JP4216491B2 - α−SiCウェハの製造方法 - Google Patents

α−SiCウェハの製造方法 Download PDF

Info

Publication number
JP4216491B2
JP4216491B2 JP2001157668A JP2001157668A JP4216491B2 JP 4216491 B2 JP4216491 B2 JP 4216491B2 JP 2001157668 A JP2001157668 A JP 2001157668A JP 2001157668 A JP2001157668 A JP 2001157668A JP 4216491 B2 JP4216491 B2 JP 4216491B2
Authority
JP
Japan
Prior art keywords
sic
substrate
wafer
crucible
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001157668A
Other languages
English (en)
Other versions
JP2002053395A5 (ja
JP2002053395A (ja
Inventor
茂弘 西野
和俊 村田
美治 茅根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2001157668A priority Critical patent/JP4216491B2/ja
Publication of JP2002053395A publication Critical patent/JP2002053395A/ja
Priority to TW091109927A priority patent/TW583354B/zh
Priority to EP02726485A priority patent/EP1404904B1/en
Priority to KR1020037014434A priority patent/KR100827588B1/ko
Priority to US10/478,649 priority patent/US6995036B2/en
Priority to DE60234925T priority patent/DE60234925D1/de
Priority to PCT/JP2002/005040 priority patent/WO2002097174A1/en
Publication of JP2002053395A5 publication Critical patent/JP2002053395A5/ja
Application granted granted Critical
Publication of JP4216491B2 publication Critical patent/JP4216491B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、α−SiCウェハの製造方法に係り、特に、高品質のα−SiCウェハを大面積に、安定に、かつ、低コストに工業的に製造することができるα−SiCウェハの製造方法に関する。
【0002】
【従来の技術】
SiCは熱的、化学的に強く、耐放射性に優れているので、過酷な環境下で使用できるデバイスとして、その実用化が期待されている。また、禁制帯幅が大きく、不純物の添加によってp型とn型の制御が容易にできるので、可視発光デバイス材料としても有用である。
【0003】
このようなSiCは有望な半導体材料であるが、まだその市場性は十分に成長していない。これは、SiCの結晶成長が困難であり、大面積ウェハの製造技術が確立していないことに一因がある。
従来α−SiC結晶の製造方法としては、(1)アチソン法、(2)気相エピタキシャル法、(3)昇華法、並びに(4)改良型昇華法が知られている。(1)のアチソン法は、珪石とコークスの混合物を2300℃以上で加熱して結晶を析出させるものである。(2)の気相エピタキシャル法は、CVD(Chemical Vapor Deposition)法で1500℃〜1800℃の温度領域でα−SiC基板上にエピタキシャル成長させる。また、(3)の昇華法は、黒鉛坩堝内で原料のSiC粉末を昇華させて、坩堝内の低温部に析出させる方法である。更に、(4)の改良型昇華法は、黒鉛坩堝上部の低温部にSiC基板を置き、Ar減圧下でこの基板上にSiC結晶を成長させる方法である。
【0004】
SiCウェハを製造する方法としては、そのSiC成長速度、成長層の品質などの理由により(4)の改良型昇華法が広く採用されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の改良型昇華法を用いて大面積のα−SiC結晶を成長させるには、上述したアチソン法で作製した小さな種結晶を用いて、SiCの成長を繰り返し、徐々に大面積化させなくてはならない。この工程に莫大な時間を要する。このために工程が少なくて多量に生産できるα−SiCの製造方法が望まれている。また、成長させたバルクSiCをウェハ状に加工するには、硬度の高いSiCをダイヤモンド切断砥石などで切断する必要がある。本工程は高品質の単結晶を得ることを可能とするが、莫大な製造コストを必要とする。
【0006】
本発明はこのような問題点を解決し、高価で入手困難な種結晶基板を用いることなく、α−SiC結晶を安定に、再現性よく、かつ安価に製造することが出来るα−SiCウェハの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係るα−SiCウェハの製造方法では、SiC粉末の昇華再結晶法により、基板上にα−SiC結晶を成長させる方法において、CVD法により作製したβ−SiC結晶を基板として用い、この基板に前記SiC粉末を対向配置させて加熱することにより、前記基板上に略製品厚みまでα−SiCを成長させた後、前記基板の一部または全てを除去してα−SiC相のウェハを製造することを特徴とする。このときβ−SiCは単結晶、多結晶のいずれでもよい。
【0008】
また、SiC粉末の昇華再結晶法により、基板上にα−SiC結晶を成長させる方法において、CVD法により作製したβ−SiC結晶を基板として用い、この基板上にウェハ最終厚みより若干厚くα−SiCを成長させた後、前記基板の一部または全てを除去して成長させたバルク層を切断することなくα−SiC相のウェハを製造するようにしてもよい。
【0009】
さらに、SiC粉末の昇華再結晶法により、基板上にα−SiC結晶を成長させる方法において、坩堝内にてCVD法により作製したβ−SiC結晶を基板として、この基板とSiC粉末原料との距離を近接して配置したものを1ユニットとし、このユニットを多段積層して加熱処理することにより複数枚の基板上にα−SiC相を製品厚み近傍まで成長させた後、前記基板の一部または全てを除去することによりα−SiCのウェハを製造することを特徴とする。この場合において、前記多段積層された複数ユニットを輻射チューブ内に配置し、当該輻射チューブを誘導加熱コイルにより加熱してチューブ内の積層ユニットを均一に加熱するように構成することができる。また、前記多段積層された複数ユニットを囲繞する外装坩堝内に配置し、当該外装坩堝を誘導加熱コイルにより加熱してチューブ内の積層ユニットを均一に加熱するようにしてもよい。更に、前記多段積層された複数ユニットの上下周辺部に磁気シールドリングを挿入して前記誘導加熱コイルによる磁束が複数ユニットの上下周辺部に集中しないようにして積層ユニットを均一に加熱することも可能である。
【0010】
【作用】
上記の製造方法において、α−SiCウェハの製造方法は次のように行われる。先ず、SiCを成長させる際に用いる基板は以下の通りである。
1)CVD法により作製された基板であること。
2)β−SiCよりなる単結晶、または多結晶基板であること。
【0011】
単結晶β−SiCはSiウェハ上にヘテロエピ成長させることにより、製造される。Siウェハは大口径のものが市販されており、原理的には大口径の単結晶β−SiCの製造は可能である。一方、多結晶β−SiCは、CVD法により製造した大口径のものが市販されている。これらは結晶系3Cの準安定相β−SiCよりなる。これらを基板として、昇華再結晶法により、α−SiCの成膜を行う。成長させる厚みは500μm程度である。成長後、その基板の一部または全てを研削除去することにより、α−SiCウェハが得られる。ただし、必ずしも完全に基板を除去する必要はない。
【0012】
また、多数枚ウェハの製造方法ではSiC原料粉末と基板との1ユニットを多数組設置することにより製造する。このとき原料と基板の距離は1mmないし20mmである。原料と基板からなる1ユニットの高さは5mmないし25mmであり、これを積層することにより、一度の昇華熱処理で多数枚のウェハを製造できる。
【0013】
これにより、多結晶β−SiC基板上にα−SiC膜が成長する。一般に昇華再結晶法では、基板温度が2000℃以上となるため、β−SiC相よりα−SiC相の方が熱力学的に安定である。また、成長層だけでなく、基板表面もα相に変態すると考えられる。
【0014】
【発明の実施の形態】
以下、本発明に係るα−SiCウェハの製造方法の好ましい実施の形態を添付図面に従って詳細に説明する。
図1は本発明の実施形態に係るα−SiCウェハ製造装置1の側面断面図である。図1において、中央部に黒鉛坩堝11が配置されている。黒鉛坩堝11は坩堝本体13と蓋15とにより形成されている。坩堝本体13内には、SiC原料17が収納されている。蓋15にはβ−SiC基板19が取り付けられている。
【0015】
黒鉛坩堝11の外周はカーボン材よりなる断熱材21で包まれている。また、黒鉛坩堝11は図示しない高周波加熱炉にセットされている。高周波加熱炉は、例えば、外側に高周波コイル23が設置されるとともに、その内側には石英材料により作製された中空で二重管よりなる石英製二重管25が配置されている。石英製二重管25の間には、冷却水27が流されている。高周波加熱炉は、図示しない高周波発振器からの出力により一定の温度となるように制御されている。このために、黒鉛坩堝11は、その上部および下部の断熱材21の隙間からパイロメータ29で黒鉛坩堝11の表面が測定され、高周波発振器の出力により高周波コイル23が制御されて一定温度に保たれている。
【0016】
この高周波加熱炉の加熱により、黒鉛坩堝11の内部のSiC原料17およびβ−SiC基板19が加熱されて、β−SiC基板19の表面にα−SiC相31が蒸着してSiC33が形成される。
【0017】
【実施例1】
上記のα−SiCウェハ製造装置1を用いて、表1に示す実験条件によりβ−SiC基板19の下面19aにα−SiC相31が蒸着したSiC33を製造した。このとき、表1に示す条件で、特に、SiC原料17とβ−SiC基板19との距離Laは25mmとした。
【表1】
Figure 0004216491
【0018】
この条件で実験を行った結果、図2に示すように、β−SiC基板19の上に、厚さTa=500μmの4H結晶のα−SiC相31が成長した。成長速度は1.0mm/hであった。基板に単結晶を用いた場合には、基板直径と同じサイズの単結晶が得られた。一方、(111)配向したβ−SiC多結晶基板を用いた場合、基板上に成長した単結晶のサイズは約5mm径であった。得られた結晶の結晶系はラマン分光法にて、4Hであることが確認された。その後、β−SiC基板19を研削除去することにより、図3に示すように、4Hのα−SiCウェハ35が得られた。この基板直径Da=50mmの4Hのα−SiCウェハ35は、直径を任意に制御して製造することにより、硬度の高いSiCをダイヤモンド切断砥石などで切断する必要がなく、熱的、化学的に強く、耐放射性に優れているので、過酷な環境下で使用でき、工業的に安定したデバイスウェハが得られる。
【0019】
【実施例2】
上記の高周波加熱炉を用いるとともに、図4に示すようなα−SiCウェハ多段製造装置3を用いて、表2に示す実験条件により、実施例1と同様に、β−SiC基板19の下面19aにα−SiC相31が蒸着したSiC33を製造した。α−SiCウェハ多段製造装置3は、実施例1と同様に、黒鉛坩堝11を用いるとともに、その黒鉛坩堝11をユニットとして、これを第1ユニット11a、第2ユニット11b、第3ユニット11c、……(本実施例では6段)のように複数段に重ねて昇華再結晶法によるSiC膜の成長実験を行った。実験条件は表2に示す条件で、特に、SiC原料17とβ−SiC基板19との距離Lbは2mmとした。この距離Lbが小さいため、SiC原料17とβ−SiC基板19との温度差が小さくなり、結果的に成長速度は小さくなるが、複数の緻密なα−SiC相31が得られた。
【表2】
Figure 0004216491
【0020】
この条件で実験を行った結果、実施例1と同様に、各黒鉛坩堝11の内部に貼り付けられたβ−SiC基板19の上に、厚さTa=500μmの4H結晶のα−SiC相31が成長した。基板に単結晶を用いた場合には、基板直径と同じサイズの単結晶が得られた。一方、多結晶基板を用いた場合、基板上に成長した単結晶のサイズは約5mm径であった。ラマン分光分析の結果、結晶性の良い4H単結晶であることが確認された。得られたα−SiC相31の結晶多形、単結晶径、成膜速度は6枚の試料とも同じであった。その後、β−SiC基板19を研削除去することにより、4Hのα−SiCウェハ35が得られた。
【0021】
また、上記において、黒鉛坩堝11を多段に重ねて昇華再結晶法によりSiC膜を成長させる場合に、SiC原料17とβ−SiC基板19との距離Laは2mm以上とすることにより、すなわち距離を大きくして温度差をつけるようにすることで成長時間を短縮することができ、従来に比べて多量に安価に製造することができる。また、SiC膜を成長する製造工程は主に、(1)成長開始する前の処理、(2)成長、(3)冷却の3工程よりなっている。このうち、(1)及び(3)の各工程は、最低でも約1時間程度を要しているが、一度に多数段積層して多くの枚数を処理することにより、1枚当たりの製造工数を大幅に短縮でき、製造効率の向上を図ることができる。
【0022】
ところで、坩堝11内にSiC原料17とβ−SiC基板19と近接した状態で対向配置させてなるユニットを複数積層した積層ユニットを用いて昇華再結晶法によりSiC膜を成長させる場合には、各坩堝ユニット11a、11b、11c、……からなる積層ユニットが全体として均一に加熱させる必要がある。図5〜7に均一加熱をなすための第2〜第4実施例に係るα−SiCウェハ多段製造装置3A〜3Cを示す。
【0023】
図5に示した装置3Aは積層ユニット11U(11a、11b、11c、……)の周囲を黒鉛からなる輻射チューブ40で囲繞した構成としたチューブシールドタイプとしてものである。誘導加熱コイル23の高さを十分大きく採らないと積層ユニット11Uの上下面の周縁部に磁束が集中して局部的に加熱されてしまう。そこで、積層ユニット11Uの高さより高いチューブ40を黒鉛により作成しておき、この内部に積層ユニット11Uを収容し、上下部分を断熱材21によって蓋をするようにしている。チューブ40の厚さは誘導加熱コイル23の誘導電流が入る深さとほぼ同等としておく。もちろん積層ユニット11U内面と積層ユニット11Uの側面部分との間に空間をおき、輻射加熱が行われるように設定しておく。このように構成することによって、輻射チューブ40が無い場合と比較すると、積層ユニット11Uは上下方向で均一な温度分布が得られる。
【0024】
次に、図6に示した装置3Bは、積層ユニット11Uの全体を一定のギャップが形成されるように収容する黒鉛製外側坩堝50を設けたもので、いわゆる二重坩堝型として構成したものである。そして、外側坩堝50の全周を断熱材21で囲繞している。誘導加熱コイル23による加熱対象を外側坩堝50とするように設定し、外側坩堝50からの輻射熱で内部の積層ユニット11Uの全体を加熱するようにしている。外側坩堝50が無い場合と比較して、積層ユニット11Uの上下方向に均一な温度分布が得られる。
【0025】
更に、図7に示した装置3Cは、積層ユニット11Uの上下面周縁に誘導加熱コイル23による磁束が集中して局部的に高温となることを防止するために、磁気シールドリング60を積層ユニット11Uの上下面周縁に位置するように配置して構成したものである。いわゆる磁気シールド型である。この例では誘導加熱コイル23の高さを積層ユニット11Uに近くしても、磁束が磁気シールドリングに集中し、積層ユニット11Uのコーナ部分に集中することが抑制される。これにより積層ユニット11Uへの加熱を上下方向で均一化することができ、生産歩留まりを向上して生産性を上げることができる。
【0026】
以上説明したように、実施形態によれば、CVD法により作製されたβ−SiCウェハが用いられ、その表面に500ミクロン以下の厚さにα−SiC相を蒸着してSiCウェハを製造する。このSiCウェハはβ−SiC基板の一部または全てを研削除去することにより直接α−SiCウェハを製造することとなり、従来の厚肉になるまで成長させたバルク層を切断してα−SiC相のウェハを製造するような高コストの製造工程を経ることが不要となるため、従来に比べて安価にα−SiCウェハを工業ベースで製造することができる。
【0027】
また、SiC粉末原料と基板との距離を近接して配置して坩堝内に収容し、これを1ユニットとして、このユニットを複数段に重ねて積層して加熱するようにしたことにより、α−SiCウェハを多量に安価に製造することができ、生産ベースにのせることができる。
【0028】
【発明の効果】
このように本発明によれば、SiC粉末の昇華再結晶法により、基板上にα−SiC結晶を成長させる方法において、CVD法により作製したβ−SiC結晶を基板として用い、この基板に前記SiC粉末を対向配置させて加熱することにより、前記基板上に略製品厚みまでα−SiCを成長させた後、前記基板の一部または全てを除去してα−SiC相のウェハを製造するようにし、また、坩堝内にてCVD法により作製したβ−SiC結晶を基板として、この基板とSiC粉末原料との距離を近接して配置したものを1ユニットとし、このユニットを多段積層して加熱処理することにより複数枚の基板上にα−SiC相を製品厚み近傍まで成長させた後、前記基板の一部または全てを除去することによりα−SiCのウェハを製造するように構成したので、高価で入手困難な種結晶基板を用いることなく、α−SiC結晶を安定に、再現性よく、かつ安価に製造することができる効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る製造方法を実施するためのα−SiCウェハ製造装置の側面断面図である。
【図2】本発明に係る方法により製造されたSiCウェハの側面断面図である。
【図3】本発明に係る方法により製造されたα−SiCウェハの側面断面図である。
【図4】本発明に係る製造方法を実施するためのα−SiCウェハ多段製造装置の断面図である。
【図5】α−SiCウェハ多段製造装置の第2の実施形態に係る断面図である。
【図6】α−SiCウェハ多段製造装置の第3の実施形態に係る断面図である。
【図7】α−SiCウェハ多段製造装置の第4の実施形態に係る断面図である。
【符号の説明】
1………α−SiCウェハ製造装置、
3、3A、3B、3C………α−SiCウェハ多段製造装置、
11………黒鉛坩堝、11U………積層ユニット、
13………坩堝本体、15………蓋、17………SiC原料、
19………β−SiC基板、21………断熱材、
23………高周波コイル、25………石英製二重管、31………α−SiC相、
33………SiC、35………α−SiCウェハ

Claims (4)

  1. SiC粉末の昇華再結晶法により、基板上にα−SiC結晶を成長させる方法において、CVD法により作製したβ−SiC結晶を基板として、この基板とSiC粉末原料とが内部に近接して配置された坩堝を1ユニットとし、このユニットの複数を上下に多段積層して当該積層ユニット高さより高い寸法の輻射チューブ内に配置し、当該輻射チューブを誘導加熱コイルにより加熱してチューブ内の積層ユニットを均一に加熱処理することにより複数枚の基板上にα−SiC相を製品厚み近傍まで成長させた後、前記基板の一部または全てを除去することによりα−SiCのウェハを製造することを特徴とするα−SiCウェハの製造方法。
  2. SiC粉末の昇華再結晶法により、基板上にα−SiC結晶を成長させる方法において、CVD法により作製したβ−SiC結晶を基板として、この基板とSiC粉末原料とが内部に近接して配置された坩堝を1ユニットとし、このユニットの複数を多段積層して外装坩堝内に配置し、当該外装坩堝の全周を断熱材で囲繞し、前記多段積層された複数ユニットを囲繞する前記外装坩堝を誘導加熱コイルにより加熱し、外装坩堝内の積層ユニットを均一に加熱処理することにより複数枚の基板上にα−SiC相を製品厚み近傍まで成長させた後、前記基板の一部または全てを除去することによりα−SiCのウェハを製造することを特徴とするα−SiCウェハの製造方法。
  3. SiC粉末の昇華再結晶法により、基板上にα−SiC結晶を成長させる方法において、CVD法により作製したβ−SiC結晶を基板として、この基板とSiC粉末原料とが内部に近接して配置された坩堝を1ユニットとし、多段積層された複数ユニットの上下周辺部に磁気シールドリングを挿入し、誘導加熱コイルによる磁束が複数ユニットの上下周辺部に集中しないようにして積層ユニットを均一に加熱処理することにより複数枚の基板上にα−SiC相を製品厚み近傍まで成長させた後、前記基板の一部または全てを除去することによりα−SiCのウェハを製造することを特徴とするα−SiCウェハの製造方法。
  4. 請求項1ないし請求項3のいずれかに記載のα−SiCウェハの製造方法において、
    前記基板上にウェハ最終厚みより若干厚くα−SiC相を成長させた後、前記基板の一部または全てを除去して成長させたバルク層を切断することなくα−SiC相のウェハを製造することを特徴とするα−SiCウェハの製造方法。
JP2001157668A 2000-06-01 2001-05-25 α−SiCウェハの製造方法 Expired - Lifetime JP4216491B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001157668A JP4216491B2 (ja) 2000-06-01 2001-05-25 α−SiCウェハの製造方法
TW091109927A TW583354B (en) 2001-05-25 2002-05-13 Method for producing amorphous SiC wafer
EP02726485A EP1404904B1 (en) 2001-05-25 2002-05-24 Production method of alpha-sic wafer
KR1020037014434A KR100827588B1 (ko) 2001-05-25 2002-05-24 α-SiC 웨이퍼의 제조 방법
US10/478,649 US6995036B2 (en) 2001-05-25 2002-05-24 Production method of α-SiC wafer
DE60234925T DE60234925D1 (de) 2001-05-25 2002-05-24 Verfahren zur herstellung eines alpha-sic-wafers
PCT/JP2002/005040 WO2002097174A1 (en) 2001-05-25 2002-05-24 PRODUCTION METHOD OF α-SIC WAFER

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000164339 2000-06-01
JP2000-164339 2000-06-01
JP2001157668A JP4216491B2 (ja) 2000-06-01 2001-05-25 α−SiCウェハの製造方法

Publications (3)

Publication Number Publication Date
JP2002053395A JP2002053395A (ja) 2002-02-19
JP2002053395A5 JP2002053395A5 (ja) 2008-11-13
JP4216491B2 true JP4216491B2 (ja) 2009-01-28

Family

ID=26593153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157668A Expired - Lifetime JP4216491B2 (ja) 2000-06-01 2001-05-25 α−SiCウェハの製造方法

Country Status (1)

Country Link
JP (1) JP4216491B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2460996A1 (en) * 2001-09-19 2003-03-27 Kiril A. Pandelisev Process and apparatus for silicon boat, silicon tubing and other silicon based member fabrication
JP2008120617A (ja) * 2006-11-09 2008-05-29 Bridgestone Corp 炭化珪素単結晶の製造方法
CN106948001B (zh) * 2017-03-17 2019-06-21 电子科技大学 一种瓶颈式反应管及高通量二维单晶炉装置
KR102159224B1 (ko) * 2018-07-17 2020-09-23 주식회사 마스터 포커스 링, 그 제조 방법, 및 기판 처리 장치
CN110217796B (zh) * 2019-06-04 2021-02-19 山东天岳先进科技股份有限公司 一种高纯碳化硅粉及其制备方法

Also Published As

Publication number Publication date
JP2002053395A (ja) 2002-02-19

Similar Documents

Publication Publication Date Title
US7387680B2 (en) Method and apparatus for the production of silicon carbide crystals
EP0712150A1 (en) Sublimation growth of silicon carbide single crystals
JP5526866B2 (ja) 炭化珪素結晶の製造方法および炭化珪素結晶の製造装置
US7300519B2 (en) Reduction of subsurface damage in the production of bulk SiC crystals
US20170137962A1 (en) Fabrication Method for Growing Single Crystal of Multi-Type Compound
TW201821656A (zh) 使用得自聚合物之高純度碳化矽之氣相沉積設備與技術
JP2008074662A (ja) 炭化珪素単結晶製造装置
JP2884085B1 (ja) 単結晶SiCおよびその製造方法
JP4052678B2 (ja) 大形炭化珪素単結晶成長装置
JPS5838399B2 (ja) 炭化珪素結晶層の製造方法
JP4216491B2 (ja) α−SiCウェハの製造方法
EP1404904B1 (en) Production method of alpha-sic wafer
US20110217224A1 (en) Silicon carbide crystal, method of manufacturing the same, apparatus for manufacturing the same, and crucible
KR20070072670A (ko) 단결정 성장 장치 및 단결정 성장 방법
EP3072995B1 (en) Method for producing silicon carbide crystals from vapour phase
JP4374986B2 (ja) 炭化珪素基板の製造方法
JPH05178698A (ja) 炭化珪素バルク単結晶の製造装置及び製造方法
JPH0639360B2 (ja) 6h型および4h型炭化珪素単結晶の成長方法
JPH0532496A (ja) 大口径炭化珪素単結晶インゴツトの作製方法および種結晶用炭化珪素単結晶
JP4309509B2 (ja) 熱分解黒鉛からなる単結晶成長用のルツボの製造方法
JP2003137694A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP2009274945A (ja) AlN結晶の成長方法およびAlN積層体
JP2011201755A (ja) 単結晶炭化珪素の製造方法
JPH0416597A (ja) 炭化珪素単結晶の製造方法
JPH11199396A (ja) SiC単結晶の合成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080930

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4216491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term