JP4286933B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP4286933B2
JP4286933B2 JP26521998A JP26521998A JP4286933B2 JP 4286933 B2 JP4286933 B2 JP 4286933B2 JP 26521998 A JP26521998 A JP 26521998A JP 26521998 A JP26521998 A JP 26521998A JP 4286933 B2 JP4286933 B2 JP 4286933B2
Authority
JP
Japan
Prior art keywords
output
signal
circuit
level
internal clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26521998A
Other languages
English (en)
Other versions
JP2000100161A (ja
Inventor
忠雄 相川
靖治 佐藤
広之 小林
和一郎 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP26521998A priority Critical patent/JP4286933B2/ja
Priority to KR1019990040076A priority patent/KR100565136B1/ko
Priority to US09/398,828 priority patent/US6188640B1/en
Publication of JP2000100161A publication Critical patent/JP2000100161A/ja
Application granted granted Critical
Publication of JP4286933B2 publication Critical patent/JP4286933B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/106Data output latches
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1069I/O lines read out arrangements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体記憶装置に係り、詳しくはデータ出力の制御に関するものである。SDRAMは、高速化、低消費電力化、多ビット出力及び高速インターフェイス等が求められている。近年、RAS、CASの2回にわたりアドレス入力を行なっていたものを、RAS、CASの情報を数回にわたり連続で入力するいわゆるパケット方式のDRAMが提案されている。又、出力に関して、出力を外部クロック信号に同期させて出力し出力レイトを上げるといったダブル・データ・レイト(DDR)方式のDRAMが提案されている。
【0002】
これにともない、インターフェイスの高速化は多種多様におよんでいる。しかし、この種のDRAMの仕様は非常に使いづらい仕様となっていて、その難しい使用を避け従来の延長で高速化を目指すことも望まれている。
【0003】
【従来の技術】
従来の同期式DRAMでは、RASの信号でロウアドレスを、CASの信号でコラムアドレスを取り込むようになっていた。しかし、これは動作サイクルを遅らせる要因であった。そこで、RAS、CASの情報を数回にわたって連続で入力し高速化を図ったパケット方式が提案されている。又、出力方法は、外部クロック信号CLK ,/CLK に同期して出力し出力転送レイトを2倍に見せかけるダブル・データ・レイト(DDR)方式のDRAMが提案されている。
【0004】
【発明が解決しようとする課題】
上記したように、SDRAMでは、パケット方式やダブル・データ・レイト(DDR)方式などのように、インターフェイスを高速化させるための技術が登場してきている。しかしながら、これらの方法は、使う側とってはDRAMコントローラを変更しなくてはない問題がある。つまり、パケット方式は外部コマンドの入力方法が難しいという問題があった。又、DDR方式では、これも使い手側からみると、外部クロック信号CLK ,/CLK のそれぞれの立ち上がりを見ないといけないので受け取り側が難しいという問題があった。
【0005】
そこで、現状のままの延長線上でインターフェイスを高速化することを考える。つまり、外部コマンド及びアドレスの入力は一括していっきに行ない、出力はDRAMコントローラの外部クロック信号に同期して出力させることを考える。
【0006】
そのためには、DRAM内部に前記外部クロック信号を1/2に分周した内部クロック信号を生成し、さらに、この内部クロック信号について、0°と、180°の位相を持つ2種類の内部クロック信号(0°の内部クロック信号を第1内部クロック信号、180°の内部クロック信号を第2内部クロック信号とする)を生成する。つまり、外部クロック信号のクロック周波数が400メガHzとすると、第1及び第2内部クロック信号のクロック周波数は200メガHzとなる。そして、その200メガHzの第1及び第2内部クロック信号は互いに位相が半周期ずれている。
【0007】
そして、第1及び第2内部クロック信号の両立ち上がりにてDRAMが動作すれば、400メガHzの外部クロック信号の立ち上がりに同期して出力されるコマンド及びアドレスを取り込むことが可能となる。
【0008】
又、出力バッファを、第1及び第2内部クロック信号を交互に受けて出力できるタイプのものを使用すれば、外部クロック信号の立ち上がりに同期してデータが出力されることになる。
【0009】
この場合、この同期式DRAMにおいても、コマンドを取り込みからデータ出力回路部をアクティブにするまでには回路内ディレイがある。一般に、外部クロックの1周期以上の回路ディレイが生じる場合、コマンドを取り込みに使用される第1及び第2内部クロック信号でデータ出力回路部をアクティブにするとさらに遅れが生じ好ましくない。そこで、第1及び第2内部クロック信号を入力用と出力用の第1及び第2内部クロック信号を作る。つまり、第1及び第2入力用内部クロック信号と第1及び第2出力用内部クロック信号を生成する。そして、第1及び第2出力用クロック信号を第1及び第2入力用内部クロック信号を位相を進めて回路ディレイを補償することを考える必要がある。
【0010】
しかしながら、第1及び第2内部クロック信号にてコマンド及びアドレスを一括して取り込む同期式DRAMでは、リードデータを出力するデータ出力回路部において以下の問題がある。
【0011】
(1)この同期式DRAMでは、そのコマンド及びアドレスが第1内部クロック信号で取り込まれたのか、第2内部クロック信号で取り込まれたのか判断できない。しかし、どちらの内部クロック信号で取り込んでも、常に予め定めたタイミングでデータを出力する必要がある。
【0012】
(2)この同期式DRAMでは、外部クロック信号を1/2に分周した同外部クロック信号のクロック周期より長い内部クロック信号で処理動作が行われるため、バースト長が「1」のリード動作が問題となる。つまり、内部クロック信号の1クロックは、外部クロック信号の2クロックに相当するため、バースト長が「1」の時には外部クロック信号と同じクロック周波数の信号が必要となるからである。
【0013】
(3)この同期式DRAMでは、第1及び第2入力用内部クロック信号でコマンドを取り込み、その取り込んだ時点から外部クロック信号で数えて予め定めたクロック数後にリードデータを出力する必要がある。この時、この出力するタイミングは第1及び第2出力用内部クロック信号に基づいて生成されていて、コマンドを取り込みで使用される第1及び第2入力用クロック信号ではない。
【0014】
つまり、例えば、第1入力用内部クロック信号でコマンドを取り込んだ時、その第1入力用内部クロック信号に対応する第1出力用内部クロック信号は既に出力された後となっているため、以後に出力される第1出力用内部クロック信号を基準にして出力タイミングを決定するとリードデータが予め定めた外部クロック信号の数で出力されず遅れて出力される問題が生じる。
【0015】
本発明は上記問題点を解決するためになされたものであって、その目的は外部クロック信号を分周して得た互いに位相がずれた複数の内部クロック信号にてコマンド及びアドレスを一括して取り込む半導体記憶装置において、複数の内部クロック信号のうちいずれの内部クロック信号に同期してコマンド及びアドレスを取り込んでも、常に予め定めたタイミングでデータを出力することができ、データ出力の制御を確実に行うことのできる半導体記憶装置を提供するにある。
【0016】
又、本発明の目的は、外部クロック信号を分周して得た互いに位相がずれた複数の内部クロック信号にてコマンド及びアドレスを一括して取り込む半導体記憶装置において、バースト長が「1」のリード動作であっても特別な信号生成回路を設けることなくリード動作を行うことができ、データ出力の制御を確実に行うことのできる半導体記憶装置を提供するにある。
【0017】
さらに、本発明の目的は、外部クロック信号を分周して得た互いに位相がずれた複数の内部クロック信号にてコマンド及びアドレスを一括して取り込む半導体記憶装置において、コマンド及びアドレスを一括して取り込まれた時から予め定められた外部クロック数でリードデータを確実に出力することができ、データ出力の制御を確実に行うことのできる半導体記憶装置を提供するにある。
【0018】
さらに又、本発明の目的は、外部クロック信号を分周して得た互いに位相がずれた複数の内部クロック信号にてコマンド及びアドレスを一括して取り込む半導体記憶装置において、従来の半導体記憶装置と同様に、データを出力した後、直ちに出力バッファをハイ・インピーダンス状態にすることができ、データ出力の制御を確実に行うことのできる半導体記憶装置を提供するにある。
【0019】
さらに、本発明の目的は、外部クロック信号を分周して得た互いに位相がずれた複数の内部クロック信号にてコマンド及びアドレスを一括して取り込む半導体記憶装置において、特別な回路を設けることなく従来の半導体記憶装置と同様に、出力バッファのテストを行うことができる半導体記憶装置を提供するにある。
【0020】
【課題を解決するための手段】
請求項1に記載の発明によれば、第1出力制御回路により第1入力用内部クロック信号に同期してコマンド及びアドレスを取り込んだときに第1出力制御信号が生成され、第2出力制御回路により第2入力用内部クロック信号に同期してコマンド及びアドレスを取り込んだときに第2出力制御信号が生成される。出力クロック発生回路により、第1出力制御信号が出力されている時には第1出力用内部クロック信号が反転されて第1出力クロック信号が生成されるとともに第2出力用内部クロック信号が反転されて第2出力クロック信号が生成され、第2出力制御信号が出力されている時には第1出力用内部クロック信号が反転されて第2出力クロック信号が生成されるとともに第2出力用内部クロック信号が反転されて第1出力クロック信号が生成される。そして、出力バッファは、第1データ入力端子から入力される第1データ信号を第1出力クロック信号に従って出力端子から出力するとともに、第2データ入力端子から入力される第2データ信号を第2出力クロック信号に従って出力端子から出力する。従って、前記出力バッファは第1データ入力端子に入力されるデータを常に最初に入力し出力する。
【0021】
請求項2に記載の発明によれば、第1出力クロック制御回路に備えた第1バースト波形変更回路部により、バースト長が1の時には、バースト長の数が複数のバースト長の第1出力制御信号が第1出力用内部クロック信号出力される時に、第2出力用内部クロック信号で第1出力制御信号を消失させてバースト長が1となる第1出力制御信号を生成する。第2出力クロック制御回路に備えた第2バースト波形変更回路部により、バースト長が1の時には、バースト長の数が複数のバースト長の第2出力制御信号が第2出力用内部クロック信号で出力される時に、第1出力用内部クロック信号で第2出力制御信号を消失させてバースト長が1となる第2出力制御信号を生成するようにした。従って、バースト長が1のリード動作であっても特別な信号生成回路を設けることなく第1及び第2出力用内部クロック信号で出力制御信号を生成できる。
【0022】
請求項3に記載の発明によれば、出力バッファに設けたハイ・インピーダンス制御部により、出力バッファに設けたバッファ回路部を第2データ信号の出力が終了した時にハイ・インピーダンスにすることができる。
【0023】
請求項4に記載の発明によれば、第1及び第2レイテンシン・カウンタは、コマンドを取り込んだ入力用内部クロック信号に対応した、その取り込んだ入力用内部クロック信号より先に出力された出力用内部クロック信号を見込んでカウント動作を行うようにした。従って、コマンド及びアドレスを一括して取り込まれた時から予め定められた外部クロック数でリードデータを確実に出力することができる
【0024】
【発明の実施の形態】
以下、本発明を同期式DRAMに具体化した一実施形態を図面に従って説明する。
【0025】
図1は、一括して外部コマンドとアドレスを取り込む同期式DRAMのデータ出力回路部100を示すブロック回路を示す。
尚、同期式DRAMは、内部に図示しないDLL回路を備え、DLL回路にて生成された第1及び第2入力用内部クロック信号CLKIN1,CLKIN2と第1及び第2出力用内部クロック信号CLKOUT1 ,CLKOUT2 がデータ出力回路部100に入力される。
【0026】
第1及び第2入力用内部クロック信号CLKIN1,CLKIN2と、第1及び第2出力用内部クロック信号CLKOUT1 ,CLKOUT2 は、外部装置である図示しないDRAMコントローラから出力される外部クロック信号CLK をDLL回路にて1/2に分周して生成されている。従って、これら各内部クロック信号CLKIN1,CLKIN2,CLKOUT1 ,CLKOUT2 のクロック周波数は、図10〜図12に示すように、外部クロック信号CLK のクロック周波数の1/2となる。即ち、例えば、外部クロック信号CLK のクロック周波数が400メガHzとすると、各内部クロック信号CLKIN1,CLKIN2,CLKOUT1 ,CLKOUT2 のクロック周波数は200メガHzとなる。
【0027】
第1及び第2入力用内部クロック信号CLKIN1,CLKIN2は、外部コマンド及びアドレスを取り込むためのタイミングを決定するために使用される。第1及び第2出力用内部クロック信号CLKOUT1 ,CLKOUT2 は、読み出したデータを出力するためのタイミングを決定するために使用される。
【0028】
又、第1入力用内部クロック信号CLKIN1と第2入力用内部クロック信号CLKIN2は、第1入力用内部クロック信号CLKIN1が0°、第2入力用内部クロック信号CLKIN2が180°の位相を持つクロック信号である。つまり、第1入力用内部クロック信号CLKIN1と第2入力用内部クロック信号CLKIN2は、図10に示すように、互いに半周期ずれた信号となる。
【0029】
従って、第1及び第2入力用内部クロック信号CLKIN1,CLKIN2の両立ち上がりにてDRAMが動作すれば、400メガHzの外部クロック信号CLK の立ち上がりに同期して出力されるコマンド及びアドレスを取り込むことが可能となる。
【0030】
そして、本実施形態では、同期式DRAMが第1入力用内部クロック信号CLKIN1の立ち上がりで外部コマンド(この場合、リードコマンド)を取り込んだ時、DRAM内部でHレベルの「0°一致」リードコマンドRED0Z が生成される。このHレベルの「0°一致」リードコマンドRED0Z は、図11に示すように、第1入力用内部クロック信号CLKIN1の立ち上がりでリードコマンドを取り込んだ時からtd1時間遅延してデータ出力回路部100に入力される。
【0031】
又、DRAMが第2入力用内部クロック信号CLKIN2の立ち上がりで外部コマンド(この場合、リードコマンド)を取り込んだ時に、DRAM内部でHレベルの「180°一致」リードコマンドRED180Z が生成される。このHレベルの「180°一致」リードコマンドRED180Z は、「0°一致」リードコマンドRED0Z と同様に、第2入力用内部クロック信号CLKIN2の立ち上がりでリードコマンドを取り込んだ時からtd1時間遅延して出力される。
【0032】
そして、データ出力回路部100は、「0°一致」リードコマンドRED0Z 及び「180°一致」リードコマンドRED180Z が入力されるようになっている。
さらに、第1出力用内部クロック信号CLKOUT1 と第2出力用内部クロック信号CLKOUT2 は、第1出力用内部クロック信号CLKOUT1 が0°、第2出力用内部クロック信号CLKOUT2 が180°の位相を持つクロック信号である。従って、第1出力用内部クロック信号CLKOUT1 と第2出力用内部クロック信号CLKOUT2 は、図12に示すように、互いに半周期ずれた信号となる。
【0033】
そして、第1出力用内部クロック信号CLKOUT1 は第1入力用内部クロック信号CLKIN1と相対し、第2出力用内部クロック信号CLKOUT2 は第2入力用内部クロック信号CLKIN2と相対する信号となる。
【0034】
さらに、第1出力用内部クロック信号CLKOUT1 は、図11に示すように、第1入力用内部クロック信号CLKIN1に対して、位相が進むようにDLL回路にて生成されるようになっている。これは、データを出力する際に、常に第1出力用内部クロック信号CLKOUT1 にて最初に出力される(読み出される)ようにするために、第1出力用内部クロック信号CLKOUT1 の位相は、第1入力用内部クロック信号CLKIN1より進ませている。従って、第2出力用内部クロック信号CLKOUT2 も第2入力用内部クロック信号CLKIN2に対して、位相は進むことになる。
【0035】
図1において、データ出力回路部100は、第1出力制御回路110、第2出力制御回路120、出力クロック発生回路(以下、出力CLK発生回路という)130、ハイ・インピーダンス発生回路(以下、Hiz発生回路という)140、出力バッファ150とを有している。
【0036】
第1出力制御回路110は、第1カウンタ・リセット回路111、第1バースト長カウンタ(以下、第1BLカウンタという)112、第1バースト長整形回路(以下、第1BL長整形回路)113、第1レイテンシン・カウンタ114、及び、第1出力クロック制御回路(以下、第1出力CLK制御回路)115とからなる。
【0037】
第2出力制御回路120は、第2カウンタ・リセット回路121、第2バースト長カウンタ(以下、第2BLカウンタという)122、第2バースト長整形回路(以下、第2BL長整形回路)123、第2レイテンシン・カウンタ124、及び、第2出力クロック制御回路(以下、第2出力CLK制御回路)125とからなる。
【0038】
第1出力制御回路110と第2出力制御回路120は、その対応する各回路111〜115,121〜125が同一の回路構成であっで、相違する点は以下のとおりである。
【0039】
第1出力制御回路110の第1カウンタ・リセット回路111は、第1出力用内部クロック信号CLKOUT1 、第1入力用内部クロック信号CLKIN1及び「0°一致」リードコマンドRED0Z を入力する。
【0040】
これに対して、第2出力制御回路120の第2カウンタ・リセット回路121は、第2出力用内部クロック信号CLKOUT2 、第2入力用内部クロック信号CLKIN2及び「180°一致」リードコマンドRED180Z を入力する。
【0041】
第1出力制御回路110の第1出力CLK制御回路115が第2出力用内部クロック信号CLKOUT2 を入力する。
これに対して、第2出力制御回路120の第2出力CLK回路125が第1出力用内部クロック信号CLKOUT1 を入力する。
【0042】
この相違によって、第1入力用内部クロック信号CLKIN1の立ち上がりでリードコマンドを取り込まれた時には、即ち、Hレベルの「0°一致」リードコマンドRED0Z が第1出力制御回路110に入力された時には、同第1出力制御回路110が動作するようになっている。この時、第2出力制御回路120は停止している。
【0043】
一方、第2入力用内部クロック信号CLKIN2の立ち上がりでリードコマンドを取り込んだ時には、即ち、Hレベルの「180°一致」リードコマンドRED180Z が第2出力制御回路120に入力された時には、同第2出力制御回路120が動作するようになっている。この時、第1出力制御回路110は停止している。
【0044】
従って、第1出力制御回路110と第2出力制御回路120は入力される信号が相違するだけで各回路の構成は同じであって実質的に同様な動作を行なうので、説明の便宜上第1出力制御回路110について説明し、第2出力制御回路120の詳細な説明は省略する。
【0045】
[第1カウンタ・リセット回路111]
図2は、第1カウンタ・リセット回路111の回路図を示す。第1カウンタ・リセット回路111は、リセット信号生成部111aと分周クロック生成部111bを有している。
【0046】
(リセット信号生成部111a)
リセット信号生成部111aは、フリップフロップ(以下、第1FF回路という)12と、2個の第1及び第2インバータ13,14を備えている。第1FF回路12は2個のノア回路12a,12bとから構成される。第1FF回路12において、ノア回路12aのリセット側入力端子にはリードコマンド信号RED0Z が入力され、ノア回路12bのセット側入力端子には第1入力用内部クロックCLKIN1が入力される。ノア回路12aの出力端子(リセット側出力端子)は、第1インバータ回路13を介して第2インバータ回路14に接続されている。
【0047】
そして、図11に示すように、リセット側入力端子に、Hレベルの「0°一致」リードコマンド信号RED0Z が入力されると、第1FF回路12のリセット側出力端子から出力される出力信号SG1がHレベルからLレベルに立ち下がる。この立ち下りに応答して、第2インバータ回路14の出力はHレベルからLレベルに立ち下がり、カウント・リセット信号AGR0X として第1BLカウンタ112及び第1BL長整形回路113に出力される。
【0048】
そして、「0°一致」リードコマンド信号RED0Z がLレベルに立ち下り、次の新たな第1入力用内部クロックCLKIN1のHレベルに立ち上が応答して、第1FF回路12のリセット側出力端子から出力される出力信号SG1がLレベルからHレベルに立ち上がる。従って、カウント・リセット信号AGR0X は、次の新たな第1入力用内部クロックCLKIN1のHレベルの立ち上がりでLレベルからHレベルに立ち上がる。
【0049】
(分周クロック生成部111b)
分周クロック生成部111bは、遅延回路18、第2FF回路19、第3FF回路20、ナンド回路21〜23及びインバータ回路24,25を備えている。
【0050】
遅延回路18は、4個のインバータ回路18a〜18d、2個の容量18e,18f及びナンド回路18gを備えている。ナンド回路18gは2入力端子のナンド回路であって、一方の入力端子は3個のインバータ18a〜18cを介して前記第1FF回路12のリセット側出力端子(ノア回路12aの出力端子)に接続され、他方の入力端子はインバータ回路18dを介して前記第1FF回路12のリセット側出力端子に接続されている。又、インバータ回路18a,18bの出力端子はそれぞれ容量18e,18fを介して接地されている。
【0051】
従って、第1FF回路12の出力信号SG1がLレベルに立ち下がり、インバータ回路18a〜18cを介してナンド回路18gにHレベルの信号が入力されると、ナンド回路18gの出力信号はHレベルからLレベルに立ち下がる。そして、第1FF回路12の出力信号SG1がHレベルに立ち上がり、インバータ回路18dを介してナンド回路18gにLレベルの信号が入力されると、ナンド回路18gの出力信号SG2はLレベルからHレベルに立ち上がる。
【0052】
つまり、遅延回路18は、第1FF回路12から出力される出力信号SG1のLレベルに立ち下がりに応答して、インバータ回路18a〜18c及び容量18e,18fで決まる遅延時間td2で決まる時間でLレベルに立ち下がる出力信号SG2を出力する。又、遅延回路18は、第1FF回路12から出力される出力信号SG1のHレベルに立ち上がりに応答して、インバータ回路18dで決まる遅延時間td3で決まる時間でHレベルに立ち上がる出力信号SG2を出力する。
【0053】
遅延回路18からの出力信号SG2は第2FF回路19に入力される。第2FF回路19は2個のナンド回路19a,19bとから構成される。第2FF回路19において、ナンド回路19aのリセット側入力端子に出力信号SG2が入力される。第2FF回路19において、ナンド回路19bのセット側入力端子に第1BL長整形回路113からの終了信号POEP0Xが入力される。
【0054】
遅延回路18からの出力信号SG2がHレベルからLレベルに立ち下がると、第2FF回路19のリセット側出力端子(ナンド回路19aのリセット側出力端子)から出力信号SG3は、LレベルからHレベルに立ち上がる。そして、第2FF回路19のセット側入力端子(ナンド回路19bのセット側入力端子)にLレベルの終了信号POEP0Xを入力されるまで、出力信号SG3はHレベルを保持しLレベルに立ち下がることはない。
【0055】
第2FF回路19の出力信号SG3はナンド回路21に出力される。ナンド回路21は2入力端子のナンド回路であって、一方の入力端子には前記出力信号SG3が入力され、他方の入力端子にはインバータ回路24を介して第1出力用内部クロック信号CLKOUT1 が入力される。
【0056】
つまり、ナンド回路21は、出力信号SG3がHレベルの状態にある間(第2FF回路19がLレベルの終了信号POEP0Xを入力してセットされるまでの間)、第1出力用内部クロック信号CLKOUT1 を出力信号SG4として出力する。そして、第2FF回路19がLレベルの終了信号POEP0Xを入力してセットされると、ナンド回路21は第1出力用内部クロック信号CLKOUT1 を出力せずにナンド回路21の出力信号SG4をHレベルに保持する。
【0057】
ナンド回路21の出力信号SG4は、ナンド回路22に出力される。ナンド回路22は、出力信号SG4の他にインバータ回路24を介して第1出力用内部クロック信号CLKOUT1 が入力される。
【0058】
つまり、ナンド回路22は、Hレベルの出力信号SG4がHレベルの状態にある間(第2FF回路19がLレベルの終了信号POEP0Xを入力してセットされていて出力信号SG3がLレベルの状態にある間)、第1出力用内部クロック信号CLKOUT1 を出力信号SG5として出力する。そして、第2FF回路19がLレベルの出力信号SG2を入力してリセットされると、ナンド回路22は第1出力用内部クロック信号CLKOUT1 を出力せずにナンド回路22の出力信号SG5をHレベルに保持する。
【0059】
出力信号SG4,SG5は第3FF回路20に出力される。第3FF回路20は2個のナンド回路20a,20bとから構成される。第3FF回路20において、ナンド回路20aのリセット側入力端子に出力信号SG4が入力される。第3FF回路20において、ナンド回路20bのセット側入力端子に出力信号SG5が入力される。
【0060】
従って、第3FF回路20は、リセット入力端子に入力される出力信号SG4がHレベルからLレベルに立ち下がると、リセットされる。そして、第3FF回路20がリセットされると、リセット側出力端子(ナンド回路20aの出力端子)から出力される出力信号SG6はLレベルからHレベルに立ち上がる。
【0061】
又、第3FF回路20がリセットの状態でセット入力端子に入力される出力信号SG5がHレベルからLレベルに立ち下がると、第3FF回路20はセットされる。そして、第3FF回路20がセットされると、リセット側出力端子から出力される出力信号SG6はHレベルからLレベルに立ち下がる。
【0062】
つまり、第3FF回路20は、遅延回路18からLレベルの出力信号SG2が出力されて第2FF回路19がリセットされた状態で、第1出力用内部クロック信号CLKOUT1 が最初にLレベルに立ち下がった時、リセットされ出力信号SG6がLレベルからHレベルに立ち上がる。一方、第3FF回路20は、第1BL長整形回路113からLレベルの終了信号POEP0Xが出力されて第2FF回路19がセットされた状態で、第1出力用内部クロック信号CLKOUT1 が最初にLレベルに立ち下がった時、セットされて出力信号SG6がHレベルからLレベルに立ち下がる。
【0063】
第3FF回路20の出力信号SG6は、ナンド回路23に出力される。ナンド回路23は、出力信号SG6を入力する他に第1出力用内部クロック信号CLKOUT1 に入力する。ナンド回路23は、出力信号SG6がHレベルの状態にある時、第1出力用内部クロック信号CLKOUT1 を反転させた信号を出力信号として次段のインバータ回路25に出力する。反対に、ナンド回路23は、出力信号SG6がLレベルの状態にある時、第1出力用内部クロック信号CLKOUT1 を反転させた信号を出力せずHレベルの出力信号を次段のインバータ回路25に出力する。
【0064】
従って、インバータ回路25は、遅延回路18からLレベルの出力信号SG2が出力されて第2及び第3FF回路19,20がリセットされている間、第1出力用内部クロック信号CLKOUT1 を分周クロック信号BLCLK0Z として第1BLカウンタ112に出力する。
【0065】
尚、インバータ回路25から出力される第1出力用内部クロック信号CLKOUT1 からなる分周クロック信号BLCLK0Z は、遅延回路18、第2及び第3FF回路19,20等を介して生成される。その結果、分周クロック信号BLCLK0Z の出力タイミングは、Lレベルのカウント・リセット信号AGR0X がHレベルに立ち上がった後に出力される。
【0066】
又、インバータ回路25は、第1BL長整形回路113からLレベルの終了信号POEP0Xが出力されて第2及び第3FF回路19,20がセットされている間、第1出力用内部クロック信号CLKOUT1 よりなる分周クロック信号BLCLK0Z を出力せずにLレベルの信号を第1BLカウンタ112に出力する。
【0067】
このように、第1カウンタ・リセット回路111は、外部コマンド(リードコマンド)を第1入力用内部クロック信号CLKIN1で取り込まれ、td1時間後に「0°一致」リードコマンドRED0Z がリセット信号生成部111aに入力されると、リセット信号生成部111aにてカウント・リセット信号AGR0X を生成し出力する。
【0068】
又、カウント・リセット信号AGR0X の生成されると、分周クロック生成部111bにおいて、第1出力用内部クロック信号CLKOUT1 を使用して分周クロック信号BLCLK0Z が生成される。
【0069】
そして、このカウント・リセット信号AGR0X は第1BLカウンタ112及び第1BL長整形回路113に出力される。又、分周クロック信号BLCLK0Z は第1BLカウンタ112に出力される。
【0070】
[第1BLカウンタ112]
次に、第1BLカウンタ112について説明する。図3は第1BLカウンタ112の回路図を示す。第1BLカウンタ112は、カウントクロック生成回路部112aとカウンタ回路部112bを有している。
【0071】
(カウントクロック生成回路部112a)
カウントクロック生成回路部112aは、第4FF回路28を備えている。第4FF回路28は2個のノア回路28a,28bとから構成されている。第4FF回路28において、リセット側入力端子(ノア回路28aの入力端子)にはインバータ回路29を介して前記カウント・リセット信号AGR0X が入力される。第4FF回路28において、セット側入力端子(ノア回路28bの入力端子)にはインバータ回路30を介して第1BL長整形回路113からの終了信号POEP0Xが入力される。
【0072】
カウンタ・リセット回路111から出力されるカウント・リセット信号AGR0X がHレベルからLレベルに立ち下がると、第4FF回路28はそのリセット側出力端子(ノア回路28a)がHレベルからLレベルに立ち下がってリセットされる。
【0073】
又、第4FF回路28がリセット状態において、第1BL長整形回路113からの終了信号POEP0XがHレベルからLレベルに立ち下がると、第4FF回路28はそのリセット側出力端子(ノア回路28a)がLレベルからHレベルに立ち上がってセットされる。
【0074】
第4FF回路28のリセット側出力端子(ノア回路28aの出力端子)は、ノア回路31に接続されている。ノア回路31は2入力端子のノア回路であって、第4FF回路28のリセット側出力端子から出力される出力信号SG7を入力するとともに、前記インバータ回路29を介してカウント・リセット信号AGR0X を入力する。
【0075】
従って、第4FF回路28がリセット状態(出力信号SG7がLレベル)において、ノア回路31は、インバータ回路29を介して入力されるカウント・リセット信号AGR0X がLレベルからHレベルに立ち上がり復帰すると、Hレベルの出力信号SG8を出力する。
【0076】
又、第4FF回路28がセット状態(出力信号SG7がHレベル)において、ノア回路31は、カウント・リセット信号AGR0X に関係なくLレベルの出力信号SG8を出力する。
【0077】
つまり、ノア回路31は、カウント・リセット信号AGR0X がLレベルに立ち下がって第4FF回路28がリセットされた後にカウント・リセット信号AGR0X がLレベルからHレベルにに立ち上がり復帰すると、Hレベルの出力信号SG8を出力する。そして、Hレベルの出力信号SG8は、Lレベルの終了信号POEP0Xが入力されて第4FF回路28がセットされると、Lレベルとなる。
【0078】
ノア回路31の出力信号SG8はナンド回路32に出力される。ナンド回路32は、ノア回路31からの出力信号SG8の他に前記第1カウンタ・リセット回路111からの分周クロック信号BLCLK0Z を入力する。従って、ナンド回路32は、出力信号SG8がHレベルの時、分周クロック信号BLCLK0Z のレベルを反転させたレベルの信号を出力する。
【0079】
又、ナンド回路32の出力信号(分周クロック信号BLCLK0Z のレベルを反転したレベルの信号)は、インバータ回路33を介して反転された信号(分周クロック信号BLCLK0Z のレベルと同じレベルの信号)として出力される。
【0080】
本実施形態では、ナンド回路32からの出力信号を第1ゲート信号SG9、インバータ回路33からの出力信号を第2ゲート信号SG10としている。
つまり、カウントクロック生成回路部112aは、カウント・リセット信号AGR0X がLレベルに立ち下がり再びLレベルからHレベルにに立ち上がり復帰した時からLレベルの終了信号POEP0Xにて第4FF回路28がセットされるまでの間、分周クロック信号BLCLK0Z を使用して第1及び第2ゲート信号SG9,SG10を出力する。
【0081】
そして、このカウントクロック生成回路部112aで生成された第1及び第2ゲート信号SG9,SG10は、カウンタ回路部112bに出力される。
(カウンタ回路部112b)
カウンタ回路部112bは、3個の第1〜第3カウンタ部35a,35b,35cから構成されている。第1カウンタ部35aは、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる2個の第1及び第2トランスファーゲート回路37a,37bを備えている。
【0082】
第1トランスファーゲート回路37aは、そのPチャネルMOSトランジスタのゲートに第2ゲート信号SG10が入力され、NチャネルMOSトランジスタのゲートに第1ゲート信号SG9が入力される。一方、第2トランスファーゲート回路37bは、そのPチャネルMOSトランジスタのゲートに第1ゲート信号SG9が入力され、NチャネルMOSトランジスタのゲートに第2ゲート信号SG10が入力される。従って、第1及び第2トランスファーゲート回路37a,37bは、第1及び第2ゲート信号SG9,SG10に基づいて交互にオン・オフされる。
【0083】
第1トランスファーゲート回路37aの出力端子はノア回路38に接続されている。ノア回路38は前記カウントクロック生成回路部112aのインバータ回路29を介してカウント・リセット信号AGR0X を入力する。ノア回路38の出力端子には、CMOSトランジスタT1の入力端子に接続され、そのCMOSトランジスタT1の出力端子は第1トランスファーゲート回路37aの出力端子に接続されている。
CMOSトランジスタT1は、第1ゲート信号SG9でオン・オフするPチャネルMOSトランジスタT2と第2ゲート信号SG10でオン・オフするNチャネルMOSトランジスタT3が直列に接続されている。従って、第1トランスファーゲート回路37aがオフしている時には、CMOSトランジスタT1は活性化され、第1トランスファーゲート回路37aがオンして時には、CMOSトランジスタT1は非活性となる。
【0084】
ノア回路38とCMOSトランジスタT1は、ラッチ回路を構成している。カウント・リセット信号AGR0X がLレベルに立ち下がると、ノア回路38の出力はHレベルからLレベルとなる。そして、CMOSトランジスタT1は活性化されると(第1トランスファーゲート回路37aはオフ)、CMOSトランジスタT1はノア回路38のLレベルの出力を入力し、Hレベルの出力信号をノア回路38に出力する。
【0085】
従って、ノア回路38の出力は、Lレベルのカウント・リセット信号AGR0X に基づいてLレベルに保持される。このノア回路38のLレベルの出力は、カウント・リセット信号AGR0X がLレベルからHレベルに立ち上がった状態で、第1トランスファーゲート回路37aを介してLレベルのリセット信号SG11を入力した時、Hレベルに立ち上がり保持される。
【0086】
ノア回路38の出力は、第2トランスファーゲート回路37bを介してインバータ回路39に出力される。インバータ回路39の出力端子は、ノア回路40の入力端子に接続されている。ノア回路40は、インバータ回路39からの出力信号の他に前記インバータ回路29を介してカウント・リセット信号AGR0X が入力される。ノア回路40の出力端子は、前記インバータ回路39の入力端子に接続されている。
【0087】
インバータ回路39とノア回路40は、ラッチ回路を構成している。カウント・リセット信号AGR0X がLレベルに立ち下がると(ノア回路40にHレベルの信号が入力されると)、ノア回路40の出力はLレベルとなる。この時、第2トランスファーゲート回路37bはオフ状態にあることから、インバータ回路39の出力は、ノア回路40のLレベルの信号に応答してHレベルとなる。
【0088】
このHレベルに保持されたインバータ回路39の出力は、第2トランスファーゲート回路37bがオンして前記ノア回路38からのHレベルの出力に基づいてLレベルに立ち下がる。
【0089】
インバータ回路39の出力は、インバータ回路41を介して前記第1トランスファーゲート回路37aに出力される。即ち、インバータ回路41は、Lレベルのカウント・リセット信号AGR0X に基づいてLレベルのリセット信号SG11を第1トランスファーゲート回路37aに出力する。そして、このLレベルのリセット信号SG11は、第1トランスファーゲート回路37aがオンされているときノア回路38に入力される。
【0090】
つまり、第1カウンタ部35aは、Lレベルのカウント・リセット信号AGR0X が出力されると、ノア回路38の出力がHレベルからLレベルに保持される。又、インバータ回路39の出力がLレベルからHレベルに保持される。
【0091】
そして、カウントクロック生成回路部112aからカウント・リセット信号AGR0X のLレベルからHレベルに立ち上がり復帰して最初の第1及び第2ゲート信号SG9,SG10に応答して、第1トランスファーゲート回路37aがオフし、第2トランスファーゲート回路37bがオンする。
【0092】
この第2トランスファーゲート回路37bのオンに基づいて、ノア回路38が保持していたHレベルの出力はインバータ回路39に出力される。インバータ回路39はこのノア回路38からのHレベルの出力に応答してHレベルからLレベルとなり、次段のインバータ回路41から出力されるリセット信号SG11はLレベルからHレベルとなる。
【0093】
そして、次の第1及び第2ゲート信号SG9,SG10に応答して第1トランスファーゲート回路37aがオンし第2トランスファーゲート回路37bがオフすると、ノア回路38の出力はHレベルからLレベルとなる。続く第1及び第2ゲート信号SG9,SG10に応答して第1トランスファーゲート回路37aがオフし第2トランスファーゲート回路37bがオンすると、インバータ回路39の出力は、LレベルからHレベルとなる。
【0094】
そして、本実施形態では、前記インバータ回路39の出力信号QBL1を次段のインバータ回路42から第1BL信号Q0Z として第1BL長整形回路113に出力される。
【0095】
詳述すると、第1カウンタ部35aにて生成される第1BL信号Q0Z は、Lレベルのカウント・リセット信号AGR0X が出力されると、HレベルからLレベルになる。そして、第1BL信号Q0Z は、最初の第1及び第2ゲート信号SG9,SG10に応答して第2トランスファーゲート回路37bがオンするとLレベルからHレベルとなる。
【0096】
続いて、第1BL信号Q0Z は、次の新たな第2トランスファーゲート回路37bのオンに基づいてHレベルからLレベルとなる。以後、第2トランスファーゲート回路37bがオンする毎に、第1BL信号Q0Z は反転する。
【0097】
第2カウンタ部35bは、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる2個の第3及び第4トランスファーゲート回路43a,43bを備えている。
【0098】
第3トランスファーゲート回路43aは、そのPチャネルMOSトランジスタのゲートに第2ゲート信号SG10が入力され、NチャネルMOSトランジスタのゲートに第1ゲート信号SG9が入力される。一方、第4トランスファーゲート回路43bは、そのPチャネルMOSトランジスタのゲートに第1ゲート信号SG9が入力され、NチャネルMOSトランジスタのゲートに第2ゲート信号SG10が入力される。従って、第3及び第4トランスファーゲート回路43a,43bは、第1及び第2ゲート信号SG9,SG10に基づいて交互にオン・オフされる。
【0099】
第3トランスファーゲート回路43aの出力端子はナンド回路44に接続されている。ナンド回路44はインバータ回路45及び前記カウントクロック生成回路部112aのインバータ回路29を介してカウント・リセット信号AGR0X を入力する。ナンド回路44の出力端子には、CMOSトランジスタT4の入力端子に接続され、そのCMOSトランジスタT4の出力端子は第3トランスファーゲート回路43aの出力端子に接続されている。
【0100】
CMOSトランジスタT4は、第1ゲート信号SG9でオン・オフするPチャネルMOSトランジスタT5と第2ゲート信号SG10でオン・オフするNチャネルMOSトランジスタT6が直列に接続されている。従って、第3トランスファーゲート回路43aがオフしている時には、CMOSトランジスタT4は活性化され、第3トランスファーゲート回路43aがオンして時には、CMOSトランジスタT4は非活性となる。
【0101】
ナンド回路44とCMOSトランジスタT4は、ラッチ回路を構成している。カウント・リセット信号AGR0X がLレベルに立ち下がると、ナンド回路44の出力はLレベルからHレベルとなる。そして、CMOSトランジスタT4は活性化されると(第3トランスファーゲート回路43aはオフ)、CMOSトランジスタT4はナンド回路44のHレベルの出力を入力し、Lレベルの出力信号を同ナンド回路44に出力する。従って、ナンド回路44の出力は、Lレベルのカウント・リセット信号AGR0X に基づいてHレベルに保持される。
【0102】
このナンド回路44のHレベルの出力は、カウント・リセット信号AGR0X がLレベルからHレベルに立ち上がった状態で、第3トランスファーゲート回路43aを介してHレベルの信号を入力した時、Lレベルに立ち下がり保持される。
【0103】
ナンド回路44の出力は、第4トランスファーゲート回路43bを介してインバータ回路46に出力される。インバータ回路46の出力端子は、ナンド回路47の入力端子に接続されている。ナンド回路47は、インバータ回路46からの出力信号の他に前記インバータ回路45,29を介してカウント・リセット信号AGR0X が入力される。ナンド回路47の出力端子は、前記インバータ回路46の入力端子に接続されている。
【0104】
インバータ回路46とナンド回路47は、ラッチ回路を構成している。カウント・リセット信号AGR0X がLレベルに立ち下がると(ナンド回路47にLレベルの信号が入力されると)、ナンド回路47の出力はHレベルとなる。この時、第4トランスファーゲート回路43bはオフ状態にあることから、インバータ回路46の出力は、ナンド回路47のHレベルの出力信号に応答してLレベルとなる。
【0105】
このLレベルに保持されたインバータ回路46の出力は、第4トランスファーゲート回路43bがオンして前記ナンド回路44からのLレベルの出力に基づいてHレベルに立ち上がる。
【0106】
インバータ回路46の出力は、ナンド回路48に出力されるとともに、インバータ回路49を介してナンド回路50に出力される。ナンド回路48は、インバータ回路46の出力信号の他に、第1カウンタ部35aから前記リセット信号SG11を入力する。又、ナンド回路50は、インバータ回路49の出力信号の他に、第1カウンタ部35aから前記出力信号QBL1を入力する。
【0107】
ナンド回路48,50の出力信号はナンド回路51に出力され、そのナンド回路51の出力は前記第3トランスファーゲート回路43aに出力される。
今、カウント・リセット信号AGR0X がLレベルに立ち下がると、インバータ回路46の出力はLレベルとなる。一方、ナンド回路44の出力は、LレベルからHレベルとなり、カウント・リセット信号AGR0X がHレベルに立ち上がると再びLレベルとなる。又、第1カウンタ部35aのインバータ回路41と、インバータ回路46の出力が共にLレベルとなり、ナンド回路48の出力はHレベルとなる。一方、出力信号BL1がLレベルからHレベルとなり、インバータ回路49の出力がLレベルからHレベルとなると、ナンド回路50の出力はHレベルからLレベルとなる。
【0108】
従って、ナンド回路48の出力はLレベルからHレベルとなり、ナンド回路50の出力はHレベルからLレベルとなるため、次段のナンド回路51の出力はHレベルのままである。その結果、ナンド回路51はHレベルの出力を出力し続ける。そして、最初の第1及び第2ゲート信号SG9,SG10に応答して第4トランスファーゲート回路43bがオンすると、インバータ回路46はナンド回路44からLレベルの信号を入力して、出力信号はLレベルからHレベルとなる。
【0109】
以後、ナンド回路51がHレベルの出力を出力し続ける限り、第3及び第4トランスファーゲート回路43a,43bが交互にオン・オフされても、インバータ回路46の出力はHレベルからLレベルに反転動作しない。
【0110】
やがて、第1カウンタ部35の出力信号QBL1がHレベルからLレベルになる。すると、ナンド回路51の出力はHレベルからLレベルとなる。そして、第3トランスファーゲート回路43aのオンに基づいてナンド回路44の出力がHレベルとなる。続く第4トランスファーゲート回路43bのオンに基づいてインバータ回路46の出力はHレベルからLレベルとなる。
【0111】
そして、本実施形態では、前記インバータ回路46の出力信号QBL2を次段のインバータ回路52から第2BL信号Q1Z としてバースト長整形回路113に出力される。
【0112】
詳述すると、第2カウンタ部35bにて生成される第2BL信号Q1Z は、Lレベルのカウント・リセット信号AGR0X が出力されると、LレベルからHレベルにセットされる。第2BL信号Q1Z は、最初の第1及び第2ゲート信号SG9,SG10に応答して第4トランスファーゲート回路43bがオンするとHレベルからLレベルとなる。
【0113】
そして、第2BL信号Q1Z は、第1カウンタ部35の第1BL信号Q0Z がLレベルからHレベルになった後、次の新たな第3トランスファーゲート回路43aがオンし、次に第4トランスファーゲート回路43bがオンすると、LレベルからHレベルとなる。
【0114】
つまり、第2BL信号Q1Z は、第1カウンタ部35の第1BL信号Q0Z がLレベルからHレベルになるごとに、反転する信号となる。
第3カウンタ部35cは、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる2個の第5及び第6トランスファーゲート回路53a,53bを備えている。
【0115】
第5トランスファーゲート回路53aは、そのPチャネルMOSトランジスタのゲートに第2ゲート信号SG10が入力され、NチャネルMOSトランジスタのゲートに第1ゲート信号SG9が入力される。一方、第6トランスファーゲート回路53bは、そのPチャネルMOSトランジスタのゲートに第1ゲート信号SG9が入力され、NチャネルMOSトランジスタのゲートに第2ゲート信号SG10が入力される。従って、第5及び第6トランスファーゲート回路53a,53bは、第1及び第2ゲート信号SG9,SG10に基づいて交互にオン・オフされる。
【0116】
第5トランスファーゲート回路53aの出力端子はナンド回路54に接続されている。ナンド回路54は前記インバータ回路45,29を介してカウント・リセット信号AGR0X を入力する。ナンド回路54の出力端子には、CMOSトランジスタT7の入力端子に接続され、そのCMOSトランジスタT7の出力端子は第5トランスファーゲート回路53aの出力端子に接続されている。
【0117】
CMOSトランジスタT7は、第1ゲート信号SG9でオン・オフするPチャネルMOSトランジスタT8と第2ゲート信号SG10でオン・オフするNチャネルMOSトランジスタT9が直列に接続されている。従って、第5トランスファーゲート回路53aがオフしている時には、CMOSトランジスタT7は活性化され、第5トランスファーゲート回路53aがオンして時には、CMOSトランジスタT7は非活性となる。
【0118】
ナンド回路54とCMOSトランジスタT7は、ラッチ回路を構成している。カウント・リセット信号AGR0X がLレベルに立ち下がると、ナンド回路54の出力はHレベルとなる。そして、CMOSトランジスタT8は活性化されると(第5トランスファーゲート回路53aはオフ)、CMOSトランジスタT7はナンド回路54のHレベルの出力を入力し、Lレベルの出力信号を同ナンド回路54に出力する。従って、ナンド回路54の出力は、Hレベルに保持される。
【0119】
このナンド回路54のHレベルの出力は、カウント・リセット信号AGR0X がHレベルの状態で、第5トランスファーゲート回路53aを介してHレベルの信号を入力した時、Lレベルに立ち下がり保持される。又、反対に、ナンド回路54のHレベルの出力は、カウント・リセット信号AGR0X がHレベルの状態で、第5トランスファーゲート回路53aを介してLレベルの信号を入力した時、Hレベルに立ち下がり保持される。
【0120】
ナンド回路54の出力は、第6トランスファーゲート回路53bを介してインバータ回路56に出力される。インバータ回路56の出力端子は、ナンド回路57の入力端子に接続されている。ナンド回路57は、インバータ回路56からの出力信号の他に前記インバータ回路45,29を介してカウント・リセット信号AGR0X が入力される。ナンド回路57の出力端子は、前記インバータ回路56の入力端子に接続されている。
【0121】
インバータ回路56とナンド回路57は、ラッチ回路を構成している。カウント・リセット信号AGR0X がLレベルに立ち下がると(ナンド回路57にLレベルの信号が入力されると)、ナンド回路57の出力はHレベルとなる。この時、第6トランスファーゲート回路53bはオフ状態にあることから、インバータ回路56の出力は、ナンド回路57のHレベルの出力信号に応答してLレベルとなる。このLレベルに保持されたインバータ回路56の出力は、第6トランスファーゲート回路53bがオンして前記ナンド回路54からのLレベルの出力に基づいてHレベルに立ち上がる。
【0122】
インバータ回路56の出力は、ナンド回路58に出力されるとともに、インバータ回路59を介してナンド回路60に出力される。ナンド回路58は、インバータ回路56の出力信号の他に、ナンド回61からの出力信号を入力する。ナンド回路61は2入力端子のナンド回路であって、前記第1カウンタ部35aの出力信号QBL1と第2カウンタ部35bの出力信号QBL2を入力する。従って、ナンド回路61は出力信号QBL1と出力信号QBL2が共にHレベルの時、Lレベルの信号を次段のナンド回路58に出力する。
【0123】
又、前記ナンド回路60は、インバータ回路59の出力信号の他に、インバータ回路62を介して前記ナンド回路61の出力信号を入力する。ナンド回路58,60の出力信号はナンド回路63に出力され、そのナンド回路63の出力は前記第5トランスファーゲート回路53aに出力される。
【0124】
今、カウント・リセット信号AGR0X がLレベルに立ち下がると、インバータ回路56の出力はLレベルとなる。一方、ナンド回路54の出力は、Hレベルとなり、カウント・リセット信号AGR0X がHレベルに立ち上がると再びLレベルとなる。又、出力信号QBL1はLレベルからHレベルとなるとともに、出力信号QBL2はLレベルとなり、ナンド回路61はHレベルの出力を次段のナンド回路58に出力し続ける。
【0125】
従って、ナンド回路58の出力は、出力信号QBL1,QBL2が共にLレベルとなっても、Hレベルである。一方、ナンド回路60の出力は、出力信号QBL1,QBL2が共にLレベルとなると、HレベルからLレベルとなる。その結果、ナンド回路58の出力がHレベルで、ナンド回路60の出力がHレベルからLレベルとなるため、次段のナンド回路63の出力はLレベルからHレベルとなる。
【0126】
そして、最初の第1及び第2ゲート信号SG9,SG10に応答して第6トランスファーゲート回路53bがオンすると、インバータ回路56の出力はナンド回路54からLレベルの信号を入力してHレベルとなる。
【0127】
そして、本実施形態では、前記インバータ回路56の出力信号QBL3を次段のインバータ回路64から第3BL信号Q2Z として第1BL長整形回路113に出力される。
【0128】
詳述すると、第3カウンタ部35cにて生成される第3BL信号Q2Z は、Lレベルのカウント・リセット信号AGR0X が出力されると、LレベルからHレベルにセットされる。そして、第3BL信号Q2Z は、出力信号QBL1、QBL2が共にHレベルになった後、次の新たな第4トランスファーゲート回路53aがオンし、次に第6トランスファーゲート回路53bがオンすると、HレベルからLレベルとなる。
【0129】
つまり、第3BL信号Q2Z は、第1BL信号Q0Z と第2BL信号Q1Z が共にLレベルになるごとに、反転する信号となる。
このように、カウントクロック生成回路部112aは、カウント・リセット信号AGR0X が第1カウンタ・リセット回路111から出力されると、カウント・リセット信号AGR0X がLレベルに立ち下がり再びLレベルからHレベルにに立ち上がり復帰した時からLレベルの終了信号POEP0Xが出力されるまでの間、分周クロック信号BLCLK0Z を使用して第1及び第2ゲート信号SG9,SG10を出力する。
【0130】
そして、このカウントクロック生成回路部112aで生成された第1及び第2ゲート信号SG9,SG10に基づいて、カウンタ回路部112bは、第1BL信号Q0Z 、第2BL信号Q1Z 及び第3BL信号Q2Z を生成し、第1BL長整形回路113に出力する。
【0131】
つまり、第1BLカウンタ112は、カウント・リセット信号AGR0X がLレベルに立ち下がり再びLレベルからHレベルにに立ち上がり復帰した時から、分周クロック信号BLCLK0Z をカウントし、そのカウント値を第1BL信号Q0Z 、第2BL信号Q1Z 及び第3BL信号Q2Z からなる3ビットの形式にして第1BL長整形回路113に出力する。そして、第1BLカウンタ112は、本実施形態では分周クロック信号BLCLK0Z を8個カウントすると、リセットし再びリセットした値からカウントを開始する。
【0132】
[第1BL長整形回路113]
次に、第1BL長整形回路113について説明する。図4は第1BL長整形回路113の回路図を示す。第1BL長整形回路113は、バースト長設定回路部113aとバースト波形整形回路部113bとを有する。
【0133】
(バースト長設定回路部113a)
バースト長設定回路部113aは、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる第7、第8及び第9トランスファーゲート回路66a,66b,66cを備えている。
【0134】
第7トランスファーゲート回路66aは、そのNチャネルMOSトランジスタのゲートに、又、PチャネルMOSトランジスタのゲートにはインバータ回路67aを介して第1のバースト長モード信号BL1Zが入力される。第8トランスファーゲート回路66bは、そのNチャネルMOSトランジスタのゲートに、又、PチャネルMOSトランジスタのゲートにはインバータ回路67bを介して第2のバースト長モード信号BL2Zが入力される。第9トランスファーゲート回路66cは、そのNチャネルMOSトランジスタのゲートに、又、PチャネルMOSトランジスタのゲートにはインバータ回路67cを介して第3のバースト長モード信号BL3Zが入力される。
【0135】
第1〜第3のバースト長モード信号BL1Z,BL2Z、BL3Zは、バースト長を選択する信号であって、外部装置であるDRAMコントローラから出力される信号に基づいて選択される。そして、本実施形態では、バースト長が「4」の時、第1のバースト長モード信号BL1ZのみがHレベルに設定されようになっている。又、バースト長が「8」の時、第2のバースト長モード信号BL2ZのみがHレベルに設定されようになっている。さらに、バースト長が「1」又は「2」の時、第3のバースト長モード信号BL3ZのみがHレベルに設定されるようになっている。
【0136】
従って、バースト長が「4」に設定される時には、第7トランスファーゲート回路66aのみがオン状態となり、第8及び第9トランスファーゲート回路66b,66cはオフ状態となる。又、バースト長が「8」の時には、第8トランスファーゲート回路66bのみがオン状態となり、第7及び第9トランスファーゲート回路66a,66cはオフ状態となる。さらに、バースト長が「1」又は「2」の時には、第9トランスファーゲート回路66cのみがオン状態となり、第7及び第8トランスファーゲート回路66a,66bはオフ状態となる。
【0137】
第7トランスファーゲート回路66aの入力端子には、ノア回路68の出力端子が接続されている。ノア回路68は、2入力端子のノア回路であって、第1及び第2制御信号a1,a2を入力する。
【0138】
第1及び第2制御信号a1,a2は、前記第1BLカウンタ112からの第1BL信号Q0Z 、第2BL信号Q1Z 及び第3BL信号Q2Z に基づいて生成された信号であって、第1BLカウンタ112が分周クロック信号BLCLK0Z を4個カウントしたとき、共にLレベルとなる信号である。
【0139】
従って、第1BLカウンタ112がカウント動作を開始し、同カウンタ112が4個目の分周クロック信号BLCLK0Z をカウントすると、ノア回路68は、LレベルからHレベルの出力信号を出力する。そして、このノア回路68からのLレベルからHレベルの出力信号は、第7トランスファーゲート回路66aがオン状態の時、同ゲート回路66aを介してバースト波形整形回路部113bにカウントアップ信号SG21として出力される。
【0140】
第8トランスファーゲート回路66bの入力端子には、インバータ回路69aを介してナンド回路69bの出力端子が接続されている。ナンド回路69bは、2入力端子のナンド回路であって、一方に第5制御信号a5を入力するとともに、ノア回路69cの出力信号を入力する。ノア回路69cは、2入力端子のノア回路であって、第3及び第4制御信号a3,a4を入力する。
【0141】
第3〜第5制御信号a3〜a5は、前記第1BLカウンタ112からの第1BL信号Q0Z 、第2BL信号Q1Z 及び第3BL信号Q2Z に基づいて生成された信号であって、第1BLカウンタ112が分周クロック信号BLCLK0Z を8個カウントしたとき、第3及び第4制御信号a3,a4が共にLレベルとなり、第5制御信号a5がHレベルとなる信号である。
【0142】
従って、第1BLカウンタ112がカウント動作を開始し、同カウンタ112が8個目の分周クロック信号BLCLK0Z をカウントすると、インバータ回路69aは、LレベルからHレベルの出力信号を出力する。そして、このインバータ回路69aからのLレベルからHレベルの出力信号は、第8トランスファーゲート回路66bがオン状態の時、同ゲート回路66bを介してバースト波形整形回路部113bにカウントアップ信号SG21として出力される。
【0143】
第9トランスファーゲート回路66cの入力端子には、インバータ回路70の出力端子が接続されている。インバータ回路70は、第6制御信号a6を入力する。第6制御信号a6は、前記第1BLカウンタ112からの第1BL信号Q0Z 、第2BL信号Q1Z 及び第3BL信号Q2Z に基づいて生成された信号であって、第1BLカウンタ112が分周クロック信号BLCLK0Z を1個カウントしたとき、Lレベルとなる信号である。
【0144】
従って、第1BLカウンタ112がカウント動作を開始し、同カウンタ112が最初の分周クロック信号BLCLK0Z をカウントすると、インバータ回路40は、LレベルからHレベルの出力信号を出力する。そして、このインバータ回路40からのLレベルからHレベルの出力信号は、第9トランスファーゲート回路66cがオン状態の時、同ゲート回路66cを介してバースト波形整形回路部113bにカウントアップ信号SG21として出力される。
【0145】
つまり、バースト長設定回路部113aは、バースト長が「4」に設定されている場合には第1BLカウンタ112が分周クロック信号BLCLK0Z を4個カウントした時、又、バースト長が「8」に設定されている場合には第1BLカウンタ112が分周クロック信号BLCLK0Z を8個カウントした時、さらに、バースト長が「1」又は「2」に設定されている場合には第1BLカウンタ112が最初の分周クロック信号BLCLK0Z をカウントした時、次段のバースト波形整形回路部113bにLレベルからHレベルに立ち上がるカウントアップ信号SG21を出力する。
【0146】
(バースト波形整形回路部113b)
バースト波形整形回路部113bは、第5FF回路71を備えている。第5FF回路71は、2個のナンド回路71a,71bとから構成されいる。第5FF回路71において、リセット側入力端子(ナンド回路71aの入力端子)には前記カウント・リセット信号AGR0X が入力される。第5FF回路71において、セット側入力端子(ナンド回路71bの入力端子)にはナンド回路72からの出力信号を入力する。ナンド回路72は2入力端子のナンド回路であって、前記カウント・リセット信号AGR0X と前記バースト長設定回路部113aのカウントアップ信号SG21を入力する。
【0147】
従って、カウントアップ信号SG21がLレベル状態でカウンタ・リセット回路111から出力されるカウント・リセット信号AGR0X がHレベルからLレベルに立ち下がると、第5FF回路71のセット側出力端子(ナンド回路71bの出力端子)は、HレベルからLレベルになる。やがて、カウント・リセット信号AGR0X はLレベルからHレベルに立ち上がり復帰するが、第5FF回路71は反転動作しない。しかし、ナンド回路72には、LレベルからHレベルのカウント・リセット信号AGR0X が入力される。
【0148】
この状態において、バースト長設定回路部113aからのカウントアップ信号SG21がLレベルからHレベルになると、ナンド回路72の出力は、HレベルからLレベルとなり、第5FF回路71は反転する。従って、第5FF回路71のセット側出力端子(ナンド回路71bの出力端子)は、LレベルからHレベルになる。
【0149】
第5FF回路71のセット側出力端子(ナンド回路71bの出力端子)の出力は、3個のインバータ回路73a,73b,73cを介して整形信号POE0Z として次段の第1レイテンシン・カウンタ114に出力される。従って、整形信号POE0Z は、カウント・リセット信号AGR0X がHレベルからLレベルに立ち下がると、Hレベルとなり、カウントアップ信号SG21がLレベルからHレベルになると、Lレベルに立ち下がる波形の信号となる。
【0150】
又、前記インバータ回路73aからの出力信号は、ノア回路74に入力されるとともに、3個のインバータ回路75a,75b,75cを介して同ノア回路74に入力される。インバータ回路75a,75b,75cは遅延回路を構成していて、インバータ回路75a,75bの出力端子はそれぞれ容量76a、76bを介して接地されている。
【0151】
従って、ノア回路74の出力は、インバータ回路75aがLレベルからHレベルになり再びHレベルに復帰すると、LレベルからHレベルとなり、インバータ回路75a,75b,75cよりなる遅延回路で決まる遅延時間td4後にLレベルとなる。そして、このノア回路74の出力は、インバータ回路77を介して終了信号POEP0Xとして出力される。
【0152】
つまり、終了信号POEP0Xは、LレベルからHレベルに立ち上がった整形信号POE0Z がLレベルに立ち下がると、遅延時間td4の間だけLレベルに立ち下がる波形の信号となる。終了信号POEP0Xは、前記第1BLカウンタ112のカウントクロック生成回路部112a及び第1カウンタ・リセット回路111の分周クロック生成部111bに出力される。
【0153】
このように、第1BL長整形回路113は、カウント・リセット信号AGR0X がHレベルからLレベルに立ち下がるとHレベルに立ち上がり、設定したバースト長の数だけ分周クロック信号BLCLK0Z がカウントされるとLレベルに立ち下がる整形信号POE0Z を、次段の第1レイテンシン・カウンタ114に出力する。又、第1BL長整形回路113は、整形信号POE0Z がLレベルに立ち下がると、所定時間だけLレベルに立ち下がる終了信号POEP0Xを生成し出力する。
【0154】
[第1レイテンシン・カウンタ114]
次に、第1レイテンシン・カウンタ114について説明する。第1レイテンシン・カウンタ114は、Hレベルの整形信号POE0Z を所定の時間後に出力されるようにシフトさせる回路である。第1レイテンシン・カウンタ114は、リードコマンドを取り込んだ時から予め定めた外部クロック信号CLK のクロック数でリードデータD を出力させるためのレイト信号をHレベルの整形信号POE0Z に基づいて生成する。
【0155】
図5は第1レイテンシン・カウンタ114の回路図を示す。図5に示す第1レイテンシン・カウンタ114は、3種類の第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z を生成する。因みに、第1レイト信号LAT1Z は、第1入力用内部クロック信号CLKIN0Z でリードコマンドを取り込んだ時の外部クロック信号CLK から8クロックの該外部クロック信号CLK を数えた後にリードデータD を出力させるための信号である。第2レイト信号LAT2Z は、第1入力用内部クロック信号CLKIN0Z でリードコマンドを取り込んだ時の外部クロック信号CLK から10クロックの該外部クロック信号CLK を数えた後にリードデータD を出力させるための信号である。第3レイト信号LAT1Z ,LAT2Z ,LAT3Z は、第1入力用内部クロック信号CLKIN0Z でリードコマンドを取り込んだ時の外部クロック信号CLK から12クロックの該外部クロック信号CLK を数えた後にリードデータD を出力させるための信号である。
【0156】
図5において、第1レイテンシン・カウンタ114は、第1出力用内部クロックCLKOUT1 を入力する。インバータ回路78aは、第1出力用内部クロックCLKOUT1 を入力して、第3ゲート信号SG23を生成する。そして、次段のインバータ回路78bは、その第3ゲート信号SG23を入力して第4ゲート信号SG24を生成する。又、第1レイテンシン・カウンタ114はインバータ回路79を介してリセット信号RST を入力する。リセット信号RST は、動作電源を投入した時に出力される信号である。
【0157】
そして、この第3ゲート信号SG23、第4ゲート信号SG24及びリセット信号RST は、3個の第1〜第3カウンタ部80,80a,80bに出力される。
尚、本実施形態の各カウンタ部80,80a,80bはそれぞれ回路構成が同じなので、第1カウンタ部80について説明する。そして、第2カウンタ部80aについては、第1カウンタ部80を構成する符号を付した素子と対応する素子については同じ符号を付すとともにその符号の後に「a」の符号をさらに付すことによってその詳細な説明を省略する。又、第3カウンタ部80bについては、第1カウンタ部80を構成する符号を付した素子と対応する素子については同じ符号を付すとともにその符号の後に「b」の符号をさらに付すことによってその詳細な説明を省略する。
【0158】
(第1カウンタ部80)
第1カウンタ部80は、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる2個の前段及び後段トランスファーゲート回路81,82を備えている。
【0159】
前段トランスファーゲート回路81は、そのPチャネルMOSトランジスタのゲートに第4ゲート信号SG24が入力され、NチャネルMOSトランジスタのゲートに第3ゲート信号SG23が入力される。一方、後段トランスファーゲート回路82は、そのPチャネルMOSトランジスタのゲートに第3ゲート信号SG23が入力され、NチャネルMOSトランジスタのゲートに第4ゲート信号SG24が入力される。従って、前段及び後段トランスファーゲート回路81,82は、第3及び第4ゲート信号SG23,SG24に基づいて交互にオン・オフされる。
【0160】
前段トランスファーゲート回路81の入力端子は、前記第1BL長整形回路113からの整形信号POE0Z を入力し、出力端子はナンド回路83に接続されている。ナンド回路83はインバータ回路79を介してリセット信号RST を入力する。ナンド回路83の出力端子には、CMOSトランジスタT11の入力端子に接続され、そのCMOSトランジスタT11の出力端子は前段トランスファーゲート回路81の出力端子に接続されている。
【0161】
CMOSトランジスタT11は、第3ゲート信号SG23でオン・オフするPチャネルMOSトランジスタT12と第4ゲート信号SG24でオン・オフするNチャネルMOSトランジスタT13が直列に接続されている。従って、前段トランスファーゲート回路81がオフしている時には、CMOSトランジスタT11は活性化され、前段トランスファーゲート回路81がオンして時には、CMOSトランジスタT11は非活性となる。
【0162】
ナンド回路83とCMOSトランジスタT11は、ラッチ回路を構成している。リセット信号RST がLレベルに立ち下がり再びHレベルに立ち上がると、ナンド回路83の出力は確実にHレベルとなる。そして、CMOSトランジスタT11は活性化されると(前段トランスファーゲート回路81はオフ)、CMOSトランジスタT11はナンド回路83のHレベルの出力を入力し、Lレベルの出力信号をナンド回路83に出力する。
【0163】
従って、ナンド回路83の出力は、Hレベルに保持される。そして、ナンド回路83は前段トランスファーゲート回路81を介してHレベルの整形信号POE0Z を入力すると、その出力がHレベルからLレベルに反転し保持される。そして、Hレベルの整形信号POE0Z が入力され続けると、ナンド回路83の出力は、Lレベルに保持され続ける。そして、この状態から、ナンド回路83にLレベルの整形信号POE0Z が入力されると、ナンド回路83の出力はLレベルからHレベルに反転し保持される。そして、Lレベルの整形信号POE0Z が入力され続けると、ナンド回路83の出力はHレベルに保持され続ける。
【0164】
ナンド回路83の出力は後段トランスファーゲート回路82を介してインバータ回路84に出力される。インバータ回路84の出力端子はナンド回路85の入力端子に接続されている。ナンド回路85は、インバータ回路84からの出力信号の他に前記インバータ回路79を介してリセット信号RST が入力される。ナンド回路85の出力端子は前記インバータ回路84の入力端子に接続されている。
インバータ回路84とナンド回路85は、ラッチ回路を構成している。リセット信号RST がLレベルに立ち下がると、ナンド回路85の出力がHレベルとなり、インバータ回路84の出力はLレベルに保持される。そして、インバータ回路84がLレベルの信号を出力している状態で、後段トランスファーゲート回路82を介してナンド回路83からLレベルの信号を入力すると、インバータ回路84の出力はLレベルからHレベルとなる。又、インバータ回路84がHレベルの信号を出力している状態で、後段トランスファーゲート回路82を介してナンド回路83からHレベルの信号を入力すると、インバータ回路84の出力はHレベルからLレベルとなる。
【0165】
つまり、第1カウンタ部80は、リセット信号RST を入力した後に、整形信号POE0Z がLレベルからHレベルに立ち上がると、前段トランスファーゲート回路81のオンで該Hレベルの整形信号POE0Z を取り込み、次の後段のトランスファーゲート回路82のオンで該Hレベルの整形信号POE0Z をインバータ回路84から出力する。そして、インバータ回路84から出力される整形信号POE0Z は、第1レイト信号LAT1Z として第2カウンタ部80aの前段トランスファーゲート回路81aに出力される。
【0166】
そして、第2カウンタ部80aは、前段トランスファーゲート回路81aのオンで該第1レイト信号LAT1Z (整形信号POE0Z )を取り込み、次の後段トランスファーゲート回路82aのオンで該第1レイト信号LAT1Z (整形信号POE0Z )をインバータ回路84aから出力する。そして、インバータ回路84aから出力される該第1レイト信号LAT1Z (整形信号POE0Z )は、第2レイト信号LAT2Z として第3カウンタ部80bの前段トランスファーゲート回路81bに出力される。
【0167】
第3カウンタ部80bは、前段トランスファーゲート回路81bのオンで該第2レイト信号LAT2Z (整形信号POE0Z )を取り込み、次の後段トランスファーゲート回路82bのオンで該第2レイト信号LAT2Z (整形信号POE0Z )をインバータ回路84bから出力する。そして、インバータ回路84bから出力される該第2レイト信号LAT2Z (整形信号POE0Z )は、第3レイト信号LAT3Z として出力される。
【0168】
従って、各カウンタ部80,80a,80bで生成された第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z は、第1BL長整形回路113からの整形信号POE0Z に対して以下のようになる。
【0169】
第1レイト信号LAT1Z は、整形信号POE0Z がLレベルからHレベルに立ち上がると、最初の第1出力用内部クロックCLKOUT1 の立ち下がりで、LレベルからHレベルなる。同様に、第1レイト信号LAT1Z は、整形信号POE0Z がHレベルからLレベルに立ち上がると、最初の第1出力用内部クロックCLKOUT1 の立ち下がりで、HレベルからLレベルなる。つまり、第1レイト信号LAT1Z は、整形信号POE0Z の波形が第1出力用内部クロックCLKOUT1 の1周期半分だけ位相が遅れた波形となる。
【0170】
第2レイト信号LAT2Z は、整形信号POE0Z がLレベルからHレベルに立ち上がると、2個目の第1出力用内部クロックCLKOUT1 の立ち下がりで、LレベルからHレベルなる。同様に、第2レイト信号LAT2Z は、整形信号POE0Z がHレベルからLレベルに立ち上がると、2個目の第1出力用内部クロックCLKOUT1 の立ち下がりで、HレベルからLレベルなる。つまり、第2レイト信号LAT2Z は、整形信号POE0Z の波形が第1出力用内部クロックCLKOUT1 の2周期半分だけ位相が遅れた波形となる。
【0171】
第3レイト信号LAT3Z は、整形信号POE0Z がLレベルからHレベルに立ち上がると、3個目の第1出力用内部クロックCLKOUT1 の立ち下がりで、LレベルからHレベルなる。同様に、第3レイト信号LAT3Z は、整形信号POE0Z がHレベルからLレベルに立ち上がると、3個目の第1出力用内部クロックCLKOUT1 の立ち下がりで、HレベルからLレベルなる。つまり、第3レイト信号LAT3Z は、整形信号POE0Z の波形が第1出力用内部クロックCLKOUT1 の3周期半分だけ位相が遅れた波形となる。
【0172】
ところで、この第1レイテンシン・カウンタ114の各カウンタ部80,80a,80bは、第1出力用内部クロック信号CLKOUT0Zでカウント動作している。前記したように第1出力用内部クロック信号CLKOUT0Zは、対応する第1入力用内部クロック信号CLKIN0Z より位相が進んだ信号である。従って、リードコマンドを取り込んだ時の第1入力用内部クロック信号CLKIN0Z に対応する第1出力用内部クロック信号CLKOUT0Zは既に出力された後である。その結果、リードコマンドを取り込んだ時の第1入力用内部クロック信号CLKIN0Z の次に出力される第1入力用内部クロック信号CLKIN0Z に対応する第1出力用内部クロック信号CLKOUT0Zから、第1レイテンシン・カウンタ114はカウント動作を行っている。
【0173】
従って、前記した第1レイト信号LAT1Z は、リードコマンドを取り込んだ時の外部クロック信号CLK から5クロックの該外部クロック信号CLK を数えた後にHレベルに立ち上がる信号である。
【0174】
又、第2レイト信号LAT2Z は、リードコマンドを取り込んだ時の外部クロック信号CLK から7クロックの該外部クロック信号CLK を数えた後にHレベルに立ち上がる信号である。
【0175】
さらに、第3レイト信号LAT3Z は、リードコマンドを取り込んだ時の外部クロック信号CLK から9クロックの該外部クロック信号CLK を数えた後にHレベルとなる信号である。
【0176】
そして、これら第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z は、次段の第1出力CLK制御回路115に出力され、第1出力CLK制御回路115にてクロック信号CLK で2クロック分だけシフトされた出力制御信号OE0Zが生成される。
【0177】
因みに、第1レイト信号LAT1Z に対する出力制御信号OE0Zは、リードコマンドを取り込んだ時の外部クロック信号CLK から7クロックの該外部クロック信号CLK を数えた後にHレベルとなる信号である。
【0178】
又、第2レイト信号LAT2Z に対する出力制御信号OE0Zは、リードコマンドを取り込んだ時の外部クロック信号CLK から9クロックの該外部クロック信号CLK を数えた後にHレベルとなる信号である。
【0179】
さらに、第3レイト信号LAT3Z に対する出力制御信号OE0Zは、リードコマンドを取り込んだ時の外部クロック信号CLK から11クロックの該外部クロック信号CLK を数えた後にHレベルとなる信号である。
【0180】
[第1出力CLK制御回路115]
次に、第1出力CLK制御回路115について説明する。第1出力CLK制御回路115は、前記第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z の中の1を選択しその選択したレイト信号から出力制御信号OE0Zを生成する回路である。
【0181】
図6は第1出力CLK制御回路115の回路図を示す。第1出力CLK制御回路115は、モード設定回路部115a、出力制御信号生成回路部115b及びバースト波形変更回路部115cとを有する。
【0182】
(モード設定回路部115a)
モード設定回路部115aは、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる第11、第12及び第13トランスファーゲート回路86a,86b,86cを備えている。
【0183】
第11トランスファーゲート回路86aは、そのNチャネルMOSトランジスタのゲートに、又、PチャネルMOSトランジスタのゲートにはインバータ回路87aを介して第1モード信号MDL1Z が入力される。第12トランスファーゲート回路86bは、そのNチャネルMOSトランジスタのゲートに、又、PチャネルMOSトランジスタのゲートにはインバータ回路87bを介して第2モード信号MDL2Z が入力される。第13トランスファーゲート回路86cは、そのNチャネルMOSトランジスタのゲートに、又、PチャネルMOSトランジスタのゲートにはインバータ回路87cを介して第3モード信号MDL3Z が入力される。
【0184】
第1〜第3モード信号MDL1Z ,MDL2Z 、MDL3Z は、整形信号POE0Z がの発生タイミング、即ち第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z のいずれか一つを選択する信号であって、外部装置であるDRAMコントローラから出力される信号に基づいて選択される。
【0185】
つまり、第1モード信号MDL1Z は、リードデータD をリードコマンドを取り込んだ時の外部クロック信号CLK から8クロックの該外部クロック信号CLK を数えた後に出力させるための信号である。
【0186】
又、第2モード信号MDL2Z は、リードデータD をリードコマンドを取り込んだ時の外部クロック信号CLK から10クロックの該外部クロック信号CLK を数えた後に出力させるための信号である。
【0187】
さらに、第3モード信号MDL3Z は、リードデータD をリードコマンドを取り込んだ時の外部クロック信号CLK から12クロックの該外部クロック信号CLK を数えた後に出力させるための信号である。
【0188】
従って、本実施形態では、第3レイト信号LAT3Z を選択する時、第1モード信号MDL1Z のみがHレベルに設定される。又、第2レイト信号LAT2Z を選択する時、第2モード信号MDH2Z のみがHレベルに設定される。さらに、第1レイト信号LAT1Z を選択する時、第3モード信号MDL3Z のみがHレベルに設定される。
【0189】
その結果、第3レイト信号LAT3Z が選択される時には、第11トランスファーゲート回路86aのみがオン状態となり、第12及び第13トランスファーゲート回路86b,86cはオフ状態となる。その結果、第11トランスファーゲート回路86aを介して第3レイト信号LAT3Z が、出力制御信号生成回路部115bに出力される。
【0190】
又、第2レイト信号LAT2Z が選択される時には、第12トランスファーゲート回路86bのみがオン状態となり、第11及び第13トランスファーゲート回路86a,86cはオフ状態となる。その結果、第12トランスファーゲート回路86bを介して第2レイト信号LAT2Z が、出力制御信号生成回路部115bに出力される。
【0191】
さらに、第1レイト信号LAT1Z が選択される時には、第13トランスファーゲート回路86cのみがオン状態となり、第11及び第12トランスファーゲート回路86a,86bはオフ状態となる。その結果、第13トランスファーゲート回路86cを介して第1レイト信号LAT1Z が、出力制御信号生成回路部115bに出力される。
【0192】
(出力制御信号生成回路部115b)
出力制御信号生成回路部115bは、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる2個の前段及び後段トランスファーゲート回路88a,88bを備えている。
【0193】
前段トランスファーゲート回路88aは、そのPチャネルMOSトランジスタのゲートにインバータ回路89a,89bを介して第2出力用内部クロックCLKOUT2 が入力され、NチャネルMOSトランジスタのゲートにインバータ回路89a介して第2出力用内部クロックCLKOUT2 が入力される。一方、後段トランスファーゲート回路88bは、そのPチャネルMOSトランジスタのゲートにインバータ回路89a介して第2出力用内部クロックCLKOUT2 が入力され、NチャネルMOSトランジスタのゲートにインバータ回路89a,89bを介して第2出力用内部クロックCLKOUT2 が入力される。従って、前段及び後段トランスファーゲート回路88a,88bは、第2出力用内部クロックCLKOUT2 に基づいて交互にオン・オフされる。
【0194】
前段トランスファーゲート回路88aは、その入力端子が前記第11、第12及び第13トランスファーゲート回路86a,86b,86cの出力端子に接続され、第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z のいずれか一つをナンド回路90に出力する。
【0195】
ナンド回路90は前段トランスファーゲート回路88aからの信号の他にバースト波形変更回路部115cから制御信号SGXを入力する。ナンド回路90の出力端子には、CMOSトランジスタT14の入力端子に接続され、そのCMOSトランジスタT14の出力端子は前段トランスファーゲート回路88aの出力端子に接続されている。
【0196】
CMOSトランジスタT14は、インバータ回路89aを介して入力される第2出力用内部クロックCLKOUT2 でオン・オフするPチャネルMOSトランジスタT15と、インバータ回路89a,89bを介して入力される第2出力用内部クロックCLKOUT2 でオン・オフするNチャネルMOSトランジスタT16が直列に接続されている。従って、前段トランスファーゲート回路88aがオフしている時には、CMOSトランジスタT14は活性化され、前段トランスファーゲート回路88aがオンして時には、CMOSトランジスタT14は非活性となる。
【0197】
ナンド回路90とCMOSトランジスタT14は、ラッチ回路を構成している。今、バースト波形変更回路部115cからの制御信号SGXがHレベルで、前段トランスファーゲート回路88aを介してナンド回路90に出力されている信号(第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z )がLレベルの時、ナンド回路90の出力はHレベルとなる。そして、CMOSトランジスタT14は活性化されると(前段トランスファーゲート回路88aはオフ)、CMOSトランジスタT14はナンド回路90のHレベルの出力を入力し、Lレベルの出力信号をナンド回路90に出力する。
【0198】
従って、ナンド回路90の出力は、Hレベルに保持される。そして、前段トランスファーゲート回路88aを介してHレベルの信号(第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z )がナンド回路90に入力されると、ナンド回路90の出力はHレベルからLレベルに反転し保持される。そして、Hレベルの信号(第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z )が入力され続けると、ナンド回路90の出力は、Lレベルに保持され続ける。
【0199】
そして、この状態から、ナンド回路90にLレベルの信号(第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z )が入力されると、ナンド回路90の出力はLレベルからHレベルに反転し保持される。
【0200】
ナンド回路90の出力は、後段トランスファーゲート回路88bを介してインバータ回路91に出力される。インバータ回路91の出力端子は、ナンド回路92の入力端子に接続されている。ナンド回路92は、インバータ回路91からの出力信号の他にバースト波形変更回路部115cからの制御信号SGXが入力される。ナンド回路92の出力端子は、前記インバータ回路91の入力端子に接続されている。
【0201】
インバータ回路91とナンド回路92は、ラッチ回路を構成している。バースト波形変更回路部115cからの制御信号SGXがHレベルで、インバータ回路91の出力がLレベルに保持されている時、後段トランスファーゲート回路88bを介してナンド回路90からLレベルの信号をインバータ回路91が入力すると、同インバータ回路91の出力はLレベルからHレベルとなる。又、インバータ回路91がHレベルの信号を出力している状態で、後段トランスファーゲート回路88bを介してナンド回路90からHレベルの信号を入力すると、インバータ回路91の出力はHレベルからLレベルとなる。
【0202】
そして、インバータ回路91の出力信号SG25は、インバータ回路93a,93bを介して出力制御信号OE0Zとして出力される。つまり、出力制御信号生成回路部115bは、選択された第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z の一つの信号を、第2出力用内部クロックCLKOUT2 の立ち下がりで取り込み、次の立ち上がりで出力制御信号OE0Zとして出力する。
【0203】
この時、Lレベルに立ち下がる出力信号OE0ZがLレベルに立ち下がるタイミングは以下のようになる。
第1レイト信号LAT1Z に対する出力制御信号OE0Zは、リードコマンドを取り込んだ時の外部クロック信号CLK から数えて7クロック目となる。
【0204】
第2レイト信号LAT2Z に対する出力制御信号OE0Zは、リードコマンドを取り込んだ時の外部クロック信号CLK から数えて9クロック目となる。
第3レイト信号LAT3Z に対する出力制御信号OE0Zは、リードコマンドを取り込んだ時の外部クロック信号CLK から数えて11クロック目となる。
【0205】
(バースト波形変更回路部115c)
バースト波形変更回路部115cは、ナンド回路94を備えている。ナンド回路94は3入力端子のナンド回路であって、前記インバータ91の出力信号SG25、第1出力用内部クロックCLKOUT1 及び第4のバースト長モード信号BL4Zを入力する。
【0206】
第4のバースト長モード信号BL4Zは、前記第1〜第3のバースト長モード信号BL1Z,BL2Z、BL3Zと同様のバースト長を選択する信号であって、外部装置であるDRAMコントローラから出力される信号に基づいて選択される。そして、本実施形態では、バースト長が「1」の時、第4のバースト長モード信号BL4ZがHレベルに設定されようになっている。従って、バースト長が「1」以外の時には、第4のバースト長モード信号BL4ZはLレベルとなり、ナンド回路94の出力はHレベルとなる。そして、ナンド回路94のHレベルの出力信号は、インバータ回路95a,95bを介してHレベルの制御信号SGXとして前記ナンド回路90,92に出力される。
【0207】
一方、第4のバースト長モード信号BL4ZがHレベルの時、ナンド回路94の出力は、インバータ91の出力信号SG25及び第1出力用内部クロックCLKOUT1 が共にHレベルになった時、Lレベルとなる。そして、ナンド回路94のLレベルの出力信号は、インバータ回路95a,95bを介してLレベルの制御信号SGXとして前記ナンド回路90,92に出力される。従って、インバータ91の出力信号SG25、即ち出力制御信号OE0ZはHレベルからLレベルとなる。
【0208】
詳述すると、バースト長が「1」の時には、出力制御信号生成回路部115bが、選択された第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z の一つの信号を、第2出力用内部クロックCLKOUT2 の立ち下がりで取り込み、次の立ち上がりでHレベルの出力制御信号OE0Zとして出力する。そして、バースト波形変更回路部115cは第2出力用内部クロックCLKOUT2 の立ち上がって半周期後にHレベルに立ち上がる第1出力用内部クロックCLKOUT1 に応答してHレベルの制御信号SGXを出力する。
【0209】
従って、出力制御信号生成回路部115bから出力されるHレベルの出力制御信号OE0Zは、半周期後にLレベルとなる。
このように、第1出力CLK制御回路115は、第1モード信号MDL1Z に基づいて第3レイト信号LAT3Z が選択されると、該第3レイト信号LAT3Z を第2出力用内部クロックCLKOUT2 に基づいて出力制御信号OE0Zとして出力する。
【0210】
詳述すると、第1レイテンシン・カウンタ114で生成された第3レイト信号LAT3Z は、第1BL長整形回路113で生成された整形信号POE0Z の波形を第1出力用内部クロックCLKOUT1 の2周期半分だけ位相を遅らせた信号である。
【0211】
第1BL長整形回路113で生成された整形信号POE0Z は、第1出力用内部クロックCLKOUT1 の立ち下がりで第1レイテンシン・カウンタ114で入力される。そして、整形信号POE0Z は、2個目の第1出力用内部クロックCLKOUT1 の立ち上がりで第1レイテンシン・カウンタ114から第1出力CLK制御回路115に出力される。
【0212】
第1出力CLK制御回路115に出力された整形信号POE0Z (第3レイト信号LAT3Z )は、その2個目の第1出力用内部クロックCLKOUT1 の立ち上がりと同期して立ち下がる第2出力用内部クロックCLKOUT2 で、第1出力CLK制御回路115(出力制御信号生成回路部115b)にて取り込まれる。そして、整形信号POE0Z (第3レイト信号LAT3Z )は、次の第2出力用内部クロックCLKOUT2 の立ち上がり(前記2個目の第1出力用内部クロックCLKOUT1 の立ち下がり)で、出力制御信号OE0Zとして出力される。
【0213】
つまり、第1モード信号MDL1Z に基づいて第3レイト信号LAT3Z が選択される場合には、第1BL長整形回路113で生成された整形信号POE0Z は、第1出力用内部クロックCLKOUT1 の3周期分だけ位相が遅くれて第2出力用内部クロックCLKOUT2 の立ち上がりに応答して第1出力CLK制御回路115から出力制御信号OE0Zとして出力される。
【0214】
又、第1出力CLK制御回路115は、第2モード信号MDL2Z に基づいて第2レイト信号LAT2Z が選択されと、第2レイト信号LAT2Z を第2出力用内部クロックCLKOUT2 に基づいて出力制御信号OE0Zとして出力する。
【0215】
詳述すると、第1レイテンシン・カウンタ114で生成された第2レイト信号LAT2Z は、第1BL長整形回路113で生成された整形信号POE0Z の波形が第1出力用内部クロックCLKOUT1 の1周期半分だけ位相を遅らせた信号である。
【0216】
従って、第2モード信号MDL2Z に基づいて第2レイト信号LAT2Z が選択される場合には、第1BL長整形回路113で生成された整形信号POE0Z は、第1出力用内部クロックCLKOUT1 の2周期分だけ位相が遅くれて第2出力用内部クロックCLKOUT2 の立ち上がりに応答して第1出力CLK制御回路115から出力制御信号OE0Zとして出力される。
【0217】
さらに、第1出力CLK制御回路115は、第3モード信号MDL3Z に基づいて第1レイト信号LAT1Z が選択されると、第1レイト信号LAT1Z を第2出力用内部クロックCLKOUT2 に基づいて出力制御信号OE0Zとして出力する。
【0218】
詳述すると、第1レイト信号LAT1Z は、整形信号POE0Z の波形が第1出力用内部クロックCLKOUT1 の半周期分だけ位相が遅れた波形となる。
従って、第3モード信号MDL3Z に基づいて第1レイト信号LAT1Z が選択される場合には、第1BL長整形回路113で生成された整形信号POE0Z は、第1出力用内部クロックCLKOUT1 の1周期分だけ位相が遅くれて第2出力用内部クロックCLKOUT2 の立ち上がりに応答して第1出力CLK制御回路115から出力制御信号OE0Zとして出力される。
【0219】
さらに又、第1出力CLK制御回路115は、バースト長が「1」の時には、第2出力用内部クロックCLKOUT2 の立ち下がりで取り込み、次の立ち上がりでHレベルの出力制御信号OE0Z(整形信号POE0Z )を出力した後、次の第2出力用内部クロックCLKOUT2 の立ち下り(第1出力用内部クロックCLKOUT1 の立ち上がり)に応答して、即ち半周期後に出力制御信号OE0Z(整形信号POE0Z )をLレベルにする。
【0220】
このように、第1カウンタ・リセット回路111、第1BLカウンタ112、第1BL長整形回路113、第1レイテンシン・カウンタ114及び第1出力CLK制御回路115とからなる第1出力制御回路110は、Hレベルの「0°一致」リードコマンドRED0Z が入力された時には、各モードに応じたタイミングでHレベルとなる出力制御信号OE0Zとして出力する。
【0221】
この時、第2出力制御回路120は動作を停止し、第2出力CLK制御回路125からLレベルの出力制御信号OE18Z を出力している。
因みに、「180°一致」リードコマンドRED180Z が第2出力制御回路120に入力された時には、第2出力制御回路120は、各モードに応じたタイミングでHレベルとなる出力制御信号OE18Z を第1出力用内部クロック信号CLKOUT1 のLレベルからHレベルの立ち上がりに応答して出力する。この時、第1出力制御回路110は動作を停止し、Lレベルとなる出力制御信号OE0Zとして出力する。
【0222】
そして、第1及び第2出力制御回路110,120にて生成された出力制御信号OE0Z,OE18Z は、出力CLK発生回路130及びHiz発生回路140に出力される。
【0223】
[出力CLK発生回路130]
次に、出力CLK発生回路130について説明する。図7は出力CLK発生回路130の回路図を示す。出力CLK発生回路130は、第1出力クロック信号生成回路部130aと第2クロック信号生成回路部130bとから構成されている。
【0224】
(第1出力クロック信号生成回路部130a)
第1出力クロック信号生成回路部130aは、2入力端子の第1ナンド回路201を備えている。第1ナンド回路201は、前記第1出力CLK制御回路115から出力制御信号OE0Zを入力するとともに、インバータ回路202を介して第1出力用内部クロック信号CLKOUT1 を入力する。従って、第1ナンド回路201は、出力制御信号OE0ZがLレベルの時、第1出力用内部クロック信号CLKOUT1 に関係なくHレベルの出力信号を出力する。又、第1ナンド回路201は、出力制御信号OE0ZがHレベルの時には、第1出力用内部クロック信号CLKOUT1 のレベルと同じレベルの出力信号を出力する。
【0225】
第1ナンド回路201の出力信号は、第2ナンド回路203に出力される。第2ナンド回路203は、第1ナンド回路201の出力信号の他に前記インバータ回路202を介して第1出力用内部クロック信号CLKOUT1 を入力する。
【0226】
従って、第2ナンド回路203は、出力制御信号OE0ZがLレベルの時(第1ナンド回路201が常にHレベル時)、第1出力用内部クロック信号CLKOUT1 のレベルと同じレベルの出力信号を出力する。又、第2ナンド回路203は、前記第1ナンド回路201から第1出力用内部クロック信号CLKOUT1 のレベルと同じレベルの出力信号を入力すると、常にHレベルの出力信号を出力する。
【0227】
第1出力クロック信号生成回路部130aは、第11FF回路204を備えている。第11FF回路204は、2個のナンド回路204a,204bとから構成される。第11FF回路204において、ナンド回路204aのリセット側入力端子に前記第1ナンド回路201の出力信号が入力される。第11FF回路204において、ナンド回路204bのセット側入力端子に前記第2ナンド回路203の出力信号が入力される。
【0228】
従って、第11FF回路204は、出力制御信号OE0ZがLレベルの時には、リセット側出力端子(ナンド回路204aの出力端子)から出力される出力信号はLレベルに保持されている。
【0229】
そして、第2出力用クロック信号CLKOUT2 がHレベルに立ち上がる(第2出力用クロック信号CLKOUT2 がHレベルに立ち上がる)とともに出力制御信号OE0ZがLレベルからHレベルに立ち上がると、第1ナンド回路201の出力信号はHレベルからLレベルに立ち下がる。その結果、第11FF回路204は反転し、リセット側出力端子(ナンド回路204aの出力端子)から出力される出力信号はHレベルに保持されている。
【0230】
そして、リセット側出力端子(ナンド回路204aの出力端子)からのHレベルの出力は、出力制御信号OE0ZがLレベルに立ち下がり、最初の第1出力用クロック信号CLKOUT1 がLレベルに立ち下がるとLレベルに反転する。
【0231】
第11FF回路204のリセット側出力端子(ナンド回路204aの出力端子)からの出力信号は、第3ナンド回路205に出力される。第3ナンド回路205は、第11FF回路204からの出力信号の他に第1出力用クロック信号CLKOUT1 を入力する。
【0232】
従って、第3ナンド回路205は、第11FF回路204からの出力信号がLレベルの時(出力制御信号OE0ZがLレベルの時)、第1出力用内部クロック信号CLKOUT1 に関係なくHレベルの出力信号を出力する。又、第3ナンド回路205は、第11FF回路204からの出力信号がHレベルの時(出力制御信号OE0ZがHレベルに立ち上がった時)、第1出力用内部クロック信号CLKOUT1 のレベルを反転させたレベルの信号を出力する。
【0233】
又、第1出力クロック信号生成回路部130aは、第4ナンド回路206を備えている。第4ナンド回路206は、前記第2出力CLK制御回路125から出力制御信号OE18Z を入力するとともに、インバータ回路207を介して第2出力用内部クロック信号CLKOUT2 を入力する。
【0234】
従って、第4ナンド回路206は、出力制御信号OE18Z がLレベルの時、第2出力用内部クロック信号CLKOUT2 に関係なくHレベルの出力信号を出力する。又、第4ナンド回路206は、出力制御信号OE18Z がHレベルの時には、第2出力用内部クロック信号CLKOUT2 と同相の出力信号を出力する。
【0235】
第4ナンド回路206の出力信号は、第5ナンド回路208に出力される。第5ナンド回路208は、第4ナンド回路206の出力信号の他に前記インバータ回路207を介して第2出力用内部クロック信号CLKOUT2 を入力する。
【0236】
従って、第5ナンド回路208は、出力制御信号OE18Z がLレベルの時(第4ナンド回路206が常にHレベル時)、第2出力用内部クロック信号CLKOUT2 と同相の出力信号を出力する。又、第5ナンド回路208は、前記第4ナンド回路206から第2出力用内部クロック信号CLKOUT2 と同相の出力信号を入力すると、常にHレベルの出力信号を出力する。
【0237】
第1出力クロック信号生成回路部130aは、第12FF回路209を備えている。第12FF回路209は、2個のナンド回路209a,209bとから構成される。
【0238】
第12FF回路209において、ナンド回路209aのリセット側入力端子に前記第4ナンド回路206の出力信号が入力される。第12FF回路209において、ナンド回路209bのセット側入力端子に前記第5ナンド回路208の出力信号が入力される。
【0239】
従って、第12FF回路209は、出力制御信号OE18Z がLレベルの時には、リセット側出力端子(ナンド回路209aの出力端子)から出力される出力信号はLレベルに保持されている。
【0240】
そして、第1出力用クロック信号CLKOUT1 の立ち下がり(第2出力用クロック信号CLKOUT2 の立ち下がり)とともに出力制御信号OE18Z がLレベルからHレベルに立ち上がると、第4ナンド回路206の出力信号はHレベルからLレベルに立ち下がる。その結果、第12FF回路209は反転し、リセット側出力端子(ナンド回路209aの出力端子)から出力される出力信号はHレベルに保持されている。
【0241】
そして、リセット側出力端子(ナンド回路209aの出力端子)からのHレベルの出力は、出力制御信号OE18Z がLレベルに立ち下がり、最初の第2出力用クロック信号CLKOUT2 がLレベルに立ち下がるとLレベルに反転する。
【0242】
第12FF回路209のリセット側出力端子(ナンド回路209aの出力端子)からの出力信号は、第6ナンド回路210に出力される。第6ナンド回路210は、第12FF回路209からの出力信号の他に第2出力用クロック信号CLKOUT2 を入力する。
【0243】
従って、第6ナンド回路210は、第12FF回路204からの出力信号がLレベルの時(出力制御信号OE18Z がLレベルの時)、第2出力用内部クロック信号CLKOUT2 に関係なくHレベルの出力信号を出力する。
【0244】
又、第6ナンド回路210は、第12FF回路209からの出力信号がHレベルの時(出力制御信号OE18Z がHレベルに立ち上がった時)、第2出力用内部クロック信号CLKOUT2 のレベルを反転させたレベルの信号を出力する。
【0245】
第7ナンド回路211は、前記第3及び第6ナンド回路205,210からの出力信号を入力する。従って、第6ナンド回路210が常にHレベルの時(出力制御信号OE18Z がLレベルであって、第2出力制御回路120が停止している時)、第7ナンド回路211は、出力制御信号OE0ZのHレベルの立ち上がりに応答して第3ナンド回路205からの第1出力用内部クロック信号CLKOUT1 のレベルが反転したレベルの信号を次段のインバータ回路212に出力する。
【0246】
反対に、第3ナンド回路205が常にHレベルの時(出力制御信号OE0ZがLレベルであって、第1出力制御回路110が停止している時)、第7ナンド回路211は、出力制御信号OE18Z のHレベルの立ち上がりに応答して第6ナンド回路210からの第2出力用内部クロック信号CLKOUT2 のレベルを反転したレベルの信号を次段のインバータ回路212に出力する。そして、インバータ回路212は、第7ナンド回路211から出力された出力信号を反転させて第1出力クロック信号OUTP1Xとして出力する。
【0247】
つまり、インバータ回路212は、第2出力制御回路120が停止していてがLレベルの出力制御信号OE18Z が出力されている時には、出力制御信号OE0ZのHレベルの立ち上がりに応答して(第2出力用内部クロックCLKOUT2 もHレベルに立ち上がる)、第3ナンド回路205からの出力信号を、即ち、第1出力用内部クロックCLKOUT1 を反転させた信号を第1出力クロック信号OUTP1Xとして出力する。
【0248】
又、インバータ回路212は、第1出力制御回路110が停止していてLレベルの出力制御信号OE0Zが出力されている時には、出力制御信号OE18Z のHレベルの立ち上がりに応答して(第1出力用内部クロックCLKOUT1 もHレベルに立ち上がる)、第6ナンド回路210からの出力信号を反転させた信号、即ち、第2出力用内部クロックCLKOUT2 のレベルを反転させたレベルの信号を第1出力クロック信号OUTP1Xとして出力する。
【0249】
(第2出力クロック信号生成回路部130b)
第2出力クロック信号生成回路部130bは、2入力端子の第8ナンド回路221を備えている。第8ナンド回路221は、前記第1出力CLK制御回路115から出力制御信号OE0Zを入力するとともに、インバータ回路222を介して第2出力用内部クロック信号CLKOUT2 を入力する。従って、第8ナンド回路221は、出力制御信号OE0ZがLレベルの時、第2出力用内部クロック信号CLKOUT2 に関係なくHレベルの出力信号を出力する。又、第8ナンド回路221は、出力制御信号OE0ZがHレベルの時には、第2出力用内部クロック信号CLKOUT2 のレベルと同じレベルの出力信号を出力する。
【0250】
第8ナンド回路221の出力信号は、第9ナンド回路223に出力される。第9ナンド回路223は、第8ナンド回路221の出力信号の他に前記インバータ回路222を介して第2出力用内部クロック信号CLKOUT2 を入力する。
【0251】
従って、第9ナンド回路223は、出力制御信号OE0ZがLレベルの時(第8ナンド回路221が常にHレベル時)、第2出力用内部クロック信号CLKOUT2 と同相の出力信号を出力する。又、第9ナンド回路223は、前記第8ナンド回路221から第2出力用内部クロック信号CLKOUT2 のレベルと同じレベルの出力信号を入力すると、常にHレベルの出力信号を出力する。
【0252】
第2出力クロック信号生成回路部130bは、第13FF回路224を備えている。第13FF回路224は、2個のナンド回路224a,224bとから構成される。第13FF回路224において、ナンド回路224aのリセット側入力端子に前記第8ナンド回路221の出力信号が入力される。第13FF回路224において、ナンド回路224bのセット側入力端子に前記第9ナンド回路223の出力信号が入力される。
【0253】
従って、第13FF回路224は、出力制御信号OE0ZがLレベルの時には、リセット側出力端子(ナンド回路224aの出力端子)から出力される出力信号はLレベルに保持されている。
そして、出力制御信号OE0ZがHレベルに立ち上がった後に第2出力用内部クロックCLKOUT2 がHレベルからLレベルに立ち下がると、第8ナンド回路221の出力信号はHレベルからLレベルに立ち下がる。その結果、第13FF回路224は反転し、リセット側出力端子(ナンド回路224aの出力端子)から出力される出力信号はHレベルに保持されている。
【0254】
そして、リセット側出力端子(ナンド回路224aの出力端子)からのHレベルの出力は、出力制御信号OE0ZがLレベルに立ち下がり、最初の第2出力用クロック信号CLKOUT2 がLレベルに立ち下がるとLレベルに反転する。
【0255】
第13FF回路224のリセット側出力端子(ナンド回路224aの出力端子)からの出力信号は、第10ナンド回路225に出力される。第10ナンド回路225は、第13FF回路224からの出力信号の他に第2出力用クロック信号CLKOUT2 を入力する。
【0256】
従って、第10ナンド回路225は、第13FF回路224からの出力信号がLレベルの時(出力制御信号OE0ZがLレベルの時)、第2出力用内部クロック信号CLKOUT2 に関係なくHレベルの出力信号を出力する。
【0257】
又、第10ナンド回路225は、第13FF回路224からの出力信号がHレベルの時(出力制御信号OE0ZがHレベルに立ち上がった後であって第2出力用内部クロック信号CLKOUT2 がHレベルからLレベルにに立ち下がっている時)、第2出力用内部クロック信号CLKOUT2 を反転させた信号を出力する。
【0258】
又、第2出力クロック信号生成回路部130bは、第11ナンド回路226を備えている。第11ナンド回路226は、前記第2出力CLK制御回路125から出力制御信号OE18Z を入力するとともに、インバータ回路227を介して第1出力用内部クロック信号CLKOUT1 を入力する。
従って、第11ナンド回路226は、出力制御信号OE18Z がLレベルの時、第1出力用内部クロック信号CLKOUT1 に関係なくHレベルの出力信号を出力する。又、第11ナンド回路226は、出力制御信号OE18Z がHレベルの時には、第1出力用内部クロック信号CLKOUT1 のレベルと同じレベルの出力信号を出力する。第11ナンド回路226の出力信号は、第12ナンド回路228に出力される。第12ナンド回路228は、第11ナンド回路226の出力信号の他に前記インバータ回路227を介して第1出力用内部クロック信号CLKOUT1 を入力する。
【0259】
従って、第12ナンド回路228は、出力制御信号OE18Z がLレベルの時(第11ナンド回路226が常にHレベル時)、第1出力用内部クロック信号CLKOUT1 と同相の出力信号を出力する。又、第12ナンド回路228は、前記第11ナンド回路226から第1出力用内部クロック信号CLKOUT1 と同相の出力信号を入力すると、常にHレベルの出力信号を出力する。
【0260】
第2出力クロック信号生成回路部130bは、第14FF回路229を備えている。第14FF回路229は、2個のナンド回路229a,229bとから構成される。第14FF回路229において、ナンド回路229aのリセット側入力端子に前記第11ナンド回路226の出力信号が入力される。第14FF回路229において、ナンド回路229bのセット側入力端子に前記第12ナンド回路228の出力信号が入力される。
【0261】
従って、第14FF回路229は、出力制御信号OE18Z がLレベルの時には、リセット側出力端子(ナンド回路229aの出力端子)から出力される出力信号はLレベルに保持されている。
【0262】
そして、出力制御信号OE18Z がHレベルに立ち上がった後第1出力用クロック信号CLKOUT1 がHレベルからLレベルに立ち下がると、第11ナンド回路226の出力信号はHレベルからLレベルに立ち下がる。その結果、第14FF回路229は反転し、リセット側出力端子(ナンド回路229aの出力端子)から出力される出力信号はHレベルに保持されている。
【0263】
そして、リセット側出力端子(ナンド回路229aの出力端子)からのHレベルの出力は、出力制御信号OE18Z がLレベルに立ち下がり、最初の第1出力用クロック信号CLKOUT1 がLレベルに立ち下がるとLレベルに反転する。
【0264】
第14FF回路229のリセット側出力端子(ナンド回路229aの出力端子)からの出力信号は、第13ナンド回路230に出力される。第13ナンド回路230は、第14FF回路229からの出力信号の他に第1出力用クロック信号CLKOUT1 を入力する。
【0265】
従って、第13ナンド回路230は、第14FF回路204からの出力信号がLレベルの時(出力制御信号OE18Z がLレベルの時)、第1出力用内部クロック信号CLKOUT1 に関係なくHレベルの出力信号を出力する。
【0266】
又、第13ナンド回路230は、第14FF回路229からの出力信号がHレベルの時(出力制御信号OE18Z がHレベルに立ち上がるとともに第1出力用内部クロック信号CLKOUT1 がHレベルに立ち上がっている時)、第1出力用内部クロック信号CLKOUT1 のレベルを反転させたレベルの信号を出力する。
【0267】
第14ナンド回路231は、前記第10及び第13ナンド回路225,230からの出力信号を入力する。従って、第13ナンド回路230が常にHレベルの時(出力制御信号OE18Z がLレベルであって、第2出力制御回路120が停止している時)、第14ナンド回路231は、出力制御信号OE0ZのHレベルの立ち上がった後であって第2出力用内部クロック信号CLKOUT2 がHレベルからLレベルに立ち下がった時、第10ナンド回路225を介して第2出力用内部クロック信号CLKOUT2 のレベルと同じレベルの信号を次段のインバータ回路232に出力する。
【0268】
反対に、第10ナンド回路225が常にHレベルの時(出力制御信号OE0ZがLレベルであって、第1出力制御回路110が停止している時)、第14ナンド回路231は出力制御信号OE18Z のHレベルの立ち上がった後であって第1出力用内部クロック信号CLKOUT1 がHレベルからLレベルに立ち下がった時、第13ナンド回路230を介して第1出力用内部クロック信号CLKOUT1 のレベルと同じレベル信号を次段のインバータ回路232に出力する。
【0269】
そして、インバータ回路232は、第14ナンド回路231から出力された出力信号を反転させて第2出力クロック信号OUTP2Xとして出力する。
つまり、インバータ回路232は、第2出力制御回路120が停止していてがLレベルの出力制御信号OE18Z が出力されている時には、出力制御信号OE0ZのHレベルの立ち上がった後であって第2出力用内部クロック信号CLKOUT2 がHレベルからLレベルに立ち下がった時、第10ナンド回路225からの出力信号を反転させた信号、即ち、第2出力用内部クロックCLKOUT2 のレベルを反転させたレベルの信号を第2出力クロック信号OUTP2Xとして出力する。
【0270】
又、インバータ回路232は、第1出力制御回路110が停止していてがLレベルの出力制御信号OE0Zが出力されている時には、出力制御信号OE18Z のHレベルの立ち上がった後であって第1出力用内部クロック信号CLKOUT1 がHレベルからLレベルに立ち下がった時、第13ナンド回路230からの出力信号を反転させた信号、即ち、第1出力用内部クロックCLKOUT1 のレベルを反転させたレベルの信号を第2出力クロック信号OUTP2Xとして出力する。
【0271】
このように、出力CLK発生回路130は、出力制御信号OE0ZがHレベルに立ち上がった時、第1出力クロック信号生成回路部130aから第1出力用クロック信号CLKOUT1 のレベルを反転させたレベルの第1出力クロック信号OUTP1Xが出力させる。続いて、出力CLK発生回路130は、出力制御信号OE0ZがHレベルの立ち上がった後であって第2出力用内部クロック信号CLKOUT2 がHレベルからLレベルに立ち下がった時、第2クロック信号生成回路部130bから第2出力用内部クロックCLKOUT2 のレベルを反転させたレベルの第2出力クロック信号OUTP2Xを出力させる。
【0272】
尚、出力制御信号OE0Zに基づいて常に先に第1出力クロック信号OUTP1Xは、第1出力用内部クロック信号CLKOUT1 の半周期後に出力されることから、前記出力制御信号OE0ZがHレベルに立ち上がった時から外部クロック信号CLKで数えて1クロック後にLレベルに立ち下がることになる。
【0273】
又、出力CLK発生回路130は、出力制御信号OE18Z がHレベルに立ち上がった時、第1出力クロック信号生成回路部130aから第2出力用クロック信号CLKOUT2 のレベルを反転させたレベルの第1出力クロック信号OUTP1Xを出力させる。続いて、出力CLK発生回路130は、出力制御信号OE18Z のHレベルの立ち上がった後であって第1出力用内部クロック信号CLKOUT1 がHレベルからLレベルに立ち下がった時、第1出力用内部クロックCLKOUT1 のレベルを反転させたレベルの第2出力クロック信号OUTP2Xを出力させる。
【0274】
言い換えれば、出力制御信号OE0Z又は出力制御信号OE18Z のいずれの信号がHレベルに立ち上がっても、出力CLK発生回路130は、常に先に第1出力クロック信号OUTP1Xを出力させ、半周期後に第2出力クロック信号OUTP2Xを出力させる。
【0275】
[Hiz発生回路140]
次に、Hiz発生回路140について説明する。図8はHiz発生回路140の回路図を示す。Hiz発生回路140は、第1出力制御回路110からの出力制御信号OE0ZからHiz信号HIZEZ を生成する第1Hiz信号生成部140aと、第2出力制御回路120からの出力制御信号OE18Z からHiz信号HIZEZ を生成する第2Hiz信号生成部140bとを有している。
【0276】
尚、第1Hiz信号生成部140aと第2Hiz信号生成部140bはそれぞれ回路構成を同じで入力する信号が相違するだけなので、第1Hiz信号生成部140aについて説明する。そして、第2Hiz信号生成部140bについては、第1Hiz信号生成部140aを構成する符号を付した素子と対応する素子については同じ符号を付しその符号の後に「a」の符号をさらに付すことによってその詳細な説明を省略する。
【0277】
(第1Hiz信号生成部140a)
第1Hiz信号生成部140aは、PチャネルMOSトランジスタとNチャネルMOSトランジスタよりなる2個の前段及び後段トランスファーゲート回路241,242を備えている。
【0278】
前段トランスファーゲート回路241は、そのPチャネルMOSトランジスタのゲートにインバータ回路243,244を介して第1出力用内部クロックCLKOUT1 が入力され、NチャネルMOSトランジスタのゲートにインバータ回路243を介して第1出力用内部クロックCLKOUT1 が入力される。一方、後段トランスファーゲート回路242は、そのPチャネルMOSトランジスタのゲートにインバータ回路243介して第1出力用内部クロックCLKOUT1 が入力され、NチャネルMOSトランジスタのゲートにインバータ回路243,244を介して第1出力用内部クロックCLKOUT1 が入力される。従って、前段及び後段トランスファーゲート回路241,242は、第1出力用内部クロックCLKOUT1 に基づいて交互にオン・オフされる。
【0279】
前段トランスファーゲート回路241は、出力制御信号OE0Zを次段のナンド回路245に出力する。ナンド回路245は出力制御信号OE0Zの他にインバータ回路246を介してリセット信号RSTを入力する。ナンド回路245の出力端子にはCMOSトランジスタT21の入力端子に接続され、そのCMOSトランジスタT21の出力端子は前段トランスファーゲート回路241の出力端子に接続されている。
【0280】
CMOSトランジスタT21は、インバータ回路243を介して入力される第1出力用内部クロックCLKOUT1 でオン・オフするPチャネルMOSトランジスタT22と、インバータ回路243,244を介して入力される第1出力用内部クロックCLKOUT1 でオン・オフするNチャネルMOSトランジスタT23が直列に接続されている。従って、前段トランスファーゲート回路241がオフしている時には、CMOSトランジスタT21は活性化され、前段トランスファーゲート回路245がオンして時には、CMOSトランジスタT21は非活性となる。
【0281】
ナンド回路245とCMOSトランジスタT21は、ラッチ回路を構成している。今、前段トランスファーゲート回路241を介してナンド回路245に出力されている出力制御信号OE0ZがLレベルの時、ナンド回路245の出力はHレベルとなる。そして、CMOSトランジスタT21は活性化されると(前段トランスファーゲート回路245はオフ)、CMOSトランジスタT21はナンド回路245のHレベルの出力を入力し、Lレベルの出力信号をナンド回路245に出力する。
【0282】
従って、ナンド回路245の出力は、Hレベルに保持される。そして、前段トランスファーゲート回路241を介してHレベルの出力制御信号OE0Zががナンド回路245に入力されると、ナンド回路245の出力はHレベルからLレベルに反転し保持される。そして、Hレベルの出力制御信号OE0Zが入力され続けると、ナンド回路245の出力は、Lレベルに保持され続ける。
【0283】
そして、この状態から、ナンド回路245にLレベルの出力制御信号OE0Zが入力されると、ナンド回路245の出力はLレベルからHレベルに反転し保持される。
【0284】
ナンド回路245の出力は、後段トランスファーゲート回路242を介してインバータ回路247に出力される。インバータ回路247の出力端子は、ナンド回路248の入力端子に接続されている。ナンド回路248は、インバータ回路247からの出力信号の他に前記インバータ回路246を介してリセット信号RSTを入力する。ナンド回路248の出力端子は、前記インバータ回路247の入力端子に接続されている。
【0285】
インバータ回路247とナンド回路248は、ラッチ回路を構成している。インバータ回路246からの信号がHレベルで、インバータ回路247の出力がLレベルに保持されている時、後段トランスファーゲート回路242を介してナンド回路245からLレベルの信号をインバータ回路247が入力すると、同インバータ回路247の出力はLレベルからHレベルとなる。
【0286】
又、インバータ回路247がHレベルの信号を出力している状態で、後段トランスファーゲート回路242を介してナンド回路245からHレベルの信号を入力すると、インバータ回路247の出力はHレベルからLレベルとなる。
【0287】
そして、インバータ回路247の出力信号は、ノア回路249及びインバータ回路250を介してHiz信号HIZEZ として出力される。
従って、第1Hi信号生成部140aは、第2出力用内部クロック信号CLKOUT1 のHレベルの立ち上がりに応答して第1出力CLK制御回路115からHレベルの出力制御信号OE0Zが入力されると、Hレベルの第1出力用内部クロック信号CLKOUT1 でオンしている前段トランスファーゲート回路241を介してナンド回路245の出力はLレベルに立ち下がる。続いて、第1出力用内部クロック信号CLKOUT1 のHレベルからLレベルの立下りで、後段トランスファーゲート回路242がオンしナンド回路245のLレベルの出力に基づいてインバータ回路247はHレベルに出力される。そして、Hiz信号HIZEZ がHレベルに立ち上がる。
【0288】
つまり、第1Hi信号生成部140aは、Hレベルの出力制御信号OE0Zが入力れると、第1出力用内部クロック信号CLKOUT1 のHレベルからLレベルの立下りで、即ち半周期遅れてHiz信号HIZEZ をHレベルに立ち上がらせる。
【0289】
同様に、第1Hi信号生成部140aは、出力制御信号OE0ZがLレベルに立ち下がると、半周期遅れてHiz信号HIZEZ をLレベルに立ち下がらせる。
因みに、第1Hi信号生成部140aと同じ回路構成の第2HiZ 信号生成部140bは、Hレベルの出力制御信号OE18Z が入力れると、第2出力用内部クロック信号CLKOUT2 のHレベルからLレベルの立下りで、即ち半周期遅れてHiz信号HIZEZ をHレベルに立ち上がらせる。
【0290】
同様に、第1Hi信号生成部140aは、出力制御信号OE0ZがLレベルに立ち下がると、半周期遅れてHiz信号HIZEZ をLレベルに立ち下がらせる。
Hiz発生回路140で生成されたHiz信号HIZEZ は、出力バッファ150に出力される。
【0291】
[ 出力バッファ150]
次に、出力バッファ150について説明する。図9は出力バッファ150の回路図を示す。出力バッファ150は、バッファ回路部150a、第1データ入力部150b、第2データ入力部150c、第1ハイ・インピ―ダンス制御部150d、第2ハイ・インピ―ダンス制御部150eを備えている。
【0292】
(バッファ回路部150a)
バッフア回路部150aは、出力用PチャネルMOSトランジスタ(以下、第1出力用トランジスタという)T31及び出力用NチャネルNチャネルMOSトランジスタ(以下、第2出力用トランジスタという)T32を備えている。
【0293】
第1出力用トランジスタT31のソース端子はプラス電源電線に接続されている。第1出力用トランジスタT31のドレイン端子は第2出力用トランジスタT32のドレイン端子に接続されている。第2出力用トランジスタT32のソース端子は接地されている。第1出力用トランジスタT31及び第2出力用トランジスタT32のドレイン端子は、1つの出力端子としての出力パッドOPに接続されている。
【0294】
第1出力用トランジスタT31のゲート端子には、第1データ入力部150bからの上アーム用データ信号をラッチ回路251及びインバータ回路252を介して入力される。第2出力用トランジスタT32のゲート端子には、第2データ入力部150cからの下アーム用データ信号をラッチ回路253及びインバータ回路254を介して入力される。
【0295】
従って、上アーム用及び下アーム用データ信号が共にLレベルである時には、第1出力用トランジスタT31はオンし、第2出力用トランジスタT32はオフする。その結果、出力パッドからHレベルのデータDが出力される。
【0296】
又、上アーム用及び下アーム用データ信号が共にHレベルである時には、第1出力用トランジスタT31はオフし、第2出力用トランジスタT32はオンする。その結果、出力パッドからLレベルのデータDが出力される。
【0297】
さらに、上アーム用データ信号がHレベルであって下アーム用データ信号がLレベルの時には、第1及び第2出力用トランジスタT31,T32は共にオフする。その結果、バッファ回路部150aはハイ・インピーダンス状態となる。
【0298】
(第1データ入力部150b)
第1データ入力部150bは、第1上部トランスファーゲート回路256と第2上部トランスファーゲート回路257を備えている。
【0299】
第1上部トランスファーゲート回路256は、そのPチャネルMOSトランジスタのゲートに第1出力クロック信号OUTP1Xがインバータ回路258,259を介して入力され、N チャネルMOSトランジスタのゲートに第1出力クロック信号OUTP1Xがインバータ回路258を介して入力される。第1上部トランスファーゲート回路256の入力端子はインバータ回路260を介して出力バッファ150の第1データ入力端子IN1 に接続されている。第1上部トランスファーゲート回路256は、第1データ入力端子IN1 に入力される第1データD1を前記インバータ回路260を介して入力し、第1データD1が反転した信号(データ信号)を上アーム用データ信号として前記ラッチ回路251に出力する。
【0300】
第2上部トランスファーゲート回路257は、そのPチャネルMOSトランジスタのゲートに第2出力クロック信号OUT2X がインバータ回路261,262を介して入力され、N チャネルMOSトランジスタのゲートに第2出力クロック信号OUTP2Xがインバータ回路261を介して入力される。第2上部トランスファーゲート回路257の入力端子はインバータ回路263を介して出力バッファ150の第2データ入力端子IN2 に接続されている。第2上部トランスファーゲート回路257は、第2データD2を前記インバータ回路263を介して入力し、第2データD2が反転した信号(データ信号)を上アーム用データ信号として前記ラッチ回路251に出力する。
【0301】
(第2データ入力部150c)
第2データ入力部150cは、第1下部トランスファーゲート回路266と第2下部トランスファーゲート回路267を備えている。
【0302】
第1下部トランスファーゲート回路266は、そのPチャネルMOSトランジスタのゲートに第1出力クロック信号OUTP1Xがインバータ回路268,269を介して入力され、N チャネルMOSトランジスタのゲートに第1出力クロック信号OUTP1Xがインバータ回路268を介して入力される。第1下部トランスファーゲート回路266の入力端子はインバータ回路270及び第1データ入力端子IN1 を介して第1データD1を入力し、第1下部トランスファーゲート回路266の出力端子は前記インバータ回路270を介して入力した第1データD1が反転した信号(データ信号)を下アーム用データ信号として前記ラッチ回路253に出力する。
【0303】
第2下部トランスファーゲート回路267は、そのPチャネルMOSトランジスタのゲートに第2出力クロック信号OUT2X がインバータ回路271,272を介して入力され、N チャネルMOSトランジスタのゲートに第2出力クロック信号OUTP2Xがインバータ回路271を介して入力される。第2下部トランスファーゲート回路267の入力端子はインバータ回路273及び第2データ入力端子IN2 を介して第2データD2を入力し、第2下部トランスファーゲート回路267の出力端子は前記インバータ回路273を介して入力した第2データD2が反転した信号(データ信号)を下アーム用データ信号として前記ラッチ回路253に出力する。
【0304】
(第1ハイ・インピ―ダンス制御部150d)
第1ハイ・インピ―ダンス制御部150dは、第1制御用トランスファーゲート回路275を備えている。第1制御用トランスファーゲート回路275は、そのPチャネルMOSトランジスタのゲートにHiz信号HIZEZ がインバータ回路276,277を介して入力され、N チャネルMOSトランジスタのゲートにHiz信号HIZEZ がインバータ回路277を介して入力される。
【0305】
第1制御用トランスファーゲート回路275の入力端子はインバータ回路278を介してナンド回路279の出力端子に接続されている。テストデータ入力回路としてのナンド回路279は2入力端子のナンド回路であって、一方の第1モード入力端子に第1モード制御信号SGHZ1 を入力し、他方の第2モード入力端子に第2モード制御信号SGHZ2 を入力する。
【0306】
第1及びモード制御信号SGHZ1 ,SGHZ2 は、リード動作等の通常モード時には共にLレベルとなる信号である。又、テストモード時には、第1モード制御信号SGHZ1 はLレベルに設定され、第2モード制御信号SGHZ2 はテスト信号となって出力される。そして、第1及びモード制御信号SGHZ1 ,SGHZ2 は、本実施形態ではDRAMコントローラからのコマンドに基づいて生成されされる。
【0307】
従って、通常モードには、ナンド回路279の出力はLレベルとなる。テストモードには、ナンド回路279の出力は第2モード制御信号SGHZ2 が反転したレベルとなる。
【0308】
このように、通常モードにおいて、第1ハイ・インピ―ダンス制御部150dは、Hiz信号HIZEZ がLレベルでトランスファーゲート回路276がオンしている間、前記第1出力用トランジスタT31をオフ状態にするHレベルの信号を上アーム用データ信号として前記ラッチ回路251に出力する。
【0309】
又、テストモードにおいて、第1ハイ・インピ―ダス制御部150dは、Hiz信号HIZEZ がLレベルでトランスファーゲート回路276がオンしている間、前記第1出力用トランジスタT31を第2モード制御信号SGHZ2 に同期してオン・オフさせる信号を上アーム用データ信号として前記ラッチ回路251に出力する。
【0310】
(第2ハイ・インピ―ダンス制御部150e)
第2ハイ・インピ―ダンス制御部150eは、第2制御用トランスファーゲート回路280を備えている。第2制御用トランスファーゲート回路280は、そのPチャネルMOSトランジスタのゲートにHiz信号HIZEZ がインバータ回路281,282を介して入力され、N チャネルMOSトランジスタのゲートにHiz信号HIZEZ がインバータ回路281を介して入力される。
【0311】
第2制御用トランスファーゲート回路280の入力端子はインバータ回路283を介してノア回路284の出力端子に接続されている。テストデータ入力回路を構成するノア回路284は2入力端子のノア回路であって、一方の入力端子にはインバータ回路285を介して前記第1モード制御信号SGHZ1 が入力され、他方の入力端子にはインバータ回路286を介して前記第2モード制御信号SGHZ2 が入力される。
【0312】
従って、通常モード時には、ノア回路284の出力はHレベルとなる。テストモード時には、ノア回路284の出力は第2モード制御信号SGHZ2 を反転させ信号となる。
【0313】
通常モードにおいて、第2ハイ・インピ―ダンス制御部150eは、Hiz信号HIZEZ がLレベルでトランスファーゲート回路280がオンしている間、前記第2出力用トランジスタT32をオフ状態にするHレベルの信号を上アーム用データ信号として前記ラッチ回路253に出力する。
【0314】
又、テストモードにおいて、第2ハイ・インピ―ダンス制御部150eは、Hiz信号HIZEZ がLレベルでトランスファーゲート回路280がオンしている間、前記第2出力用トランジスタT32を第2モード制御信号SGHZ2 に同期してオン・オフさせる信号を下アーム用データ信号として前記ラッチ回路251に出力する。
【0315】
このように、出力バッファ150は、先に出力される第1出力クロック信号OUTP1Xが最初にLレベルに立ち下がると、第1及び第2データ入力部150b,150cの第1及び第2上部トランスファーゲート回路256,266が第1データD1を取り込みバッファ回路部150aに出力する。そして、バッファ回路部150aの第1及び第2出力用トランジスタT31,T32のゲートに第1データD1のレベルを反転させた信号が入力されると、出力パッドには第1データD1が出力される。
【0316】
出力バッファ150は、第1出力クロック信号OUTP1XのLレベルの立ち下がり半周期遅れて第2出力クロック信号OUTP2XがLレベルに立ち下がると、第1及び第2データ入力部150b,150cの第1及び第2下部トランスファーゲート回路257,267が第2データD2を取り込みバッファ回路部150aに出力する。そして、バッファ回路部150aの第1及び第2出力用トランジスタT31,T32のゲートに第2データD2のレベルを反転させた信号が入力されると、出力パッドには第2データD2が出力される。
【0317】
そして、第1出力クロック信号OUTP1XがLレベルに立ち下がる数と第2出力クロック信号OUTP2XがLレベルに立ち下がる数を合わせた数が設定したバースト長の数になるまでの間、第1データD1と第2データD2が交互に出力される。最後のLレベルの第2出力クロック信号OUTP2Xが消失しHレベルになると、半周期後にHiz信号HIZEZ がLレベルに立ち下がる。
【0318】
出力バッファ150は、このHiz信号HIZEZ がLレベルに立ち下がると、第1及び第2モード制御信号SGHZ1 ,SGHZ1 を取り込み第1及び第2出力用トランジスタT31,T32を共にオフさせる。その結果、出力バッファ150は、ハイ・インピーダンス状態となる。
【0319】
又、出力バッファ150は、Hiz信号HIZEZ がLレベルでトランスファーゲート回路280がオンさせた状態において、第1モード制御信号SGH1をLレベルのままにし,第2モード制御信号SGHZ2 をテストデータにして第1及び第2ハイ・インピ―ダンス制御部150d,150eに入力すれば、該テストデータに基づいて出力用トランジスタT31,T32をオン・オフ制御してテスト処理動作を実行することができる。
【0320】
次に、上記のように構成した同期式DRAMのデータ出力回路部100の特徴を以下に記載する。尚、説明の便宜上、第1出力制御回路部110に従って説明することによって第2出力制御回路部120は容易に理解できるので、第2出力制御回路部120についてはここでは省略する。
【0321】
(1)本実施形態のデータ出力回路部100では、出力CLK発生回路130を設けた。出力CLK発生回路130は、「0°」一致」リードコマンドRER0Z に応答して第1出力制御回路110から出力される出力制御信号OE0Z、及び、「180°」一致リードコマンドRER180Z に応答して第2出力制御回路120から出力される出力制御信号OE18Z に基づいて第1出力クロック信号OUTP1X及び第2出力クロック信号OUTP2Xを生成する。
【0322】
出力CLK発生回路130は、その出力制御信号OE0Z及び出力制御信号OE18Z のいずが出力されても、第1出力クロック信号OUTP1Xが第2出力クロック信号OUTP2Xより半周期常に先に出力する。
【0323】
又、本実施形態のデータ出力回路部100に設けた出力バッファ150は、半周期先に出力される第1出力クロック信号OUTP1XのLレベルに応答して第1データD1を、又、半周期遅れて出力される第2出力クロック信号OUTP2XのLレベルに応答して第2データD2をそれぞれ順番に入力し出力させる。
【0324】
従って、出力バッファ150は、常に第1データD1が先に出力され続いて第2データD2が出力され以後バースト長の数だけ第1及び第2データD1,D2を交互に出力する。
【0325】
つまり、外部クロックCLK を1/2に分周して生成した互いに180°の位相差のある第1及び第2入力用内部クロック信号CLKIN1,CLKIN2のいずれの内部クロック信号に同期してリードコマンドを入力しても、出力CLK発生回路130にて生成した第1及び第2出力クロック信号OUTP1X, OUTP2X により、常に第1出力クロック信号OUTP1XのLレベルの立ち下がりに応答して第1データ入力端子IN1 に入力される第1データD1を出力パッドOPからリードデータDとして出力される。
【0326】
(2)本実施形態のデータ出力回路部100では、Hiz発生回路140を設けた。Hiz発生回路140は出力制御信号OE0Z及び出力制御信号OE18Z のいずれが出力されても、その出力された出力制御信号が消失した時、Lレベルに立ち下がるHiz信号HIZEZ を生成する。
【0327】
又、出力バッファ150に第1及び第2ハイ・インピ―ダンス制御部150d,150eを設けた。第1及び第2ハイ・インピ―ダンス制御部150d,150eはHiz信号HIZEZ のLレベルの立ち下がりに応答して次段のバッファ回路部150aに設けた第1及び第2出力用トランジスタT31,T32をオフさせ、バッファ回路部150aをハイ・インピーダンス状態にする。
【0328】
つまり、出力バッファ150は、リードデータDを読み出した後は直ちにハイ・インピーダンス状態となり最後に出力されたリードデータDがラッチ回路251,253の保持によって出力される続けることはない。
【0329】
(3)実施形態の出力バッファ150の第1及び第2ハイ・インピ―ダンス制御部150d,150eにそれぞれ設けたテストデータ入力回路としてのナンド回路279及びノア回路284は、上記したようにLレベルの第1及び第2モード制御信号SGH1,SGHZ2 を入力し、出力バッファ150をリードデータDを読み出した後は直ちにハイ・インピーダンス状態する。
【0330】
そして、テストモードにおいて、Hiz信号HIZEZ がLレベルでトランスファーゲート回路280がオンさせた状態で、且つ、第1モード制御信号SGH1をLレベルにした状態で,前記第2モード制御信号SGHZ2 をテストデータにして第1及び第2ハイ・インピ―ダンス制御部150d,150eに入力すれば、テストデータに基づいて出力用トランジスタT31,T32をオン・オフ制御することができる。
【0331】
つまり、第1及び第2ハイ・インピ―ダンス制御部150d,150eを用いて、第2モード制御信号SGHZ2 をテストデータにするだけで、出力バッファ150のテストが容易に行うことができる。
【0332】
(4)本実施形態のデータ出力回路部100では、第1出力CLK制御回路115にバースト波形変更回路部115cを設けた。バースト波形変更回路部115cは、バースト長が「1」の時、選択された第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z の一つの信号に基づいて出力制御信号生成回路部115bから出力されるHレベルの出力制御信号OE0Zを半周期後にLレベルにする。つまり、第1出力CLK制御回路115は、内部クロックCLKIN1,CLKIN2,CLKOUT1 ,CLKOUT2 の半周期分だけHレベルに立ち上がる出力制御信号OE0Zを生成できるようにした。
【0333】
従って、外部クロックCLK を1/2に分周した第1及び第2入力用内部クロック信号CLKIN1,CLKIN2及び第1及び第2出力用内部クロック信号CLKOUT1 ,CLKOUT2 に基づいて動作処理するデータ出力回路部100は、バースト長が「1」のデータ読み出しも可能になる。
【0334】
(5)本実施形態のデータ出力回路部100では、第1出力CLK制御回路115にモード設定回路115aを設けた。
モード設定回路115aは、第1〜第3モード信号MDL1Z ,MDL2Z ,MDL3Z に基づいて、リードデータD を出力するタイミングをリードコマンドを取り込んだ時の外部クロック信号CLK から8、10又は12クロックの該外部クロック信号CLK を数えた後に出力させることができるようにしている。
【0335】
この3種類の出力タイミングは、第1レイテンシン・カウンタ114で生成した第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z で決定される。
そして、第1レイテンシン・カウンタ114は、第1入力用内部クロック信号CLKIN1より位相が進んだ第1出力用内部クロック信号CLKOUT1 をカウントして生成するようになっていて、前記出力したいタイミングより前に第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z を立ち上がるように、3個の第1〜第3カウンタ部80,80a,80bに構成した。
【0336】
つまり、第1出力用内部クロック信号CLKOUT1 が第1出力用内部クロック信号CLKOUT1 より位相が進んでいるため、リードコマンドを取り込んだ第1出力用内部クロック信号CLKOUT1 に対応する第1出力用内部クロック信号CLKOUT1 を第1レイテンシン・カウンタ114はカウントできない。そこで、第1レイテンシン・カウンタ114は、そのカウントできない第1出力用内部クロック信号CLKOUT1 を見込むとともに、後段の第1出力CLK制御回路115、出力CLK発生回路130の動作時間をも見込んで前記出力したいタイミングより前に第1〜第3レイト信号LAT1Z ,LAT2Z ,LAT3Z を立ち上がるようにしている。
【0337】
従って、第1入力用内部クロック信号CLKIN1でリードコマンド及びアドレスを一括して取り込み、第2出力用内部クロック信号CLKOUT1 でリードデータD を出力する本実施形態のDRAMにおいても、リードコマンド取り込んでから予め設定したタイミングで確実にリードデータD を出力することができる。
【0338】
【発明の効果】
請求項1に記載の発明によれば、出力バッファについて第1データ入力端子に入力されるデータを常に最初に入力し出力させることができ、データ出力の制御を確実に行うことができる。
【0339】
請求項2に記載の発明によれば、バースト長が1のリード動作であっても特別な信号生成回路を設けることなく第1及び第2出力用内部クロック信号で出力制御信号を生成でき、データ出力の制御を確実に行うことができる。
【0340】
請求項3に記載の発明によれば、出力バッファに設けたバッファ回路部をリードデータの出力が終了した時にハイ・インピーダンスにすることができる
【0341】
請求項に記載の発明によれば、コマンド及びアドレスを一括して取り込まれた時から予め定められた外部クロック数でリードデータを確実に出力することができ、データ出力の制御を確実に行うことができる。
【0342】
尚、実施の形態は上記実施形態に限定されるものではなく、以下のように変更して実施してもよい。
(1)上記実施形態では、バースト長を4種類にしたが、その数を適宜変更して実施してもよい。
【0343】
(2)上記実施形態では、リードデータD の出力タイミングを3種類としたが、その数を適宜変更して実施してもよい。
(3)上記実施形態では、出力バッファ150はテストモードが可能であったが、テストモードを省略しハイ・インピーダンス状態のみが制御可能なように構成して実施してもよい。
【図面の簡単な説明】
【図1】同期式DRAMのデータ出力回路部のブロック図
【図2】第1カウンタ・リセット回路の回路図
【図3】第1BLカウンタの回路図
【図4】第1BL長整形回路の回路図
【図5】第1レイテンシン・カウンタの回路図
【図6】第1出力CLK制御回路の回路図
【図7】出力CLK発生回路の回路図
【図8】Hiz発生回路の回路図
【図9】出力バッファ回路の回路図
【図10】データ出力回路部の動作波形図
【図11】第1カウンタ・リセット回路の入出力波形図
【図12】第1出力CLK制御及び出力CLK発生回路の入出力波形図
【符号の説明】
データ出力回路部100
110 第1出力制御回路
111 第1カウンタ・リセット回路
112 第1バースト長カウンタ(第1BLカウンタ)
112a カウントクロック生成部
112b カウンタ回路部
113 第1バースト長整形回路(第1BL長整形回路)
113a バースト長設定回路部
113b バースト波形整形回路部
114 第1レイテンシン・カウンタ
115 第1出力クロック制御回路(第1出力CLK制御回路)
115a モード設定回路部
115b 出力制御信号生成回路部
115c バースト波形変更回路部
120 第2出力制御回路
121 第2カウンタ・リセット回路
122 第2バースト長カウンタ(第2BLカウンタ)
123 第2バースト長整形回路(第2BL長整形回路)
124 第2レイテンシン・カウンタ
125 第2出力クロック制御回路(第2出力CLK制御回路)
130 出力クロック発生回路(出力CLK発生回路)
130a 第1出力クロック信号生成回路部
130b 第2出力クロック信号生成回路部
140 ハイ・インピーダンス発生回路(Hiz発生回路)
140a 第1Hiz信号生成部
140b 第2Hiz信号生成部
150 出力バッファ
150a バッファ回路部
150b 第1データ入力部
150c 第2データ入力部
150d 第1ハイ・インピーダンス制御部
150e 第2ハイ・インピーダンス制御部
CLK 外部クロック
CLKIN1 第1入力用内部クロック信号
CLKIN2 第2入力用内部クロック信号
CLKOUT1 第1出力用内部クロック信号
CLKOUT2 第2出力用内部クロック信号
RED0Z 「0°一致」リードコマンド
RED180Z 「180°一致」リードコマンド
BLCLK0Z 分周クロック信号
AGR0X カウント・リセット信号
POE0X 整形信号
POEP0X 終了信号
OE0Z,OE18Z 出力制御信号
OUTP1X 第1出力クロック信号
OUTP2X 第2出力クロック信号
HIZEZ Hiz信号
D1,D2 第1及び第2データ
D データ

Claims (4)

  1. 外部クロック信号を分周して、位相が180°異なる第1及び第2入力用内部クロック信号と、その第1及び第2入力用内部クロック信号にそれぞれ対応するとともにその対応する第1及び第2入力用内部クロック信号に対してそれぞれ位相が進んだ第1及び第2出力用内部クロック信号を生成し
    前記第1入力用内部クロック信号同期してコマンド及びアドレスを取り込んだときに第1出力制御信号を生成する第1出力制御回路と、
    前記第2入力用内部クロック信号に同期してコマンド及びアドレスを取り込んだときに第2出力制御信号を生成する第2出力制御回路と、
    前記第1出力制御信号が出力されている時には前記第1出力用内部クロック信号を反転して第1出力クロック信号を生成するとともに前記第2出力用内部クロック信号を反転して第2出力クロック信号を生成し、前記第2出力制御信号が出力されている時には前記第1出力用内部クロック信号を反転して第2出力クロック信号を生成するとともに前記第2出力用内部クロック信号を反転して第1出力クロック信号を生成する出力クロック発生回路と
    前記コマンド及びアドレスに対してバースト長の数だけのリードデータが第1データ入力端子と第2データ入力端子とから交互に順次入力され、前記第1データ入力端子から入力される第1データ信号を前記第1出力クロック信号に従って出力端子から出力するとともに、前記第2データ入力端子から入力される第2データ信号を前記第2出力クロック信号に従って前記出力端子から出力する出力バッファと、
    を備えたことを特徴とする半導体記憶装置。
  2. 請求項1に記載の半導体記憶装置において、
    前記第1出力制御回路は、
    前記出力クロック発生回路の第1及び第2出力クロック信号がバースト長の数分だけ出力されるための前記第1出力制御信号を生成し前記出力クロック発生回路に出力する第1出力クロック制御回路と、
    前記第1出力クロック制御回路に設けられ、バースト長が1の時、バースト長の数が複数のバースト長の前記第1出力制御信号が前記第2出力用内部クロック信号で出力される時、前記第1出力用内部クロック信号で前記第1出力制御信号を消失させてバースト長が1となる第1出力制御信号を生成する第1バースト波形変更回路部と
    を備え、
    前記第2出力制御回路は、
    前記出力クロック発生回路の第1及び第2出力クロック信号がバースト長の数分だけ出力されるための前記第2出力制御信号を生成し前記出力クロック発生回路に出力する第2出力クロック制御回路と、
    前記第2出力クロック制御回路に設けられ、バースト長が1の時、バースト長の数が複数のバースト長の前記第2出力制御信号が前記第1出力用内部クロック信号で出力される時、前記第2出力用内部クロック信号で前記第2出力制御信号を消失させてバースト長が1となる第2出力制御信号を生成する第2バースト波形変更回路部と
    備えたことを特徴とする半導体記憶装置。
  3. 請求項1又は2に記載の半導体記憶装置において、
    前記出力バッファは、前記第1データ信号及び前記第2データ信号を出力するバッファ回路部と、前記第2データ信号の出力が終了した時に前記バッファ回路部をハイ・インピーダンスにするハイ・インピーダンス制御部と、を備えたことを特徴とした半導体記憶装置。
  4. 請求項1,請求項2又は請求項に記載の半導体記憶装置において、
    前記第1出力制御回路は、
    前記第1入力用内部クロック信号に同期して取り込んだコマンド及びアドレスの取り込み時から予め定めた時間後に、前記出力バッファからそのコマンドに対するデータを前記第1及び第2出力用内部クロック信号に基づいて出力するための出力タイミングを、前記第1出力用内部クロック信号をカウントして生成する第1レイテンシン・カウンタを備え
    前記第1レイテンシン・カウンタは、前記コマンドを取り込んだ第1入力用内部クロック信号に対応した、その取り込んだ入力用内部クロック信号より先に出力された前記第1出力用内部クロック信号を見込んでカウント動作を行い、
    前記第2出力制御回路は、
    前記第2入力用内部クロック信号に同期して取り込んだコマンド及びアドレスの取り込み時から予め定めた時間後に、前記出力バッファからそのコマンドに対するデータを前記第1及び第2出力用内部クロック信号に基づいて出力するための出力タイミングを、前記第2出力用内部クロック信号をカウントして生成する第2レイテンシン・カウンタを備え、
    前記第2レイテンシン・カウンタは、前記コマンドを取り込んだ第2入力用内部クロック信号に対応した、その取り込んだ入力用内部クロック信号より先に出力された前記第2出力用内部クロック信号を見込んでカウント動作を行うようにした
    ことを特徴とする半導体記憶装置。
JP26521998A 1998-09-18 1998-09-18 半導体記憶装置 Expired - Fee Related JP4286933B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26521998A JP4286933B2 (ja) 1998-09-18 1998-09-18 半導体記憶装置
KR1019990040076A KR100565136B1 (ko) 1998-09-18 1999-09-17 반도체 기억 장치의 데이터 출력 회로
US09/398,828 US6188640B1 (en) 1998-09-18 1999-09-17 Data output circuits for semiconductor memory devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26521998A JP4286933B2 (ja) 1998-09-18 1998-09-18 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2000100161A JP2000100161A (ja) 2000-04-07
JP4286933B2 true JP4286933B2 (ja) 2009-07-01

Family

ID=17414189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26521998A Expired - Fee Related JP4286933B2 (ja) 1998-09-18 1998-09-18 半導体記憶装置

Country Status (3)

Country Link
US (1) US6188640B1 (ja)
JP (1) JP4286933B2 (ja)
KR (1) KR100565136B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319626B2 (ja) 2019-08-15 2023-08-02 清水建設株式会社 構造物の振動特性の測定方法及び構造物の振動特性の測定装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446291B1 (ko) 2001-11-07 2004-09-01 삼성전자주식회사 카스 레이턴시를 이용하여 락킹 레졸루션 조절이 가능한지연동기 루프 회로
US6853938B2 (en) * 2002-04-15 2005-02-08 Micron Technology, Inc. Calibration of memory circuits
US7287143B2 (en) * 2003-04-30 2007-10-23 Hynix Semiconductor Inc. Synchronous memory device having advanced data align circuit
KR100608372B1 (ko) * 2004-12-03 2006-08-08 주식회사 하이닉스반도체 동기식 메모리 장치의 데이타 출력 시점 조절 방법
JP4828203B2 (ja) * 2005-10-20 2011-11-30 エルピーダメモリ株式会社 同期型半導体記憶装置
US7529996B2 (en) * 2006-08-03 2009-05-05 Texas Instruments Incorporated DDR input interface to IC test controller circuitry
KR100866958B1 (ko) 2007-02-08 2008-11-05 삼성전자주식회사 고속 dram의 정확한 독출 레이턴시를 제어하는 방법 및장치
JP2009020932A (ja) * 2007-07-10 2009-01-29 Elpida Memory Inc レイテンシカウンタ及びこれを備える半導体記憶装置、並びに、データ処理システム
US8094507B2 (en) 2009-07-09 2012-01-10 Micron Technology, Inc. Command latency systems and methods
KR102161083B1 (ko) * 2013-12-04 2020-10-05 에스케이하이닉스 주식회사 반도체 메모리 장치
KR20200082918A (ko) * 2018-12-31 2020-07-08 에스케이하이닉스 주식회사 클럭 생성 회로 및 이를 포함하는 메모리 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280511A (ja) * 1987-05-13 1988-11-17 Fujitsu Ltd クロック生成方式
JPH05235712A (ja) * 1992-02-24 1993-09-10 Nec Corp パルス作成回路
JP3840731B2 (ja) * 1997-03-21 2006-11-01 富士通株式会社 半導体集積回路
KR100244456B1 (ko) * 1997-03-22 2000-02-01 김영환 데이터 출력 버퍼를 위한 클럭 조절 장치
KR100261215B1 (ko) * 1997-07-29 2000-07-01 윤종용 클럭 버퍼 및 이를 포함하는 메모리 로직 복합 반도체장치
JPH11213666A (ja) * 1998-01-30 1999-08-06 Mitsubishi Electric Corp 出力回路および同期型半導体記憶装置
US6011749A (en) * 1998-03-27 2000-01-04 Motorola, Inc. Integrated circuit having output timing control circuit and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319626B2 (ja) 2019-08-15 2023-08-02 清水建設株式会社 構造物の振動特性の測定方法及び構造物の振動特性の測定装置

Also Published As

Publication number Publication date
US6188640B1 (en) 2001-02-13
KR100565136B1 (ko) 2006-03-30
JP2000100161A (ja) 2000-04-07
KR20000023257A (ko) 2000-04-25

Similar Documents

Publication Publication Date Title
US7404018B2 (en) Read latency control circuit
JP3001981B2 (ja) プログラム可能な待ち時間を有する同期メモリー装置のための最適化回路と制御
KR100805004B1 (ko) 조절 가능한 프리앰블 값에 기초하여 데이터 스트로브신호를 발생하는 데이터 스트로브 신호 발생기 및 이를포함하는 반도체 메모리 장치
US7499370B2 (en) Synchronous semiconductor memory device
KR100915554B1 (ko) 반도체기억장치
JP4286933B2 (ja) 半導体記憶装置
JPH10199239A (ja) 半導体記憶装置システム及び半導体記憶装置
JP2000182399A (ja) 半導体記憶装置及びその制御方法
JP2002025254A (ja) 半導体メモリ
TWI271744B (en) Semiconductor memory device having advanced data strobe circuit
US20050232063A1 (en) Circuit for generating data strobe signal in DDR memory device, and method therefor
JPH0845277A (ja) 半導体記憶装置
JP4301680B2 (ja) 半導体集積回路装置
JPH09231743A (ja) 同期型半導体記憶装置および試験方法
US7181638B2 (en) Method and apparatus for skewing data with respect to command on a DDR interface
TW201137892A (en) Memory device including a memory block having a fixed latency data output
JP4121690B2 (ja) 半導体記憶装置
JP2002150796A (ja) モノリシックな集積回路装置の常に可能化されたテストのための方法および集積回路装置
TWI460727B (zh) 用於半導體記憶體元件的資料輸入電路及其方法
JPH11297097A (ja) 半導体記憶装置
JP3859885B2 (ja) 半導体記憶装置
JPH1145567A (ja) 半導体記憶装置
JP3783890B2 (ja) 半導体メモリ装置の内部カラムアドレス発生回路
JP4727799B2 (ja) 半導体集積回路及び外部信号の取り込み方法
US11328756B1 (en) Semiconductor device and semiconductor system performing auto-precharge operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees