JP4322806B2 - 静電気放電保護回路及び動作方法 - Google Patents

静電気放電保護回路及び動作方法 Download PDF

Info

Publication number
JP4322806B2
JP4322806B2 JP2004527629A JP2004527629A JP4322806B2 JP 4322806 B2 JP4322806 B2 JP 4322806B2 JP 2004527629 A JP2004527629 A JP 2004527629A JP 2004527629 A JP2004527629 A JP 2004527629A JP 4322806 B2 JP4322806 B2 JP 4322806B2
Authority
JP
Japan
Prior art keywords
bus
esd
pad
circuit
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004527629A
Other languages
English (en)
Other versions
JP2005536046A (ja
JP2005536046A5 (ja
Inventor
ダブリュ. ミラー、ジェームス
ビー. ホール、ジェフリー
クラシン、アレキサンダー
ストッキンガー、マイケル
ディ. エイカーズ、マシュー
ジー. カマット、ビシュヌ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2005536046A publication Critical patent/JP2005536046A/ja
Publication of JP2005536046A5 publication Critical patent/JP2005536046A5/ja
Application granted granted Critical
Publication of JP4322806B2 publication Critical patent/JP4322806B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0292Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using a specific configuration of the conducting means connecting the protective devices, e.g. ESD buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、一般的に、静電気放電(ESD)保護を行う半導体回路に関し、特に、分散型ESD保護方式に関する。
集積回路は、製造工程中や組立・試験時、又は最終的システム用途において、静電気放電(ESD)現象の影響を受けることがある。従来の集積回路(IC)のESD保護方式では、専用のクランプ回路を用いて、電源線路間のESD電流を分流し、これによって内部素子を破壊から保護することが多かった。能動酸化金属半導体電界効果トランジスタ(MOSFET)クランプ回路として知られる一種のESDクランプ回路は、通常、3つの機能要素、即ち、抵抗−コンデンサ(RC)過渡検出回路、中間バッファ回路、及び大容量MOSFETトランジスタから構成され、これによって主要なESD電流分流デバイスとして機能する。能動MOSFETクランプ回路は、IC電源バスに沿って分散された回路網に用いられ、複数の入力/出力(I/O)パッドに対して強固で安定したESD保護を行ない得る。このような回路網の複数の実施形態は、本譲受人に譲渡された米国特許第6,385,021号、表題“静電気放電(ESD)保護回路”に示されている。
図1は、ICにおけるこのような1つの分散型ESD回路網1000を示し、回路網1000は、複数のI/O回路1030乃至1032を保護する。この概略図は、3つのI/O回路のみを示すが、通常の実施例では、分散型回路網は、更に規模の大きいI/O回路群を含むことがある。I/O回路1032には、VSSバス1042とVDDバス1044との間に接続された外部接続パッド1050が含まれる。ダイオード1052は、VSSバス1042に接続されたアノードと、I/Oパッド1050に接続されたカソードとを有する。ダイオード1053は、I/Oパッドに接続されたアノードと、VDDバス1044に接続されたカソードとを有する。ESD回路網1000の一例において、ダイオード1053は、NウェルダイオードのP+能動部として形成され、また、ダイオード1052は、P型基板ダイオードのN+能動部として形成される。クランプNチャネルMOSFET(NMOSFET)1054は、VSSバス1042とVDDバス1044との間に接続される。クランプNMOSFET1054のゲートは、トリガバス1046に接続される。例えば、PチャネルMOSFET(PMOSFET)及びNチャネル(NMOSFET)出力ドライバ、並びにI/O動作に通常必要な他の回路構成要素等の保護を所望する回路は、I/O回路1032には図示していない。また、I/O回路1032と各々同一であるI/O回路1030及び1031も図1に示す。リモートトリガ回路1040には、RC過渡検出回路1063及びバッファ回路1064が含まれる。RC過渡検出回路1063には、VSSバス1042とノード1065との間に接続されたコンデンサ1061と、この同じノードとVDDバス1044との間に接続された抵抗1062とが含まれる。バッファ回路1064は、ノード1065における入力部とノード1066におけるトリガバス1046への出力部との間に、例えば、図示しないが、一連の3つの直列接続されたCMOSインバータ段を含み得る。各インバータ段は、通常、VDDバス1044にソースが接続されたPMOSFETと、VSSバス1042にソースが接続されたNMOSFETとを有する。
図1は、VSSバス1042、VDDバス1044、及びトリガバス1046の3つのバスを示す。これらのバスは、通常、IC周辺部の全体又は一部の周囲に経路設定され、通常この領域に配置されるI/O回路としての役割を有する。各々R1と表示した一連の段階的に増加するバス抵抗は、2つの隣接したI/O回路間、又はI/O回路と隣接のリモートトリガ回路との間のVDDバス1044上に示される。各抵抗は、2つの隣接した回路間におけるVDDバス1044のその区間に対する分散寄生導線抵抗を表す。このような1つの回路の物理的中心から隣接した回路の物理的中心までのバス長は、これらの抵抗計算に用い得る。これらの抵抗は、全てラベルR1で示すが、I/O回路間又はI/O回路とリモートトリガ回路との間の物理的間隔が変化すると、これらの抵抗値は、大きさが大幅に変わることが多いことを理解されたい。同様に、各々R2と表示した段階的に増加する可変バス抵抗をトリガバス1046上に示す。これらの段階的に増加するバス抵抗は、VSSバス1042上にも示し得るが、概略図を簡単にするために、図1には含まない。通常のIC用途においては、図1に示す要素の左右に記したドットで示すように、他のI/O回路や他の段階的に増加するバス抵抗(R1、R2)を、ESD保護回路網に追加し得ることに留意されたい。
集積回路は、接地されたVSSを基準にして、I/Oパッドに正のESD現象が起きた時、極めて損傷を受けやすいことが多い。図1のI/Oパッド1050に印加されたこの現象に対するESD回路網1000の主な対応は、次の通りである。I/Oパッド電圧が急激に増加して0.7Vを充分に越えると、ダイオード1053は、順方向バイアスとなる。そして、このことによって、VDDバス1044上で、時間に対する急激な電圧増加(dV/dt)、即ち、電圧スルーレートに対する急激な電圧増加が生じる。RC過渡検出回路1063は、一種の電圧過渡検出回路又は電圧スルーレートセンサ回路である。VDDバス1044における非常に急峻なESD起因のdV/dtに応答して、過渡検出回路1063は、まずノード1065をVDD未満に充分に保持する。バッファ回路1064は、この入力をロー状態であると検出して、トリガバス1046をVDDに駆動する反転増幅信号を出力する。これによって、各I/O回路に分散された複数のクランプNMOSFET1054がオン状態になる。リモートトリガ回路1040は、分散型クランプNMOSFET1054のゲートのみを駆動しているため、トリガバス1046上に送られる結果的に生じる電流は、非常に小さいことに留意されたい。一旦、オン状態になると、クランプNMOSFETからなるこの累加回路網は、VDDバス1044とVSSバス1042との間で低抵抗分流器として機能する。クランプNMOSFETは、過渡検出回路1063のRC時定数によって決定される期間中、導通状態のままである。この時定数は、ESD現象の代表的な継続時間(200乃至500ナノ秒)を超えるように設定すべきであるが、VDDバスの通常の増加時、クランプNMOSFETのトリガの誤りを回避するのに充分な程短く設定すべきである。通常のIC動作時、VDDの増加には、一般的に1乃至5msが必要である。
前述の通り、過渡検出回路は、VDDバス上で、時間に対する急激な電圧増加(dV/dt)を検出することによって、印加ESD現象に応答する。他の種類のESD検出回路、即ち、電圧閾値検出回路が、従来技術として存在することに注目されたい。電圧閾値検出回路は、VDDバス上の所定の電圧閾値を超えたことを検出することによって、印加ESD現象に対応する。この閾値を越えない場合、クランプNMOSFETは、非導通状態のままである。
前述のESD現象時、I/Oパッド1050の電圧は、印加ESD現象のピーク電流が専用の放散経路を流れると、電圧降下の総和によって設定されたピークレベルに上昇する。業界標準の200V機械モデルのESD現象において、IC中を強制的に流れるピーク電流は、約3.8Aに到達し得る。I/O回路1032の不安定な素子を保護するために、通常、ESDクランプ回路網は、I/Oパッド1050の電圧が臨界電圧故障閾値を越えて上昇しないようにしなければならないが、臨界電圧故障閾値は、プロセス技術及び出力バッファ構成に応じて、通常6乃至10Vの範囲で変化する。例えば、I/O回路に対する8.0Vの故障閾値と3.8AのピークESD電流を仮定すると、放散経路全体の正味抵抗は、約2.1Ωを超えないことがある。このようなESD経路には、大規模な能動素子と、これらの素子間の強固な相互接続が必要である。
図1においてベースとなる米国特許第6,385,021号には、電源バスに沿って大規模なクランプNMOSFETを配置する頻度が小さいことと対照的に、各I/O回路に小型のクランプNMOSFET1054を分散する利点が教示されている。この方法によれば、ESD性能に対するVDDバス抵抗の影響が最小限になる。接地されたVSSを基準にして、正のESD現象が、いずれかのI/Oパッドに生じる場合、各I/O回路に分散された個々のクランプNMOSFET1054は、並列にオン状態となる。しかしながら、VDDバスの抵抗により、バスに沿う両方向において、ストレスを受けたパッド付近のクランプNMOSFETだけが、大部分のESD電流を分流する傾向にある。数多くの個々の小型クランプNMOSFETの累積効果によって、複数のデバイスが、損傷を受けずに非常に大きなESD電流を放散し得る。大型クランプNMOSFETの配置頻度がはるかに低い回路網では、これらのクランプから最も遠くに配置されるI/Oパッドは、ストレスを受けたI/Oパッドから大型クランプNMOSFETまでの電流×抵抗(IR)電圧降下の増大により、ESD性能低下の影響を受ける。図1に示した小型の分散型クランプNMOSFET回路網においてさえ、大型クランプNMOSFETは、VDDバスが破壊されたり終端されたりするあらゆる箇所で、そのVDDバス区間の端部付近のI/Oパッドを適切に保護するために必要であることに留意されたい。この大型クランプNMOSFETが無い場合、VDDバス区間の端部にあるストレスを受けたI/Oパッドは、VDDバスに沿って一方向にクランプNMOSFETにアクセスすることしかできない。このことは、ESD性能が大幅に低下することを意味する。好適な構成において、VDDバスは、VDDバスが終端されないように、IC周囲に連続的な環状構造を形成する。この構成によって、I/O回路における小型クランプNMOSFETの回路網は、完璧なESD保護を行なうことができる。
また、米国特許第6,385,021号には、I/O回路から離れた位置に線路クランプトリガ回路の全て又は一部を配置して、一群のI/O回路における各クランプNMOSFET1054の動作をゲート制御するトリガバス1046を駆動する利点も教示されている。多くの点において、このことは、各I/O回路に別個のトリガ回路を配置して、その個々のI/O回路にあるクランプNMOSFETのみを駆動する他の方法より好ましい。この理由は、数多くのチップ設計において、I/O回路が、基板や物理的レイアウト面積の観点から、IC周辺部の内、最も制約を受ける部分であるためである。I/O回路のレイアウト面積を低減すると、ICチップの寸法が小さくなることに直接つながることが多い。通常、RC過渡検出回路は、相当なレイアウト面積を占有する。従って、一群のI/O回路における複数のクランプNMOSFET間において、単一のRC過渡検出回路1063を共有すると、空間的に更に効率的である。他方、バッファ回路1064における素子の大きさは、通常、トリガ回路が駆動しなければならないクランプNMOSFETの総チャネル幅に応じて決定される。米国特許第6,385,021号に教示されるように、バッファ回路1064の素子は、都合の良いことに、各個々のI/O回路1032において、リモートトリガ回路1040に配置するか、又は、部分分割して、一部はリモートトリガ回路に、また、一部は各I/O回路に配置し得る。
図1に示すように、フルバッファ回路1064をリモートトリガ回路1040に配置する場合、その結果生じるESD回路網には、幾つかの制限が在ることが分かる。この方法の1つの制限は、任意のI/Oパッドとそれに最も近接したリモートトリガ回路1040との間の最大距離が、主として、ストレスを受けたI/Oパッドからリモートトリガ回路までのVDDバスに沿うIR電圧降下によって、制限されることである。この制限は、標準の回路シミュレーションツールを用いて回路網上においてESD現象をシミュレーションすることによって、また、その結果生じるノード電圧を分析することによって、最良の実証が可能である。図1の回路網は、大規模な一群のI/O回路及び段階的に増加するバス抵抗の一部であると仮定する。I/Oパッド1050が、接地されたVSSを基準にして、+3.8Aピーク電流のESD現象を受ける場合を考慮する。このESD現象時、I/Oパッド1050上のシミュレート電圧が、8.0Vのピーク値に上昇するように、各I/O回路のダイオード1053及びNMOSFET1054の寸法並びにVDDバス上の抵抗R1の大きさを調整すると仮定する。ピーク値のESD電流レベルにおいて、ダイオード1053両端間の電圧降下と、このダイオードからI/Oパッド及びVDDバスまでの寄生相互接続抵抗(図1には示さず)両端間の電圧降下の合計は、通常、約3.0Vになる。従って、ストレスを受けたI/Oパッド付近のVDDバス上のピーク電圧は、約5.0Vである。ESD電流は、VDDバスに沿って、ストレスを受けたパッドから離れる両方向に流れ、大部分の電流が、分散型線路クランプNMOSFET1054を介して、1乃至2ΩのVDDバス抵抗内で分流される。この電流の流れにより、ピークVDDバス電圧は、ストレスを受けたI/Oパッド付近に存在し、また、ストレスを受けたパッドから離れる両方向で減少することに留意されたい。このシミュレーション例において、I/O回路1031、1030、及びリモートトリガ回路1040付近のピークVDDバス電圧は、それぞれ4.7V、4.5V、及び4.3Vである。従って、分散型クランプNMOSFETのドレイン端子は、ストレスを受けたI/Oパッドへの近接度合いに依存して、異なる電圧レベルにバイアスされる。しかしながら、分散型クランプNMOSFETのゲート端子は、全てリモートトリガ回路1040によってトリガバス1046を介して駆動されるため、同じ電圧レベルにバイアスされる。トリガバスの電圧レベルが、ストレスを受けたI/Oパッドに対するリモートトリガ回路の近接度合いに依存することに留意することが重要である。リモートトリガ回路は、ESD現象時に起動されると、トリガ回路付近のVDDバス電位に等しい電圧レベル(この場合4.3V)にトリガバスを駆動する。従って、リモートトリガ回路よりもストレスを受けたI/Oパッドに近いクランプNMOSFETは、ゲート−ソース電圧(Vgs)がドレイン−ソース電圧(Vds)よりも小さくなり、一方、リモートトリガ回路よりもストレスを受けたI/Oパッドから離れているクランプNMOSFETでは、Vgs>Vdsとなる。明らかに、ストレスを受けたI/Oパッドが、前述の場合よりもリモートトリガ回路から離れた距離に位置する場合、VDDバスに沿うIR降下は、トリガバスの結果的に生じる電圧レベルを更に減少させる。非常に重要なことは、トリガバス上の電圧レベルが、ESD回路網の性能にとって重要であることに留意することである。クランプNMOSFETのドレイン−ソース間のオン抵抗は、これらのバイアス条件下でVgsにほぼ逆比例する。従って、リモートトリガ回路から最も遠いI/Oパッドは、最悪のESD性能をこうむることになる。
図1に述べたESD保護回路の他の制限は、複数のリモートトリガ回路1040がVDDバス1044に沿って並列に配置された場合、トリガバス1046が、電圧競合問題を有し易いことである。ストレスを受けたI/Oパッドと異なる距離に位置する2つのトリガ回路は、各々、異なる電圧レベルにトリガバスを駆動しようとする。このことは、深刻なバス電圧競合問題を引き起こし得る。電圧競合問題に対処する1つの解決策は、VDDバスを分割し、VDDバス区間毎にリモートトリガ回路1040を1つだけ配置することである。従って、VDDバス区間の最大長は、ストレスを受けたI/Oパッドからリモートトリガ回路までのIR降下を最小限に抑えるために、また、単一のリモートトリガ回路によって対応し得る長さの双方に制限される。IC設計において、VDDバスをこのような小区間に分割することは非常に困難な場合がある。従って、保護されるVDDバスの最大長に対する制限がない新しい分散型線路クランプ回路網が必要である。
図1に述べた分散型線路クランプ回路網には、各I/O回路に配置される個々に分離した複数の線路クランプNMOSFETが含まれる。この方式は、I/O回路間の物理的間隔が、大きい又はIC周辺部の周囲において大幅に変化する場合、設計時の制限になり得る。例えば、数多くのICが、標準セル設計集から得た固定の物理的高さ及び幅のI/O回路を利用する。しかしながら、所定のICにおけるI/O回路間の間隔すなわちギャップは、必要なI/Oの数や物理的IC中心部の寸法に依存して変化し得る。従って、数多くのIC設計において、I/O回路間のギャップが重要である。更に、ICの角部付近のI/O回路間の間隔を大きくして、パッケージ中に放射状のボンディング線掃引部を収めることが一般的である。また通常、導線バスがIC角部の周囲に経路設定されるため、I/O回路間のギャップは大きくなる。
分散型ESD回路網設計の観点から、I/O回路間のあらゆるギャップ又はI/O回路間のギャップのあらゆるばらつきが、ESD性能にマイナスの影響を与える。例えば、間隔を広く空けて配置されたI/O回路列の中央にあるI/Oパッドは、I/O回路が物理的に隣接する列のI/Oパッドと比較すると、VSSに対してESD性能低下をこうむる場合がある。このことは、抵抗性を有する電力バスに沿って分散された同じ大きさの小型線路クランプNMOSFETの回路網において、I/OパッドのESD性能は、クランプNMOSFET間の段階的に増加するバス抵抗R1の変化に対して非常に敏感であるという事実による。この問題の影響を最小限に抑えるために米国特許第6,385,021号が教示する1つの方法は、I/O回路のクランプNMOSFETを増やして、追加のクランプNMOSFETをI/O回路間のスペーサセルに配置することである。この方法は、クランプNMOSFET間における最悪な場合の段階的に増加するVDDバス抵抗R1を最小限に抑えるのに有効であるが、通常、多数の固有のスペーサ・セルを設計して、I/O回路間の各異なる間隔に対して配置することが必要である。しかしながら、ESD保護回路網は、最小数の簡素なモジュール式の再使用可能なESD要素で構成することが望ましいため、この方法は理想的でない。従って、これらの分散型回路網におけるクランプNMOSFETの大きさを決める場合、設計者は、最悪な場合におけるICの実際のパッド間隔に基づき、全てのI/O回路間の段階的に増加するバス抵抗に対するR1の値を1つだけ仮定することが多い。この最悪な場合の間隔は、全てのI/O回路が隣接する場合の大きさである最小パッド間隔の2倍になることが多い。この方法の欠点は、結果的に生じる必要なクランプNMOSFETチャネル幅が、全てのI/O回路が実際に隣接する場合に必要となる幅の約2倍になることである。これらの理由のため、最小数の固有のESD要素を利用し、更に、各I/O回路の領域において線路クランプNMOSFETチャネル幅を最小にし、また、1つのI/Oパッドから次のパッドまでのESD性能のばらつきを最小にし、また、任意の間隔を有するIC周辺部の周囲にI/O回路を配置する自由度を最大にし得る新しいESD回路網方式が必要である。
公知の分散型線路クランプESD保護回路において、複数の分流デバイスの制御電極は、正の電流電極に印加された電圧より小さい電圧にバイアスされることが多い。本発明の目的は、分流デバイスの制御電極に印加された電圧が正の電流電極上の電圧よりも大きくなるようなESD保護回路を実現することにある。
本発明の一実施形態によれば、アレイ状の分流デバイスが、ESDバスとVSSバスとの間で並列に接続され、また、保護対象の複数のI/O及び電源パッドの間に分散されたESD保護回路が提供される。これらのパッドから離れた位置に配置し得る1つ又は複数のトリガ回路を利用して、ESD現象時及び通常の回路動作時の双方において、個々の分流デバイスを制御する。ESD現象は、いずれかのストレスを受けたパッドから2つの別々のバスに結合し得る。即ち、複数の分流デバイスの正電流電極に高ESD電流を流すESDバスと、トリガ回路を制御するブーストバスとに結合し得る。トリガ回路は、ESD現象時作動されると、ほとんど電流を消費しないため、いずれかのストレスを受けたパッドとトリガ回路との間でブーストバスに沿ったIR電圧降下がほとんどない。従って、トリガ回路は、ESDバス上のピーク電圧レベルより一般的に大きい電圧レベルに、複数の分流デバイスの制御電極を駆動し得る。
1つの実施形態において、ESDバス及びブーストバスは、ICに外付けされた電源に接続する別個の正の電源バスとして機能する。また、同様に、VSSバスは、ICに外付けされた電源に接続する接地された電源バスとして機能する。他の実施形態においては、これら3つの全てのバスを、外部電源に直接接続しなくてもよい。また、VSSバスをシリコン基板に接続すると、基板はVSSバス導線と並列に導通し得る。
本発明によれば、各分流デバイスのオン抵抗が減少し、これによって、分散型線路クランプ回路網の性能が改善され、また、強固なESD保護回路を実現するのに必要なレイアウト面積が減少する。
本発明は、制限するためではなく一例として、添付の図によって例示するが、図において、同様な参照番号は、同様な要素を示す。
図中の要素は、説明を簡単に又明確にするために示し、必ずしも縮尺通りに描かれていないことを当業者は理解されたい。例えば、図中の要素の寸法には、本発明による実施形態の理解促進の一助となるように、他の要素に対して誇張しているものもある。
図2は、ESD保護回路網9が、集積回路内に設けられている本発明の1つの実施形態を示す。ESD保護回路網9には、I/Oパッドセル20乃至22を含む様々な回路部分、及び電源パッドセル40が含まれる。各パッドセルは、図2に示すように概略図的に、また、物理的なレイアウト的に記述し得るが、IC周辺部において個々の領域を占有する。また、これら各パッドセルは、ESD保護回路網9に含まれるブーストバス12、ESDバス14、トリガバス16及びVSSバス18に接続される。一連の段階的に増加するバス抵抗R1は、各I/O及び電源パッドセル間のESDバス14上に示す。同様な一連の段階的に増加するバス抵抗R2及びR3を、それぞれトリガバス16及びブーストバス12上に示す。各抵抗(R1、R2、及びR3)は、2つの隣接したパッドセル間の対応するバスのその区間の有効分散寄生導線抵抗を表す。このような1つのパッドセルの物理的な中心から隣接するパッドセルの物理的な中心までのバス長は、例えば、これらの抵抗算出に用い得る。バスに沿う段階的に増加するバス抵抗は、全て、例えば、R1という単一のラベルで示すが、それらの抵抗値は、パッドセル間の物理的な間隔がIC周辺部の周囲で変動すると、大きさが大幅に変わることが多いことを理解されたい。また、段階的に増加するバス抵抗は、VSSバス上に示すが、概略図を簡単にするために、図2には含まれていない。前述の段階的に増加するバス抵抗は、ESD回路設計の観点から望ましくないということを理解されたい。それらは、バス導線の経路を設定する面積がどのような集積回路上でも制限されていることの不可避の結果である。ブーストバス12、ESDバス14、トリガバス16及びVSSバス18は、ICの周辺部に沿って延在し、図2のドットで示すようにESD保護回路網9を拡張して、他のパッドセル及び段階的に増加するバス抵抗(図示せず)を含むが、これらは、チップの周辺部に沿って設けられる。一群の4つのパッドセルだけを図2に示すが、これより大きい又は小さい群を実装し得るものと仮定する。好適な形態において、4つバスは、IC周辺部の周囲に完全なリングを形成し、全てのIC上のI/O及び電源パッドは、ESD保護回路網9内において保護される。ESDバス14がいずれかの位置で破断した場合、前述の通り、ESDバス区間の両端又はその付近に大型のNMOSFETクランプ(図2には図示せず)を配置して、区間の両端付近に配置されたI/Oパッドを適切に保護しなければならない。
図2のI/Oパッドセル22には、ブーストバス12、ESDバス14、及びVSSバス18間に接続された外部接続パッド31が含まれる。ダイオード32は、VSSバス18に接続されたアノード端子及びI/Oパッド31に接続されたカソード端子を有する。ダイオード33は、I/Oパッド31に接続されたアノード端子及びESDバス14に接続されたカソード端子を有する。P−チャネル、即ちP型トランジスタであるPMOSFET34は、I/Oパッド31に接続された第1電流電極即ちドレインを有し、また、ブーストバス12に接続された第2電流電極即ちソースを有する。PMOSFET34の制御電極即ちゲートは、図3を参照して後述する制御信号(図示せず)に接続される。しかしながら、I/Oパッド31に印加される正のESD現象時、この制御信号は、VSS付近に引き上げられ、PMOSFET34を介した低抵抗のドレイン−ソース間の導通を可能にする。また、I/Oパッドセル22内には、Nチャネル即ちn型トランジスタであるクランプNMOSFET36が含まれ、NMOSFET36は、VSSバス18に接続されたソースとESDバス14に接続されたドレインとを有する。クランプNMOSFET36のゲートは、トリガバス16に接続されている。I/Oパッドセル20及び21は、I/Oパッドセル22と同じである。本実施形態において、I/Oパッドセル20及び21は、図2に示すように、I/Oパッドセル22に在るものと同じ回路を含む。クランプNMOSFET36は、ESD現象時、ESDバス14とVSSバス18との間に直接の電流経路を提供する。クランプNMOSFET36等、各I/Oパッドセル内に含まれる個々のクランプは、並列に接続され、どのI/OパッドがESD現象を受けるかに関わらず、分散型ESD保護を提供することに留意されたい。PMOSFET及びNMOSFET出力ドライバ、これらの出力ドライバ用前置ドライバ回路、入力回路、及び通常のI/O動作に必要な他の回路部品等の保護対象の回路は、I/Oパッドセル22には示していない。
図2の電源パッドセル40には、正の電源バスVDD1(図示せず)に接続され、また、ブーストバス12、ESDバス14、及びVSSバス18間に接続された外部接続パッド41が含まれる。ダイオード42、ダイオード43、PMOSFET44、及びクランプNMOSFET46は、電源パッドセル40において示し、I/Oパッドセル22の同様な要素と同じであると仮定する。従って、本実施形態において、電源パッドVDD141は、I/Oパッドと同様に、ESD保護回路網9に接続され、また、それによって保護される。他の実施形態では、図2に示すI/Oパッド保護手法を維持しつつ、電源パッドESD保護のために異なる手法を利用してよい。
I/Oパッドセル20乃至22内に含まれるクランプNMOSFET36及び電源パッドセル40内に含まれるクランプNMOSFET46は、複数の分流回路を形成する。各分流回路は、トリガバス16を介して、電源パッドセル40のトリガ回路50によって制御される。トリガ回路50は、ブーストバス12に接続された第1端子と、トリガバス16に接続された第2端子と、VSSバス18に接続された第3端子と、を有する。トリガ回路50には、抵抗52及びコンデンサ53を含むRC過渡検出回路51と、バッファ回路54とが含まれる。1つの実施形態において、抵抗52及びコンデンサ53は、各々NMOSFET又はPMOSFETから形成し得る。抵抗52の第1端子は、ブーストバス12に接続される。バッファ回路54の入力は、抵抗52の第2端子及びコンデンサ53の第1端子に接続される。バッファ回路54出力は、トリガバス16に接続される。コンデンサ53の第2端子は、VSSバス18に接続される。本実施形態において、バッファ回路54には、入力と出力ノードとの間に直列接続された奇数個のCMOSインバータ段(図示せず)が含まれる。各インバータ段には、ソースがブーストバス12に接続されたPMOSFETと、ソースがVSSバスに接続されたNMOSFETとが含まれる。注目すべき重要なことは、バッファ回路54は、ESD現象時に作動されると、トリガバス16を、そのトリガ回路付近のブーストバス12の電圧レベルに等しい電圧レベルに駆動することである。また、電源パッドセル40には、PMOSFET58が含まれるが、PMOSFET58は、トリガバス16に接続されたゲートと、ブーストバス12に接続されたソースと、ESDバス14に接続されたドレインとを有する。本実施形態において、PMOSFET58は、平衡回路を形成する。この平衡回路は、ESD現象後及び通常のIC動作時の双方において、ESDバス14をブーストバス12に電気的に短絡するように機能するが、ESD現象時、実質的に非導通状態のままである。
図2のESD保護回路の目的は、接地されたVSSを基準にして、複数のI/O及び電源パッドの何れか1つに結合された正のESD現象からこれらのパッドを保護することである。一例として、大規模な一群のパッドセルのI/Oパッド31が、接地されたVSSを基準にして、正のピーク電流3.8AのESD現象を受ける場合のESD回路網のシミュレーションを考察する。各パッドセルのダイオード33及びクランプNMOSFET36並びに46の寸法、また、ESDバス上の抵抗R1の大きさは、シミュレーションにおいて調整され、このESD現象時、I/Oパッド31上の電圧は、ピーク値8.0Vに上昇すると仮定する。I/Oパッド31に結合されたこのESD現象のために本来意図したESD電流放散経路は、順方向バイアスされたダイオード33を介してESDバスに至り、そして、ESDバスに沿って両方向に、ストレスを受けたI/Oパッドに近接して群集するクランプNMOSFETの回路網に至る。前述の通り、ストレスを受けたI/OパッドとクランプNMOSFET36及び46のドレイン端子との間には、2つの不可避な電圧降下の源がある。第1は、ダイオード33と、I/Oパッド及びESDバス(図2には示さず)に至るその抵抗性の相互接続部との約3Vの合成電圧降下である。第2は、ストレスを受けたI/Oパッドから遠ざかる両方向へのESDバスに沿うIR電圧降下である。I/Oパッドセル22、21、20及び電源パッドセル40付近のシミュレートされたピークのESDバス電圧は、それぞれ5.0、4.7V、4.5V、及び4.3Vである。これらの具体的な電圧は、一例としてのみ与えるものである。前述の通り、分散型クランプNMOSFETのドレイン端子は、ストレスを受けたI/Oパッドへの近接性に依存して異なる電圧レベルにバイアスされ、ピーク電圧は、ストレスを受けたパッド付近に存在する。図2に示すESD保護回路の主な特徴は、トリガ回路50が、現時点で、高電流ESDバス14から分離しているブーストバス12を介して、ストレスを受けたいずれかのI/Oパッドに接続されているということである。ESD現象時、トリガ回路50は、分散型クランプNMOSFETゲートを駆動するだけであり、従って、複数のクランプNMOSFET36及び46へのESDバスを介して放散される電流のうち極めて少量の電流だけを消費することに留意されたい。ESDバス14と比較して、ブーストバス12へは、ほとんど電流が流れない。本発明の利点は、ストレスを受けたいずれかのパッドからトリガ回路50へのブーストバスに沿って、又は、トリガ回路からクランプNMOSFET36及び46のいずれかへのブーストバスに沿って発生するIR電圧降下は、極めて微小なことである。このため、クランプNMOSFETゲート上の電圧レベルは、リモートトリガ回路のストレスを受けたI/Oパッドへの近接性には、ほとんど依存しない。このことは、従来技術による回路に対する大幅な改善である。図2に示した実施形態において、PMOSFET34を用いて、ESD電圧をI/Oパッドからブーストバス12に結合する。I/Oパッド31に印加された正のESD現象時、PMOSFET34のゲートに接続された制御信号は、VSS付近に駆動され、PMOSFET34をオンして、ブーストバス12をストレスを受けた全I/Oパッド電圧まで又はその付近まで引き上げ得る。複数のパッドセル20乃至22及び40におけるPMOSFET34及び他の同様なトランジスタ(付番せず)は、これらのトランジスタのゲートを制御する回路との組み合わせで(図3)、複数のプルアップ回路として機能する。図2に示したESD回路の本来の意図は、これらの分流デバイスの有効オン抵抗を最小限にするために、それぞれ各I/O及び電源パッドセルに在る複数のクランプNMOSFET36及び46用のVgsを最大にすることである。前述のESD回路網のシミュレーションでは、経路に沿う劣化が単に最小な状態で、ストレスを受けたI/Oパッド上の全電圧(8.0ボルト)は、PMOSFET34を介して、ブーストバス12上に結合され、次に、トリガ回路50を介して、トリガバス16に結合され、分散型クランプNMOSFET36及び46の各ゲートに至る。図1を参照して前に述べた従来技術による回路網のシミュレーションにおいて、ピークトリガバス電圧は、わずか4.3ボルトであった。クランプNMOSFETのオン抵抗は、これらのバイアス条件下では、ほぼVgsに逆比例することを思い起こされたい。従って、図2に示すESD保護回路網9は、分散型クランプNMOSFETのオン抵抗のほぼ半分である。各クランプNMOSFETのゲートがIC上の最大電圧付近にバイアスされた状態では、各クランプNMOSFETのオン抵抗は、効果的に最小限に抑えられる。このことは、分散型線路クランプ回路網の性能を最大にし、また、強固なESD保護回路を実現するのに必要なレイアウト面積を最小限に抑える一助になる。本明細書に教示されたように設計されたこの「ブースト」ESD回路網は、図1に示した従来技術による回路と比較して、
強化されたESD保護を提供する。
前述の強化ESD回路網を有効に動作させるための主な要件は、分散型クランプNMOSFETがオン状態になる速さが、ストレスを受けたI/Oパッドのピーク電圧を、そのI/Oパッドの故障に対する設定電圧閾値未満に制限するのに充分な程速いことである。従って、PMOSFET34、ブーストバス用の段階的に増加するバス抵抗R3、トリガ回路50の素子、及びトリガバス用の段階的に増加するバス抵抗R2等、クランプNMOSFET36及び46のゲートに電荷を供給する主要な経路に在る図2のESD保護回路網9の素子は、この要件を実現するために適切に寸法設定しなければならない。本発明の利点は、ESD現象時、この主要な経路を通過する電流が極めて小さいため、I/Oパッドを非常に数多く含む回路網の場合でも、この要件を満たすように、これらの素子の寸法を簡単に設定できることである。この方式には、更に多くの利点がある。第1に、ブーストバス12用の段階的に増加するバス抵抗R3及びトリガバス16用のR2は、ESDバス14用の対応する抵抗R1よりかなり大きくてもよい。従って、ブースト及びトリガバスは、ESDバスで用いられるIC周辺部のレイアウト面積の僅かな部分を占有するだけでよい。第2に、ある程度抵抗を有する段階的に増加するバス抵抗R3及びR2の場合でも、ESD現象時、これらのバスに流れる電流が小さいため、これらの2つのバスに沿うIR電圧降下はほとんどない。従って、トリガ回路50は、回路網の性能に大きな影響を与えることなく、ストレスを受けたI/Oパッドからかなり遠くに配置し得る。第3に、ブーストバス12に沿うIR電圧降下がわずかであることにより、従来の回路に見られる深刻なバス電圧競合問題が一切発生することなく、非常に数多くのトリガ回路をブーストバスに沿って並列に配置してよい。
好適な形態では、トリガ回路50等の複数のトリガ回路が、5乃至20個のI/Oパッドセルの範囲の割合で、ブーストバス12に沿って分散される。しかしながら、ある用途では、これ以上又は以下の割合による配置が好ましい場合がある。ほとんどの場合、隣接するトリガ回路間の最大許容距離は、単一I/Oパッドセルのブーストバスに沿う物理的な幅より、大幅に大きい。この最大距離は、ブースト及びトリガバスに沿って発生し得るわずかなIR電圧降下及びRC遅延を最小限に抑えるために設定され、また、単一のトリガ回路が駆動しなければならないクランプNMOSFET36及び46ゲート数を制限するために設定される。
前述の理由により、通常、ESDバス14区間の最大長は、IC周辺部の周囲における総バス長より大きい。従って、図2に示す分散型ESD回路網9は、4つのバスがICの周辺部を取り囲み、ICのI/O及び電源パッドの全て又は一部を保護する好適な実施形態において実現し得る。他の実施形態において、トリガバス16は、ESDバス14及びブーストバス12に沿って、複数の別個の区間に分割し得る。例えば、分散型クランプNMOSFET36及び46の全回路網は、複数の小規模の回路網に分割して、単一のトリガバス区間が、小規模の各回路網のクランプNMOSFETをゲート制御してよい。単一のトリガバス区間は、少なくとも1つのトリガ回路50を少なくとも1つのクランプNMOSFET36又は46に接続しなければならない。
図2に示す構成の場合、ESD回路網の設計及び物理的なレイアウトは、大幅に簡素化される。1つの実施形態において、I/Oパッドセル22内の全てのESD要素は、第1レイアウトセルに配置し、また、このセルをIC上の全ての機能I/Oパッドセルに配置し得る。同様に、電源パッドセル40の全てのESD要素は、第2レイアウトセルに配置し、また、このセルをIC上の全ての機能電源パッドセルに配置し得る。従って、この回路網は、まさしくモジュール形式であり、何回も繰返される要素は極めて少ない。図2に示すように、各電源パッドセル40にトリガ回路50を配置することによって、トリガ回路に対する配置割合要件が満たされるが、この理由は、ほとんどのIC設計において、電源パッドは、この割合で配置しなければならないためであることに留意されたい。従って、ほとんどの場合、通常の回路動作に必要なパッドセルを配置するだけで、強固なESD保護回路網を適切に実現することが保証される。これによって、図2のESD回路網9は、実現するのが極めて簡単になり、また、従来技術による回路と比較して、設計やレイアウトエラーの影響を受けにくくなる。
ESD回路網9の1つの例において、ダイオード33は、NウェルダイオードのP+能動部として形成され、P+能動部の周辺長は、400ミクロンである。実際の大きさは、一例としてのみ与えられ、具体的な用途に依存して大幅に変わる。ダイオード32は、P基板ダイオードのN+能動部として形成され、N+能動部の周辺長は、400ミクロンである。PMOSFET34は、60ミクロンのチャネル幅と、0.45ミクロンのチャネル長とを有する。NMOSFET36は、180ミクロンのチャネル幅と、0.45ミクロンのチャネル長とを有する。段階的に増加するESDバス抵抗R1は、約0.25オームであると仮定する。対応する段階的に増加するトリガバス抵抗R2は、約15オームであると仮定し、また、対応する段階的に増加するブーストバス抵抗R3は、約5オームであると仮定する。段階的に増加するVSSバス抵抗(図2には示さず)は、約0.25オームであると仮定する。I/Oパッドセル22のクランプNMOSFET36は、通常、図1において述べた従来技術による回路と比較して、チャネル幅を40乃至50%小さくしてよく、従って、レイアウト面積を小さくしてよいことは本発明の利点である。このことは、本明細書に述べた強化回路網によって供給されるクランプNMOSFET上のVgsが高いことによる。
図2に示すESD回路網9の例示した実施形態において、ESD保護は、電源パッドセル40の電源パッドVDD1に対して行なわれる。図2には示さないが、このパッドは、別個の正の電源バスに接続すると仮定する。例えば、VDD2、VDD3等、電源パッドセル40と同一の追加電源パッド及びパッドセルは、同じESD回路網9に配置し得る。ESDバス14が、正の電源バスとして機能し、また、ICの外部電源に接続する場合、VDD1、VDD2、及びVDD3は、通常のIC動作時、ESDバスの電源電圧を越えず、このためダイオード43が順方向にバイアスされ、漏れが防止されることに留意されたい。しかしながら、ESDバス14が、外部電源に接続されていない場合、VDD1、VDD2及びVDD3は、各々異なる電圧レベルで外部電源に接続する。この構成において、通常のIC動作時、ESDバス14は、単に、ある電圧レベルに上昇し、1つのダイオードが、VDD1、VDD2、又はVDD3の内、最も高い電圧未満に降下するが、これは、ダイオード43が最大電圧電源のパッドセルにおいて順方向バイアスされるためである。I/O及び電源等の具体的な機能が、図2の各パッドセルに割り当てられているが、他のパッドセル機能を用い得ることを良く理解されたい。
図2におけるESD回路網9の他の実施形態において、抵抗52及びコンデンサ53は、ノード56を中心に反転して、抵抗をVSSバスに接続し、また、コンデンサをブーストバスに接続し得る。RC過渡検出器がこのように構成された場合、バッファ回路54は、例えば、偶数個の直列接続されたCMOSインバータ段を利用し得る。当業者は、この用途において有効に機能する図2に示したもの以外の複数の追加過渡検出器が存在することを認識するであろう。図2に示したバッファ回路54の機能は、ノード56において、過渡検出器出力信号を検出し、反転し、増幅することである。これらの機能を実行するために用い得る共通回路は数多く存在する。一般的に、トリガ回路50が必要であるが、このトリガ回路50は、いずれかの保護対象のI/O又は電源パッド上で急速なESD誘起電圧過渡(dV/dt)を検出し、そのトリガ回路付近にあるブーストバス12の電圧レベルに等しい電圧レベルに又はそれに近い電圧レベルにトリガバス16を駆動する。
従来技術に見られる前述の電圧閾値検出回路は、本明細書において述べた強化ESD回路網では良好に機能しないことを指摘する。何故そうであるかということには、3つの主な理由がある。第1に、これら検出回路の実際の電圧閾値は、通常の半導体プロセスのばらつき及びICの動作温度範囲に極めて敏感である。これらの要因のために、電圧閾値は、2乃至3ボルトの範囲で変動し得る。第2に、通常のIC動作を妨害しないために必要な最小検出回路電圧閾値と、ESD現象時、ストレスを受けたI/Oパッド上の設定最大許容電圧との間に充分な電圧マージンがない。ESD電圧閾値検出器は、通常の回路動作時、オンしてはならない。例えば、通常動作時、VDD=3.3ボルトのICは、通常、製造後VDD=5.0ボルト以上でバーンインが行なわれる。検出回路がバーンイン時作動しないことを保証するために、また、追加マージンを付与してプロセスのばらつきを吸収するために、ESD検出回路の電圧閾値は、通常、7乃至8ボルトの範囲に設定しなければならない。このことでは、ESD現象時、I/Oパッドの脆弱な要素を保護する適切なマージンが得られない。通常、I/OパッドのESD現象時の臨界電圧故障閾値は、6乃至10Vの範囲で変動することを思い起こされたい。第3に、ブーストバス12に沿う小さいが不可避のIR電圧降下のために、電圧閾値検出回路は、ストレスを受けたI/Oパッドからある程度離れて配置されると、その付近に配置された検出回路を作動させ得るESD現象を適切に検出できない場合がある。このことは、複数のトリガ回路がブーストバスに沿って並列に分散された場合、バス電圧競合問題の原因になり得る。特にRC過渡検出回路51または、一般的な過渡検出回路は、前述の問題領域に対しては、敏感さの度合いが極めて小さく、即ち、影響を受けにくい。これらの理由により、電圧閾値検出用ESD検出回路は、これらの分散型保護回路網では、良好に機能しない。
図2におけるESD回路網9の他の実施形態において、複数のバッファ回路54を各I/Oパッドセルに配置して、そのパッドセル付近のクランプNMOSFETを駆動することで、RC過渡検出器51だけがトリガ回路50に残るようにする。更に他の実施形態において、バッファ回路54は、複数の部位、即ち第1部位をトリガ回路50付近に、また、第2部位を各I/Oパッドセル付近に分割し得る。
図2に示すESD回路網9において、電源パッドセル40のトリガ回路50を示す。他の実施形態において、このトリガ回路は、I/Oパッドセル20乃至22に、又は、パッドセル間の専用のスペーサセルに、あるいは、適当なスペースが利用可能な箇所ならばどこにでも、選択的に配置し得る。図2に示すI/O及び電源パッドセルへの配置に加えて、個々のクランプNMOSFET36及び46は、また、パッドセル間の専用のスペーサセルに、又は、スペースが利用可能な箇所ならばどこにでも配置し得る。1つの形態は、ESDバス14に沿って、これらのクランプNMOSFETを頻発に且つ広範囲に分散することである。
クランプ分流デバイス36及び46は、NMOSFETとして示しているが、他の分流デバイスや分流回路がこの機能を提供し得ることを認識されたい。例えば、PMOSFET、2つ以上の直列NMOSFET又はPMOSFET、接合電界効果トランジスタ(JFET)、トリガシリコン制御整流器(pnpn)、ダーリントン構造のバイポーラトランジスタ回路、あるいは、何らかの電気制御スイッチが、この分流機能を提供し得る。
具体的なMOSFETデバイスを例示しているが、集積回路のESD回路網9は、CMOS、バイポーラ、BICMOS、SOI及びバルク、SiGe等、他の種類の半導体プロセスによって形成される他の種類のトランジスタで実現し得ることを良く理解されたい。
動作時、分散型ESD保護回路網9は、回路網の動作に必要な複数の集積回路パッドセル及びバスを含む。複数のパッドセル20乃至22及び40のいずれかが、静電気放電電圧及び対応する電流を受ける。他のいずれかのパッドに印加されたVSSを基準としたESD現象と関連する回路動作は、I/Oパッド31におけるESD現象の場合について前に述べたものと同様である。ESD現象がI/Oパッド31から他のパッドに、例えば、VSSの代わりにVDD1パッド41に印加された場合、ESD回路網動作及び電流経路は、ダイオード42がVSSバス18から接地VDD1パッド41への帰還経路を提供することを除いて、同じである。従って、図2に示した回路網は、ESD保護回路網9における任意の2つのパッド間でのESD保護を可能にする。
図2のPMOSFET58は、平衡回路を形成し、また、通常の回路動作時及びESD現象直後の双方において、ブーストバス12及びESDバス14上の電圧を等しくするための方法を提供する。しかしながら、ブーストバス電圧12が、ESDバス電圧14を適切に越えるために、ESD現象時、PMOSFET58が非導通状態であることは、重要なことである。PMOSFET58の主な目的は、トリガ回路50が、第2ESD現象に正しく反応するように、第1ESD現象の後、ブーストバス12を放電してトリガ回路50をリセットすることである。第1ESD現象が検出され、完全に放散されると、ESDバス14の電圧は、低くなり、1ボルト付近になる可能性がある。しかしながら、PMOSFET58が無い場合、ブーストバス12上の電荷に対して、VSS用の同等の放散経路が存在しない。第1ESD現象の後、ブーストバス12は、相当の期間、電荷が残ったままである。このブーストバス12上の残留電荷は、単一の印加されたESD現象の場合には問題ではないが、集積回路が、短時間の間に、一連の急激なESD現象を受ける場合、問題になり得る。トリガ回路50は、ブーストバス12上の急激なdV/dt遷移を検出することによってESD現象を検出するようになっていることを思い起こされたい。ブーストバス12が、第1ESD現象の後、ある程度高い電位のままである場合、第2ESD現象の開始時のdV/dt遷移が結果的に小さいと、トリガ回路50を作動するのに適切でない場合がある。従って、ESD現象が終わった後、ESDバス14を介したVSSへのブーストバス12用の電荷抜き取り経路を提供するために、平衡回路(PMOSFET58)が必要である。通常のIC動作時、トリガバス16は、VSS電位付近に保持され、また、PMOSFET58は、ブーストバス12をESDバス14の電圧にする。第2のPMOSFET58の利点は、PMOSFET58内に存在するNウェルダイオードへの寄生P+ドレインによって提供される。I/Oパッド31上でのESD現象時、例えば、(ESDバス14を介する)このダイオードは、PMOSFET34を支援して、ブーストバス12電位を上昇させる。PMOSFET58は、これらの意図した機能を実現するために用いられる幾つかのデバイス又は回路の1つにすぎないことを理解されたい。
図3は、I/Oパッドセル22内に含まれるESD要素の1つの例を示すが、PMOSFET34のゲートを制御する回路の実施形態を含む。1つの形態において、図2の各I/Oパッドセルは、図3に示すように実現し得るが、この場合、各PMOSFET34のゲートは、同様に制御される。説明の便宜上、パッド31、ダイオード32、クランプNMOSFET36、ダイオード33、PMOSFET34、ブーストバス12、ESDバス14、トリガバス16及びVSSバス18等、図2で既に示した同じ要素は、図3で同様に付番する。PMOSFET60は、ESDバス14に接続されたゲートと、I/Oパッド31に接続されたそのソースへの電気体接続部と、ノード61における抵抗62の第1端子に接続されたドレインと、を有する。抵抗62の第2端子は、VSSバス18に接続されている。インバータ63の入力は、ノード61に接続され、また、インバータ63の出力は、PMOSFET34のゲートに接続されている。ダイオード64のアノードは、I/Oパッド31に接続され、また、ダイオード64のカソードは、ブーストバス12に接続されている。動作時、ダイオード64は、PMOSFET34に対応するNウェルダイオードへの寄生P+能動部として、又は別個の個別ダイオードとして実現し得る。
本実施形態において、PMOSFET34、ダイオード64、インバータ63、PMOSFET60及び抵抗62は、ESD現象時、I/Oパッド31がストレスを受けた際、I/Oパッド31電圧に又はその付近にブーストバス電圧を上昇させるプルアップ回路70を含む。この回路は、I/Oパッド31に印加された正のESD現象を検出し、また、PMOSFET34のゲートをロー状態にして、PMOSFET34を導通状態にする。ESD現象時、ストレスを受けたI/Oパッド電圧が、局所的なESDバス14電圧を越えてPMOSFET閾値電圧以上になる場合、ノード61は、I/Oパッド電圧付近まで引き上げられる。抵抗62は、PMOSFET60が容易にノード61をハイ状態にし得るように、ある程度抵抗を帯びるように寸法設定される。ノード61における入力がハイ状態又はアクティブ論理状態であると仮定すると、インバータ63は、PMOSFET34のゲートをロー状態にして、PMOSFET34において、低抵抗のソース−ドレイン間の導通が可能になる。通常の動作時、ノード61は、抵抗62によってVSSに保持され、インバータ63は、PMOSFET34のゲートをPMOSFET34を非導通状態にする電圧レベルに保持する。従って、プルアップ回路70は、I/Oパッド31上でのESD現象時、ブーストバス12をパッド電圧に又はその付近に上昇するように機能する。
他の数多くの回路要素を他の選択肢として用いて、図3のプルアップ回路70の機能を実行し得ることを良く理解されたい。例えば、PMOSFET34は、ゲート制御回路に適切な変更を行なったNMOSFETで置き換え得る。他の選択肢として、PMOSFET34は、完全に除去でき、ダイオード64だけをスタンドアロン構成で用い得る。スタンドアロンのダイオード64を用いる場合、ESD現象時、I/Oパッドからブーストバス12への約0.7Vの不可避のダイオード降下がある。これによって、ESD回路網の性能は減少するが、この時、プルアップ回路70は、ダイオード64だけを含む必要があるため、ESD回路網が簡素化されるという利点がある。また、バイポーラトランジスタ等の他のデバイスは、PMOSFET34の代わりに用い得る。
図1において述べた従来技術による分散型線路クランプ回路網には、各I/Oパッドセルに配置された複数の個々の個別線路クランプNMOSFETが含まれる。前述の通り、この方式は、I/Oパッドセル間に大きなギャップがある場合、又はパッドセル間のギャップがIC周辺部の周囲で大幅に変化する場合、設計における限界であり得る。このことは、段階的に増加するESDバス抵抗R1が、この間隔に比例するという事実による。I/Oパッドセル間のR1における何らかのばらつきは、I/OパッドのESD性能のばらつきに直接つながることを思い起こされたい。R1が最大であるところのIC周辺部領域においてI/Oパッドを適切に保護する場合、I/Oパッドセル毎のクランプNMOSFETチャネル幅は、最大値に固定されたR1がIC周辺部に存在する回路網を仮定したシミュレーションに基づき、通常、設定される。この手法には、複数の問題がある。第1に、I/Oパッドセルが近接して配置されるようなIC周辺部の領域では、クランプNMOSFETの寸法が大き過ぎるため、この手法は、非効率的である。第2に、1つのI/Oパッドから次のI/Oパッド間において、ESD性能に大きなばらつきがあり得る。第3に、この手法は、1つ又は複数のパッドセルが、隣接するパッドセルへのギャップが極めて大きい状態で配置される場合の用途では、適切に機能しない。この場合、これらのギャップに跨るESDバス区間に対応するR1は、分散型クランプ回路網を有効に利用するには大き過ぎることがある。これらの各問題を低減するための1つの解決策は、図1及び図2双方を参照して前に述べた通り、追加のクランプNMOSFETがI/Oパッドセル間のスペーサセルに配置された状態で、I/OパッドセルにおけるクランプNMOSFETを増やすことである。この手法は、有効であり得るが、通常、多数のスペーサセルを設計し、パッドセル間の複数の異なる間隔に対して配置することが必要である。従って、後述する実施形態は、更にESD設計をモジュール化し、必要に応じて、特有な設計要素を無くするようにする。
本発明の目的は、線路クランプNMOSFETが、I/Oパッドセルから物理的に分離され、また、IC周辺部の周囲において、ほぼ連続的且つ均等に分散して配置されるESD保護回路網を実現することにある。次に図4及び図5を参照して述べるように、この新しい回路網方式は、各I/Oパッドセルの領域において、線路クランプNMOSFETチャネル幅を最小にし、1つのI/Oパッドと次のI/Oパッド間におけるESD性能のばらつきを最小にし、また、あらゆる任意の間隔でIC周辺部の周囲にI/Oパッドセルを配置する自由度を最大にする。
図4は、ICにおける複数のI/O及び電源パッドセルを保護するためのESD回路網100を示す。I/Oパッドセル120及び121が示されている。ブーストバス110、ESDバス111、トリガバス112及びVSSバス113が、図2のESD保護回路網9と同様に設けられている。クランプNMOSFET150乃至159の回路網160は、ESDバス111の長手方向に沿って分散されている。各クランプNMOSFET150乃至159は、ESDバス111に接続されたドレインと、VSSバス113に接続されたソースと、トリガバス112に接続されたゲートとを有する。クランプNMOSFET150乃至159は、I/Oパッドセル120及び121に対応せず、代わりに、別個の分散型クランプNMOSFET回路網160に共にグループ化されていることに留意されたい。
一連の段階的に増加するバス抵抗R4は、各クランプNMOSFET150乃至159間でESDバス111に沿って示す。同様な一連の段階的に増加するバス抵抗R5及びR6は、それぞれトリガバス112及びブーストバス110に沿って示す。各抵抗(R4、R5、及びR6)は、2つの隣接したクランプNMOSFET150乃至159間におけるその区間の対応するバス用の有効分散寄生導線抵抗を表す。1つのこのようなクランプNMOSFETの物理的な中心から隣接するクランプNMOSFETの物理的な中心までのバス長は、例えば、これらの抵抗計算に用い得る。また、段階的に増加するバス抵抗は、VSSバス上に示すが、概略図を簡単にするために、図4には含まれていない。
ブーストバス110、ESDバス111、トリガバス112及びVSSバス113は、IC周辺部に沿って延在し、ESD保護回路網100を拡張し、図4のドットで示すように、線路クランプNMOSFET回路網160を含んでおり、IC周辺部に沿って設け得る他のパッドセル(図示せず)を含む。好適な実施形態において、4つのバスは、集積回路周辺部又は半導体チップの周辺部の周囲において連続的に、IC又はチップにおけるほとんど又は全てのパッドを保護すべきである。ESDバス111がいずれかの箇所で破断している場合、バスの端部付近に配置されたI/Oパッドセルを適切に保護するために、規模が大きい個別線路クランプNMOSFETが、バスの端部に又はその近辺に必要である。
図4のI/Oパッドセル120には、外部接続パッド131、ダイオード132(図4には図示せず、図5に示す)、ダイオード133、及びPMOSFET134が含まれる。理解し易いように図4には示していないが、ダイオード132は、VSSバスに接続されたアノード端子と、I/Oパッド131に接続されたカソード端子とを有する。ダイオード133は、I/Oパッド131に接続されたアノード端子と、ESDバス111に接続されたカソード端子とを有する。PMOSFET134は、I/Oパッドに接続されたドレインと、ブーストバス110に接続されたソースとを有する。PMOSFET134のゲートは、図3において述べた制御信号に接続されている。I/Oパッドセル120専用のクランプNMOSFETは、存在しないことに留意されたい。I/Oパッドセル120には示さないが、PMOSFET及びNMOSFET出力ドライバ、これらの出力ドライバ用の前置ドライバ回路、入力回路、及び通常のI/O動作に必要な他の回路部品がパッドセルに通常存在する。I/Oパッドセル121は、I/Oパッドセル120と同様である。これには、本実施形態では、図4に示すように、I/Oパッドセル120に在るものと同じ回路が含まれる。
図4には示さないが、ESD回路網100が正常に動作するために必要なものは、図2のトリガ回路50と同様な1つ又は複数のトリガ回路である。これらのトリガ回路は、オプションとして、I/Oパッドセル120乃至121、電源パッドセル、パッドセル間の専用スペーサセル、又は適切なスペースが利用可能な箇所であればどこにでも配置し得る。図2のPMOSFET58と同様なオプションとしての等化回路(図示せず)は、ブーストバス110とESDバス111との間に接続され、また、トリガバス112によってゲート制御され、通常の回路動作時及びESD現象の後、対応する電位にブーストバス110及びESDバス111を維持する。
図4に示すESD回路網100の主な特徴は、クランプNMOSFET回路網160であり、これは、I/Oパッドセル120乃至121とは別個に実現され、また、ある程度連続的且つ均等にIC周辺部に沿って分散された一列の個々のクランプNMOSFET150乃至159を含む。クランプNMOSFET回路網160を最も効率的に実現するためには、2つの重要な要件がある。第1の要件は、クランプNMOSFETチャネル幅をESDバス111の単位長さ当りほぼ一定にして、ESD回路網100が網羅するIC周辺部の領域上に回路網160を配置することである。この要件に対する唯一の例外は、前述の通り、ESDバス区間の両端部にあり、ここでは、通常、分散型線路クランプ回路網を適切に終端するための大型の個別クランプNMOSFETが必要である。クランプNMOSFET回路網160に対する第2の重要な要件は、個々のクランプNMOSFET150乃至159間のIC周辺部に沿って大きなギャップが存在しないことである。ESDバスの単位長さ当りクランプNMOSFET幅が一定であるという2つの要件を満たし、また、ESD回路網100が網羅するIC周辺部の領域上において、個々のクランプNMOSFET150乃至159間にギャップを有さないクランプNMOSFET回路網160は、“連続分流回路網“と定義し得る。この理想的な回路網は、2つの極めて重要な利点を提供することを示し得る。第1に、この回路網は、IC周辺部に沿うI/Oパッドセルの物理的な配置に関わらず、I/OパッドESD性能が確実に一定である。第2に、この回路網は、回路網全体において最小の総合成線路クランプNMOSFETチャネル幅を利用しつつ、全てのパッドにこの均等な保護を提供する。これらの理由により、この回路網は、分散型列のI/O及び電源パッドを保護するための分散型クランプNMOSFET回路網160の最も効率的で且つ可能な限り小型の実際的な実施例である。総合成線路クランプNMOSFETチャネル幅を最小限に抑えることに対する他の利点は、この回路網はまた、通常のIC動作時、回路網を介したオフ状態漏れを最小限に抑えるということである。
図5は、図4の概略図に対応する物理的なレイアウト図を示す。集積回路におけるESD回路網100の一部を示す。連続クランプNMOSFET回路網160は、連続分流回路網を形成するが、集積回路の縁部216に沿って配置される。本実施形態において、各クランプNMOSFET150乃至159は、同じであり、プロセス技術のデザインルールが許す限り密接して配置される。I/Oパッドセル120及び121は、クランプNMOSFET回路網160からIC縁部216に対向して配置される。2つのI/Oパッドセル間には、大きな物理的スペース即ちギャップが存在することに留意されたい。I/Oパッドセル120には、外部接続パッド(図示せず)、ダイオード132、図4に対応するダイオード133、及びプルアップ回路136が含まれる。プルアップ回路136は、図3を参照して述べたプルアップ回路70と同様、即ち同じであると仮定し、また、図4のPMOSFET134を含む。本実施形態において、I/Oパッドセル121は、I/Oパッドセル120と同じであると見なす。図4のブーストバス110、ESDバス111、トリガバス112、及びVSSバス113は、理解を容易にするために、図5には示していないが、1つの実施形態において、これらのバスは、クランプNMOSFET回路網160上、及び各I/Oパッドセルに含まれるESD要素132、133、及び136上の1つ又は複数の導線層に経路設定し得る。
クランプNMOSFET150乃至159は、I/Oパッドセルから分離しているため、例えば、クランプNMOSFET150を表すように単一のレイアウトセルを生成し、そして、この単一セルを一次元配列の同じ隣接する具体的なものに複製して、連続分流回路網(クランプNMOSFET回路網160)を形成することは簡単なことである。図5を参照して更に言えることは、個々の線路クランプNMOSFET150乃至159間におけるギャップを最小限に抑える又は無くすると、ICのレイアウト面積を節約し得る。このことは、全ての保護対象のI/O及び電源パッドに対する所定の目標のI/OパッドESD性能を満たすためには、クランプNMOSFET幅がESDバス111の単位長さ当り一定であることが必要であるという事実による。各個々のクランプNMOSFET150乃至159は、IC周辺部において一定の高さ及び幅を占有する。図5で分かるように、個々のクランプNMOSFET150乃至159を隣接させることによって、各クランプNMOSFET150乃至159の高さを最小限に抑えて、ESDバスの単位長さ当りの目標クランプNMOSFET幅を満足することが可能である。クランプNMOSFET150乃至159間にギャップが存在する場合、各クランプNMOSFETは高くなって、I/Oパッドs120及び121をIC縁部216から離す必要がある。このことは、総IC面積を増やし得るだけである。一定の高さを有するクランプNMOSFET150乃至159を設計することによって、また、図5に示すように、これらを隣接して配置することによって、可能な限り最小のレイアウト面積内にESD保護回路網100を実現することが可能である。図5に示す分散型クランプNMOSFET回路網160のレイアウト構成は、間隔を広く空けて配置されたI/Oパッドセルだけでなく、最小の間隔を空けて配置された規模の大きい一群のI/Oパッドセルに対して、同じように極めて良好に機能することに留意されたい。
図2の回路に優る図4及び図5におけるESD保護回路網100の利点は、いずれかストレスを受けたパッドの左右にある一群のI/Oパッドセルが、強固なESD性能を保証する上で必要でないことである。ESD保護回路網100において、クランプNMOSFET回路網160は、I/Oパッドセルとは別々に実装される。従って、単一のI/Oパッドセルだけが、ESDバス111のその部分に沿って配置されたとしても、そのI/Oパッドは、強固なESD性能を示す。更なる利点は、I/O設計者が、IC周辺部の任意の箇所にパッドセルを配置する最大の自由度を与えられ、パッドセル間の間隔が任意なことである。ダイオード132及び133、及びプルアップ回路136は、ESDバス、ブーストバス、及びVSSバス、また、IC周辺部に沿う任意の箇所の分散型線路クランプNMOSFET回路網160に接続し得る。この連続分流回路網において、この結果的に生じるI/OパッドESDの性能は、I/Oパッドセルの物理的な配置とは独立して、一定である。これらは、従来技術に優る重要な利点である。
従来技術による回路網設計に優るESD保護回路網100の更なる利点は、各I/Oパッドセル内におけるESD設計の簡素化である。各I/Oパッドセルにダイオード132、133及びプルアップ回路136だけを配置すると、複数の機能構成、物理的なアスペクト比、配線方式等で、一連のI/Oパッドセルを生成することが容易である。更に、異なる配線方式、目標ESD性能等に対して、複数のクランプNMOSFET回路網160の設計方法を創出すると都合がよい。これら一連の要素が利用可能である場合、任意のIC用途に対して、最適なI/O及びクランプNMOSFET回路網セルを独立に選択し得る。これによって、ESD回路網設計を大幅に簡素化し得る。
図5のレイアウトは、例示のみであり、数多くの改良を行ない得ることを理解されたい。例えば、線路クランプNMOSFET回路網160は、IC縁部216からI/Oパッドセルと対向する位置に移動し得る。線路クランプNMOSFET回路網160、I/Oパッドセル、又はI/Oパッドセル内のESD要素の数多くの他の物理的な配置が便利な場合もある。本実施形態の重要な側面は、理想的にはIC周辺部に沿って狭い幅で実装されるクランプNMOSFET回路網160が、I/Oパッドセル120乃至121から物理的に分離され、また、ある程度連続的且つ均等に分散された一列の個々のクランプNMOSFET150乃至159によって形成されることである。
図5のクランプNMOSFET156の一部について更に詳細なレイアウト例を図6に示す。ここで、クランプNMOSFET156は、並列に配線された複数の個々のNMOSFET区間又はフィンガとして実現されていることが分かる。各フィンガのチャネル幅寸法は、IC縁部216に垂直である。クランプNMOSFET156内にある単一のNMOSFETフィンガのドレイン、ソース及びゲート領域が、図6に示されている。このクランプNMOSFETフィンガのドレイン領域214は、導線ESDバス202の一部に接続されている。このクランプNMOSFETフィンガのソース領域210は、導線VSSバス206一部に接続されている。N+能動部への4つの四角形接点が、各フィンガのソース及びドレイン領域に示されている。このクランプNMOSFETフィンガのゲート領域208は、トリガバス204の一部に接続されている。多重フィンガクランプNMOSFET156は、ゲート領域間における交互に配置されたドレイン及びソース領域から形成されている。クランプNMOSFET156は、図6のドットで示すように、引き出されたフィンガの左右に追加のフィンガを含み得る。また、クランプNMOSFET156は、図6に示したものより少ない数のフィンガを含み得る。クランプNMOSFET回路網160の好適な形態において、クランプNMOSFET150乃至159は、同様な隣接する要素である。従って、各個々のクランプNMOSFET150乃至159におけるクランプNMOSFETフィンガの正確な数は、重要ではない。1つの実施形態において、クランプNMOSFET150乃至159は、クランプNMOSFET回路網160の全てを網羅する単一のクランプNMOSFETに統合し得る。この単一デバイスは、ESD回路網100によって保護されるIC周辺部領域の全て又は一部に渡って狭い範囲で延在し得る。例えば、図5において、この統合された単一デバイスは、2つのI/Oパッドセルが占有するIC周辺部の一部を跨ぐ。クランプNMOSFET回路網160の1つの例において、各クランプNMOSFETフィンガは、チャネル幅がわずか5.0ミクロンで引き出されている。従って、クランプNMOSFET回路網160を形成する単一のクランプNMOSFETフィンガの幅は、極めて狭く、従って、広いレイアウト面積を占有しない。また、本明細書において与えた大きさは、一例としてのみであり、変更し得る。ESDバスの単位長さ当りのクランプNMOSFETチャネル幅に対する調整は、クランプNMOSFET回路網160における各個々のクランプNMOSFETフィンガのチャネル幅を同時に調整することによって、行ない得ることに留意されたい。
図6のレイアウトは、例示のみであり、数多くの修正を行ない得ることを理解されたい。線路クランプNMOSFET156に接続するバスの実際の物理的な寸法及び配置は、図6に示したものと大幅に異なってよい。他の実施形態において、クランプNMOSFET156は、IC縁部216に垂直ではなく、並列に配置された1つ又は複数のクランプNMOSFETフィンガから形成し得る。
図2及び図4の分散型線路クランプ回路網間の相違に注目することは重要なことである。図2において述べた回路網において、クランプNMOSFETは、I/O及び電源パッドセル毎に配置される。パッドセル間に大きなギャップがある場合、他の線路クランプNMOSFETを、パッドセル間のスペーサセルにオプションとして配置し得る。慎重に実施すると、この手法は、理想に近い連続クランプNMOSFET回路網を生成し得る。しかしながら、一般的に、カスタムスペーサセルは、数が極めて多いと、パッドセルにおけるクランプNMOSFET間のギャップを最小限に抑えるように設計しなければならない。この手法によるESD設計には、追加要素が極めて数多く必要である。図4において述べた回路網において、ある程度連続的且つ均等に分散された線路クランプ回路網160は、I/O及び電源パッドセルから分離して形成されている。この回路網160は、例えば、図5の線路クランプNMOSFET150に対応する一次元配列の隣接した単純な単一線路クランプNMOSFET単位セルによって、容易に形成し得る。この単純な手法は、設計及びレイアウト時間、回路網の複雑さ、及び誤りの可能性を最小限に抑える。
前述の通り、図4及び図5を参照して述べた連続分流回路網は、複数のI/O及び電源パッドを等しく保護しなければならない分散型ESD回路網に対して、可能な限り最も効率的な構成である。この回路網は、回路網全体に必要な総合成クランプNMOSFETチャネル幅の観点と、この総回路網を実現するために必要なレイアウト面積の観点との双方から、最も効率的である。不定期に局所的にESDバスの単位長さ当りのクランプNMOSFETチャネル幅を大きくしたり、あるいは、不定期にクランプNMOSFETセル間にギャップを追加したりすると、全体的なESD性能は、改善しないことに留意されたい。このことは、ICのESD性能は、通常、最も弱いパッドからの試験結果によって制限されるという事実による。ESDに対して強固な更に幾つかのパッドは、公称の全体性能に影響を及ぼさない。同様に、これらの変更によって、完全で強固なESD回路網を実現するのに必要なレイアウト面積は、減少することはなく、増加し得る。つまり、本発明の本実施形態は、線路クランプNMOSFETがI/Oパッドセルから分離された、また、IC周辺部の周囲にほぼ連続的且つ均等に分散して配置された、単純で効率的なESD保護回路網及び物理的なレイアウト構成を提供する。
以上、全ての種類の回路に対するパッドセル保護に用い得るESD構成及び方法が提供されたことが認識されたと考える。この保護方式は、モジュール式であり、また、特別な配慮や設計要件無しで配置し得る均等なESD設計セル又はブロックとして設計し得る。本明細書において述べたESD保護回路は、より規模の小さい処理形状に合わせて大きさの設定が可能である。
本発明を実現する装置は、ほとんど当業者に公知の電子部品や回路を含むことから、本発明の根底にある概念を理解し納得するために、また、本発明の教示内容が不明瞭にならないようにあるいは教示内容から逸れないように、前述の通り必要と思われる以上の範囲で回路の細部については説明を行なっていない。
前述の明細書では、本発明について、具体的な実施形態を参照して述べた。しかしながら、当業者が認識されるように、前述の請求項に記載した本発明の範囲から逸脱することなく、様々な修正及び変更を行ない得る。例えば、本明細書に記載したトランジスタは、任意の処理技術で実現し得る。例示したMOSトランジスタの場合、導通タイプ及びそれに対応する信号伝達論理を変更することは、直ちに識別できる変更である。ある状況では、個別ダイオードを実装するよりも、元々存在する寄生ダイオードを用い得る。また、パッドセル内及びその周囲へのトリガ回路、プルアップ回路及びダイオードの物理的配置は、回路の機能に影響を及ぼすことなく、例示したものから変更し得る。従って、明細書及び図は、限定するものではなく、例示であると見なすものとし、従って、このような全ての修正は、本発明の範囲内に含まれるものとする。
効果、他の利点、及び問題に対する解決策は、具体的な実施形態に関して前に述べた。しかしながら、これら効果、他の利点、問題に対する解決策、及び何らかの効果、利点、又は解決策を生じせしめる又はより顕著にするあらゆる要素は、全ての請求項における重要な、必要な、又は本質的な特徴又は要素と解釈してはならない。本明細書に用いた、用語“備える(comprises)”、“備えている(comprising)”、又は他のあらゆるそれらの派生語は、非排他的包括を網羅するものとし、リスト化した要素を含むプロセス、方法、物品、又は装置は、それらの要素だけを含むだけではなく、明瞭にリスト化されていないもしくはこのようなプロセス、方法、物品、又は装置に固有な他の要素も含み得る。本明細書に用いた、用語“複数の”は、2つ又は3つ以上と定義する。本明細書に用いた、用語“他の”は、少なくとも第2以上と定義する。本明細書に用いた、用語“含んでいる(including)”及び/又は“有している”は、備えている(comprising)と定義する(即ち、排他的でない語)。本明細書に用いた、用語“結合されている”は、必ずしも直接的でなく、また、必ずしも機械的にではないが、“接続されている”と定義する。
従来技術によるESD保護回路を示す概略図。 本発明に基づく分散型強化ESD保護回路網を示す概略図。 図2のESDクランプ回路用の制御回路を示す概略図。 本発明に基づく分散型強化ESD保護回路網の他の実施形態を示す概略図。 本発明に基づく分散型強化ESD保護回路網のレイアウトを示す透視図。 本発明に基づく分流デバイスのレイアウトを示す透視図。

Claims (5)

  1. 静電気放電(ESD)回路を有する集積回路(9)であって、
    数のパッド(31)と、
    複数の第1ダイオード素子(33)であって、該複数の第1ダイオード素子(33)の各々は、前記複数のパッド(31)の各々及び第1バス(14)に接続されている、前記複数の第1ダイオード素子(33)と、
    複数の第2ダイオード素子(32)であって、該複数の第2ダイオード素子(32)の各々は、前記複数のパッド(31)の各々及び第2バス(18)に接続されている、前記複数の第2ダイオード素子(32)と、
    複数のプルアップ回路(34)であって、該複数のプルアップ回路(34)の各々は、前記複数のパッド(31)の各々及び第3バス(12)に接続されている、前記複数のプルアップ回路(34)と、
    複数の分流回路(36)であって、
    前記複数のパッド(31)の各々は、第1バス(14)を介して前記複数の分流回路(36)の少なくとも1つに接続され、
    前記複数の分流回路(36)は、前記複数のパッド(31)の少なくとも1つ上におけるESD現象に応答して並列に動作して前記複数のパッド(31)のESD保護を行い、
    前記複数の分流回路(36)の少なくとも1つが、第1バス(14)、第4バス(16)、及び第2バス(18)に接続される前記複数の分流回路(36)と、
    過渡検出回路を含むトリガ回路(50)であって、第3バス(12)を介して前記複数のパッド(31)の各々に接続された第1端子と、第4バス(16)を介して前記複数の分流回路(36)の少なくとも1つに接続された第2端子と、第2バス(18)に接続された第3端子とを有する前記トリガ回路(50)とを備える集積回路。
  2. 請求項1に記載の集積回路であって、
    前記複数の分流回路(36)の各々は、トランジスタを備え、前記トランジスタの制御電極は第4バス(16)に接続され、前記トランジスタの第1電流電極は第2バス(18)に接続され、前記トランジスタの第2電流電極は第1バス(14)に接続されている集積回路。
  3. 請求項1に記載の集積回路であって、第3バス(12)及び第1バス(14)は、平衡回路(58)を介して互いに接続されている集積回路。
  4. 請求項1に記載の集積回路であって、前記複数の分流回路(36)は、半導体チップ周辺部の一部を囲む連続分流回路網の一部である集積回路。
  5. 集積回路(9)において静電気放電(ESD)を補償するための方法であって、
    前記集積回路内に複数のパッド(31)を配置し、
    前記複数のパッド(31)の各々を各第1ダイオード素子(33)を介して第1バス(14)に接続し、
    前記複数のパッド(31)の各々を各第2ダイオード素子(32)を介して第2バス(18)に接続し、
    前記第2バス(18)及び第3バス(12)に、第4バス(16)に接続された出力部を有する過渡検出回路(50)を接続し、
    前記複数のパッド(31)の各々及び第3バス(12)に各々接続された複数のプルアップ回路(34)を物理的に配置し、
    複数の分流回路(36)を配置することを備え、複数の分流回路(36)のうちの少なくとも1つが第1バス(14)、第4バス(16)、及び第2バス(18)に接続される方法。
JP2004527629A 2002-08-09 2003-07-22 静電気放電保護回路及び動作方法 Expired - Fee Related JP4322806B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/216,336 US6724603B2 (en) 2002-08-09 2002-08-09 Electrostatic discharge protection circuitry and method of operation
PCT/US2003/022850 WO2004015776A2 (en) 2002-08-09 2003-07-22 Electrostatic discharge protection circuitry and method of operation

Publications (3)

Publication Number Publication Date
JP2005536046A JP2005536046A (ja) 2005-11-24
JP2005536046A5 JP2005536046A5 (ja) 2006-07-20
JP4322806B2 true JP4322806B2 (ja) 2009-09-02

Family

ID=31495040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004527629A Expired - Fee Related JP4322806B2 (ja) 2002-08-09 2003-07-22 静電気放電保護回路及び動作方法

Country Status (8)

Country Link
US (1) US6724603B2 (ja)
EP (1) EP1527481A2 (ja)
JP (1) JP4322806B2 (ja)
KR (1) KR101006825B1 (ja)
CN (1) CN100355072C (ja)
AU (1) AU2003254097A1 (ja)
TW (1) TWI282161B (ja)
WO (1) WO2004015776A2 (ja)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796034B2 (ja) * 1997-12-26 2006-07-12 株式会社ルネサステクノロジ レベル変換回路および半導体集積回路装置
US6947273B2 (en) * 2001-01-29 2005-09-20 Primarion, Inc. Power, ground, and routing scheme for a microprocessor power regulator
US7074687B2 (en) * 2003-04-04 2006-07-11 Freescale Semiconductor, Inc. Method for forming an ESD protection device
KR100532463B1 (ko) * 2003-08-27 2005-12-01 삼성전자주식회사 정전기 보호 소자와 파워 클램프로 구성된 입출력 정전기방전 보호 셀을 구비하는 집적 회로 장치
US6970336B2 (en) * 2003-10-10 2005-11-29 Freescale Semiconductor, Inc. Electrostatic discharge protection circuit and method of operation
TWI257165B (en) * 2003-10-28 2006-06-21 Sunplus Technology Co Ltd Electrostatic discharge protection device
DE102004004789B3 (de) * 2004-01-30 2005-03-03 Infineon Technologies Ag ESD-Schutzschaltkreis für eine elektronische Schaltung mit mehreren Versorgungsspannungen
WO2005122357A2 (en) * 2004-06-08 2005-12-22 Sarnoff Corporation Method and apparatus for providing current controlled electrostatic discharge protection
US7193883B2 (en) * 2004-06-17 2007-03-20 Infineon Technologies Ag Input return path based on Vddq/Vssq
US20060028776A1 (en) * 2004-08-09 2006-02-09 Michael Stockinger Electrostatic discharge protection for an integrated circuit
US20060268477A1 (en) * 2004-09-16 2006-11-30 Camp Benjamin V Apparatus for ESD protection
JP4195431B2 (ja) * 2004-10-07 2008-12-10 株式会社東芝 静電放電の検証方法および半導体装置の製造方法
US7292421B2 (en) * 2004-11-12 2007-11-06 Texas Instruments Incorporated Local ESD power rail clamp which implements switchable I/O decoupling capacitance function
US7242561B2 (en) * 2005-01-12 2007-07-10 Silicon Integrated System Corp. ESD protection unit with ability to enhance trigger-on speed of low voltage triggered PNP
US7446990B2 (en) * 2005-02-11 2008-11-04 Freescale Semiconductor, Inc. I/O cell ESD system
US7129545B2 (en) * 2005-02-24 2006-10-31 International Business Machines Corporation Charge modulation network for multiple power domains for silicon-on-insulator technology
US7301741B2 (en) * 2005-05-17 2007-11-27 Freescale Semiconductor, Inc. Integrated circuit with multiple independent gate field effect transistor (MIGFET) rail clamp circuit
US7859803B2 (en) * 2005-09-19 2010-12-28 The Regents Of The University Of California Voltage overload protection circuits
US7773355B2 (en) * 2005-09-19 2010-08-10 The Regents Of The University Of California ESD protection circuits for RF input pins
US7593202B2 (en) * 2005-11-01 2009-09-22 Freescale Semiconductor, Inc. Electrostatic discharge (ESD) protection circuit for multiple power domain integrated circuit
US7453676B2 (en) * 2005-11-16 2008-11-18 Huh Yoon J RC-triggered ESD power clamp circuit and method for providing ESD protection
US7385793B1 (en) * 2006-01-24 2008-06-10 Cypress Semiconductor Corporation Cascode active shunt gate oxide project during electrostatic discharge event
US7791851B1 (en) 2006-01-24 2010-09-07 Cypress Semiconductor Corporation Cascode combination of low and high voltage transistors for electrostatic discharge circuit
US7518846B1 (en) * 2006-02-23 2009-04-14 Maxim Integrated Products, Inc. ESD protection method for low-breakdown integrated circuit
US7808117B2 (en) * 2006-05-16 2010-10-05 Freescale Semiconductor, Inc. Integrated circuit having pads and input/output (I/O) cells
WO2007145307A1 (ja) * 2006-06-15 2007-12-21 Renesas Technology Corp. 半導体集積回路装置
US7589945B2 (en) * 2006-08-31 2009-09-15 Freescale Semiconductor, Inc. Distributed electrostatic discharge protection circuit with varying clamp size
JP2008091808A (ja) * 2006-10-05 2008-04-17 Oki Electric Ind Co Ltd 半導体集積回路
US7636226B2 (en) * 2006-12-06 2009-12-22 Semiconductor Components Industries, Llc Current protection circuit using multiple sequenced bipolar transistors
US7619862B2 (en) * 2007-02-22 2009-11-17 Smartech Worldwide Limited Electrostatic discharge protection circuit for high voltage input pad
KR20080090725A (ko) * 2007-04-05 2008-10-09 주식회사 하이닉스반도체 정전기 보호 회로
US20080310059A1 (en) * 2007-06-12 2008-12-18 Te-Chang Wu Esd protection design method and related circuit thereof
US7978454B1 (en) * 2007-08-01 2011-07-12 National Semiconductor Corporation ESD structure that protects against power-on and power-off ESD event
US7868620B2 (en) * 2007-08-29 2011-01-11 Seagate Technology Llc Data integrity management responsive to an electrostatic event
US7777998B2 (en) 2007-09-10 2010-08-17 Freescale Semiconductor, Inc. Electrostatic discharge circuit and method therefor
JP2009087962A (ja) * 2007-09-27 2009-04-23 Panasonic Corp 保護回路及び半導体集積回路
TWI401790B (zh) * 2007-10-12 2013-07-11 Sitronix Technology Corp 靜電放電防護電路
US7755871B2 (en) * 2007-11-28 2010-07-13 Amazing Microelectronic Corp. Power-rail ESD protection circuit with ultra low gate leakage
US7817387B2 (en) * 2008-01-09 2010-10-19 Freescale Semiconductor, Inc. MIGFET circuit with ESD protection
JP2010010419A (ja) * 2008-06-27 2010-01-14 Nec Electronics Corp 半導体装置
US8630071B2 (en) * 2009-03-24 2014-01-14 Broadcom Corporation ESD protection scheme for designs with positive, negative, and ground rails
JP5431791B2 (ja) * 2009-05-27 2014-03-05 ルネサスエレクトロニクス株式会社 静電気保護回路
TWI387093B (zh) * 2009-08-26 2013-02-21 Faraday Tech Corp 利用低壓元件實現的低漏電高壓電源靜電放電保護電路
US9520486B2 (en) 2009-11-04 2016-12-13 Analog Devices, Inc. Electrostatic protection device
US8987778B1 (en) 2009-12-16 2015-03-24 Maxim Integrated Products, Inc. On-chip electrostatic discharge protection for a semiconductor device
FR2955699B1 (fr) * 2010-01-26 2013-08-16 St Microelectronics Rousset Structure de protection d'un circuit integre contre des decharges electrostatiques
US8456784B2 (en) 2010-05-03 2013-06-04 Freescale Semiconductor, Inc. Overvoltage protection circuit for an integrated circuit
US8665571B2 (en) 2011-05-18 2014-03-04 Analog Devices, Inc. Apparatus and method for integrated circuit protection
US8432651B2 (en) 2010-06-09 2013-04-30 Analog Devices, Inc. Apparatus and method for electronic systems reliability
US8368116B2 (en) 2010-06-09 2013-02-05 Analog Devices, Inc. Apparatus and method for protecting electronic circuits
CN101944530B (zh) * 2010-08-27 2011-09-21 电子科技大学 一种用于集成电路的具有控制电路的esd保护电路
TWI420770B (zh) * 2010-10-12 2013-12-21 Innolux Corp 具有靜電放電保護的驅動器電路
US10199482B2 (en) 2010-11-29 2019-02-05 Analog Devices, Inc. Apparatus for electrostatic discharge protection
US9013842B2 (en) 2011-01-10 2015-04-21 Infineon Technologies Ag Semiconductor ESD circuit and method
US8466489B2 (en) 2011-02-04 2013-06-18 Analog Devices, Inc. Apparatus and method for transient electrical overstress protection
US8592860B2 (en) 2011-02-11 2013-11-26 Analog Devices, Inc. Apparatus and method for protection of electronic circuits operating under high stress conditions
US20120236447A1 (en) * 2011-03-14 2012-09-20 Mack Michael P Input-output esd protection
US8879220B2 (en) * 2011-04-20 2014-11-04 United Microelectronics Corp. Electrostatic discharge protection circuit
CN102263104B (zh) * 2011-06-16 2013-04-17 北京大学 Mos结构的esd保护器件
US8413101B2 (en) 2011-07-15 2013-04-02 Infineon Technologies Ag System and method for detecting parasitic thyristors in an integrated circuit
US8680620B2 (en) 2011-08-04 2014-03-25 Analog Devices, Inc. Bi-directional blocking voltage protection devices and methods of forming the same
US8730625B2 (en) 2011-09-22 2014-05-20 Freescale Semiconductor, Inc. Electrostatic discharge protection circuit for an integrated circuit
US8982517B2 (en) * 2012-02-02 2015-03-17 Texas Instruments Incorporated Electrostatic discharge protection apparatus
US8929041B2 (en) 2012-02-10 2015-01-06 Cardiac Pacemakers, Inc. Electrostatic discharge protection circuit
US8947841B2 (en) 2012-02-13 2015-02-03 Analog Devices, Inc. Protection systems for integrated circuits and methods of forming the same
FR2987496A1 (fr) 2012-02-29 2013-08-30 St Microelectronics Rousset Circuit de protection contre les decharges electrostatiques
US8829570B2 (en) 2012-03-09 2014-09-09 Analog Devices, Inc. Switching device for heterojunction integrated circuits and methods of forming the same
US8946822B2 (en) 2012-03-19 2015-02-03 Analog Devices, Inc. Apparatus and method for protection of precision mixed-signal electronic circuits
WO2013160713A1 (en) * 2012-04-26 2013-10-31 Freescale Semiconductor, Inc. Electronic device and method for maintaining functionality of an integrated circuit during electrical aggressions
US8610251B1 (en) 2012-06-01 2013-12-17 Analog Devices, Inc. Low voltage protection devices for precision transceivers and methods of forming the same
US8637899B2 (en) 2012-06-08 2014-01-28 Analog Devices, Inc. Method and apparatus for protection and high voltage isolation of low voltage communication interface terminals
CN103795049B (zh) * 2012-10-29 2017-03-01 台湾积体电路制造股份有限公司 使用i/o焊盘的esd保护电路
US9172242B2 (en) 2012-11-02 2015-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Electrostatic discharge protection for three dimensional integrated circuit
US8796729B2 (en) 2012-11-20 2014-08-05 Analog Devices, Inc. Junction-isolated blocking voltage devices with integrated protection structures and methods of forming the same
US9438030B2 (en) 2012-11-20 2016-09-06 Freescale Semiconductor, Inc. Trigger circuit and method for improved transient immunity
US9006781B2 (en) 2012-12-19 2015-04-14 Analog Devices, Inc. Devices for monolithic data conversion interface protection and methods of forming the same
US8860080B2 (en) 2012-12-19 2014-10-14 Analog Devices, Inc. Interface protection device with integrated supply clamp and method of forming the same
US9123540B2 (en) 2013-01-30 2015-09-01 Analog Devices, Inc. Apparatus for high speed signal processing interface
US9629294B2 (en) * 2012-12-28 2017-04-18 Texas Instruments Incorporated Packaged device for detecting factory ESD events
US9054520B2 (en) 2013-01-21 2015-06-09 Qualcomm Incorporated ESD clamping transistor with switchable clamping modes of operation
US9275991B2 (en) 2013-02-13 2016-03-01 Analog Devices, Inc. Apparatus for transceiver signal isolation and voltage clamp
US9362252B2 (en) 2013-03-13 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus of ESD protection in stacked die semiconductor device
US9130562B2 (en) * 2013-03-13 2015-09-08 Alpha And Omega Semiconductor Incorporated Active ESD protection circuit
US9076656B2 (en) 2013-05-02 2015-07-07 Freescale Semiconductor, Inc. Electrostatic discharge (ESD) clamp circuit with high effective holding voltage
US9147677B2 (en) 2013-05-16 2015-09-29 Analog Devices Global Dual-tub junction-isolated voltage clamp devices for protecting low voltage circuitry connected between high voltage interface pins and methods of forming the same
US9171832B2 (en) 2013-05-24 2015-10-27 Analog Devices, Inc. Analog switch with high bipolar blocking voltage in low voltage CMOS process
US9064938B2 (en) * 2013-05-30 2015-06-23 Freescale Semiconductor, Inc. I/O cell ESD system
US9466599B2 (en) * 2013-09-18 2016-10-11 Nxp B.V. Static current in IO for ultra-low power applications
US20150084702A1 (en) * 2013-09-26 2015-03-26 Triquint Semiconductor, Inc. Electrostatic discharge (esd) circuitry
JP2015076581A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 光送信回路、光送信装置、および、光伝送システム
TWI504090B (zh) 2013-11-06 2015-10-11 Realtek Semiconductor Corp 靜電放電防護電路
US9537308B2 (en) * 2013-12-03 2017-01-03 Lattice Semiconductor Corporation ESD protection using shared RC trigger
US9478529B2 (en) 2014-05-28 2016-10-25 Freescale Semiconductor, Inc. Electrostatic discharge protection system
US9484739B2 (en) 2014-09-25 2016-11-01 Analog Devices Global Overvoltage protection device and method
US9553446B2 (en) 2014-10-31 2017-01-24 Nxp Usa, Inc. Shared ESD circuitry
US9478608B2 (en) 2014-11-18 2016-10-25 Analog Devices, Inc. Apparatus and methods for transceiver interface overvoltage clamping
US10068894B2 (en) 2015-01-12 2018-09-04 Analog Devices, Inc. Low leakage bidirectional clamps and methods of forming the same
US10181719B2 (en) 2015-03-16 2019-01-15 Analog Devices Global Overvoltage blocking protection device
TWI572106B (zh) 2015-03-26 2017-02-21 瑞昱半導體股份有限公司 電流鏡式靜電放電箝制電路與電流鏡式靜電放電偵測器
US9673187B2 (en) 2015-04-07 2017-06-06 Analog Devices, Inc. High speed interface protection apparatus
CN107408533B (zh) * 2015-06-19 2022-02-08 瑞萨电子株式会社 半导体器件
US9831233B2 (en) 2016-04-29 2017-11-28 Analog Devices Global Apparatuses for communication systems transceiver interfaces
US10734806B2 (en) 2016-07-21 2020-08-04 Analog Devices, Inc. High voltage clamps with transient activation and activation release control
TWI604676B (zh) 2016-10-05 2017-11-01 瑞昱半導體股份有限公司 跨電源域的靜電放電防護電路
TWI604677B (zh) 2016-10-05 2017-11-01 瑞昱半導體股份有限公司 跨電源域的靜電放電防護電路
US10826290B2 (en) * 2016-12-23 2020-11-03 Nxp B.V. Electrostatic discharge (ESD) protection for use with an internal floating ESD rail
CN109216341B (zh) * 2017-06-30 2020-12-08 深圳市中兴微电子技术有限公司 一种静电放电保护电路
US10249609B2 (en) 2017-08-10 2019-04-02 Analog Devices, Inc. Apparatuses for communication systems transceiver interfaces
KR102435672B1 (ko) * 2017-12-05 2022-08-24 삼성전자주식회사 정전기 방전 보호 회로 및 이를 포함하는 집적 회로
US10528111B2 (en) 2017-12-11 2020-01-07 Micron Technology, Inc. Apparatuses and methods for indicating an operation type associated with a power management event
CN108880212B (zh) * 2018-06-30 2021-07-20 唯捷创芯(天津)电子技术股份有限公司 一种防浪涌的电源钳位电路、芯片及通信终端
US10388647B1 (en) * 2018-08-20 2019-08-20 Amazing Microelectronic Corp. Transient voltage suppression device
US10700056B2 (en) 2018-09-07 2020-06-30 Analog Devices, Inc. Apparatus for automotive and communication systems transceiver interfaces
US11387648B2 (en) 2019-01-10 2022-07-12 Analog Devices International Unlimited Company Electrical overstress protection with low leakage current for high voltage tolerant high speed interfaces
US11004843B2 (en) * 2019-01-18 2021-05-11 Nxp Usa, Inc. Switch control circuit for a power switch with electrostatic discharge (ESD) protection
DE102020104129A1 (de) * 2019-05-03 2020-11-05 Taiwan Semiconductor Manufacturing Co., Ltd. Logikpufferschaltung und verfahren
US10979049B2 (en) * 2019-05-03 2021-04-13 Taiwan Semiconductor Manufacturing Company Ltd. Logic buffer circuit and method
US11228174B1 (en) * 2019-05-30 2022-01-18 Silicet, LLC Source and drain enabled conduction triggers and immunity tolerance for integrated circuits
US11056879B2 (en) * 2019-06-12 2021-07-06 Nxp Usa, Inc. Snapback clamps for ESD protection with voltage limited, centralized triggering scheme
US11251176B2 (en) 2019-11-07 2022-02-15 Nxp B.V. Apparatus for suppressing parasitic leakage from I/O-pins to substrate in floating-rail ESD protection networks
CN112929248B (zh) * 2019-12-05 2023-04-25 杭州海康消防科技有限公司 二总线设备及二总线系统
CN111046621B (zh) * 2019-12-23 2021-08-10 北京大学 回滞类器件的esd行为级模型电路
TWI739667B (zh) * 2020-11-18 2021-09-11 瑞昱半導體股份有限公司 具有延長放電時間機制的靜電防護電路
EP4200911A1 (en) 2020-12-04 2023-06-28 Amplexia, LLC Ldmos with self-aligned body and hybrid source
US11916376B2 (en) * 2021-04-29 2024-02-27 Mediatek Inc. Overdrive electrostatic discharge clamp
TWI831155B (zh) * 2022-03-21 2024-02-01 大陸商常州欣盛半導體技術股份有限公司 提升驅動裝置靜電放電能力的方法及對應驅動裝置
US20230307440A1 (en) * 2022-03-23 2023-09-28 Nxp B.V. Double io pad cell including electrostatic discharge protection scheme with reduced latch-up risk

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295176A (en) 1979-09-04 1981-10-13 Bell Telephone Laboratories, Incorporated Semiconductor integrated circuit protection arrangement
JPH02113623A (ja) * 1988-10-21 1990-04-25 Sharp Corp 集積回路の静電気保護回路
EP0435047A3 (en) * 1989-12-19 1992-07-15 National Semiconductor Corporation Electrostatic discharge protection for integrated circuits
US5287241A (en) * 1992-02-04 1994-02-15 Cirrus Logic, Inc. Shunt circuit for electrostatic discharge protection
JP2589938B2 (ja) * 1993-10-04 1997-03-12 日本モトローラ株式会社 半導体集積回路装置の静電破壊保護回路
US5361185A (en) * 1993-02-19 1994-11-01 Advanced Micro Devices, Inc. Distributed VCC/VSS ESD clamp structure
US5311391A (en) * 1993-05-04 1994-05-10 Hewlett-Packard Company Electrostatic discharge protection circuit with dynamic triggering
US5561577A (en) 1994-02-02 1996-10-01 Hewlett-Packard Company ESD protection for IC's
US5440162A (en) * 1994-07-26 1995-08-08 Rockwell International Corporation ESD protection for submicron CMOS circuits
US5610790A (en) * 1995-01-20 1997-03-11 Xilinx, Inc. Method and structure for providing ESD protection for silicon on insulator integrated circuits
US5559659A (en) * 1995-03-23 1996-09-24 Lucent Technologies Inc. Enhanced RC coupled electrostatic discharge protection
EP0740344B1 (en) * 1995-04-24 2002-07-24 Conexant Systems, Inc. Method and apparatus for coupling multiple independent on-chip Vdd busses to an ESD core clamp
JP2830783B2 (ja) * 1995-07-18 1998-12-02 日本電気株式会社 半導体装置
US5721656A (en) * 1996-06-10 1998-02-24 Winbond Electronics Corporation Electrostatc discharge protection network
US5825600A (en) * 1997-04-25 1998-10-20 Cypress Semiconductor Corp. Fast turn-on silicon controlled rectifier (SCR) for electrostatic discharge (ESD) protection
US5991134A (en) * 1997-06-19 1999-11-23 Advanced Micro Devices, Inc. Switchable ESD protective shunting circuit for semiconductor devices
JPH1187727A (ja) * 1997-09-12 1999-03-30 Mitsubishi Electric Corp 半導体装置
US6002156A (en) * 1997-09-16 1999-12-14 Winbond Electronics Corp. Distributed MOSFET structure with enclosed gate for improved transistor size/layout area ratio and uniform ESD triggering
US6091593A (en) * 1997-10-22 2000-07-18 Winbond Electronics Corp. Early trigger of ESD protection device by a negative voltage pump circuit
US5946177A (en) * 1998-08-17 1999-08-31 Motorola, Inc. Circuit for electrostatic discharge protection
US6385021B1 (en) * 2000-04-10 2002-05-07 Motorola, Inc. Electrostatic discharge (ESD) protection circuit

Also Published As

Publication number Publication date
KR20050026915A (ko) 2005-03-16
AU2003254097A1 (en) 2004-02-25
KR101006825B1 (ko) 2011-01-12
JP2005536046A (ja) 2005-11-24
US6724603B2 (en) 2004-04-20
CN100355072C (zh) 2007-12-12
US20040027742A1 (en) 2004-02-12
TW200418164A (en) 2004-09-16
TWI282161B (en) 2007-06-01
WO2004015776A2 (en) 2004-02-19
WO2004015776A3 (en) 2005-01-27
CN1628385A (zh) 2005-06-15
EP1527481A2 (en) 2005-05-04

Similar Documents

Publication Publication Date Title
JP4322806B2 (ja) 静電気放電保護回路及び動作方法
TWI425732B (zh) 積體電路及輸入/輸出(i/o)單元庫以及用於在一積體電路處補償靜電放電(esd)之方法
US6385021B1 (en) Electrostatic discharge (ESD) protection circuit
KR101262066B1 (ko) I/o 셀 esd 시스템
KR101110942B1 (ko) 정전기 방전 보호 회로 및 동작 방법
US7394631B2 (en) Electrostatic protection circuit
US7738222B2 (en) Circuit arrangement and method for protecting an integrated semiconductor circuit
US7291888B2 (en) ESD protection circuit using a transistor chain
US8493698B2 (en) Electrostatic discharge protection circuit
US20080197415A1 (en) Electrostatic discharge protection circuit having multiple discharge paths
US7184253B1 (en) ESD trigger circuit with injected current compensation
WO2006033993A1 (en) Apparatus for esd protection
TW201440361A (zh) 箝位電路及用於電過應力/突波/國際電機工業委員會之裝置
US7746610B2 (en) Device for discharging static electricity
US20070247771A1 (en) Analog Input/Output Circuit with ESD Protection
US8130481B2 (en) Electrostatic discharge trigger circuits for self-protecting cascode stages
US6785109B1 (en) Technique for protecting integrated circuit devices against electrostatic discharge damage
US20050057872A1 (en) Integrated circuit voltage excursion protection
KR100532384B1 (ko) 반도체 장치용 esd 보호회로
JPH04109664A (ja) 静電気保護回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4322806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees