンボルを生成する。ここで、第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、さらに、第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている。
また、本発明の第7の局面は、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を復調する方法に向けられている。ここで、直交周波数分割多重信号は、第1のシンボルと第2のシンボルとを含んでおり、第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、さらに、第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている。そして、復調方法は、受信した第1のシンボルにより得られた同期情報に基づいて、第2のシンボルを復調し送信データを得る。
上記の第1−第7の局面のように、既知の擬似ランダム符号により変調されたキャリアと抑圧されたキャリアとを含む第1のシンボルと、1シンボルに含まれる複数の各キャリアが送信データにより変調されている第2のシンボルを送信することにより、受信側での相関が取りやすくなる。
以下、図面に基づいて本発明の実施形態を説明する。図1は、本発明において、送信側から受信側に伝送されるOFDM信号の構成の一例を示す図である。特に、図1(a)はOFDM信号の各シンボルを時間軸に沿って示し、図1(b)は図1(a)の部分αを拡大して示している。
図1(a)に示すように、OFDM信号Sは、ハッチングを付して示す自動利得制御用の特定のシンボルS0 と、ハッチングを付さないで示す復調用のシンボルSm (m=1,2,…)とを時間軸に沿って並べることにより構成されている。シンボルS0 は、所定のシンボル間隔(例えば、15シンボル間隔)毎に挿入されている。なお、このようなOFDM信号Sは、伝送路上において、各シンボルS0 ,Sm について、実数部と虚数部とを重畳したアナログの複素信号の形態をとる。
各シンボルSm は、周波数の異なる複数(数十〜数千、例えば512)のキャリア(シンボル時間ts において互いに直交している)を、周波数軸上で多重(高速逆フーリエ演算)することにより構成されている。各キャリアは、受信側で復調すべきデータでデジタル変調(例えば、QPSK変調,16QAM等)されている。このため、各シンボルSm は、図1(b)に示すように、ランダム状の振幅分布を示す。
各シンボルS0 は、例えば、上記複数のキャリアの1つ(例えば、周波数fc )を無変調の単一トーン信号として残し、その他のキャリアを抑圧したものを、高速逆フーリエ演算することにより構成されている。このため、各シンボルS0 は、図1(b)に示すように、特定のパターンの振幅分布を示す。このようなシンボルS0 は、時間軸成分が既知であるとともに、周波数軸成分も既知である。
ところで、OFDM信号Sは、有線や無線の伝送路(図示せず)を介して送信側から受信側に伝送される。このため、伝送路上においてOFDM信号Sの減衰が生じる。したがって、受信側では、データを復調するにあたり、伝送路上で生じた減衰を補完するため、受信したOFDM信号Sのレベルを補正する必要がある。このようなOFDM信号Sの受信レベルを補正する操作は、シンボルS0 を用いて行われる。なぜならば、シンボルS0 は、常に同じパターンの信号を含むため、当該シンボルS0 の波形から受信レベルの変化を正確に測定できるからである。
図2は、本発明の第1の実施形態に係る受信装置の構成を示すブロック図である。図2において、この受信装置は、受信したOFDM信号が入力される入力端子Iと、帯域通過フィルタ1と、自動利得制御増幅器2と、直交検波器3と、A/D変換器7および8と、フーリエ変換器4と、復調データ検出器5と、制御信号出力器6と、出力端子Oとを備えている。直交検波器3は、分波器31と、検波器32および33と、キャリア再生器34とを含む。制御信号出力器6は、エンベロープ検出器61と、基準タイミング発生器62と、シンボルタイミング同期回路63と、シンボルエネルギ検出器64と、制御信号切換器65と、サンプルホールド器66と、ローパスフィルタ67とを含む。
図3は、図2に示す受信装置の各部の信号を示す波形図である。以下、この図3を参照して、図2の受信装置の動作を説明する。
受信装置で受信したOFDM信号(図1参照)は、図示しない周波数変換器によって伝送路の占有周波数帯から中間周波数帯(中心周波数fc )に変換された後、入力端子Iを介して帯域通過フィルタ1に入力される。帯域通過フィルタ1は、中間周波数帯のOFDM信号から不要な帯域の信号成分を除去し、必要な帯域のOFDM信号だけを取り出す。帯域通過フィルタ1から出力されたOFDM信号は、自動利得制御増幅器2を介して直交検波器3に与えられる。
直交検波器3の分波器31は、自動利得制御増幅器2から出力されるOFDM信号を2つに分波し、分波したOFDM信号を検波器32および33にそれぞれ出力する。キャリア再生器34は、検波器32に対し中心周波数fc の同相キャリアを出力し、検波器33に対し中心周波数fc の直交キャリアを出力する。検波器32は、分波器31から出力されたOFDM信号に同相キャリアを乗算することにより、OFDM信号の実数部を出力する。検波器33は、分波器31から出力されたOFDM信号に直交キャリアを乗算することにより、OFDM信号の虚数部を出力する。すなわち、直交検波器3は、中間周波数帯のOFDM信号をベースバンドのOFDM信号に変換する。A/D変換器7は、検波器32から出力されたOFDM信号の実数部をアナログ信号からデジタル信号に変換する。A/D変換器8は、検波器33から出力されたOFDM信号の虚数部をアナログ信号からデジタル信号に変換する。
フーリエ変換器4は、A/D変換器7から出力されたデジタルのOFDM信号の実数部およびA/D変換器8から出力されたデジタルのOFDM信号の虚数部に対して、一括してフーリエ変換演算を施すことにより、周波数軸上で各デジタル変調波の実数部および虚数部をそれぞれ分離する。なお、フーリエ変換器4は、クロック端子4cを有し、シンボルタイミング同期回路63から出力されたシンボル同期信号に基づいて、フーリエ変換に使用する時間窓の時間軸の調整を開始するとともに、各シンボルのフーリエ変換を開始する。復調データ検出器5は、各デジタル変調波の実数部および虚数部を複素平面上にマッピングし、その内部に設定されたしきい値に従い、そのマッピング位置から各キャリアを変調したデータを復調する。
制御信号出力器6の動作モードは、直交検波器3の出力信号のエンベロープ波形に基づいて自動利得制御増幅器2の制御信号を発生する第1のモードと、フーリエ変換器4の出力信号のシンボルエネルギに基づいて自動利得制御増幅器2の制御信号を発生する第2のモードとを含む。制御信号出力器6は、OFDM信号の受信開始時は第1のモードで動作し、フーリエ変換器4の動作安定後(すなわち、受信信号に同期した後)に第2のモードで動作する。以下、制御信号出力器6の動作をより詳細に説明する。
エンベロープ検出器61は、検波器32および33から出力されたOFDM信号の各シンボルをエンベロープ検波することにより、各シンボルの包絡線を表すエンベロープ信号を出力する。エンベロープ検出器61から出力されたエンベロープ信号は、基準タイミング発生器62に与えられるとともに、その変動を平滑化するローパスフィルタ67を介して制御信号切換器65の制御信号入力端子65aに与えられる。
基準タイミング発生器62は、シンボルS0 の特定パターンに対応した単一トーンデータを、その内部に予め記憶している。そして、基準タイミング発生器62は、各シンボルごとに、エンベロープ検出器61から出力されたエンベロープ信号と、記憶している単一トーンデータとの相関性を時間軸に沿って求めることにより、シンボルS0 を検出したか否かを表す基準タイミング信号を出力する。すなわち、基準タイミング発生器62は、図3(a)および(b)に示すように、シンボルS0 を検出した場合はハイレベル(電圧Vhigh)の基準タイミング信号を出力し、特定パターンを含まないシンボルSm を検出した場合はローレベル(電圧Vlow )の基準タイミング信号を出力する。なお、基準タイミング発生器62は、その検出動作が受信信号に対して安定(同期)するまでの間(すなわち、非同期期間中)は、シンボルS0 が受信された場合であっても、ローレベル(電圧Vlow )の基準タイミング信号を出力する。基準タイミング発生器62から出力される基準タイミング信号は、シンボルタイミング同期回路63およびサンプルホールド器66のクロック端子66cにそれぞれ入力される。
シンボルタイミング同期回路63は、基準タイミング発生器62から与えられる基準タイミング信号に基づいて、各シンボルに同期するシンボル同期信号(図3(c)参照)を出力する。すなわち、シンボルタイミング同期回路63は、その内部にクロック回路を備えており、基準タイミング信号の立ち上がりを検出する毎に、当該クロック回路から各シンボルの先頭に同期したクロックパルス(シンボル時間ts を1周期とするクロックパルス)、すなわちシンボル同期信号を出力する。このシンボル同期信号は、フーリエ変換器4のクロック端子4cおよびシンボルエネルギ検出器64のクロック端子64cにそれぞれ入力される。
また、シンボルタイミング同期回路63は、基準タイミング発生器62から与えられる基準タイミング信号に基づいて、ロック/アンロック信号(図3(d)参照)を出力する。このロック/アンロック信号は、ローレベルでアンロック状態を示し、ハイレベルでロック状態を示す。受信開始当初、ロック/アンロック信号は、アンロック状態にある。シンボルタイミング同期回路63は、その内部に上記クロックパルスを計数するカウンタを備えており、基準タイミング信号の立ち上がりを検出する毎に、当該カウンタをリセットする。シンボルタイミング同期回路63は、内部カウンタが所定の計数値(シンボルS0 が挿入されるシンボル間隔であり、ここでは15)に達した時点でリセットされる状態を所定回数繰り返せば(すなわち、シンボルS0 が所定回数安定して入力されれば)、フーリエ変換回路4での時間窓の調整が終了したものと判断し、ロック/アンロック信号をアンロック状態からロック状態に切り換える。このロック/アンロック信号は、制御信号切換器65のクロック端子65cに入力される。
シンボルエネルギ検出器64は、その内部にD/A変換器(図示せず)を備えている。シンボルエネルギ検出器64は、シンボルタイミング同期回路63から与えられるシンボル同期信号に同期して、フーリエ変換器4から出力された各シンボルの周波数軸上の各キャリアの信号成分を、デジタル演算によってシンボル期間ts 内で2乗積分(2乗したものを積分)することにより、各シンボルのエネルギをデジタル値で一旦求める。そして、この求めたデジタルのエネルギ値を、上記D/A変換器でアナログ値に変換することにより、各シンボルのエネルギを表すアナログのシンボルエネルギ信号を出力する。なお、このエネルギは、各シンボルの平均レベルに正比例する。また、2乗するのは、各キャリアの振幅が時間軸に沿って正負に変動するので、その絶対値を取るためである。また、積分するのは、その平均を求めるためである。シンボルエネルギ検出器64から出力されたシンボルエネルギ信号は、制御信号切換器65の制御信号入力端子65bに入力される。
制御信号切換器65は、クロック端子65cに入力されたロック/アンロック信号がアンロック状態のときはエンベロープ検出器61から出力されたエンベロープ信号を選択し、ロック状態のときはシンボルエネルギ検出器64から出力されたシンボルエネルギ信号を選択し、それぞれ自動利得制御増幅器2の制御信号として出力する。
サンプルホールド器66は、クロック端子66cに対して基準タイミング発生器62から電圧Vhighの基準タイミング信号が入力された場合、すなわち自動利得制御増幅器2から特定のシンボルS0 が出力されている場合に、制御信号切換器65によって選択された制御信号をサンプリングしてホールドする。サンプルホールド器66にホールドされた制御信号は、自動利得制御増幅器2の制御端子2cに与えられる。自動利得制御増幅器2の利得Aは、サンプルホールド器66から与えられる制御信号の電圧レベルに従って変化する。
OFDM信号の受信レベルが大きくなると、これに正比例して、シンボルS0 のエンベロープ信号またはシンボルエネルギ信号のレベルも大きくなるため、自動利得制御増幅器2に与えられる制御信号の電圧レベルが大きくなる。このとき、自動利得制御増幅器2は、受信したOFDM信号のレベルを小さくするように、その利得Aを小さくする。一方、OFDM信号の受信レベルが小さくなると、これに正比例して、シンボルS0 のエンベロープ信号またはシンボルエネルギ信号のレベルも小さくなるため、自動利得制御増幅器2に与えられる制御信号の電圧レベルが小さくなる。このとき、自動利得制御増幅器2は、受信したOFDM信号のレベルを大きくするように、その利得Aを大きくする。その結果、自動利得制御増幅器2は、OFDM信号の受信レベルの変動を適正なレベルに補正することができる。
ところで、シンボルエネルギ信号は、各シンボルS0 のエネルギであり、しかもデジタル演算により求められているので、誤差をほとんど含まない。これに対し、エンベロープ信号は、各シンボルS0 の波形の頂点を結ぶ包絡線であるので、各シンボルS0 の波形と包絡線との差を誤差として含んでいる。しかも、エンベロープ信号は、自動利得制御増幅器2の制御信号として用いるためにフィルタリング処理(ローパスフィルタ67で行っている)が必要となり、このフィルタリング処理においても誤差が発生する。このため、エンベロープ信号よりもシンボルエネルギ信号を用いた方が、自動利得制御増幅器2の利得の制御精度を向上させることができる。
しかしながら、フーリエ変換器4は、シンボルタイミング同期回路63からシンボル同期信号が出力されると、フーリエ変換に使用する時間窓の時間軸の調整を開始するが、この時間窓の時間軸の調整には時間がかかるため、OFDM信号の受信開始時には、時間窓と受信シンボルとの同期がとれていない状態(すなわち、時間窓が隣接する複数のシンボルに跨って設定されている状態)が生じるおそれがある。このような状態では、フーリエ変換器4およびシンボルエネルギ検出器64の正常な動作が保証されない。
そこで、制御信号出力器6は、OFDM信号の受信開始後しばらくの間(フーリエ変換器4の時間窓の時間軸の調整が完全に終了するまでの間)は、第1の動作モードで、すなわちシンボルS0 のエンベロープ信号に基づいて、自動利得制御増幅器2の利得を制御する。その後、制御信号出力器6は、第2の動作モードで、すなわちシンボルS0 のシンボルエネルギ信号に基づいて、自動利得制御増幅器2の利得を制御する。
上記のように、図2の実施形態によれば、基準タイミング発生器62によって特定のシンボルS0 を定期的に検出し、このシンボルS0 に対するエンベロープ信号またはシンボルエネルギ信号をサンプルホールド器66でサンプルホールドして自動利得制御増幅器2の制御端子2cにフィードバックさせているので、自動利得制御増幅器2の利得制御の精度を向上させることができる。また、利得制御により伝送路における減衰が補完される、すなわち受信レベルが補正されるので、復調データの誤判定を防止することができる。
なお、上記実施形態では、シンボルS0 を、15シンボル間隔で挿入するようにしたが、他のシンボル間隔で挿入するようにしてもよい。また、上記実施形態では、1つのキャリアだけを無変調の単一トーン信号として用い、その他のキャリアを抑圧することにより、シンボルS0 を構成したが、シンボルS0 は、時間軸成分および周波数軸成分が既知で、時間軸に沿った振幅,位相の変化が予め定められた特定パターンを示すような信号であれば他の方法で構成されてもよい。例えば、1つのキャリアの振幅を既知の複数のデータ(例えば、「1」のデータと,「2」のデータ)により振幅変調するようにしてもよい。この場合には、エンベロープ検出器61から出力されるエンベロープ信号の包絡線に多少の凹凸が生じるがローパスフィルタ67により平滑化されるため、制御信号として用いることができる。
また、上記実施形態では、直交検波器3から出力されるベースバンドのOFDM信号をエンベロープ検出器61に入力するようにしたが、自動利得制御増幅器2以降であれば、自動利得制御増幅器2、A/D変換器7,8、フーリエ変換器4のいずれかの出力をエンベロープ検出器61に入力するようにしてもよい。
また、上記実施形態では、フーリエ変換器4の出力をシンボルエネルギ検出器64に入力するようにしたが、自動利得制御増幅器2以降であれば、自動利得制御増幅器2、直交検波器3、A/D変換器7,8のいずれかの出力をシンボルエネルギ検出器64に入力するようにしてもよい。
また、上記実施形態では、A/D変換器7,8を設けたが、これを削除してアナログのままフーリエ変換、シンボルエネルギ検出を行うようにしてもよい。
また、上記実施形態では、制御信号出力器6は、2つの動作モードで動作するように構成されているが、第1の動作モードでだけ動作するように構成されても良い。この場合、制御信号出力器は、エンベロープ検出器61、基準タイミング発生器62およびサンプルホールド器66だけを備えることになる。
さらに、制御信号出力器6は、第2の動作モードだけで動作するように構成されてもよい。この場合、制御信号出力器は、エンベロープ検出器61、基準タイミング発生器62、シンボルタイミング同期回路63、シンボルエネルギ検出器64およびサンプルホールド器66だけを備えることになる。
図4は、本発明において、送信側から受信側に伝送されるOFDM信号の構成の他の例を示す図である。特に、図4(a)はOFDM信号の各シンボルを時間軸に沿って示し、図4(b)は図4(a)の部分αを拡大して示している。
図4(a)に示すように、OFDM信号Sは、ハッチングを付して示す周波数変換制御用の特定のシンボルS0 と、ハッチングを付さないで示す復調用のシンボルSm (m=1,2,…)とを時間軸に沿って並べることにより構成されている。シンボルS0 は、所定のシンボル間隔(例えば、15シンボル間隔)毎に挿入されている。なお、このようなOFDM信号Sは、伝送路上において、各シンボルS0 ,Sm について、実数部と虚数部とを重畳した複素信号の形態をとる。
各シンボルSm は、周波数の異なる複数(数十〜数千、例えば512)のキャリア(シンボル時間ts において互いに直交している)を、周波数軸上で多重(高速逆フーリエ演算)することにより構成されている。各キャリアは、受信側で復調すべきデータでデジタル変調(例えば、QPSK変調,16QAM等)されている。このため、各シンボルSm は、図4(b)に示すように、ランダム状の振幅分布を示す。
各シンボルS0 は、例えば、上記複数のキャリアの1つ(例えば、周波数fc )を、2値(例えば、「1」と「2」)の疑似ランダム符号により振幅変調することで、疑似ランダム信号として残し、その他のキャリアを抑圧したものを、高速逆フーリエ演算することにより構成されている。このため、各シンボルS0 は、図4(b)に示すように、特定のパターンの振幅分布を示す。このようなシンボルS0 は、時間軸成分が既知であるとともに、周波数軸成分も既知である。
なお、疑似ランダム符号のデータスピードは、好ましくは、OFDMシンボルレートの整数倍に選ばれている。こうすることで、1つのシンボルS0 内に整数個の疑似ランダム符号情報が収まることになり、受信側での同期が取り易くなる。また、使用する疑似ランダム符号のパターンの繰り返し周期(反復周期)は、シンボル周期と同一であることが好ましい。この場合、一方の符号(例えば、「1」)の出現する回数と、他方の符号(例えば、「2」)の出現する回数とが等しくなり、受信側での相関が取り易くなる。
ところで、図4に示すOFDM信号Sは、有線や無線の伝送路(図示せず)を介して送信側から受信側に送られる。このため、送信側(図示せず)は、OFDM信号Sを中間周波数帯(中心周波数fc )から伝送路の占有周波数帯(中心周波数fr )に変換するようにしている。一方、受信側では、データの復調にあたって、受信したOFDM信号Sを伝送路の占有周波数帯から復調作業のための中間周波数帯(中心周波数fc )に変換するようにしている。以下に説明する実施形態では、OFDM信号Sを占有周波数帯から中間周波数帯に周波数変換する操作は、シンボルS0 を用いて行われる。なぜならば、シンボルS0 は、常に同じパターンの信号を含むため、当該シンボルS0 の波形から周波数帯の変化を正確に測定できるからである。
図5は、本発明の第2の実施形態に係る受信装置の構成を示すブロック図である。図5において、受信装置は、受信したOFDM信号が入力される入力端子Iと、周波数変換器10と、直交検波器3と、フーリエ変換器4と、復調データ検出器5と、制御信号出力器60と、出力端子Oとを備えている。直交検波器3は、分岐器31と、検波器32および33と、キャリア再生器34とを含む。制御信号出力器60は、エンベロープ検波器61と、基準タイミング発生器62と、シンボルタイミング同期回路63と、サンプルホールド器66と、周波数弁別器68とを含む。なお、対応関係を明確にする目的で、図5の実施形態において、図2の実施形態と同様の構成部分には、同一の参照番号を付してある。
図6は、図5に示す受信装置の各部の信号を示す波形図である。以下、この図6を参照しながら図5の受信装置の動作を説明する。
受信装置で受信した伝送路の占有周波数帯(中心周波数fr )のOFDM信号(図6(a)参照)は、入力端子Iに入力され、周波数変換器10によって中間周波数帯(中心周波数fc )のOFDM信号に変換された後、直交検波器3に入力される。
直交検波器3の分波器31は、周波数変換器10から出力されるOFDM信号を2つに分波し、分波したOFDM信号を検波器32および33にそれぞれ出力する。キャリア発生器34は、検波器32に対し中心周波数fc の同相キャリアを出力し、検波器33に対し中心周波数fc の直交キャリアを出力する。検波器32は、分波器31から出力されたOFDM信号に同相キャリアを乗算することにより、OFDM信号の実数部を出力する。検波器33は、分波器31から出力されたOFDM信号に直交キャリアを乗算することにより、OFDM信号の虚数部を出力する。すなわち、直交検波器3は、中間周波数帯のOFDM信号をベースバンドのOFDM信号に変換する。
フーリエ変換器4は、検波器32から出力されたOFDM信号の実数部および検波器33から出力されたOFDM信号の虚数部に対して、一括してフーリエ変換演算を施すことにより、周波数軸上で各デジタル変調波の実数部および虚数部をそれぞれ分離する。復調データ検出器5は、各デジタル変調波の実数部および虚数部を複素平面にマッピングし、その内部に設定されたしきい値に従い、そのマッピング位置から各キャリアを変調したデータを復調する。
次いで、制御信号出力器60の動作をより詳細に説明する。エンベロープ検波器61は、周波数変換器10から出力されるOFDM信号の各シンボルをエンベロープ検波することにより、各シンボルの包絡線を表すエンベロープ信号を出力する。エンベロープ検波器61から出力されたエンベロープ信号は、基準タイミング発生器62に与えられる。
基準タイミング発生器62は、シンボルS0 の特定パターン対応した2値疑似ランダムデータを、その内部に予め記憶している。そして、基準タイミング発生器62は、各シンボルごとに、エンベロープ検波器61から出力されたエンベロープ信号と、記憶している2値擬似ランダムデータとの相関を時間軸に沿って求めることにより、シンボルS0 を検出したか否かを表す基準タイミング信号を出力する。すなわち、基準タイミング発生器62は、図6(a)および(b)に示すように、特定パターンを含むシンボルS0 を検出した場合はハイレベル(電圧V1)の基準タイミング信号を出力し、特定パターンを含まないシンボルSm を検出した場合はローレベル(電圧V2)の基準タイミング信号を出力する。基準タイミング発生器62から出力される基準タイミング信号は、サンプルホールド器66のクロック端子66cおよびシンボルタイミング同期回路63に入力される。
シンボルタイミング同期回路63は、基準タイミング発生器62から与えられる基準タイミング信号に基づいて、各シンボルに同期するシンボル同期信号を出力する。すなわち、シンボルタイミング同期回路63は、その内部にクロック回路を備えており、基準タイミング信号の立ち上がりを検出する毎に、当該クロック回路から各シンボルの先頭に同期したクロックパルス(シンボル時間ts を1周期とするクロックパルス)、すなわちシンボル同期信号を出力する。このシンボル同期信号は、フーリエ変換器4のクロック端子4cのクロック端子64cに入力される。
フーリエ変換器4は、検波器32から出力されたデジタルのOFDM信号の実数部および検波器33から出力されたデジタルのOFDM信号の虚数部に対して、一括してフーリエ変換演算を施すことにより、周波数軸上で各デジタル変調波の実数部および虚数部をそれぞれ分離する。なお、フーリエ変換器4は、クロック端子4cを有し、シンボルタイミング同期回路63から出力されたシンボル同期信号に基づいて、フーリエ変換に使用する時間窓の時間軸の調整を開始するとともに、各シンボルのフーリエ変換を開始する。復調データ検出器5は、各デジタル変調波の実数部および虚数部を複素平面上にマッピングし、その内部に設定されたしきい値に従い、そのマッピング位置から各キャリアを変調したデータを復調する。
周波数弁別器68は、各シンボルを周波数弁別することにより、各シンボルの周波数に応じた電圧を発生する。サンプルホールド器66は、クロック端子66cに対して基準タイミング発生器62から電圧V1の基準タイミング信号が入力された場合、すなわち周波数変換器10から特定のシンボルS0 が出力されている場合に、周波数弁別器68から出力された周波数弁別信号をサンプリングしてホールドする。サンプルホールド器66にホールドされた周波数弁別信号は、制御信号として周波数変換器10の制御端子10cに与えられる。周波数変換器10の周波数シフト量は、サンプルホールド器66から与えられる制御信号の電圧レベルに従って変化する。
周波数変換器10から出力されたOFDM信号の周波数帯が高くなると、これに正比例して、周波数弁別器68から出力されるシンボルS0 の周波数弁別信号のレベルも大きくなるため、周波数変換器10に与えられる制御信号の電圧レベルが大きくなる。このとき、周波数変換器10は、出力するOFDM信号の周波数帯を低くするように、その周波数シフト量を大きくする。一方、OFDM信号の周波数が低くなると、これに正比例して、シンボルS0 の周波数弁別信号のレベルも小さくなるため、周波数変換器10に与えられる制御信号の電圧レベルが小さくなる。このとき、周波数変換器10は、出力するOFDM信号の周波数帯を高くするように、その周波数シフト量を小さくする。その結果、周波数変換器10は、OFDM信号の周波数帯の変動を適正な中間周波数帯(中心周波数fc )に補正することができる。
上記のように、図5の第2の実施形態によれば、基準タイミング発生器62により特定のシンボルS0 を定期的に検出し、このシンボルS0 における周波数弁別信号を制御信号としてサンプルホールドし、制御信号を周波数変換器10の制御端子10cにフィードバックさせているので、周波数変換器10の周波数シフト量制御の精度を向上させることができる。また、周波数シフト量制御により周波数帯の変動が補正されるので、中間周波数帯からのずれがなくなり、復調データの誤判定を防止することができる。
図7は、本発明の第3の実施形態の受信装置の構成を示すブロック図である。なお、図5の受信装置と対応する部分には同一の参照番号を付し、説明を省略する。この第3の実施形態で注目すべきは、図5の周波数弁別器68に代えて周波数領域エネルギ検出器71を用いることにより、制御信号出力器70を構成したことである。
図8は、図7の周波数領域エネルギ検出器71の動作を説明するための波形図である。特に、図8(a)はシンボルS0 のパワースペクトラムを周波数軸に沿って示し、図8(b)は図8(a)のパワースペクトラムの積分値を示し、図8(c)は周波数領域エネルギ信号を示している。以下、この図8を参照しながら図7の受信装置の動作を説明する。
周波数領域エネルギ検出器71は、そのクロック端子71cに対し、シンボルタイミング同期回路63から与えられるシンボル同期信号に同期して、各シンボル毎に以下に述べるような一連の動作を行う。まず、周波数領域エネルギ検出器71は、図8(a)に示すように、フーリエ変換器4の出力の内、0〜fs の周波数範囲に分布するキャリア(2値の疑似ランダム信号により振幅変調されている)を、(1/2)fs を境に、2つの領域α1,α2に分ける。ここで、fs は、フーリエ変換器4で使用されるサンプリングクロックの周波数である。また、各シンボルのスペクトラムは、(1/2)fs を境に折り返されているため、高域側成分が(1/2)fs より周波数の低い領域α1に、低域側成分が(1/2)fs より周波数の高い領域α2に現れている。
次に、周波数領域エネルギ検出器71は、図8(b)に示すように、領域α1のパワースペクトル成分と、領域α2のパワースペクトル成分とをそれぞれ2乗積分することにより、領域α1のエネルギE1と,領域α2のエネルギE2とを求める。なお、これらのエネルギE1,E2は、各シンボルの平均レベルに比例する。また2乗するのは、各キャリアの振幅が時間軸に沿って正負に変動するので、その絶対値を取るためである。また、積分するのは、各シンボルの平均を求めるためである。
次に、周波数領域エネルギ検出器71は、領域α1のエネルギE1と領域α2のエネルギE2とを比較し、図8(c)に示すように、エネルギの差(E1−E2)に対応する電圧値を有する周波数領域エネルギ信号を発生する。この周波数領域エネルギ信号は、領域α1のエネルギE1の方が大きい場合は正の電圧値VHIGHを、領域α2のエネルギE2の方が大きい場合は負の電圧値VLOW を示す。ところで、シンボルS0 では、周波数帯のずれが無い場合、領域α1,α2の電力の分布が等しくなり、周波数領域エネルギ信号の電圧値は0となる。したがって、シンボルS0 の周波数領域エネルギ信号の極性および電圧値に基づいて、中心周波数fc からのずれ方向とずれ量とがわかる。
サンプルホールド器66は、クロック端子66cに対して基準タイミング発生器62から電圧V1の基準タイミング信号が入力された場合、すなわち周波数変換器10から特定のシンボルS0 が出力されている場合に、周波数領域エネルギ検出器71から出力された周波数領域エネルギ信号をサンプリングしてホールドする。サンプルホールド器66にホールドされた周波数領域エネルギ信号は、制御信号として周波数変換器10の制御端子10cに与えられる。周波数変換器10の周波数シフト量は、サンプルホールド器66から与えられる制御信号の電圧レベルに従って変化する。
周波数変換器10から出力されたOFDM信号の周波数帯が高くなると、周波数領域エネルギ検出器71から出力されるシンボルS0 の周波数領域エネルギ信号の電圧値VHIGHが正方向に大きくなるため、周波数変換器10に与えられる制御信号の電圧も正方向に大きくなる。このとき、周波数変換器10は、出力するOFDM信号の周波数帯を低くするように、その周波数シフト量を大きくする。一方、OFDM信号の周波数帯が低くなると、シンボルS0 の周波数領域エネルギ信号の電圧VLOW が負方向に大きくなるため、周波数変換器10に与えられる制御信号の電圧も負方向に大きくなる。このとき、周波数変換器10は、出力するOFDM信号の周波数を高くするように、その周波数シフト量を小さくする。その結果、周波数変換器10は、OFDM信号の周波数帯の変動を適正な中間周波数帯(中心周波数fc )に補正することができる。なお、サンプルホールド器66によりサンプルホールドされた制御信号を、シンボルS0 の複数周期分にわたって平均化するようにしてもよい。
上記のように、図7の第3の実施形態によれば、基準タイミング発生器62により特定のシンボルS0 を定期的に検出し、このシンボルS0 における周波数領域エネルギ信号を制御信号としてサンプルホールドし、周波数変換器10の制御端子10cにフィードバックさせているので、周波数変換器10の周波数シフト量制御の精度を向上させることができる。また、周波数シフト量制御により周波数帯の変動が補正されるので、中間周波数帯からのずれがなくなり、復調データの誤判定を防止することができる。
図9は、本発明の第4の実施形態に係る受信装置の構成を示すブロック図である。なお、図5の受信装置と対応する部分には同一の参照番号を付し、説明を省略する。この実施形態で注目すべきは、図5の周波数弁別器68に代えて、相関検出器81およびピーク値周波数検出器82を用いることにより、制御信号出力器80を構成したことである。
図10は、図9の制御信号出力器80の各部の信号を示す波形図である。特に、図10(a)は相関信号を周波数軸に沿って示し、図10(b)はピーク値周波数検出信号を示している。以下、この図10を参照しながら図9の受信装置の動作を説明する。
相関検出器81は、特定のシンボルS0 についての理想的な周波数成分の情報を、参照情報として予め記憶している。相関検出器81は、この参照情報とフーリエ変換器4から出力された周波数軸上のデータとの相関を求めることにより、図10(a)に示すような相関信号を出力する。相関検出器81における相関検出動作は、シンボルタイミング同期回路63からクロック端子81cに与えられるシンボル同期信号に同期して、各シンボル毎に行われるが、特に、フーリエ変換器4から特定のシンボルS0 が出力されたときに意味を持つことになる。そのため、フーリエ変換器4から特定のシンボルS0 が出力された場合について説明すると、相関検出器81は、一旦、そのシンボルS0 の情報を、検出対象情報として内部メモリ(図示せず)に記憶する。ここで、相関検出器81が予め記憶している参照情報と、その内部メモリに記憶される検出対象情報は、共に周波数軸上で離散的に存在するディジタルの疑似ランダム信号である。相関検出器81は、周波数軸上で、検出対象情報と参照情報とを重ねて、それぞれに含まれる符号情報同士を乗算し、さらにそれらの総和を求める。このとき、相関検出器81は、周波数軸上での検出対象情報の位置を、符号単位毎にずらしながら、参照情報との間の乗算結果の総和を求めていく。そして、この総和の集合が相関信号となる。当該相関信号は、周波数軸上で、検出対象情報に含まれる各符号情報と、参照情報に含まれる各符号情報との対応関係が一致したときにピークを呈する。
フーリエ変換器4からシンボルS0 が出力された場合において、例えば周波数のずれΔfが「0」であるとき、相関検出器81は、図10(a)のβ1に示すように、中心周波数fc の位置にピーク値を持つ相関信号を出力する。また、シンボルS0 が出力された場合において、例えば高い方に周波数のずれΔfがあるとき、相関検出器81は、図10(a)のβ2に示すようにピーク値の出現がずれ、ピーク値が周波数軸において高い側に生じる相関信号を出力する。したがって、このような相関信号から、周波数のずれ方向とそのずれ量とを検出することができる。
ピーク値周波数検出器82は、相関検出器81から出力された相関信号のピーク値の存在場所と中心周波数fc とを比較し、その差Δfに対応する電圧値ΔVを有するピーク値周波数信号(図10(b)参照)を出力する。
サンプルホールド器66は、クロック端子66cに対して基準タイミング発生器62から電圧V1の基準タイミング信号が入力された場合、すなわち周波数変換器10から特定のシンボルS0 が出力されている場合に、ピーク値周波数検出器82から出力されたピーク値周波数信号をサンプリングしてホールドする。サンプルホールド器66にホールドされたピーク値周波数信号は、制御信号として周波数変換器10の制御端子10cに与えられる。周波数変換器10の周波数シフト量は、サンプルホールド器66から与えられる制御信号の電圧レベルに従って変化する。
周波数変換器10から出力されたOFDM信号の周波数帯が高くなると、ピーク値周波数検出器82から出力されるシンボルS0 のピーク値周波数信号のレベルΔVも正方向に大きくなるため、周波数変換器10に与えられる制御信号の電圧レベルが大きくなる。このとき、周波数変換器10は、出力するOFDM信号の周波数帯を低くするように、その周波数シフト量を大きくする。一方、OFDM信号の周波数が低くなると、シンボルS0 のピーク値周波数信号のレベルΔVも負方向に大きくなるため、周波数変換器10に与えられる制御信号の電圧レベルが負方向に大きくなる。このとき、周波数変換器10は、出力するOFDM信号の周波数帯を高くするように、その周波数シフト量を小さくする。その結果、周波数変換器10は、OFDM信号の周波数帯の変動を適正な中間周波数帯(中心周波数fc )に補正することができる。
上記のように、図9の第4の実施形態によれば、基準タイミング発生器62により特定のシンボルS0 を定期的に検出し、このシンボルS0 におけるピーク値周波数信号を制御信号としてサンプルホールドし、周波数変換器10の制御端子10cにフィードバックさせているので、周波数変換器10の周波数シフト量制御の精度を向上させることができる。また、周波数シフト量制御により周波数帯の変動が補正されるので、中間周波数帯からのずれがなくなり、復調データの誤判定を防止することができる。
なお、上記第2〜第4の実施形態では、シンボルS0 を、15シンボル間隔で挿入するようにしたが、他のシンボル間隔で挿入するようにしてもよい。また、上記第2〜第4の実施形態では、1つのキャリアだけを2値の疑似ランダム符号により振幅変調し、その他のキャリアを抑圧することにより、各シンボルS0 を構成したが、シンボルS0 は、時間軸成分および周波数軸成分が既知で、時間軸に沿った振幅,位相の変化が予め定められた特定パターンを示すような信号であれば他の方法で構成されてもよい。例えば、1つのキャリアだけを無変調の単一トーン信号として用い、その他のキャリアを抑圧したような信号(図1参照)で構成されてもよい。
また、上記第2〜第4の実施形態では、周波数変換器10から出力される中間周波数帯のOFDM信号をエンベロープ検出器61(第2の実施形態では、さらに周波数弁別器68)に入力するようにしたが、周波数変換器10以降であれば、直交検波器3、フーリエ変換器4のいずれかの出力をエンベロープ検出器61(および周波数弁別器68)に入力するようにしてもよい。
さらに、上記第3および第4の実施形態では、フーリエ変換器4の出力を、それぞれ、周波数領域エネルギ検出器71および相関検出器81に入力するようにしたが、周波数変換器10以降であれば、周波数変換器10、直交検波器3のいずれかの出力を周波数領域エネルギ検出器71および相関検出器81に入力するようにしてもよい。
また、第1の実施形態は受信レベルの変動を補正するように、また第2〜第4の実施形態は周波数帯の変動を補正するように構成されているが、第2〜第4の実施形態のいずれかを第1の実施形態と組み合わせることにより、受信レベルの変動および周波数帯の変動の両方を補正し得るような受信回路を構成するようにしても良い。
本発明に係る送信方法および受信方法は、復調データの誤判定が生じないことが要求されるディジタル音声放送または地上ディジタルテレビ放送等に有用である。
本発明において、送信側から伝送されるOFDM信号の構成の一例を示す図 本発明の第1の実施形態に係る受信装置の構成を示すブロック図 図2に示す受信装置の各部の信号を示す波形図 本発明において、送信側から伝送されるOFDM信号の構成の他の例を示す図 本発明の第2の実施形態に係る受信装置の構成を示すブロック図 図5に示す受信装置の各部の信号を示す波形図 本発明の第3の実施形態に係る受信装置の構成を示すブロック図 図7に示す周波数領域エネルギ検出器71の動作を説明するための波形図 本発明の第4の実施形態に係る受信装置の構成を示すブロック図 図9に示す制御信号出力器80の各部の信号を示す波形図 送信側から送信された従来のOFDM信号の構成を示す図 第1および第3の従来技術から類推されるOFDM信号の受信装置の構成を示すブロック図
1 帯域通過フィルタ
2 自動利得制御増幅器
3 直交検波器
31 分波器
32,33 検波器
34 キャリア再生器
4 フーリエ変換器
5 復調データ検出器
6 制御信号出力器
61 エンベロープ検出器
62 基準タイミング発生器
63 シンボルタイミング同期回路
64 シンボルエネルギ検出器
65 制御信号切換器
66 サンプルホールド器
67 ローパスフィルタ
7,8 A/D変換器
10 周波数変換器
60 制御信号出力器
68 周波数弁別器
70 制御信号出力器
71 周波数領域エネルギ検出器
80 制御信号出力器
81 相関検出器
82 ピーク値周波数検出器
S OFDM信号
S0 ,Sm シンボル
ts シンボル時間

Claims (10)

  1. 互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に直交周波数分割多重信号として送信する方法であって、
    第1のシンボルを送信し、
    第2のシンボルを送信し、
    前記第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、
    前記第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている、送信方法。
  2. 互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を受信する方法であって、
    第1のシンボルを受信し、
    第2のシンボルを受信し、
    前記第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、
    前記第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されており、
    受信した前記第1のシンボルにより得られた同期情報に基づいて、前記第2のシンボルを復調し前記送信データを得る、受信方法。
  3. 受信した前記第1のシンボルに基づいて、周波数帯の変動を補正する、請求項2記載の受信方法。
  4. 有線または無線の伝送路を介し、送信側から受信側に対して、互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に直交周波数分割多重信号として伝送する方法であって、
    前記送信側は、
    第1のシンボルを送信し、
    第2のシンボルを送信し、
    前記第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、
    前記第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されており、
    前記受信側は、
    前記第2のシンボルを受信し、
    前記第1のシンボルを受信し、
    受信した前記第1のシンボルにより得られた同期情報に基づいて、前記第2のシンボルを復調し前記送信データを得る、伝送方法。
  5. 受信した前記第1のシンボルに基づいて、周波数帯の変動を補正する、請求項4記載の伝送方法。
  6. 互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を送信する送信装置であって、
    既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含む第1のシンボルを生成する手段と、
    送信データにより変調されるキャリアを含む第2のシンボルを生成する手段とを備える、送信装置。
  7. 互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を受信する受信装置であって、
    前記直交周波数分割多重信号を受信する受信手段を備え、
    前記直交周波数分割多重信号は、第1のシンボルと第2のシンボルとを含んでおり、
    前記第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、
    前記第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されており、
    前記受信装置はさらに、受信した前記第1のシンボルにより得られた同期情報に基づいて、前記第2のシンボルを復調し前記送信データを得る復調手段を備える、受信装置。
  8. 前記受信装置は、受信した前記第1のシンボルに基づいて、周波数帯の変動を補正する、請求項7記載の受信装置。
  9. 互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を生成する方法であって、
    第1のシンボルを生成し、
    第2のシンボルを生成し、
    前記第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、
    前記第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されている、直交周波数分割多重信号生成方法。
  10. 互いに直交する周波数関係にある複数のキャリアを含むシンボル毎に送信される直交周波数分割多重信号を復調する方法であって、
    前記直交周波数分割多重信号は、第1のシンボルと第2のシンボルとを含んでおり、
    前記第1のシンボルは、既知の擬似ランダム符号により変調されたキャリアと、抑圧されたキャリアとを含み、
    前記第2のシンボルは、当該シンボルに含まれるキャリアが送信データにより変調されており、
    受信した前記第1のシンボルにより得られた同期情報に基づいて、前記第2のシンボルを復調し前記送信データを得る、復調方法。
JP2009000659A 1995-01-10 2009-01-06 送信方法、受信方法、伝送方法および受信装置 Expired - Lifetime JP4397964B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000659A JP4397964B2 (ja) 1995-01-10 2009-01-06 送信方法、受信方法、伝送方法および受信装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP205495 1995-01-10
JP205395 1995-01-10
JP2009000659A JP4397964B2 (ja) 1995-01-10 2009-01-06 送信方法、受信方法、伝送方法および受信装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008004462A Division JP4397951B2 (ja) 1995-01-10 2008-01-11 送信方法、受信方法、伝送方法および受信装置

Publications (2)

Publication Number Publication Date
JP2009071883A JP2009071883A (ja) 2009-04-02
JP4397964B2 true JP4397964B2 (ja) 2010-01-13

Family

ID=26335363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000659A Expired - Lifetime JP4397964B2 (ja) 1995-01-10 2009-01-06 送信方法、受信方法、伝送方法および受信装置

Country Status (5)

Country Link
US (1) US5774450A (ja)
EP (4) EP1617613B8 (ja)
JP (1) JP4397964B2 (ja)
CA (1) CA2166599C (ja)
DE (3) DE69631985T2 (ja)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943325A (en) * 1996-06-28 1999-08-24 Ctp Systems, Ltd. Method and apparatus for determining symbol timing in a wireless communications system
JP3289610B2 (ja) * 1996-07-31 2002-06-10 日本ビクター株式会社 Ofdm復調装置及びその方法
US6950388B2 (en) * 1996-08-22 2005-09-27 Tellabs Operations, Inc. Apparatus and method for symbol alignment in a multi-point OFDM/DMT digital communications system
US6285654B1 (en) * 1996-08-22 2001-09-04 Tellabs Operations, Inc. Apparatus and method for symbol alignment in a multi-point OFDM or DMT digital communications system
US5790514A (en) * 1996-08-22 1998-08-04 Tellabs Operations, Inc. Multi-point OFDM/DMT digital communications system including remote service unit with improved receiver architecture
US6771590B1 (en) * 1996-08-22 2004-08-03 Tellabs Operations, Inc. Communication system clock synchronization techniques
US5995483A (en) 1996-08-22 1999-11-30 Tellabs Operations, Inc. Apparatus and method for upstream clock synchronization in a multi-point OFDM/DMT digital communication system
US6118758A (en) * 1996-08-22 2000-09-12 Tellabs Operations, Inc. Multi-point OFDM/DMT digital communications system including remote service unit with improved transmitter architecture
US6122246A (en) * 1996-08-22 2000-09-19 Tellabs Operations, Inc. Apparatus and method for clock synchronization in a multi-point OFDM/DMT digital communications system
US6359938B1 (en) * 1996-10-31 2002-03-19 Discovision Associates Single chip VLSI implementation of a digital receiver employing orthogonal frequency division multiplexing
WO1998019410A2 (en) * 1996-10-31 1998-05-07 Discovision Associates Single chip vlsi implementation of a digital receiver employing orthogonal frequency division multiplexing
FR2756687B1 (fr) * 1996-11-29 2001-10-05 Daewoo Electronics Co Ltd Dispositif pour corriger un decalage de frequence dans un systeme de reception ofdm
JPH10209998A (ja) * 1997-01-20 1998-08-07 Sony Corp 復調装置
GB9701984D0 (en) * 1997-01-31 1997-03-19 Digi Media Vision Ltd Method and apparatus for recovering the amplitude and phase of an input data signal
TW465234B (en) 1997-02-18 2001-11-21 Discovision Ass Single chip VLSI implementation of a digital receiver employing orthogonal frequency division multiplexing
KR100238047B1 (ko) * 1997-02-25 2000-01-15 윤종용 직교 주파수분할 다중화 전송시스템의 반송파 주파수 동기 방법 및 동기 장치
US6148024A (en) * 1997-03-04 2000-11-14 At&T Corporation FFT-based multitone DPSK modem
EP0869645A3 (en) * 1997-03-31 2001-05-16 Victor Company Of Japan, Ltd. Phase and amplitude correction in a multicarrier receiver
JP3563231B2 (ja) * 1997-04-04 2004-09-08 株式会社デノン 周波数制御装置および方法、受信装置、ならびに、通信装置
JP4027431B2 (ja) * 1997-05-23 2007-12-26 コーニンクレッカ、フィリップス、エレクトロニクス、エヌ、ヴィ コントローラブル増幅手段を持つ受信機
JP3568180B2 (ja) * 1997-06-12 2004-09-22 株式会社日立国際電気 データ伝送装置
US5991289A (en) * 1997-08-05 1999-11-23 Industrial Technology Research Institute Synchronization method and apparatus for guard interval-based OFDM signals
EP0899923A1 (en) * 1997-08-29 1999-03-03 Sony International (Europe) GmbH Transmission of power control signals in a multicarrier modulation system
EP1879343B1 (en) * 1997-09-04 2010-02-17 Sony Deutschland Gmbh Receiving method and apparatus for OFDM-signals
EP0932284A3 (en) * 1998-01-27 2002-08-14 Hitachi Denshi Kabushiki Kaisha Multicarrier transmission system, with modifiable bandwidth
DE19814530A1 (de) 1998-04-01 1999-10-07 Bosch Gmbh Robert Verfahren zur digitalen Übertragung von Daten in einem drahtlosen Kommunikationsnetz und Empfangsgerät zum Empfang von nach dem Verfahren übertragenen Daten
DK1068704T3 (da) 1998-04-03 2012-09-17 Tellabs Operations Inc Filter til impulssvarforkortning, med yderligere spektrale begrænsninger, til multibærebølgeoverførsel
US7440498B2 (en) * 2002-12-17 2008-10-21 Tellabs Operations, Inc. Time domain equalization for discrete multi-tone systems
US6631175B2 (en) * 1998-04-03 2003-10-07 Tellabs Operations, Inc. Spectrally constrained impulse shortening filter for a discrete multi-tone receiver
CA2328174C (en) 1998-04-14 2003-08-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Frame structure and frame synchronization for multicarrier systems
JP3480313B2 (ja) * 1998-05-26 2003-12-15 富士通株式会社 ディジタル加入者線伝送方法及びxDSL装置
JP2000059330A (ja) * 1998-08-04 2000-02-25 Sony Corp デジタル放送の受信機
JP2000115116A (ja) * 1998-10-07 2000-04-21 Nippon Columbia Co Ltd 直交周波数分割多重信号発生装置、直交周波数分割多重信号発生方法及び通信装置
US6473393B1 (en) * 1998-12-18 2002-10-29 At&T Corp. Channel estimation for OFDM systems with transmitter diversity
US6111919A (en) * 1999-01-20 2000-08-29 Intellon Corporation Synchronization of OFDM signals
EP1169736B1 (de) 1999-03-17 2006-07-12 EUPEC Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Leistungshalbleitermodul
US6442173B1 (en) * 1999-04-07 2002-08-27 Legerity Timing recovery scheme for a discrete multitone transmission system
US6577598B1 (en) * 1999-04-07 2003-06-10 Legerity Methods and apparatus for channel adaptation in a DMT based system
GB2349285B (en) * 1999-04-19 2003-02-12 Oak Technology Inc Signal correction
US6269132B1 (en) 1999-04-26 2001-07-31 Intellon Corporation Windowing function for maintaining orthogonality of channels in the reception of OFDM symbols
US6074086A (en) * 1999-04-26 2000-06-13 Intellon Corporation Synchronization of OFDM signals with improved windowing
US6952394B1 (en) 1999-05-25 2005-10-04 Samsung Electronics Co., Ltd. Method for transmitting and receiving orthogonal frequency division multiplexing signal and apparatus therefor
US6778102B1 (en) 1999-06-11 2004-08-17 Intel Corporation Communication system and apparatus with synchronous orthogonal coding
EP1190517A4 (en) * 1999-06-11 2006-10-04 Templex Technology Inc SYSTEM AND APPARATUS FOR COMMUNICATION WITH SYNCHRONOUS ORTHOGONAL CODE
US6389087B1 (en) 1999-06-23 2002-05-14 At&T Wireless Services, Inc. Apparatus and method for synchronization in a multiple-carrier communication system by observing energy within a guard band
US6940933B1 (en) 1999-06-23 2005-09-06 Cingular Wireless Ii, Llc Apparatus and method for synchronization in a multiple-carrier communications system by observing a phase-frequency relationship of a plurality of pilot signals
US6930995B1 (en) 1999-06-23 2005-08-16 Cingular Wireless Ii, Llc Apparatus and method for synchronization in a multiple-carrier communication system by observing a plurality of synchronization indicators
US6961393B1 (en) * 1999-07-14 2005-11-01 Lucent Technologies Inc. In-band-on-channel (IBOC) system and methods of operation using orthogonal frequency division multiplexing (OFDM) with timing and frequency offset correction
DE19944495C2 (de) * 1999-09-17 2002-01-03 Bosch Gmbh Robert Verfahren zum Empfang von Funksignalen über einen Funkkanal
JP2001103033A (ja) * 1999-09-30 2001-04-13 Hitachi Denshi Ltd データ伝送装置
US6631143B1 (en) * 1999-11-12 2003-10-07 Lucent Technologies Inc. Methods and apparatus for frame synchronization in a digital audio broadcasting system
US6628735B1 (en) 1999-12-22 2003-09-30 Thomson Licensing S.A. Correction of a sampling frequency offset in an orthogonal frequency division multiplexing system
US6704374B1 (en) 2000-02-16 2004-03-09 Thomson Licensing S.A. Local oscillator frequency correction in an orthogonal frequency division multiplexing system
US6711221B1 (en) 2000-02-16 2004-03-23 Thomson Licensing S.A. Sampling offset correction in an orthogonal frequency division multiplexing system
US6529868B1 (en) * 2000-03-28 2003-03-04 Tellabs Operations, Inc. Communication system noise cancellation power signal calculation techniques
US6765623B1 (en) 2000-04-18 2004-07-20 Conexant Systems, Inc. Method and apparatus for correcting phase imbalance in received in-phase and quadrature signals
WO2001097478A2 (en) * 2000-06-13 2001-12-20 At & T Wireless Services, Inc. Frame synchronization in a multicarrier communication system
JP4484355B2 (ja) * 2000-11-22 2010-06-16 富士通マイクロエレクトロニクス株式会社 復調装置、放送システム及び放送受信装置
US7321601B2 (en) * 2001-09-26 2008-01-22 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme supplemented with polarity modulation
EP1430677A2 (en) * 2001-09-26 2004-06-23 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme
US7236464B2 (en) * 2001-09-26 2007-06-26 General Atomics Flexible method and apparatus for encoding and decoding signals using a time division multiple frequency scheme
US7342973B2 (en) * 2001-09-26 2008-03-11 General Atomics Method and apparatus for adapting multi-band ultra-wideband signaling to interference sources
US7609608B2 (en) * 2001-09-26 2009-10-27 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme with additional modulation
US7072411B1 (en) * 2001-12-04 2006-07-04 Cisco Technology, Inc. Computation reduction in OFDM system using frequency domain processing
AU2003219844A1 (en) * 2002-02-20 2003-09-09 General Atomics Flexible method and apparatus for encoding and decoding signals using a time division multiple frequency scheme
WO2004008671A1 (ja) * 2002-07-16 2004-01-22 Matsushita Electric Industrial Co., Ltd. 通信方法およびそれを用いた送信装置と受信装置
WO2005011167A1 (ja) * 2003-07-29 2005-02-03 Fujitsu Limited Ofdmシステムにおけるパイロット多重方法及び送受信装置
US7098845B2 (en) * 2004-05-18 2006-08-29 M/A-Com, Inc. Apparatus for generating an integrator timing reference from a local oscillator signal
KR100608540B1 (ko) 2004-11-29 2006-08-03 한국전자통신연구원 직교 주파수 분할 다중화 시스템에서의 자동 이득 조정장치
US20060217972A1 (en) * 2005-03-28 2006-09-28 Tellabs Operations, Inc. Method and apparatus for modifying an encoded signal
US20060217988A1 (en) * 2005-03-28 2006-09-28 Tellabs Operations, Inc. Method and apparatus for adaptive level control
US20070160154A1 (en) * 2005-03-28 2007-07-12 Sukkar Rafid A Method and apparatus for injecting comfort noise in a communications signal
US20060215683A1 (en) * 2005-03-28 2006-09-28 Tellabs Operations, Inc. Method and apparatus for voice quality enhancement
US20060217970A1 (en) * 2005-03-28 2006-09-28 Tellabs Operations, Inc. Method and apparatus for noise reduction
US20060217983A1 (en) * 2005-03-28 2006-09-28 Tellabs Operations, Inc. Method and apparatus for injecting comfort noise in a communications system
US8730877B2 (en) 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US9014152B2 (en) * 2008-06-09 2015-04-21 Qualcomm Incorporated Increasing capacity in wireless communications
US9071344B2 (en) * 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US8594252B2 (en) * 2005-08-22 2013-11-26 Qualcomm Incorporated Interference cancellation for wireless communications
US8611305B2 (en) * 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US8743909B2 (en) * 2008-02-20 2014-06-03 Qualcomm Incorporated Frame termination
US8630602B2 (en) * 2005-08-22 2014-01-14 Qualcomm Incorporated Pilot interference cancellation
WO2007052456A1 (ja) 2005-10-31 2007-05-10 Pioneer Corporation Am受信装置及びam受信方法
US20070256025A1 (en) * 2006-04-28 2007-11-01 Vincent Yen Mobile application menu system
US7898983B2 (en) * 2007-07-05 2011-03-01 Qualcomm Incorporated Methods and apparatus supporting traffic signaling in peer to peer communications
US8385317B2 (en) * 2007-07-06 2013-02-26 Qualcomm Incorporated Methods and apparatus supporting multiple timing synchronizations corresponding to different communications peers
US8599823B2 (en) * 2007-07-06 2013-12-03 Qualcomm Incorporated Communications methods and apparatus related to synchronization with respect to a peer to peer timing structure
US8385316B2 (en) * 2007-07-06 2013-02-26 Qualcomm Incorporated Methods and apparatus related to peer to peer communications timing structure
US8601156B2 (en) * 2007-07-06 2013-12-03 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US9237515B2 (en) * 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US9277487B2 (en) 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
US20100097955A1 (en) * 2008-10-16 2010-04-22 Qualcomm Incorporated Rate determination
US9160577B2 (en) * 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
US8787509B2 (en) * 2009-06-04 2014-07-22 Qualcomm Incorporated Iterative interference cancellation receiver
CN101909193B (zh) * 2009-06-05 2012-02-08 清华大学 基于dtmb标准的嵌入多业务的发送方法及其装置
US8831149B2 (en) * 2009-09-03 2014-09-09 Qualcomm Incorporated Symbol estimation methods and apparatuses
EP2299588B1 (en) * 2009-09-11 2012-12-19 Stichting IMEC Nederland Receiver with improved flicker noise performance
CN102668612B (zh) 2009-11-27 2016-03-02 高通股份有限公司 增加无线通信中的容量
US9673837B2 (en) 2009-11-27 2017-06-06 Qualcomm Incorporated Increasing capacity in wireless communications
EP2566119A1 (en) * 2011-08-29 2013-03-06 Panasonic Corporation Generalized rotated constellations for time-frequency slicing
IL222786A (en) 2012-11-01 2016-09-29 Elta Systems Ltd Enable Boost to Downlink channels on a cellular communication system
SG10201709666PA (en) 2013-05-23 2017-12-28 Elta Systems Ltd Receiver, system and method for frequency diversity communications using beacon and methods useful in conjunction therewith
WO2014188413A1 (en) * 2013-05-23 2014-11-27 Elta Systems Ltd. Add-on apparatus for synchronization of frequency diversity communications and methods useful in conjunction therewith
US9847810B2 (en) 2013-05-23 2017-12-19 Elta Systems Ltd. Add-on apparatus for channel compensation of frequency diversity communications and methods useful in conjunction therewith
DE102014226077A1 (de) * 2014-12-16 2016-06-16 Robert Bosch Gmbh Verfahren zum Erkennen eines Arbeitsbereichs eines autonomen Arbeitsgeräts sowie ein Arbeitsgerät

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658016B1 (fr) * 1990-02-06 1994-01-21 Etat Francais Cnet Procede de diffusion de donnees numeriques, notamment pour la radiodiffusion a haut debit vers des mobiles, a entrelacement temps-frequence et demodulation coherente, et recepteur correspondant.
FR2658017B1 (fr) * 1990-02-06 1992-06-05 France Etat Procede de diffusion de donnees numeriques, notamment pour la radiodiffusion a haut debit vers des mobiles, a entrelacement temps-frequence et aide a l'acquisition de la commande automatique de frequence, et recepteur correspondant.
SG44771A1 (en) * 1991-02-28 1997-12-19 Philips Electronics Nv System for broadcasting and receiving digital data receiver and transmitter for use in such system
JPH05167633A (ja) * 1991-12-12 1993-07-02 Nippon Hoso Kyokai <Nhk> ディジタル伝送方式
JP2904986B2 (ja) * 1992-01-31 1999-06-14 日本放送協会 直交周波数分割多重ディジタル信号送信装置および受信装置
FR2690029B1 (fr) * 1992-04-08 1995-03-31 France Telecom Procédé de transmission de données numériques de radiomessagerie, et récepteur de radiomessagerie correspondant.
FR2693861A1 (fr) * 1992-07-16 1994-01-21 Philips Electronique Lab Récepteur de signaux à répartition multiplexée de fréquences orthogonales muni d'un dispositif de synchronisation de fréquences.
SE500986C2 (sv) * 1993-07-20 1994-10-17 Telia Ab Förfarande och anordning för synkronisering i digitalt transmissionssystem av typen OFDM
JP3139909B2 (ja) * 1994-03-15 2001-03-05 株式会社東芝 階層的直交周波数多重伝送方式および送受信装置
JP2731722B2 (ja) * 1994-05-26 1998-03-25 日本電気株式会社 クロック周波数自動制御方式及びそれに用いる送信装置と受信装置
US5682376A (en) * 1994-12-20 1997-10-28 Matsushita Electric Industrial Co., Ltd. Method of transmitting orthogonal frequency division multiplex signal, and transmitter and receiver employed therefor

Also Published As

Publication number Publication date
US5774450A (en) 1998-06-30
CA2166599C (en) 1999-06-01
EP1848170A2 (en) 2007-10-24
EP1848170B8 (en) 2014-02-19
EP0722235A2 (en) 1996-07-17
EP1617613B8 (en) 2007-12-26
EP0722235B1 (en) 2004-03-31
EP1617613A3 (en) 2006-01-25
DE69631985D1 (de) 2004-05-06
DE69637259T2 (de) 2008-06-19
DE69636683T2 (de) 2007-09-06
EP1429509B1 (en) 2006-11-02
DE69637259D1 (de) 2007-10-31
CA2166599A1 (en) 1996-07-11
EP1429509A3 (en) 2004-06-30
EP1429509A2 (en) 2004-06-16
EP0722235A3 (en) 2000-09-13
DE69631985T2 (de) 2005-03-31
DE69636683D1 (de) 2006-12-14
EP1617613A2 (en) 2006-01-18
EP1848170B1 (en) 2013-09-18
EP1617613B1 (en) 2007-09-19
EP1848170A3 (en) 2011-11-02
JP2009071883A (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4397964B2 (ja) 送信方法、受信方法、伝送方法および受信装置
US6192056B1 (en) Demodulating apparatus and demodulating method
EP1618696B1 (en) Frequency synchronization apparatus and frequency synchronization method
US6108353A (en) Demodulating apparatus
US7406128B2 (en) Communication system using orthogonal frequency division multiplexed signal
JP2772282B2 (ja) Ofdm伝送システムとその送受信装置
KR100347965B1 (ko) 멀티캐리어 시스템내 조주파수 동기화
JP3124717B2 (ja) 直交周波数分割多重信号の伝送方法およびその受信装置
EP0788264A2 (en) OFDM transmitter and OFDM receiver
JP2818151B2 (ja) Ofdm伝送方式とofdm送受信装置
JP4397951B2 (ja) 送信方法、受信方法、伝送方法および受信装置
JP4129271B2 (ja) 送信方法、受信方法、伝送方法および受信装置
JPH08265292A (ja) Ofdm受信装置
JP3761068B2 (ja) 直交周波数分割多重信号の送信方法、受信方法、伝送方法およびその受信装置
JP2001156743A (ja) 通信システム及びその受信装置
CA2314879C (en) Digital demodulator
JPH08102769A (ja) Ofdm同期復調回路
JP2000138647A (ja) ディジタル伝送装置
JP3580107B2 (ja) Ofdm復調装置及びその方法
JP3518755B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法
JP2002314505A (ja) 通信装置およびシンボル同期調整方法
JP2000224142A (ja) 直交周波数分割多重信号の送受信システム
JPH08251136A (ja) 信号伝送装置および方法並びに信号受信装置および方法
JP2006211714A (ja) 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法
JP2001136147A (ja) Ofdm信号送信方法およびその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term