JP4302952B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4302952B2
JP4302952B2 JP2002254672A JP2002254672A JP4302952B2 JP 4302952 B2 JP4302952 B2 JP 4302952B2 JP 2002254672 A JP2002254672 A JP 2002254672A JP 2002254672 A JP2002254672 A JP 2002254672A JP 4302952 B2 JP4302952 B2 JP 4302952B2
Authority
JP
Japan
Prior art keywords
gate electrode
impurities
source
type
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002254672A
Other languages
English (en)
Other versions
JP2004095835A (ja
Inventor
成生 佐藤
正隆 加勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2002254672A priority Critical patent/JP4302952B2/ja
Priority to TW092123169A priority patent/TWI237292B/zh
Priority to US10/648,487 priority patent/US7060578B2/en
Priority to CNB031555594A priority patent/CN1256775C/zh
Priority to KR1020030060160A priority patent/KR100875590B1/ko
Publication of JP2004095835A publication Critical patent/JP2004095835A/ja
Priority to US11/071,119 priority patent/US20070001245A1/en
Application granted granted Critical
Publication of JP4302952B2 publication Critical patent/JP4302952B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3215Doping the layers
    • H01L21/32155Doping polycristalline - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ゲート、ソース/ドレインを有する半導体装置及びその製造方法に関し、特にCMOSトランジスタに適用して好適である。
【0002】
【従来の技術】
通常、CMOSトランジスタにおいて、nチャネルのMOSトランジスタ(nMOSトランジスタ)には、多結晶シリコンにn型不純物がドープされてなるゲート電極が用いられている。これは、しきい値電圧を所望の値に制御し易いためである。しかしながら、このゲート電極に正の電圧を印加してnMOSトランジスタをオン状態にすると、ゲート電極のゲート絶縁膜との界面近傍で、多結晶シリコンのバンドが曲がり空乏層が形成される。このように空乏層が形成させると、ゲート容量が低減してオン電流が減少する。ゲート容量の減少を抑えるには、ゲート絶縁膜との界面近傍におけるゲート電極中のn型不純物濃度を高める必要がある。
【0003】
このことは、pチャネルのMOSトランジスタ(pMOSトランジスタ)においても同様であり、多結晶シリコンにp型不純物がドープされてなるゲート電極が用いられており、オン状態でゲート容量の低下を抑えるには、ゲート絶縁膜との界面近傍におけるゲート電極中のp型不純物濃度を高める必要がある。
【0004】
【発明が解決しようとする課題】
上述のようなnMOS,pMOSトランジスタを作製するには、ソース/ドレインを形成する際に、マスクとなるゲート電極にも同時に不純物をイオン注入する手法が採られている。
【0005】
ゲート容量の減少を抑えるには、ゲート空乏化を抑制することを要し、このためには、ソース/ドレインとゲート電極に同時に導入する不純物のドーズ量を増加させる必要がある。しかしながら、これによりゲート電極中の不純物濃度は高くなるが、ソース/ドレインの不純物濃度も高くなり、ソース/ドレイン域の不純物が横方向に拡がり、短チャネル効果の劣化を招くという問題がある。
【0006】
この問題に対処する一手法として、ゲート電極の高さを低く形成することにより、ゲート電極中に導入される不純物の量は同じであっても、不純物濃度を高めることは可能である。ところがこの場合、ゲート電極が低くなり過ぎると、当該ゲート電極に注入された不純物がチャネルに突き抜け、しきい値電圧が変動するという問題が発生する。このため、ゲート電極の高さを低くする手法には限界がある。
【0007】
そこで本発明は、ソース/ドレインの不純物濃度を増加させることなくゲート電極中の不純物濃度を高め、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高い半導体装置及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、鋭意研究・検討を行った結果、以下に示す発明の諸態様に想到した。
【0009】
本発明の半導体装置の製造方法は、半導体基板の上方にゲート電極をパターン形成する第1の工程と、前記ゲート電極の両側面のみを覆うサイドウォールを形成する第2の工程と、前記サイドウォールの上部位を除去し、前記ゲート電極の両側面の一部を露出させる第3の工程と、前記サイドウォールの上部位が除去されて露出した、前記ゲート電極の両側面の一部前記半導体基板の表面に対して斜めに、方向を変えて複数回不純物を導入する第4の工程とを含む。
【0010】
本発明の半導体装置の製造方法は、半導体基板の上方にゲート電極をパターン形成する第1の工程と、前記ゲート電極を露出させる開口を有するマスクを形成する第2の工程と、前記開口に露出した前記ゲート電極に前記半導体基板の表面に対して斜めに、方向を変えて複数回不純物を導入する第3の工程とを含み、前記第2の工程において、前記マスクの前記開口における前記ゲート電極のゲート長方向の寸法を、前記ゲート電極の両側におけるソース/ドレイン形成部位を前記斜めからの不純物導入から保護する寸法に形成する。
【0012】
【発明の実施の形態】
−本発明の基本骨子−
先ず、本発明の主要構成をなす基本骨子について説明する。
本発明者は、前記課題を解決するために、ゲート電極の不純物濃度がソース/ドレインの不純物濃度よりも高い構成の半導体装置に想到し、これを実現する具体的手法として、以下で説明する製造方法を案出した。
【0013】
(第1の手法)
第1の手法の主要原理を図1に示す。
先ず、ゲート電極102の両側面にサイドウォール103を形成する。このとき、半導体基板101のゲート電極102及びサイドウォール103の両側がそれぞれソース/ドレイン形成領域(S/D領域)104となる。
【0014】
続いて、サイドウォール103をオーバーエッチングして、ゲート電極102の両側面の上部位を露出させる。このとき、ゲート電極102は、その上面から両側面の上部位にかけて表面が露出した状態とされる。
【0015】
そして、ソース/ドレインと同一導電型の不純物を半導体基板101の表面に対して斜めに注入し、ゲート電極102の露出面に不純物を導入する。
このとき、ゲート電極102には上面及び一側面の上部位の双方に、不純物導入がなされる(図中、102aで示す)。多結晶シリコン中では不純物の拡散が速いので、その後のアニール処理により不純物は素早く拡散し、多結晶シリコン中の不純物分布は均一になる。即ちこのとき、ほぼ2回分のイオン注入に相当し、垂直方向のイオン注入の場合に比べて、斜め方向のイオン注入を追加することにより、ゲート絶縁膜界面の不純物濃度が高くなる。
【0016】
これに対して、S/D領域104にはその一方に1回分の不純物導入がなされ(図中、104aで示す)、他方には導入されないか、或いは若干導入される(この場合を、図中、104bで示す)ものの、殆ど影響はない。
【0017】
従って、この斜めイオン注入を方向を変えて複数回(例えば、ゲート電極102のゲート幅方向(以下、ゲート長に対して垂直方向と呼ぶ。)に対向する2方向に1回ずつ、ゲート長方向(以下、ゲート長に対して水平方向と呼ぶ。)に対向する2方向に1回ずつ)行うことにより、ゲート電極102の不純物濃度をS/D領域104の不純物濃度より所望に高く制御できる。
【0018】
(第2の手法)
第2の手法の主要原理を図2に示す。
ここでは、ゲート電極102を露出させ、S/D領域104を前記斜めイオン注入から保護(防御)する寸法の開口105aを有するレジストマスク105を形成し、この状態で前記斜めイオン注入を行う。この場合も、方向を変えて複数回の前記斜めイオン注入を実行する。
【0019】
このとき、ゲート電極102には上面及び一側面の上部位の双方に、不純物導入がなされる(図中、102aで示す)。多結晶シリコン中では不純物の拡散が速いので、その後のアニール処理により不純物は素早く拡散し、多結晶シリコン中の不純物分布は均一になる。即ちこのとき、ほぼ2回分のイオン注入に相当し、垂直方向のイオン注入の場合に比べて、斜め方向のイオン注入を追加することにより、ゲート絶縁膜界面の不純物濃度が高くなる。
【0020】
これに対して、一対のS/D領域104はレジストマスク105により保護されているため、不純物導入が防止される。
【0021】
このように、ゲート電極102中の不純物濃度を高めても、S/D領域104には影響せず不純物濃度は増加しないため、確実に短チャネル効果の悪化が抑止される。
【0022】
なおこの場合、図3に示すように、第1の手法のように、サイドウォール103をオーバーエッチングしてゲート電極102の両側面の上部位を露出させた後、第2の手法のように、S/D領域104を前記斜めイオン注入から保護(防御)する寸法の開口105aを有するレジストマスク105を形成し、この状態で前記斜めイオン注入を行うようにしても良い。これにより、更に確実にゲート電極102のみに不純物を導入することができる。
【0023】
−具体的な諸実施形態−
上述した本発明の基本骨子を踏まえ、本発明をCMOSトランジスタに適用した具体的な諸実施形態について図面を参照しながら詳細に説明する。
【0024】
(第1の実施形態)
図4〜図8は、第1の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
先ず、図4(a)に示すように、p型のシリコン半導体基板1の素子分離領域に溝を形成し、当該溝内にシリコン酸化物等の絶縁物を埋め込み、CMP法等により表面を平坦化して、STI(Shallow Trench Isolation)素子分離構造2を形成する。これにより、半導体基板1上で素子活性領域、ここではn型MOS領域11及びp型MOS領域12が画定される。
【0025】
続いて、図4(b)に示すように、p型MOS領域12を覆うレジストマスク13を形成し、n型MOS領域11にp型不純物をイオン注入し、nウェル3及び基板表層にチャネルストッパー層(不図示)を形成する。
【0026】
続いて、レジストマスク13を灰化処理等により除去した後、図4(c)に示すように、n型MOS領域11を覆うレジストマスク14を形成し、p型MOS領域12にn型不純物をイオン注入し、pウェル4及び基板表層にチャネルストッパー層(不図示)を形成する。
【0027】
続いて、レジストマスク14を灰化処理等により除去した後、図4(d)に示すように、ウェル3,4及びチャネルストッパー層の不純物導入により生じた欠陥を回復させるため、半導体基板1をアニール処理(RTA(Rapid Thermal Anneal)、1000℃、3秒)する。
【0028】
続いて、図5(a)に示すように、熱酸化法により半導体基板1の表面に薄いゲート絶縁膜5を形成した後、図5(b)に示すように、CVD法によりノンドープの多結晶シリコン膜15を堆積する。
【0029】
続いて、図5(c)に示すように、多結晶シリコン膜15及びゲート絶縁膜5をフォトリソグラフィー及びこれに続くドライエッチングによりパターニングし、n型,p型MOS領域11,12のゲート絶縁膜5上にそれぞれ高さが100nm程度、ゲート長が50nm程度のゲート電極6a,6bをそれぞれ形成する。ここで、多結晶シリコン膜15に事前に不純物を導入しないのは、n型不純物を導入した多結晶シリコンとp型不純物を導入した多結晶シリコンとではエッチングレートが異なり、n,pMOSトランジスタの各ゲート電極を同時に形成することが難しいためである。
【0030】
続いて、図5(d)に示すように、p型MOS領域12を覆うレジストマスク16を形成し、n型MOS領域11にn型不純物、ここでは砒素(As)を加速エネルギーが5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、p型不純物、ここではホウ素(B)を加速エネルギーが10keV、ドーズ量が8×1012/cm2の条件で入射角30°で4方向からイオン注入し、n型エクステンション層7a及びp型ポケット層8aを形成する。
【0031】
続いて、レジストマスク16を灰化処理等により除去した後、図6(a)に示すように、n型MOS領域11を覆うレジストマスク17を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが0.5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、n型不純物、ここでは砒素(As)を加速エネルギーが50keV、ドーズ量が6×1012/cm2の条件で入射角30°で4方向からイオン注入し、p型エクステンション層7b及びn型ポケット層8bを形成する。
【0032】
続いて、図6(b)に示すように、レジストマスク17を灰化処理等により除去した後、エクステンション層7a,7b及びポケット層8a,8bの不純物導入により生じた欠陥を回復させるため、半導体基板1をアニール処理 (RTA、1000℃、1秒) する。
【0033】
続いて、図7(a)に示すように、CVD法により全面にシリコン酸化膜(不図示)を堆積し、これを全面異方性エッチングすることにより、ゲート電極6a,6bの両側面のみにシリコン酸化膜を残し、最大幅が80nm程度のサイドウォール9a,9bをそれぞれ形成する。
【0034】
続いて、図7(b)に示すように、p型MOS領域12を覆うレジストマスク18を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが8keV、ドーズ量が4.5×1015/cm2、注入角度(基板表面に対して垂直方向の場合を0°となる。)が0°の条件でイオン注入し、n型ソース/ドレイン10aを形成する。このとき同時に、ゲート電極6aにもリンがイオン注入される。ここで、リンのドーズ量は、通常のn型ソース/ドレイン形成時におけるドーズ量よりも小値(例えば、6×1015/cm2)に制御されている。
【0035】
続いて、レジストマスク18を灰化処理等により除去した後、図7(c)に示すように、n型MOS領域11を覆うレジストマスク19を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが4keV、ドーズ量が2.25×1015/cm2、注入角度が0°の条件でイオン注入し、p型ソース/ドレイン10bを形成する。このとき同時に、ゲート電極6bにもホウ素がイオン注入される。ここで、ホウ素のドーズ量は、通常のp型ソース/ドレイン形成時におけるドーズ量よりも小値(例えば、3×1015/cm2)に制御されている。
【0036】
続いて、レジストマスク19を灰化処理等により除去した後、図7(d)に示すように、サイドウォール9a,9bをドライエッチング(オーバーエッチング)し、ゲート電極6a,6bの両側面の上部位を50nm程度それぞれ露出させる。このとき、ゲート電極6a,6bは、その上面から両側面の上部位にかけて表面が露出した状態とされ、サイドウォール9a,9bは50nm程度の高さに調節される。
【0037】
この場合、ゲート電極6a,6bに後述する斜めからのイオン注入を行うときに、サイドウォール9a,9bのエッチング量が多いほど、ゲート電極6a,6bに導入される不純物の量は増える。しかし、サイドウォール9a,9bのエッチング量が多すぎると、ソース/ドレイン10a,10bに同時に導入される不純物がチャネル方向に拡がり過ぎたり、後の工程でソース/ドレイン10a,10bに形成されるシリサイドとゲート電極6a,6bに形成されるシリサイドとが短絡し易くなる。このため、サイドウォール9a,9bのエッチング量には最適範囲があり、その1つのエッチング量が50nmである。
【0038】
また、サイドウォール9a,9bとともにSTI素子分離構造2がエッチングすれることを抑止するため、サイドウォール9a,9bのエッチングレートがSTI素子分離構造2のエッチングレートよりも大きくなるように、サイドウォール9a,9bとSTI素子分離構造2を異なる材質で形成することが好ましい。例えば、STI素子分離構造2にはHDP(High Density Plasma)により形成されたプラズマ酸化膜を、サイドウォールにはTEOSからなる酸化膜をそれぞれ用いる。
【0039】
続いて、図8(a)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)及びサイドウォール9aから露出する両側面(高さ50nm))に不純物を導入する。
【0040】
具体的には、p型MOS領域12を覆うレジストマスク21を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して水平方向(互いに対向する2方向)が2回、垂直方向(互いに対向する2方向)が2回)イオン注入を実行する。この4回のイオン注入を行う様子を図9の概略平面図に示す。
【0041】
図8(a)では、ゲート長に対して水平方向であり注入角度が45°のイオン注入を例示している。この場合、ゲート電極6aにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入が、一方のn型ソース/ドレイン10aには注入角度が0°の場合の1回分に相当する不純物導入がなされる。このとき、他方のn型ソース/ドレイン10aはゲート電極6aの影になる位置に存するため、不純物導入されないか、或いは殆ど影響を与えない程度の不純物導入がなされることになる。
【0042】
また、便宜上図示は省略するが、ゲート長に対して垂直方向であり注入角度が45°の1回のイオン注入により、ゲート電極6aには注入角度が0°の場合の1回分に相当する不純物導入が、各n型ソース/ドレイン10aにもそれぞれ注入角度が0°の場合の1回分に相当する不純物導入がなされる。
【0043】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6aには、当初の4.5×1015/cm2に加えて注入角度が0°の場合(5×1014/cm2)の6回分に相当する不純物導入がなされ、合計で7.5×1015/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、当初の4.5×1015/cm2に加えて注入角度が0°の場合の3回分に相当する不純物導入がなされ、合計で6×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のリンがイオン注入される。
【0044】
なお、上述したn型ソース/ドレイン10a形成時の始めのイオン注入(注入角度が0°のイオン注入)において、斜めイオン注入における加速エネルギーを8keVとしたのに対して、斜め注入のエネルギーを4keVと低く設定した理由は、ゲート電極6aに注入される不純物が横方向に突き抜けること、サイドウォール10a及びゲート電極6aを不純物が突き抜けて半導体基板1内に侵入すること、及びn型ソース/ドレイン10aに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0045】
続いて、図8(b)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)及びサイドウォール9bから露出する両側面(高さ50nm))に不純物を導入する。
【0046】
具体的には、レジストマスク21を灰化処理等により除去した後、n型MOS領域11を覆うレジストマスク22を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して水平方向(互いに対向する2方向)が2回、垂直方向(互いに対向する2方向)が2回)イオン注入を実行する。
【0047】
図8(b)では、ゲート長に対して水平方向であり注入角度が45°のイオン注入を例示している。この場合、ゲート電極6bにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入が、一方のp型ソース/ドレイン10bには注入角度が0°の場合の1回分に相当する不純物導入がなされる。このとき、他方のp型ソース/ドレイン10bはゲート電極6bの影になる位置に存するため、不純物導入されないか、或いは殆ど影響を与えない程度の不純物導入がなされることになる。
【0048】
また、便宜上図示は省略するが、ゲート長に対して垂直方向であり注入角度が45°の1回のイオン注入により、ゲート電極6bには注入角度が0°の場合の1回分に相当する不純物導入が、各p型ソース/ドレイン10bにはそれぞれ注入角度が0°の場合の1回分に相当する不純物導入がなされる。
【0049】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6bには、当初の2.25×1015/cm2に加えて注入角度が0°の場合(2.5×1014/cm2)の6回分に相当する不純物導入がなされ、合計で3.75×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、当初の2.25×1015/cm2に加えて注入角度が0°の場合の3回分に相当する不純物導入がなされ、合計で3×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のホウ素がイオン注入される。
【0050】
なお、上述したp型ソース/ドレイン10b形成時の始めのイオン注入(注入角度が0°のイオン注入)において、斜めイオン注入における加速エネルギーを4keVとしたのに対して、斜め注入のエネルギーを2keVと低く設定した理由は、ゲート電極6bに注入される不純物が横方向に突き抜けること、サイドウォール10b及びゲート電極6bを不純物が突き抜けて半導体基板1内に侵入すること、及びp型ソース/ドレイン10bに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0051】
続いて、レジストマスク22を灰化処理等により除去した後、図7(d)に示すように、ゲート電極6a,6b及びソース/ドレイン10a,10bの不純物導入により生じた欠陥を回復させ、更に不純物を活性化させるため、半導体基板1をアニール処理 (RTA、1030℃、1秒) する。
【0052】
続いて、図8(d)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0053】
しかる後、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0054】
以上説明したように、本実施形態によれば、ゲート電極6a,6bの側面上部位を露出させるサイドウォール9a,9bを形成し、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも25%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0055】
(変形例)
ここで、本実施形態の変形例について説明する。
本発明は、本実施形態で説明したイオン注入の態様に限定されるものではなく、ソース/ドレインの不純物濃度を増加させることなくゲート電極の不純物濃度をこれよりも高くできる条件であれば、ソース/ドレインの1回目のイオン注入や斜めイオン注入の条件を適宜設定することができる。
【0056】
例えば、この変形例では、図10に示すように、n型ソース/ドレイン10a形成時における始めのリンのイオン注入を加速エネルギーが8keV、ドーズ量が5.5×1015/cm2、注入角度が0°の条件で行い、リンの斜めイオン注入をゲート長に対して水平方向に2回、それぞれ加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件で行う。
【0057】
前記2回のイオン注入により、下記の表1に示すように、ゲート電極6aには、当初の5.5×1015/cm2に加えて注入角度が0°の場合(5×1014/cm2)の4回分に相当する不純物導入がなされ、合計で7.5×1015/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、当初の5.5×1015/cm2に加えて注入角度が0°の場合の1回分に相当する不純物導入がなされ、合計で6×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のリンがイオン注入される。
【0058】
また同様に、p型ソース/ドレイン10b形成時における始めのホウ素のイオン注入を加速エネルギーが4keV、ドーズ量が2.75×1015/cm2、注入角度が0°の条件で行い、ホウ素の斜めイオン注入をゲート長に対して水平方向に2回、それぞれ加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件で行う。
【0059】
前記2回のイオン注入により、下記の表1に示すように、ゲート電極6bには、当初の2.75×1015/cm2に加えて注入角度が0°の場合(2.5×1014/cm2)の4回分に相当する不純物導入がなされ、合計で3.75×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、当初の2.75×1015/cm2に加えて注入角度が0°の場合の1回分に相当する不純物導入がなされ、合計で3×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のホウ素がイオン注入される。
【0060】
(第2の実施形態)
図11は、第2の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図8(b)の各工程を経て、n型MOS領域11では、ゲート電極6aのリンのドーズ量を7.5×1015/cm2、n型ソース/ドレイン10aのリンのドーズ量を6×1015/cm2に制御し、p型MOS領域12では、ゲート電極6bのホウ素のドーズ量を3.75×1015/cm2、n型ソース/ドレイン10aのホウ素のドーズ量を3×1015/cm2に制御して、しかる後、半導体基板1をアニール処理 (RTA、1030℃、1秒)する(図11(a))。
【0061】
続いて、図11(b)に示すように、CVD法により全面にシリコン酸化膜27を堆積した後、図11(c)に示すように、このシリコン酸化膜27を全面異方性エッチングすることにより、再びゲート電極6a,6bの側面のみを覆うサイドウォール9a,9bを形成する。即ちこのとき、サイドウォール9a,9bは図7(a)に示した状態に戻ることになる。
【0062】
続いて、図11(d)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0063】
しかる後、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0064】
以上説明したように、本実施形態によれば、ゲート電極6a,6bの側面上部位を露出させるサイドウォール9a,9bを形成し、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも25%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0065】
更に、CoSi2層23を形成する際に、サイドウォール9a,9bをゲート電極6a,6bの側面をほぼ完全に覆う元のサイズとしているため、ソース/ドレイン10a,10bに形成されるCoSi2とゲート電極6a,6bに形成されるCoSi2との間に短絡が生じることをより確実に防止することが可能となる。従ってこの場合、前記斜めからのイオン注入を行う際に、前記短絡を懸念することなくサイドウォール9a,9bをオーバーエッチングすることができるため、第1の実施形態のオーバーエッチング量(50%)よりも多いエッチング量に設定し、ゲート電極6a,6bへのイオン注入量を更に増加させることもできる。
【0066】
なお、本実施形態でも、第1の実施形態の変形例と同様に、ソース/ドレインの不純物濃度を増加させることなくゲート電極の不純物濃度をこれよりも高くできる条件であれば、ソース/ドレインの1回目のイオン注入や斜めイオン注入の条件を適宜設定することができる。
【0067】
例えば、n型ソース/ドレイン10a形成時における始めのリンのイオン注入を加速エネルギーが8keV、ドーズ量が5.5×1015/cm2、注入角度が0°の条件で行い、リンの斜めイオン注入をゲート長に対して水平方向に2回、それぞれ加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件で行う。
【0068】
前記2回のイオン注入により、下記の表1に示すように、ゲート電極6aには、当初の5.5×1015/cm2に加えて注入角度が0°の場合(5×1014/cm2)の4回分に相当する不純物導入がなされ、合計で7.5×1015/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、当初の5.5×1015/cm2に加えて注入角度が0°の場合の1回分に相当する不純物導入がなされ、合計で6×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のリンがイオン注入される。
【0069】
また同様に、p型ソース/ドレイン10b形成時における始めのホウ素のイオン注入を加速エネルギーが4keV、ドーズ量が2.75×1015/cm2、注入角度が0°の条件で行い、ホウ素の斜めイオン注入をゲート長に対して水平方向に2回、それぞれ加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件で行う。
【0070】
前記2回のイオン注入により、下記の表1に示すように、ゲート電極6bには、当初の2.75×1015/cm2に加えて注入角度が0°の場合(2.5×1014/cm2)の4回分に相当する不純物導入がなされ、合計で3.75×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、当初の2.75×1015/cm2に加えて注入角度が0°の場合の1回分に相当する不純物導入がなされ、合計で3×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のホウ素がイオン注入される。
【0071】
(第3の実施形態)
図12及び図13は、第3の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図6(b)の各工程を経て、ゲート電極6a,6bの両側面を覆う最大幅が80nm程度のサイドウォール9a,9bを形成する(図12(a))。
【0072】
続いて、図12(b)に示すように、p型MOS領域12を覆うレジストマスク18を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが8keV、ドーズ量が5×1015/cm2、注入角度が0°の条件でイオン注入し、n型ソース/ドレイン10aを形成する。このとき同時に、ゲート電極6aにもリンがイオン注入される。ここで、リンのドーズ量は、通常のn型ソース/ドレイン形成時におけるドーズ量よりも小値(例えば、6×1015/cm2)に制御されている。
【0073】
続いて、レジストマスク18を灰化処理等により除去した後、図12(c)に示すように、n型MOS領域11を覆うレジストマスク19を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが4keV、ドーズ量が2.5×1015/cm2、注入角度が0°の条件でイオン注入し、p型ソース/ドレイン10bを形成する。このとき同時に、ゲート電極6bにもホウ素がイオン注入される。ここで、ホウ素のドーズ量は、通常のp型ソース/ドレイン形成時におけるドーズ量よりも小値(例えば、3×1015/cm2)に制御されている。
【0074】
続いて、レジストマスク19を灰化処理等により除去した後、図12(d)に示すように、サイドウォール9a,9bをドライエッチング(オーバーエッチング)し、ゲート電極6a,6bの両側面の上部位を50nm程度それぞれ露出させる。このとき、ゲート電極6a,6bは、その上面から両側面の上部位にかけて表面が露出した状態とされ、サイドウォール9a,9bは50nm程度の高さに調節される。
【0075】
この場合、ゲート電極6a,6bに後述する斜めからのイオン注入を行うときに、サイドウォール9a,9bのエッチング量が多いほど、ゲート電極6a,6bに導入される不純物の量は増える。しかし、サイドウォール9a,9bのエッチング量が多すぎると、ソース/ドレイン10a,10bに同時に導入される不純物がチャネル方向に拡がり過ぎたり、後の工程でソース/ドレイン10a,10bに形成されるシリサイドとゲート電極6a,6bに形成されるシリサイドとが短絡し易くなる。このため、サイドウォール9a,9bのエッチング量には最適範囲があり、その1つのエッチング量が50nmである。
【0076】
また、サイドウォール9a,9bとともにSTI素子分離構造2がエッチングすれることを抑止するため、サイドウォール9a,9bのエッチングレートがSTI素子分離構造2のエッチングレートよりも大きくなるように、サイドウォール9a,9bとSTI素子分離構造2を異なる材質で形成することが好ましい。例えば、STI素子分離構造2にはHDP(High Density Plasma)により形成されたプラズマ酸化膜を、サイドウォールにはTEOSからなる酸化膜をそれぞれ用いる。
【0077】
続いて、図13(a)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)及びサイドウォール9aから露出する両側面(高さ50nm))に不純物を導入する。
【0078】
具体的には、p型MOS領域12を覆うレジストマスク21を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)のイオン注入を実行する。この4回のイオン注入を行う様子を図14の概略平面図に示す。
【0079】
この場合、ゲート電極6aにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入が、一方のn型ソース/ドレイン10aには注入角度が0°の場合の1回分に相当する不純物導入がなされる。このとき、他方のn型ソース/ドレイン10aはゲート電極6aの影になる位置に存するため、不純物導入されないか、或いは殆ど影響を与えない程度の不純物導入がなされることになる。
【0080】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6aには、当初の5×1015/cm2に加えて注入角度が0°の場合(5×1014/cm2)の8回分に相当する不純物導入がなされ、合計で9×1015/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、当初の5×1015/cm2に加えて注入角度が0°の場合の2回分に相当する不純物導入がなされ、合計で6×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のリンがイオン注入される。
【0081】
なお、上述したn型ソース/ドレイン10a形成時の始めのイオン注入(注入角度が0°のイオン注入)において、斜めイオン注入における加速エネルギーを8keVとしたのに対して、斜め注入のエネルギーを4keVと低く設定した理由は、ゲート電極6aに注入される不純物が横方向に突き抜けること、サイドウォール10a及びゲート電極6aを不純物が突き抜けて半導体基板1内に侵入すること、及びn型ソース/ドレイン10aに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0082】
続いて、図13(b)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)及びサイドウォール9bから露出する両側面(高さ50nm))に不純物を導入する。
【0083】
具体的には、レジストマスク21を灰化処理等により除去した後、n型MOS領域11を覆うレジストマスク22を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)のイオン注入を実行する。
【0084】
この場合、ゲート電極6bにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入が、一方のp型ソース/ドレイン10bには注入角度が0°の場合の1回分に相当する不純物導入がなされる。このとき、他方のp型ソース/ドレイン10bはゲート電極6bの影になる位置に存するため、不純物導入されないか、或いは殆ど影響を与えない程度の不純物導入がなされることになる。
【0085】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6bには、当初の2.5×1015/cm2に加えて注入角度が0°の場合(2.5×1014/cm2)の8回分に相当する不純物導入がなされ、合計で4.5×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、当初の2.5×1015/cm2に加えて注入角度が0°の場合の2回分に相当する不純物導入がなされ、合計で3×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のホウ素がイオン注入される。
【0086】
なお、上述したp型ソース/ドレイン10b形成時の1回目のイオン注入におおいて、斜めイオン注入における加速エネルギーを4keVとしたのに対して、斜め注入のエネルギーを2keVと低くした設定した理由は、ゲート電極6bに注入される不純物が横方向に突き抜けること、サイドウォール10b及びゲート電極6bを不純物が突き抜けて半導体基板1内に侵入すること、及びp型ソース/ドレイン10bに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0087】
続いて、レジストマスク22を灰化処理等により除去した後、図13(c)に示すように、ゲート電極6a,6b及びソース/ドレイン10a,10bの不純物導入により生じた欠陥を回復させ、更に不純物を活性化させるため、半導体基板1をアニール処理 (RTA、1030℃、1秒) する。
【0088】
続いて、図13(d)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0089】
しかる後、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0090】
以上説明したように、本実施形態によれば、ゲート電極6a,6bの側面上部位を露出させるサイドウォール9a,9bを形成し、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも50%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0091】
(第4の実施形態)
図15及び図16は、第4の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図6(b)の各工程を経て、ゲート電極6a,6bの両側面を覆う最大幅が80nm程度のサイドウォール9a,9bを形成する(図15(a))。
【0092】
続いて、図15(b)に示すように、p型MOS領域12を覆うレジストマスク18を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが8keV、ドーズ量が5×1015/cm2、注入角度が0°の条件でイオン注入し、n型ソース/ドレイン10aを形成する。このとき同時に、ゲート電極6aにもリンがイオン注入される。ここで、リンのドーズ量は、通常のn型ソース/ドレイン形成時におけるドーズ量よりも小値(例えば、6×1015/cm2)に制御されている。
【0093】
続いて、レジストマスク18を灰化処理等により除去した後、図15(c)に示すように、n型MOS領域11を覆うレジストマスク19を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが4keV、ドーズ量が2.5×1015/cm2、注入角度が0°の条件でイオン注入し、p型ソース/ドレイン10bを形成する。このとき同時に、ゲート電極6bにもホウ素がイオン注入される。ここで、ホウ素のドーズ量は、通常のp型ソース/ドレイン形成時におけるドーズ量よりも小値(例えば、3×1015/cm2)に制御されている。
【0094】
続いて、レジストマスク19を灰化処理等により除去した後、図15(d)に示すように、サイドウォール9a,9bをドライエッチング(オーバーエッチング)し、ゲート電極6a,6bの両側面の上部位を50nm程度それぞれ露出させる。このとき、ゲート電極6a,6bは、その上面から両側面の上部位にかけて表面が露出した状態とされ、サイドウォール9a,9bは50nm程度の高さに調節される。
【0095】
この場合、ゲート電極6a,6bに後述する斜めからのイオン注入を行うときに、サイドウォール9a,9bのエッチング量が多いほど、ゲート電極6a,6bに導入される不純物の量は増える。しかし、サイドウォール9a,9bのエッチング量が多すぎると、ソース/ドレイン10a,10bに同時に導入される不純物がチャネル方向に拡がり過ぎたり、後の工程でソース/ドレイン10a,10bに形成されるシリサイドとゲート電極6a,6bに形成されるシリサイドとが短絡し易くなる。このため、サイドウォール9a,9bのエッチング量には最適範囲があり、その1つのエッチング量が50nmである。
【0096】
また、サイドウォール9a,9bとともにSTI素子分離構造2がエッチングすれることを抑止するため、サイドウォール9a,9bのエッチングレートがSTI素子分離構造2のエッチングレートよりも大きくなるように、サイドウォール9a,9bとSTI素子分離構造2を異なる材質で形成することが好ましい。例えば、STI素子分離構造2にはHDP(High Density Plasma)により形成されたプラズマ酸化膜を、サイドウォールにはTEOSからなる酸化膜をそれぞれ用いる。
【0097】
続いて、図16(a)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)及びサイドウォール9aから露出する両側面(高さ50nm))に不純物を導入する。
【0098】
具体的には、p型MOS領域12を覆いn型ソース/ドレイン10aを斜めイオン注入から保護(防御)する寸法の開口31aを有するレジストマスク31を形成する。ここで、レジストマスク31は高さ120nm程度であり、開口31aはその一端がゲート電極6aの端から120nmとなる領域である。フォトリソグラフィーに際し、開口31aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して水平方向(互いに対向する2方向)が2回、垂直方向(互いに対向する2方向)が2回)のイオン注入を実行する。この4回のイオン注入を行う様子を図17の概略平面図に示す。
【0099】
図16(a)では、ゲート長に対して水平方向であり注入角度が45°のイオン注入を例示している。この場合、ゲート電極6aにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のn型ソース/ドレイン10aはレジストマスク31により当該イオン注入から保護されるため、不純物導入が防止される。
【0100】
また、便宜上図示は省略するが、ゲート長に対して垂直方向であり注入角度が45°の1回のイオン注入により、ゲート電極6aには注入角度が0°の場合の1回分に相当する不純物導入が、各n型ソース/ドレイン10aにもそれぞれ注入角度が0°の場合の1回分に相当する不純物導入がなされる。
【0101】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6aには、当初の5×1015/cm2に加えて注入角度が0°の場合(5×1014/cm2)の6回分に相当する不純物導入がなされ、合計で8×1015/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、当初の5×1015/cm2に加えて注入角度が0°の場合の2回分に相当する不純物導入がなされ、合計で6×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のリンがイオン注入される。
【0102】
なお、上述したn型ソース/ドレイン10a形成時の始めのイオン注入(注入角度が0°のイオン注入)において、斜めイオン注入における加速エネルギーを8keVとしたのに対して、斜め注入のエネルギーを4keVと低く設定した理由は、ゲート電極6aに注入される不純物が横方向に突き抜けること、サイドウォール10a及びゲート電極6aを不純物が突き抜けて半導体基板1内に侵入すること、及びn型ソース/ドレイン10aに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0103】
続いて、図16(b)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)及びサイドウォール9bから露出する両側面(高さ50nm))に不純物を導入する。
【0104】
具体的には、レジストマスク31を灰化処理等により除去した後、n型MOS領域11を覆いp型ソース/ドレイン10bを斜めイオン注入から保護(防御)する寸法の開口32aを有するレジストマスク32を形成する。ここで、レジストマスク32は高さ120nm程度であり、開口32aはその一端がゲート電極6aの端から120nmとなる領域である。フォトリソグラフィーに際し、開口32aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して水平方向(互いに対向する2方向)が2回、垂直方向(互いに対向する2方向)が2回)のイオン注入を実行する。
【0105】
図16(b)では、ゲート長に対して水平方向であり注入角度が45°のイオン注入を例示している。この場合、ゲート電極6bにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のp型ソース/ドレイン10bはレジストマスク32により当該イオン注入から保護されるため、不純物導入が防止される。
【0106】
また、便宜上図示は省略するが、ゲート長に対して垂直方向であり注入角度が45°の1回のイオン注入により、ゲート電極6bには注入角度が0°の場合の1回分に相当する不純物導入が、各p型ソース/ドレイン10bにもそれぞれ注入角度が0°の場合の1回分に相当する不純物導入がなされる。
【0107】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6bには、当初の2.5×1015/cm2に加えて注入角度が0°の場合(2.5×1014/cm2)の6回分に相当する不純物導入がなされ、合計で4×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、当初の2.5×1015/cm2に加えて注入角度が0°の場合の2回分に相当する不純物導入がなされ、合計で3×1015/cm2(通常のソース/ドレイン形成時と同様)のドーズ量のホウ素がイオン注入される。
【0108】
なお、上述したp型ソース/ドレイン10b形成時の始めのイオン注入(注入角度が0°のイオン注入)において、斜めイオン注入における加速エネルギーを4keVとしたのに対して、斜め注入のエネルギーを2keVと低く設定した理由は、ゲート電極6bに注入される不純物が横方向に突き抜けること、サイドウォール10b及びゲート電極6bを不純物が突き抜けて半導体基板1内に侵入すること、及びp型ソース/ドレイン10bに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0109】
続いて、レジストマスク32を灰化処理等により除去した後、図16(c)に示すように、ゲート電極6a,6b及びソース/ドレイン10a,10bの不純物導入により生じた欠陥を回復させ、更に不純物を活性化させるため、半導体基板1をアニール処理 (RTA、1030℃、1秒) する。
【0110】
続いて、図16(d)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0111】
しかる後、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0112】
以上説明したように、本実施形態によれば、ゲート電極6a,6bの側面上部位を露出させるサイドウォール9a,9bを形成し、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも25%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0113】
更に、前記斜めイオン注入を行う際に、レジストマスク31,32によりソース/ドレイン10a,10bにはイオン注入がなされず、ゲート電極6a,6bのみにイオン注入されるため、ゲート電極6a,6bをソース/ドレイン10a,10bよりも確実に高不純物濃度に制御することが可能となる。
【0114】
(変形例)
なお、本実施形態でも、第1の実施形態の変形例と同様に、ソース/ドレインの不純物濃度を増加させることなくゲート電極の不純物濃度をこれよりも高くできる条件であれば、ソース/ドレインの1回目のイオン注入や斜めイオン注入の条件を適宜設定することができる。
【0115】
例えば、n型ソース/ドレイン10a形成時における始めのリンのイオン注入を加速エネルギーが8keV、ドーズ量が6×1015/cm2、注入角度が0°の条件で行い、リンの斜めイオン注入をゲート長に対して水平方向に2回、それぞれ加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件で行う。
【0116】
前記2回のイオン注入により、下記の表1に示すように、ゲート電極6aには、当初の6×1015/cm2に加えて注入角度が0°の場合(5×1014/cm2)の4回分に相当する不純物導入がなされ、合計で8×1015/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、当初の6×1015/cm2のみ不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のリンがイオン注入される。
【0117】
また同様に、p型ソース/ドレイン10b形成時における始めのホウ素のイオン注入を加速エネルギーが4keV、ドーズ量が3×1015/cm2、注入角度が0°の条件で行い、ホウ素の斜めイオン注入をゲート長に対して水平方向に2回、それぞれ加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件で行う。
【0118】
前記2回のイオン注入により、下記の表1に示すように、ゲート電極6bには、当初の3×1015/cm2に加えて注入角度が0°の場合(2.5×1014/cm2)の4回分に相当する不純物導入がなされ、合計で4×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、当初の3×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のホウ素がイオン注入される。
【0119】
(第5の実施形態)
図18及び図19は、第5の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図6(b)の各工程を経て、ゲート電極6a,6bの両側面を覆う最大幅が80nm程度のサイドウォール9a,9bを形成する(図18(a))。
【0120】
続いて、図18(b)に示すように、p型MOS領域12を覆うレジストマスク18を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが8keV、ドーズ量が6×1015/cm2、注入角度が0°の条件でイオン注入し、n型ソース/ドレイン10aを形成する。このとき同時に、ゲート電極6aにもリンがイオン注入される。
【0121】
続いて、レジストマスク18を灰化処理等により除去した後、図18(c)に示すように、n型MOS領域11を覆うレジストマスク19を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが4keV、ドーズ量が3×1015/cm2、注入角度が0°の条件でイオン注入し、p型ソース/ドレイン10bを形成する。このとき同時に、ゲート電極6bにもホウ素がイオン注入される。
【0122】
続いて、レジストマスク19を灰化処理等により除去した後、図18(d)に示すように、サイドウォール9a,9bをドライエッチング(オーバーエッチング)し、ゲート電極6a,6bの両側面の上部位を50nm程度それぞれ露出させる。このとき、ゲート電極6a,6bは、その上面から両側面の上部位にかけて表面が露出した状態とされ、サイドウォール9a,9bは50nm程度の高さに調節される。
【0123】
この場合、ゲート電極6a,6bに後述する斜めからのイオン注入を行うときに、サイドウォール9a,9bのエッチング量が多いほど、ゲート電極6a,6bに導入される不純物の量は増える。しかし、サイドウォール9a,9bのエッチング量が多すぎると、ソース/ドレイン10a,10bに同時に導入される不純物がチャネル方向に拡がり過ぎたり、後の工程でソース/ドレイン10a,10bに形成されるシリサイドとゲート電極6a,6bに形成されるシリサイドとが短絡し易くなる。このため、サイドウォール9a,9bのエッチング量には最適範囲があり、その1つのエッチング量が50nmである。
【0124】
また、サイドウォール9a,9bとともにSTI素子分離構造2がエッチングすれることを抑止するため、サイドウォール9a,9bのエッチングレートがSTI素子分離構造2のエッチングレートよりも大きくなるように、サイドウォール9a,9bとSTI素子分離構造2を異なる材質で形成することが好ましい。例えば、STI素子分離構造2にはHDP(High Density Plasma)により形成されたプラズマ酸化膜を、サイドウォールにはTEOSからなる酸化膜をそれぞれ用いる。
【0125】
続いて、図19(a)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)及びサイドウォール9aから露出する両側面(高さ50nm))に不純物を導入する。
【0126】
具体的には、p型MOS領域12を覆いn型ソース/ドレイン10aを斜めイオン注入から保護(防御)する寸法の開口33aを有するレジストマスク33を形成する。ここで、レジストマスク33は高さ120nm程度であり、開口33aはその一端がゲート電極6aの端から120nmとなる領域である。フォトリソグラフィーに際し、開口33aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)の斜めイオン注入を実行する。この4回のイオン注入を行う様子を図20の概略平面図に示す。
【0127】
この場合、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のn型ソース/ドレイン10aはレジストマスク33により当該イオン注入から保護されるため、不純物導入が防止される。
【0128】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6aには、当初の6×1015/cm2に加えて注入角度が0°の場合(5×1014/cm2)の8回分に相当する不純物導入がなされ、合計で1×1016/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、当初の6×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のリンがイオン注入される。
【0129】
なお、上述したn型ソース/ドレイン10a形成時の始めのイオン注入(注入角度が0°のイオン注入)において、斜めイオン注入における加速エネルギーを8keVとしたのに対して、斜め注入のエネルギーを4keVと低く設定した理由は、ゲート電極6aに注入される不純物が横方向に突き抜けること、サイドウォール10a及びゲート電極6aを不純物が突き抜けて半導体基板1内に侵入すること、及びn型ソース/ドレイン10aに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0130】
続いて、図19(b)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)及びサイドウォール9bから露出する両側面(高さ50nm))に不純物を導入する。
【0131】
具体的には、レジストマスク33を灰化処理等により除去した後、n型MOS領域11を覆いp型ソース/ドレイン10bを斜めイオン注入から保護(防御)する寸法の開口34aを有するレジストマスク34を形成する。ここで、レジストマスク34は高さ120nm程度であり、開口34aはその一端がゲート電極6aの端から120nmとなる領域である。フォトリソグラフィーに際し、開口34aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)のイオン注入を実行する。
【0132】
この場合、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のp型ソース/ドレイン10bはレジストマスク34により当該イオン注入から保護されるため、不純物導入が防止される。
【0133】
前記4回のイオン注入により、下記の表1に示すように、ゲート電極6bには、当初の3×1015/cm2に加えて注入角度が0°の場合(2.5×1014/cm2)の8回分に相当する不純物導入がなされ、合計で5×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、当初の3×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のホウ素がイオン注入される。
【0134】
なお、上述したp型ソース/ドレイン10b形成時の始めのイオン注入(注入角度が0°のイオン注入)において、斜めイオン注入における加速エネルギーを4keVとしたのに対して、斜め注入のエネルギーを2keVと低く設定した理由は、ゲート電極6bに注入される不純物が横方向に突き抜けること、サイドウォール10b及びゲート電極6bを不純物が突き抜けて半導体基板1内に侵入すること、及びp型ソース/ドレイン10bに注入される不純物がチャネル方向に拡がることの各々を防止するためである。
【0135】
続いて、レジストマスク34を灰化処理等により除去した後、図19(c)に示すように、ゲート電極6a,6b及びソース/ドレイン10a,10bの不純物導入により生じた欠陥を回復させ、更に不純物を活性化させるため、半導体基板1をアニール処理 (RTA、1030℃、1秒) する。
【0136】
続いて、図19(d)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0137】
しかる後、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0138】
以上説明したように、本実施形態によれば、ゲート電極6a,6bの側面上部位を露出させるサイドウォール9a,9bを形成し、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも66%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0139】
更に、前記斜めイオン注入を行う際に、レジストマスク33,34によりソース/ドレイン10a,10bにはイオン注入がなされず、ゲート電極6a,6bのみにイオン注入されるため、ゲート電極6a,6bをソース/ドレイン10a,10bよりも確実に高不純物濃度に制御することが可能となる。
【0140】
なお、第5の実施形態に第2の実施形態を組み合わせることにより、ソース/ドレイン10a,10bに形成されるシリサイドとゲート電極6a,6bに形成されるシリサイドとが短絡することを防止できる。このため、第5の実施形態よりサイドウォール9a,9bのエッチング量を増加させることが可能となり、ゲート電極6a,6bに導入する不純物の量を増やせるようになる。更に、サイドウォール9a,9bのオーバーエッチングの際に、サイドウォール9a,9bを完全にエッチングしても良い。レジストマスク33,34により、サイドウォール9a,9bが無くともソース/ドレイン10a,10bに不純物が導入されることが防止されるためである。
【0141】
(第6の実施形態)
図21〜図23は、第6の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図5(c)の各工程を経て、ゲート電極6a,6bをパターン形成する(図21(a))。
【0142】
続いて、図21(b)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)に不純物を導入する。
【0143】
具体的には、p型MOS領域12を覆いn型ソース/ドレイン10aを斜めイオン注入から保護(防御)する寸法の開口35aを有するレジストマスク35を形成する。ここで、レジストマスク35は高さ120nm程度であり、開口35aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口35aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)の斜めイオン注入を実行する。この4回のイオン注入を行う様子を図24の概略平面図に示す。
【0144】
この場合、ゲート電極6aにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のn型ソース/ドレイン10aはレジストマスク35により当該イオン注入から保護されるため、不純物導入が防止される。
【0145】
続いて、図21(c)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)に不純物を導入する。
【0146】
具体的には、レジストマスク35を灰化処理等により除去した後、n型MOS領域11を覆いp型ソース/ドレイン10bを斜めイオン注入から保護(防御)する寸法の開口36aを有するレジストマスク36を形成する。ここで、レジストマスク36は高さ120nm程度であり、開口36aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口36aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)のイオン注入を実行する。
【0147】
この場合、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のp型ソース/ドレイン10bはレジストマスク36により当該イオン注入から保護されるため、不純物導入が防止される。
【0148】
続いて、レジストマスク36を灰化処理等により除去した後、図21(d)に示すように、p型MOS領域12を覆うレジストマスク16を形成し、n型MOS領域11にn型不純物、ここでは砒素(As)を加速エネルギーが5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、p型不純物、ここではホウ素(B)を加速エネルギーが10keV、ドーズ量が8×1012/cm2の条件で入射角30°で4方向からイオン注入し、n型エクステンション層7a及びp型ポケット層8aを形成する。
【0149】
続いて、レジストマスク16を灰化処理等により除去した後、図22(a)に示すように、n型MOS領域11を覆うレジストマスク17を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが0.5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、n型不純物、ここでは砒素(As)を加速エネルギーが50keV、ドーズ量が6×1012/cm2の条件で入射角30°で4方向からイオン注入し、p型エクステンション層7b及びn型ポケット層8bを形成する。
【0150】
なお、図21(b)〜図22(a)の各工程は、順不同で実行することが可能である。
【0151】
続いて、図22(b)に示すように、レジストマスク17を灰化処理等により除去した後、エクステンション層7a,7b及びポケット層8a,8bの不純物導入により生じた欠陥を回復させるため、半導体基板1をアニール処理 (RTA、1000℃、1秒) する。
【0152】
続いて、図22(c)に示すように、CVD法により全面にシリコン酸化膜(不図示)を堆積し、これを全面異方性エッチングすることにより、ゲート電極6a,6bの両側面のみにシリコン酸化膜を残し、最大幅が80nm程度のサイドウォール20a,20bをそれぞれ形成する。
【0153】
続いて、図22(d)に示すように、p型MOS領域12を覆うレジストマスク18を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが8keV、ドーズ量が6×1015/cm2、注入角度(基板表面に対して垂直方向の場合を0°となる。)が0°の条件でイオン注入し、n型ソース/ドレイン10aを形成する。このとき同時に、ゲート電極6aにもリンがイオン注入される。
【0154】
この場合、ゲート電極6aには、前記4回の斜めイオン注入に加え、前記注入角度0°のイオン注入により、5×1014/cm2の8回分に相当する不純物導入及び6×1015/cm2の不純物導入がなされ、合計で1×1016/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、6×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のリンがイオン注入される。
【0155】
続いて、レジストマスク18を灰化処理等により除去した後、図23(a)に示すように、n型MOS領域11を覆うレジストマスク19を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが4keV、ドーズ量が3×1015/cm2、注入角度が0°の条件でイオン注入し、p型ソース/ドレイン10bを形成する。このとき同時に、ゲート電極6bにもホウ素がイオン注入される。
【0156】
この場合、ゲート電極6bには、前記4回の斜めイオン注入に加え、前記注入角度0°のイオン注入により、2.5×1014/cm2の8回分に相当する不純物導入及び3×1015/cm2の不純物導入がなされ、合計で5×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、3×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のホウ素がイオン注入される。
【0157】
続いて、レジストマスク19を灰化処理等により除去した後、図23(b)に示すように、ゲート電極6a,6b及びソース/ドレイン10a,10bの不純物導入により生じた欠陥を回復させ、更に不純物を活性化させるため、半導体基板1をアニール処理 (RTA、1030℃、1秒) する。
【0158】
続いて、図23(c)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0159】
しかる後、図23(d)に示すように、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0160】
以上説明したように、本実施形態によれば、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも66%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0161】
更に、前記斜めイオン注入を行う際に、レジストマスク35,36によりソース/ドレイン10a,10bにはイオン注入がなされず、ゲート電極6a,6bのみにイオン注入されるため、ゲート電極6a,6bをソース/ドレイン10a,10bよりも確実に高不純物濃度に制御することが可能となる。
【0162】
更に、ソース/ドレイン10a,10b及びゲート電極6a,6bに導入される不純物の量は、第5の実施形態の場合と同じであるにも係わらず、サイドウォール20a,20bの薄膜化のためのオーバーエッチングを省略でき、製造コストを削減することが可能になる。
【0163】
(第7の実施形態)
図25〜図27は、第7の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図5(c)の各工程を経て、ゲート電極6a,6bをパターン形成する。
【0164】
続いて、図25(a)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)に不純物を導入する。
【0165】
具体的には、p型MOS領域12を覆いn型ソース/ドレイン10aを斜めイオン注入から保護(防御)する寸法の開口37aを有するレジストマスク37を形成する。ここで、レジストマスク37は高さ120nm程度であり、開口37aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口37aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)の斜めイオン注入を実行する。
【0166】
この場合、ゲート電極6aにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のn型ソース/ドレイン10aはレジストマスク37により当該イオン注入から保護されるため、不純物導入が防止される。
【0167】
続いて、図25(b)に示すように、連続してレジストマスク37を用い、n型MOS領域11にn型不純物、ここでは砒素(As)を加速エネルギーが5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、p型不純物、ここではホウ素(B)を加速エネルギーが10keV、ドーズ量が8×1012/cm2の条件で入射角15°で4方向からイオン注入し、n型エクステンション層7a及びp型ポケット層8aを形成する。
【0168】
続いて、図25(c)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)に不純物を導入する。
【0169】
具体的には、レジストマスク37を灰化処理等により除去した後、n型MOS領域11を覆いp型ソース/ドレイン10bを斜めイオン注入から保護(防御)する寸法の開口38aを有するレジストマスク38を形成する。ここで、レジストマスク38は高さ120nm程度であり、開口38aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口38aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が3×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)のイオン注入を実行する。
【0170】
この場合、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のp型ソース/ドレイン10bはレジストマスク38により当該イオン注入から保護されるため、不純物導入が防止される。
【0171】
続いて、図25(d)に示すように、連続してレジストマスク38を用い、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが0.5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、n型不純物、ここでは砒素(As)を加速エネルギーが50keV、ドーズ量が6×1012/cm2の条件で入射角15°で4方向からイオン注入し、p型エクステンション層7b及びn型ポケット層8bを形成する。
【0172】
続いて、図26(a)に示すように、レジストマスク38を灰化処理等により除去した後、エクステンション層7a,7b及びポケット層8a,8bの不純物導入により生じた欠陥を回復させるため、半導体基板1をアニール処理 (RTA、1000℃、1秒) する。
【0173】
続いて、図26(b)に示すように、CVD法により全面にシリコン酸化膜(不図示)を堆積し、これを全面異方性エッチングすることにより、ゲート電極6a,6bの両側面のみにシリコン酸化膜を残し、最大幅が80nm程度のサイドウォール9a,9bをそれぞれ形成する。
【0174】
続いて、図26(c)に示すように、p型MOS領域12を覆うレジストマスク18を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが8keV、ドーズ量が6×1015/cm2、注入角度(基板表面に対して垂直方向の場合を0°となる。)が0°の条件でイオン注入し、n型ソース/ドレイン10aを形成する。このとき同時に、ゲート電極6aにもリンがイオン注入される。
【0175】
この場合、ゲート電極6aには、前記4回の斜めイオン注入に加え、前記注入角度0°のイオン注入により、5×1014/cm2の8回分に相当する不純物導入及び6×1015/cm2の不純物導入がなされ、合計で1×1016/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、5×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のリンがイオン注入される。
【0176】
続いて、レジストマスク18を灰化処理等により除去した後、図26(d)に示すように、n型MOS領域11を覆うレジストマスク19を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが4keV、ドーズ量が3×1015/cm2、注入角度が0°の条件でイオン注入し、p型ソース/ドレイン10bを形成する。このとき同時に、ゲート電極6bにもホウ素がイオン注入される。
【0177】
この場合、ゲート電極6bには、前記4回の斜めイオン注入に加え、前記注入角度0°のイオン注入により、2.5×1014/cm2の8回分に相当する不純物導入及び3×1015/cm2の不純物導入がなされ、合計で5×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、3×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のホウ素がイオン注入される。
【0178】
続いて、レジストマスク19を灰化処理等により除去した後、図27(a)に示すように、ゲート電極6a,6b及びソース/ドレイン10a,10bの不純物導入により生じた欠陥を回復させ、更に不純物を活性化させるため、半導体基板1をアニール処理 (RTA、1030℃、1秒) する。
【0179】
続いて、図27(b)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0180】
しかる後、図27(c)に示すように、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0181】
以上説明したように、本実施形態によれば、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも66%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0182】
更に、前記斜めイオン注入を行う際に、レジストマスク35,36によりソース/ドレイン10a,10bにはイオン注入がなされず、ゲート電極6a,6bのみにイオン注入されるため、ゲート電極6a,6bをソース/ドレイン10a,10bよりも確実に高不純物濃度に制御することが可能となる。
【0183】
更に、ソース/ドレイン10a,10b及びゲート電極6a,6bに導入される不純物の量は、第5の実施形態の場合と同じであるにも係わらず、サイドウォール9a,9bの薄膜化のためのオーバーエッチングを省略でき、エクステンション層7a,7b及びポケット層8a,8bを形成するためのフォトリソグラフィー工程を省略することができ、更なる製造コストの削減が可能になる。
【0184】
(変形例)
ここで、第7の実施形態の変形例について説明する。
図28及び図29は、第7の実施形態における変形例のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本変形例では、図25(b)と同様に、レジストマスク37を用いたゲート電極6aへの斜めイオン注入を行う(図28(a))。
【0185】
続いて、図28(b)に示すように、レジストマスク37をトリミングし、開口37aをその一端がゲート電極6aの端から100nmとなるように拡大する。
【0186】
この状態で、図28(c)に示すように、n型MOS領域11にn型不純物、ここでは砒素(As)を加速エネルギーが5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、p型不純物、ここではホウ素(B)を加速エネルギーが10keV、ドーズ量が8×1012/cm2の条件で入射角30°で4方向からイオン注入し、n型エクステンション層7a及びp型ポケット層8aを形成する。
【0187】
続いて、レジストマスク37を灰化処理等により除去した後、図25(c)と同様に、レジストマスク38を用いたゲート電極6bへの斜めイオン注入を行う(図29(a))。
【0188】
続いて、図29(b)に示すように、レジストマスク38をトリミングし、開口37aをその一端がゲート電極6aの端から100nmとなるように拡大する。
【0189】
この状態で、図29(c)に示すように、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが0.5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、n型不純物、ここでは砒素(As)を加速エネルギーが50keV、ドーズ量が6×1012/cm2の条件で入射角30°で4方向からイオン注入し、p型エクステンション層7b及びn型ポケット層8bを形成する。
【0190】
そして、レジストマスク38を灰化処理等により除去した後、第7の実施形態図26及び図27と同様の各工程を経て、CMOSトランジスタを完成させる。
【0191】
本変形例によれば、第7の実施形態の奏する諸効果に加え、前記斜めイオン注入を防止する観点からエクステンション層7a,7b及びn型ポケット層8a,8bのサイズを規制することなく、レジストマスク37,38のトリミングにより高い自由度で所望のサイズに拡張したエクステンション層7a,7b及びn型ポケット層8a,8bを形成することが可能となる。
【0192】
(第8の実施形態)
図30〜図32は、第8の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図5(c)の各工程を経て、ゲート電極6a,6bをパターン形成する(図30(a))。
【0193】
続いて、図30(b)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)に不純物を導入する。
【0194】
具体的には、p型MOS領域12を覆いn型ソース/ドレイン10aを斜めイオン注入から保護(防御)する寸法の開口35aを有するレジストマスク35を形成する。ここで、レジストマスク35は高さ120nm程度であり、開口35aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口35aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)の斜めイオン注入を実行する。
【0195】
この場合、ゲート電極6aにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のn型ソース/ドレイン10aはレジストマスク35により当該イオン注入から保護されるため、不純物導入が防止される。
【0196】
続いて、図30(c)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)に不純物を導入する。
【0197】
具体的には、レジストマスク35を灰化処理等により除去した後、n型MOS領域11を覆いp型ソース/ドレイン10bを斜めイオン注入から保護(防御)する寸法の開口36aを有するレジストマスク36を形成する。ここで、レジストマスク36は高さ120nm程度であり、開口36aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口36aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)のイオン注入を実行する。
【0198】
この場合、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のp型ソース/ドレイン10bはレジストマスク36により当該イオン注入から保護されるため、不純物導入が防止される。
【0199】
続いて、レジストマスク36を灰化処理等により除去した後、図30(d)に示すように、ゲート電極6a,6bに導入された不純物を十分に拡散させ、且つ十分に活性化させるため、半導体基板1をアニール処理 (RTA、1050℃、1秒) する。
【0200】
続いて、図31(a)に示すように、p型MOS領域12を覆うレジストマスク16を形成し、n型MOS領域11にn型不純物、ここでは砒素(As)を加速エネルギーが5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、p型不純物、ここではホウ素(B)を加速エネルギーが10keV、ドーズ量が8×1012/cm2の条件で入射角30°で4方向からイオン注入し、n型エクステンション層7a及びp型ポケット層8aを形成する。
【0201】
続いて、レジストマスク16を灰化処理等により除去した後、図31(b)に示すように、n型MOS領域11を覆うレジストマスク17を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが0.5keV、ドーズ量が6×1014/cm2の条件で垂直入射にてイオン注入するとともに、n型不純物、ここでは砒素(As)を加速エネルギーが50keV、ドーズ量が6×1012/cm2の条件で入射角30°で4方向からイオン注入し、p型エクステンション層7b及びn型ポケット層8bを形成する。
【0202】
続いて、図31(c)に示すように、レジストマスク17を灰化処理等により除去した後、エクステンション層7a,7b及びポケット層8a,8bの不純物導入により生じた欠陥を回復させるため、半導体基板1をアニール処理 (RTA、1000℃、1秒) する。
【0203】
続いて、図31(d)に示すように、CVD法により全面にシリコン酸化膜(不図示)を堆積し、これを全面異方性エッチングすることにより、ゲート電極6a,6bの両側面のみにシリコン酸化膜を残し、最大幅が80nm程度のサイドウォール9a,9bをそれぞれ形成する。
【0204】
続いて、図32(a)に示すように、p型MOS領域12を覆うレジストマスク18を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが8keV、ドーズ量が6×1015/cm2、注入角度(基板表面に対して垂直方向の場合を0°となる。)が0°の条件でイオン注入し、n型ソース/ドレイン10aを形成する。このとき同時に、ゲート電極6aにもリンがイオン注入される。
【0205】
この場合、ゲート電極6aには、前記4回の斜めイオン注入に加え、前記注入角度0°のイオン注入により、5×1014/cm2の8回分に相当する不純物導入及び6×1015/cm2の不純物導入がなされ、合計で1×1016/cm2のドーズ量のリンがイオン注入される。これに対して、各n型ソース/ドレイン10aには、6×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のリンがイオン注入される。
【0206】
続いて、レジストマスク18を灰化処理等により除去した後、図32(b)に示すように、n型MOS領域11を覆うレジストマスク19を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが4keV、ドーズ量が3×1015/cm2、注入角度が0°の条件でイオン注入し、p型ソース/ドレイン10bを形成する。このとき同時に、ゲート電極6bにもホウ素がイオン注入される。
【0207】
この場合、ゲート電極6bには、前記4回の斜めイオン注入に加え、前記注入角度0°のイオン注入により、2.5×1014/cm2の8回分に相当する不純物導入及び3×1015/cm2の不純物導入がなされ、合計で5×1015/cm2のドーズ量のホウ素がイオン注入される。これに対して、各p型ソース/ドレイン10bには、3×1015/cm2のみの不純物導入がなされ、通常のソース/ドレイン形成時と同様のドーズ量のホウ素がイオン注入される。
【0208】
続いて、レジストマスク19を灰化処理等により除去した後、図32(c)に示すように、ゲート電極6a,6b及びソース/ドレイン10a,10bの不純物導入により生じた欠陥を回復させ、更に不純物を活性化させるため、半導体基板1をアニール処理 (RTA、1020℃、1秒) する。このように本例の場合、図30(d)でゲート電極6a,6bに導入した不純物を活性化しているため、アニール温度を1030℃から1020℃に低減させることができるため、エクステンション層7a,7b及びポケット層8a,8bの不純物拡散を抑え、ショートチャネル効果が更に抑制される。
【0209】
続いて、図32(d)に示すように、全面にシリサイド金属、ここではCoを堆積させ、熱処理することによりシリサイド化させた後、未反応のCoを除去することにより、ゲート電極6a,6bの露出面及びソース/ドレイン10a,10bの表面にCoSi2層23を形成する。
【0210】
しかる後、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0211】
以上説明したように、本実施形態によれば、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本例では、ゲート電極6a,6bの不純物濃度がソース/ドレイン10a,10bよりも66%程度増量される。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、信頼性の高いCMOSトランジスタが実現される。
【0212】
更に、前記斜めイオン注入を行う際に、レジストマスク35,36によりソース/ドレイン10a,10bにはイオン注入がなされず、ゲート電極6a,6bのみにイオン注入されるため、ゲート電極6a,6bをソース/ドレイン10a,10bよりも確実に高不純物濃度に制御することが可能となる。
【0213】
更に、ソース/ドレイン10a,10b及びゲート電極6a,6bに導入される不純物の量は、第5の実施形態の場合と同じであるにも係わらず、サイドウォール9a,9bの薄膜化のためのオーバーエッチングを省略でき、製造コストを削減することが可能になる。それに加えて、ゲート電極6a,6bに前記斜めイオン注入を行った直後に半導体基板1をアニール処理するため、ゲート電極6a,6bのゲート絶縁膜5近傍における不純物濃度を高めることができる。
【0214】
(第9の実施形態)
図33及び図34は、第9の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
本実施形態では、先ず第1の実施形態と同様に図4(a)〜図5(c)の各工程を経て、ゲート電極6a,6bをパターン形成する(図33(a))。
【0215】
続いて、図33(b)に示すように、n型不純物をn型MOS領域11に対して斜めに注入し、ゲート電極6aの露出面(上面(幅50nm)に不純物を導入する。
【0216】
具体的には、p型MOS領域12を覆いn型ソース/ドレイン10aを斜めイオン注入から保護(防御)する寸法の開口35aを有するレジストマスク35を形成する。ここで、レジストマスク35は高さ120nm程度であり、開口35aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口35aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが4keV、ドーズ量が5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)の斜めイオン注入を実行する。
【0217】
この場合、ゲート電極6aにおいてその上面と一側面の上部位とでほぼ同等の露出面積であるため、上記の条件による1回のイオン注入により、ゲート電極6aにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のn型ソース/ドレイン10aはレジストマスク35により当該イオン注入から保護されるため、不純物導入が防止される。
【0218】
続いて、図33(c)に示すように、p型不純物をp型MOS領域12に対して斜めに注入し、ゲート電極6bの露出面(上面(幅50nm)に不純物を導入する。
【0219】
具体的には、レジストマスク35を灰化処理等により除去した後、n型MOS領域11を覆いp型ソース/ドレイン10bを斜めイオン注入から保護(防御)する寸法の開口36aを有するレジストマスク36を形成する。ここで、レジストマスク36は高さ120nm程度であり、開口36aはその一端がゲート電極6aの端から80nmとなる領域である。フォトリソグラフィーに際し、開口36aを形成するときのレチクルの位置合わせを行う場合、STIにより形成するマークの替わりにゲート電極をマークとして用いることにより、位置ずれを低減させることができる。そして、p型MOS領域12にn型不純物、ここではホウ素(B)を加速エネルギーが2keV、ドーズ量が2.5×1014/cm2、注入角度が45°の条件でイオン注入する。この場合、前記イオン注入を全て異なる方向から4回(ゲート長に対して45°の相異なる各4方向)のイオン注入を実行する。
【0220】
この場合、上記の条件による1回のイオン注入により、ゲート電極6bにはその上面から一側面の上部位にかけて、注入角度が0°の場合の2回分に相当する不純物導入がなされる。このとき、一対のp型ソース/ドレイン10bはレジストマスク36により当該イオン注入から保護されるため、不純物導入が防止される。
【0221】
続いて、レジストマスク36を灰化処理等により除去した後、図33(d)に示すように、p型MOS領域12を覆うレジストマスク41を形成し、n型MOS領域11にn型不純物、ここではリン(P)を加速エネルギーが5keV、ドーズ量が8×1014/cm2の条件でイオン注入して、n型ソース/ドレイン43aを形成する。
【0222】
続いて、レジストマスク41を灰化処理等により除去した後、図34(a)に示すように、n型MOS領域11を覆うレジストマスク42を形成し、p型MOS領域12にp型不純物、ここではホウ素(B)を加速エネルギーが0.5keV、ドーズ量が8×1014/cm2の条件でイオン注入して、p型ソース/ドレイン43bを形成する。
【0223】
続いて、レジストマスク42を灰化処理等により除去した後、図34(b)に示すように、ゲート電極6a,6b及びソース/ドレイン43a,43bに導入された不純物を十分に活性化させるため、半導体基板1をアニール処理 (RTA、1030℃、1秒) する。
【0224】
しかる後、全面に層間絶縁膜24を堆積し、コンタクト孔25を介した配線26を形成し、諸々の後工程を経て、CMOSトランジスタを完成させる。
【0225】
以上説明したように、本実施形態によれば、斜め45°からのイオン注入を4方向から実行することにより、不純物濃度をゲート電極6a,6bの方がソース/ドレイン10a,10bよりも高くなるように制御することができる。本実施形態では、ソース/ドレイン10a,10bの不純物濃度を通常の場合と変えることなく、ゲート電極6a,6bの不純物濃度を増加させることができる。これにより、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、少ない工程数で信頼性の高いCMOSトランジスタが実現される。
【0226】
更に、前記斜めイオン注入を行う際に、レジストマスク35,36によりソース/ドレイン10a,10bにはイオン注入がなされず、ゲート電極6a,6bのみにイオン注入されるため、ゲート電極6a,6bをソース/ドレイン10a,10bよりも確実に高不純物濃度に制御することが可能となる。
【0227】
ここで、第1〜第9の実施形態におけるゲート電極及びソース/ドレインのドーズ量を以下の表1にまとめて記載する。
【0228】
【表1】
Figure 0004302952
【0229】
−斜めイオン注入のレジストマスク及びゲート電極の具体的配置条件−
ここで、上述した第4〜第9の実施形態について、前記斜めイオン注入を行う際のレジストマスクの配置ルール、及び前記斜めイオン注入を見込んだゲート電極の配置ルールについて説明する。
【0230】
[第4,第5の実施形態の場合]
第4,第5の実施形態において、ゲート電極6a,6b(以下、単にゲート電極と言う)に対するレジストマスク31〜34(以下、単にレジストマスクと言う)のルールの決め方を図35に示す。ここで、Rp1は斜め注入の不純物を遮るのに十分なサイドウォール9a,9b(以下、単にサイドウォールと言う)の長さ、Rp2は斜め注入の不純物を遮るために十分なレジストマスクの長さとする。
【0231】
先ず、オーバーエッチング後のサイドウォールの形状から、斜めイオン注入によるサイドウォール中の不純物の飛程がRp1より長くなるようにL1’を決定する。次に、イオン注入によるレジストマスク中の飛程がRp2より長くなるようにL1”を決定する。そして、L1’とL1”との短い方をL1として、ゲート電極とレジストパターンの位置合わせ誤差ΔLを考慮して、ゲート電極とレジストマスクの距離のルールをL1−ΔLとする。
【0232】
第4,第5の実施形態において、ゲート電極が並ぶ場合のルールの決め方を図36,図37に示す。
ここで、Rp3は斜めイオン注入の不純物を遮るのに十分なゲート電極の長さとする。
【0233】
先ず、オーバーエッチング後のサイドウォールの形状から、斜めイオン注入によるサイドウォール中の不純物の飛程がRp1より長くなるようにL2’を定義する。次に、斜めイオン注入によるゲート電極中の不純物の飛程がRp3より長くなるようにL2'''を定義する。そして、L2’とL2'''との短い方をL2とする。ここで、レジストパターン111が形成できる最小幅をL3として、隣接するゲート電極の間隔が2(L1−ΔL)+L3より長いときには、隣接するゲート電極間に図37のルールでレジストパターン111を形成する。
【0234】
他方、隣接するゲート電極の間隔が上記の2(L1−ΔL)+L3より短く、且つL2より長いときには、隣接するゲート電極間を幅L3のレジストパターン111で埋める必要がある。隣接するゲート電極の間隔がL2より短いときには、隣接するゲート電極間にレジストパターン111を形成する必要はない。
【0235】
[第6〜第9の実施形態の場合]
第6〜第9の実施形態において、ゲート電極に対するレジストマスク35〜38,41,42(以下、単にレジストマスクと言う)のルールの決め方を図38に示す。ここで、Rp2は斜めイオン注入の不純物を遮るのに十分なレジストマスクの長さ、Rp3は斜めイオン注入の不純物を遮るのに十分なゲート電極の長さとする。
【0236】
先ず、レジストマスク中の飛程がRp2より長くなるようにL1”を決定する。次に、ゲート電極中の飛程がRp3より長くなるようにL1'''を決定する。そして、L1”とL1'''との短い方をL1として、ゲート電極とレジストマスクの位置合わせ誤差ΔLを考慮して、ゲート電極とレジストマスクの距離のルールをL1−ΔLとする。
【0237】
第6〜第9の実施形態において、ゲート電極が並ぶ場合のルールの決め方を図39,図40に示す。ここで、Rp3は斜めイオン注入の不純物を遮るのに十分なゲート電極の長さとする。
【0238】
先ず、斜めイオン注入によるゲート電極中の不純物の飛程がRp3より長くなるようにL2を定義する。次に、隣接するゲート電極の間隔が2(L1−ΔL)+L3より長いときには、隣接するゲート電極間に図40のルールでレジストマスクの一部であるレジストパターン111を形成する。L3はレジストパターン111が形成できる最小幅である。
【0239】
他方、隣接するゲート電極の間隔が上記の2(L1−ΔL)+Lより短く、且つL2より長いときには、隣接するゲート電極間を幅L3のレジストパターン111で埋める必要がある。隣接するゲート電極の間隔がL2より短いときには、隣接するゲート電極間にレジストパターン111を形成する必要はない。
【0240】
(その他の実施形態)
本実施形態では、図35〜図40で説明したルールでレジストマスクを作製するCADソフトを実現する。これにより、斜め注入で導入する不純物がソース/ドレイン領域に入るのを抑えるレジスト用のレチクルを簡便に作成することが可能になる。これは、例えばコンピュータのRAMやROMなどに記憶されたプログラムが動作することによって実現できる。このプログラム及び当該プログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明に含まれる。
【0241】
具体的に、前記プログラムは、例えばCD−ROMのような記録媒体に記録し、或いは各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記録媒体としては、CD−ROM以外に、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、前記プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワーク(LAN、インターネットの等のWAN、無線通信ネットワーク等)システムにおける通信媒体(光ファイバ等の有線回線や無線回線等)を用いることができる。
【0242】
また、コンピュータが供給されたプログラムを実行することにより上述の実施形態の機能が実現されるだけでなく、そのプログラムがコンピュータにおいて稼働しているOS(オペレーティングシステム)或いは他のアプリケーションソフト等と共同して上述の実施形態の機能が実現される場合や、供給されたプログラムの処理の全て或いは一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて上述の実施形態の機能が実現される場合も、かかるプログラムは本発明に含まれる。
【0243】
例えば、図41は、一般的なパーソナルユーザ端末装置の内部構成を示す模式図である。この図41において、1200はコンピュータPCである。PC1200は、CPU1201を備え、ROM1202又はハードディスク(HD)1211に記憶された、或いはフレキシブルディスクドライブ(FD)1212より供給されるデバイス制御ソフトウェアを実行し、システムバス1204に接続される各デバイスを総括的に制御する。
【0244】
以下、本発明の諸態様を付記としてまとめて記載する。
【0245】
(付記1)半導体基板の上方にゲート電極をパターン形成する第1の工程と、
前記ゲート電極の両側面のみを覆うサイドウォールを形成する第2の工程と、
前記サイドウォールの上部位を除去し、前記ゲート電極の両側面の一部を露出させる第3の工程と、
前記ゲート電極に前記半導体基板の表面に対して斜めに不純物を導入する第4の工程と
を含むことを特徴とする半導体装置の製造方法。
【0246】
(付記2)前記第4の工程における前記斜めからの不純物導入を方向を変えて複数回行うことを特徴とする付記1に記載の半導体装置の製造方法。
【0247】
(付記3)前記第4の工程において前記サイドウォールの上部位を除去する際に、前記サイドウォールと前記半導体基板に形成された素子分離構造とのエッチングレートを相異ならしめるように、前記サイドウォールと前記素子分離構造とを相異なる材質で形成することを特徴とする付記1又は2に記載の半導体装置の製造方法。
【0248】
(付記4)前記第4の工程の後、前記サイドウォールを再び前記ゲート電極の両側面を覆う大きさに形成することを特徴とする付記1〜3のいずれか1項に記載の半導体装置の製造方法。
【0249】
(付記5)前記第4の工程において、前記ゲート電極の両側におけるソース/ドレイン形成部位を前記斜めからの不純物導入から保護する寸法の開口を有するマスクを形成し、前記斜めからの不純物導入を行うことを特徴とする付記1〜4のいずれか1項に記載の半導体装置の製造方法。
【0250】
(付記6)前記第1の工程の後、前記第2の工程の前に、前記ゲート電極の両側におけるソース/ドレイン形成部位に不純物を浅く導入する第5の工程と、
前記第2の工程の後、前記ソース/ドレイン形成部位に不純物を深く導入する第6の工程と
を更に含むことを特徴とする付記1〜5のいずれか1項に記載の半導体装置の製造方法。
【0251】
(付記7)前記第4の工程における前記斜めからの不純物導入の加速エネルギーを前記第6の工程における不純物導入の加速エネルギーよりも低く設定することを特徴とする付記6に記載の半導体装置の製造方法。
【0252】
(付記8)前記第4の工程における前記斜めからの不純物導入の角度を45°とすることを特徴とする付記1〜7のいずれか1項に記載の半導体装置の製造方法。
【0253】
(付記9)半導体基板の上方にゲート電極をパターン形成する第1の工程と、
前記ゲート電極を露出させる開口を有するマスクを形成する第2の工程と、
前記ゲート電極に前記半導体基板の表面に対して斜めに不純物を導入する第3の工程と
を含み、
前記第2の工程において、前記マスクの前記開口を、前記ゲート電極の両側におけるソース/ドレイン形成部位を前記斜めからの不純物導入から保護する寸法に形成することを特徴とする半導体装置の製造方法。
【0254】
(付記10)前記第3の工程における前記斜めからの不純物導入を行った後、前記マスクを用いて前記ソース/ドレイン形成部位に不純物を浅く導入する第4の工程と、
前記ゲート電極の両側面のみを覆うサイドウォールを形成し、前記ソース/ドレイン形成部位に不純物を深く導入する5の工程と
を更に含むことを特徴とする付記9に記載の半導体装置の製造方法。
【0255】
(付記11)前記第3の工程における前記斜めからの不純物導入の加速エネルギーを前記第5の工程における不純物導入の加速エネルギーよりも低く設定することを特徴とする付記10に記載の半導体装置の製造方法。
【0256】
(付記12)前記第3の工程における前記斜めからの不純物導入の角度を45°とすることを特徴とする付記9〜11のいずれか1項に記載の半導体装置の製造方法。
【0257】
(付記13)ゲート電極及びソース/ドレインを有する半導体装置であって、前記ゲート電極の両側面の下部位のみを覆うサイドウォールを含み、前記ゲート電極の露出表面にシリサイド膜が形成されており、前記ゲート電極は前記ソース/ドレインと同一導電型の不純物を含有し、前記ゲート電極の不純物濃度が、前記ソース/ドレインの不純物濃度よりも高いことを特徴とする半導体装置。
【0258】
(付記14)前記シリサイド膜は、前記ゲート電極の上面から両側面の上部位にかけて形成されていることを特徴とする付記13に記載の半導体装置。
【0259】
(付記15)前記サイドウォールは、酸化膜のみからなることを特徴とする付記13又は14に記載の半導体装置。
【0260】
(付記16)ゲート電極に半導体基板の表面に対して斜めに不純物を導入するに際して、
前記半導体基板を覆うレジストに、前記ゲート電極の両側におけるソース/ドレイン形成部位を前記斜めからの不純物導入から保護する寸法の開口を自動形成する手順をコンピュータに実行させるためのプログラム。
【0261】
(付記17)付記16に記載のプログラムを記録したことを特徴とするコンピュータ読み取り可能な記録媒体。
【0262】
【発明の効果】
本発明によれば、ソース/ドレインの不純物濃度を増加させることなくゲート電極中の不純物濃度を高め、ゲート電極形状の変動に起因するしきい値電圧の変動等を懸念することなく、ゲート容量とともに短チャネル効果をも向上させ、ゲート空乏化を抑えてオン電流を増加させることが可能となる。
【図面の簡単な説明】
【図1】第1の手法の主要原理を示す概略断面図である。
【図2】第2の手法の主要原理を示す概略断面図である。
【図3】第1の手法と第2の手法とを組み合わせた例を示す概略断面図である。
【図4】第1の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図5】図4に引き続き、第1の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図6】図5に引き続き、第1の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図7】図6に引き続き、第1の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図8】図7に引き続き、第1の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図9】斜めイオン注入を行う様子を示す概略平面図である。
【図10】第1の実施形態のCMOSトランジスタの変形例を工程順に示す概略断面図である。
【図11】第2の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図12】第3の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図13】図12に引き続き、第3の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図14】斜めイオン注入を行う様子を示す概略平面図である。
【図15】第4の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図16】図15に引き続き、第4の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図17】斜めイオン注入を行う様子を示す概略平面図である。
【図18】第5の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図19】図18に引き続き、第5の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図20】斜めイオン注入を行う様子を示す概略平面図である。
【図21】第6の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図22】図21に引き続き、第6の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図23】図22に引き続き、第6の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図24】斜めイオン注入を行う様子を示す概略平面図である。
【図25】第7の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図26】図25に引き続き、第7の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図27】図26に引き続き、第7の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図28】第7の実施形態における変形例のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図29】図28に引き続き、第7の実施形態における変形例のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図30】第8の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図31】図30に引き続き、第8の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図32】図31に引き続き、第8の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図33】第9の実施形態のCMOSトランジスタの製造方法における主要工程を順に示す概略断面図である。
【図34】図33に引き続き、第9の実施形態のCMOSトランジスタの製造方法を工程順に示す概略断面図である。
【図35】第4,第5の実施形態において、ゲート電極に対するレジストマスクのルールの決め方を示す模式図である。
【図36】第4,第5の実施形態において、ゲート電極が並ぶ場合のルールの決め方を示す模式図である。
【図37】第4,第5の実施形態において、ゲート電極が並ぶ場合のルールの決め方を示す特性図である。
【図38】第6〜第9の実施形態において、ゲート電極に対するレジストマスクのルールの決め方を示す模式図である。
【図39】第6〜第9の実施形態において、ゲート電極が並ぶ場合のルールの決め方を示す模式図である。
【図40】第6〜第9の実施形態において、ゲート電極が並ぶ場合のルールの決め方を示す特性図である。
【図41】一般的なパーソナルユーザ端末装置の内部構成を示す模式図である。
【符号の説明】
1,101 半導体基板
2 STI素子分離構造
3 pウェル
4 nウェル
5 ゲート絶縁膜
6a,6b,102 ゲート電極
7a,7b エクステンション層
8a,8b ポケット層
9a,9b,20a,20b,103 サイドウォール
10a,10b,43a,43b ソース/ドレイン
11 n型MOS領域
12 p型MOS領域
13,14,16,17,18,19,21,22,31,32,33,34,35,36,37,38,41,42,105 レジストマスク
15 多結晶シリコン膜
23 CoSi2
24 層間絶縁膜
25 コンタクト孔
26 配線
27 シリコン酸化膜
31a,32a,33a,34a,35a,36a,37a,38a,41a,42a,105a 開口
104 S/D領域
111 レジストパターン

Claims (6)

  1. 半導体基板の上方にゲート電極をパターン形成する第1の工程と、
    前記ゲート電極の両側面のみを覆うサイドウォールを形成する第2の工程と、
    前記サイドウォールの上部位を除去し、前記ゲート電極の両側面の一部を露出させる第3の工程と、
    前記サイドウォールの上部位が除去されて露出した、前記ゲート電極の両側面の一部前記半導体基板の表面に対して斜めに、方向を変えて複数回不純物を導入する第4の工程と
    を含むことを特徴とする半導体装置の製造方法。
  2. 前記第4の工程において前記サイドウォールの上部位を除去する際に、前記サイドウォールと前記半導体基板に形成された素子分離構造とのエッチングレートを相異ならしめるように、前記サイドウォールと前記素子分離構造とを相異なる材質で形成することを特徴とする請求項に記載の半導体装置の製造方法。
  3. 前記第4の工程の後、前記サイドウォールを再び前記ゲート電極の両側面を覆う大きさに形成することを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記第4の工程において、前記ゲート電極の両側におけるソース/ドレイン形成部位を前記斜めからの不純物導入から保護する寸法の開口を有するマスクを形成し、前記斜めからの不純物導入を行うことを特徴とする請求項1〜のいずれか1項に記載の半導体装置の製造方法。
  5. 前記第1の工程の後、前記第2の工程の前に、前記ゲート電極の両側におけるソース/ドレイン形成部位に不純物を浅く導入する第5の工程と、
    前記第2の工程の後、前記ソース/ドレイン形成部位に不純物を深く導入する第6の工程と
    を更に含むことを特徴とする請求項1〜のいずれか1項に記載の半導体装置の製造方法。
  6. 半導体基板の上方にゲート電極をパターン形成する第1の工程と、
    前記ゲート電極を露出させる開口を有するマスクを形成する第2の工程と、
    前記開口に露出した前記ゲート電極に前記半導体基板の表面に対して斜めに、方向を変えて複数回不純物を導入する第3の工程と
    を含み、
    前記第2の工程において、前記マスクの前記開口における前記ゲート電極のゲート長方向の寸法を、前記ゲート電極の両側におけるソース/ドレイン形成部位を前記斜めからの不純物導入から保護する寸法に形成することを特徴とする半導体装置の製造方法。
JP2002254672A 2002-08-30 2002-08-30 半導体装置の製造方法 Expired - Fee Related JP4302952B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002254672A JP4302952B2 (ja) 2002-08-30 2002-08-30 半導体装置の製造方法
TW092123169A TWI237292B (en) 2002-08-30 2003-08-22 Semiconductor device and method of fabricating the same
US10/648,487 US7060578B2 (en) 2002-08-30 2003-08-27 Semiconductor device and method of fabricating the same
CNB031555594A CN1256775C (zh) 2002-08-30 2003-08-28 半导体器件及其制造方法
KR1020030060160A KR100875590B1 (ko) 2002-08-30 2003-08-29 반도체 장치 및 그 제조 방법
US11/071,119 US20070001245A1 (en) 2002-08-30 2005-03-04 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254672A JP4302952B2 (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004095835A JP2004095835A (ja) 2004-03-25
JP4302952B2 true JP4302952B2 (ja) 2009-07-29

Family

ID=31972849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254672A Expired - Fee Related JP4302952B2 (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Country Status (5)

Country Link
US (2) US7060578B2 (ja)
JP (1) JP4302952B2 (ja)
KR (1) KR100875590B1 (ja)
CN (1) CN1256775C (ja)
TW (1) TWI237292B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163635B2 (en) 2009-12-07 2012-04-24 Sen Corporation Manufacturing method of semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289800A1 (en) * 2005-03-22 2006-12-28 Murrell Adrian J Implanting a substrate using an ion beam
US7927934B2 (en) * 2007-04-12 2011-04-19 Freescale Semiconductor, Inc. SOI semiconductor device with body contact and method thereof
KR100935770B1 (ko) * 2007-11-26 2010-01-06 주식회사 동부하이텍 반도체 소자 및 이의 제조방법
KR100973267B1 (ko) * 2008-01-10 2010-07-30 주식회사 하이닉스반도체 모스펫 소자의 제조방법
JP2009218580A (ja) * 2008-03-06 2009-09-24 Toshiba Corp 2方向ハロ注入
CN102024703B (zh) * 2009-09-17 2012-07-25 中芯国际集成电路制造(上海)有限公司 掺杂的方法
CN102185003B (zh) * 2011-04-15 2013-04-10 复旦大学 一种由隧穿场效应晶体管组成的光探测器及其制造方法
CN102306630B (zh) * 2011-09-01 2016-07-27 上海华虹宏力半导体制造有限公司 晶体管pn结的形成方法
US10096489B2 (en) * 2014-03-06 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2017113266A1 (zh) * 2015-12-31 2017-07-06 上海凯世通半导体有限公司 FinFET的掺杂方法
JP2020057639A (ja) * 2018-09-28 2020-04-09 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685149B2 (ja) * 1988-04-11 1997-12-03 住友電気工業株式会社 電界効果トランジスタの製造方法
KR960030440A (ko) * 1995-01-12 1996-08-17 모리시다 요이치 반도체 장치 및 그 제조방법
KR100329769B1 (ko) 1998-12-22 2002-07-18 박종섭 티타늄폴리사이드게이트전극형성방법
JP3147108B2 (ja) * 1999-01-20 2001-03-19 日本電気株式会社 半導体記憶装置の製造方法
KR100289810B1 (ko) * 1999-05-10 2001-05-15 김영환 반도체 소자 제조를 위한 할로 이온 주입 방법
US6194278B1 (en) * 1999-06-21 2001-02-27 Infineon Technologies North America Corp. Device performance by employing an improved method for forming halo implants
US6458666B2 (en) * 2000-06-09 2002-10-01 Texas Instruments Incorporated Spot-implant method for MOS transistor applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163635B2 (en) 2009-12-07 2012-04-24 Sen Corporation Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
US20040041177A1 (en) 2004-03-04
JP2004095835A (ja) 2004-03-25
TWI237292B (en) 2005-08-01
KR20040020035A (ko) 2004-03-06
US20070001245A1 (en) 2007-01-04
US7060578B2 (en) 2006-06-13
KR100875590B1 (ko) 2008-12-23
CN1489220A (zh) 2004-04-14
CN1256775C (zh) 2006-05-17
TW200416778A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
JP4931267B2 (ja) 半導体装置
US20070001245A1 (en) Semiconductor device and method of fabricating the same
JP4628644B2 (ja) 半導体装置の製造方法
JP2513402B2 (ja) 半導体装置の構造及び製造方法
US7067370B2 (en) Method of manufacturing a MOS transistor of a semiconductor device
JP2005136351A (ja) 半導体装置及びその製造方法
US7045429B2 (en) Method of manufacturing a semiconductor device
JP2007027622A (ja) 半導体装置およびその製造方法
JP2004247636A (ja) 半導体装置及びその製造方法
JP2004260003A (ja) 半導体装置及びその製造方法
US7385261B2 (en) Extended drain metal oxide semiconductor transistor and manufacturing method thereof
US6958279B2 (en) Method for manufacturing semiconductor device
JP3253846B2 (ja) 半導体装置およびその製造方法
US20050153498A1 (en) Method of manufacturing p-channel MOS transistor and CMOS transistor
US7160783B2 (en) MOS transistor and method of manufacturing the same
KR100875039B1 (ko) 반도체 소자의 제조 방법
JP2009004480A (ja) 半導体装置の製造方法
JP2008124489A (ja) 半導体装置の製造方法
KR100565754B1 (ko) 반도체 소자의 형성방법
KR100702833B1 (ko) 고속 트랜지스터의 제조방법
JP4092607B2 (ja) 半導体装置の製造方法
JP3918696B2 (ja) 半導体装置の製造方法
KR100898257B1 (ko) 반도체 소자의 제조방법
KR100565756B1 (ko) 반도체 소자의 형성방법
KR20060099214A (ko) 반도체 소자의 cmos 트랜지스터 및 그 형성방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees