JP4194724B2 - 車両走行状態検出装置 - Google Patents

車両走行状態検出装置 Download PDF

Info

Publication number
JP4194724B2
JP4194724B2 JP28736899A JP28736899A JP4194724B2 JP 4194724 B2 JP4194724 B2 JP 4194724B2 JP 28736899 A JP28736899 A JP 28736899A JP 28736899 A JP28736899 A JP 28736899A JP 4194724 B2 JP4194724 B2 JP 4194724B2
Authority
JP
Japan
Prior art keywords
vehicle
detected
angular velocity
lateral acceleration
slip angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28736899A
Other languages
English (en)
Other versions
JP2001108701A (ja
Inventor
裕之 山口
勝宏 浅野
也寸志 天野
憲司 十津
彰高 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP28736899A priority Critical patent/JP4194724B2/ja
Priority to DE10049565A priority patent/DE10049565B4/de
Priority to US09/684,923 priority patent/US6374172B1/en
Publication of JP2001108701A publication Critical patent/JP2001108701A/ja
Application granted granted Critical
Publication of JP4194724B2 publication Critical patent/JP4194724B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/103Side slip angle of vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/20Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring wheel side-thrust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/22Banked curves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両走行状態検出装置、特に車両の横加速度や横すべり角を検出する装置に関する。
【0002】
【従来の技術】
車体横すべり角は車両の進行方向を示す重要な状態量であるが、計測には高価な対地車速センサが必要となるため、コスト面からは車載可能な安価なセンサから車体横すべり角を検出することが望まれる。
【0003】
特開平8−332934号公報には、路面のカントの推定精度を高くすることにより車体の横すべり角の推定精度を向上させるべく、車両モデルを用いて車速Vとすべり角速度の積として車両の横方向速度の変化率を推定し、横方向加速度の偏差(Vを車速、γをヨーレート、Gyを横加速度とした場合のV×γーGy)と推定された横方向速度の変化率との和の低周波成分として演算することが記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術では車両モデルを用いて推定した横方向速度の変化率、すなわち車両モデルで推定したすべり角速度を基準として路面のカントを算出して車体の横すべり角などを演算しているため、路面のカントの他にモデル化誤差による成分が含まれることとなる。したがって、バンク路などの傾斜路走行時のみならず平坦路走行においても車体横すべり角の推定精度が低下するおそれがあった。
【0005】
本発明は、上記従来技術の有する課題に鑑みなされたものであり、その目的は、路面状態によらず車体横すべり角などの車両走行状態量を高精度に検出することができる装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、路面のすべり状態に応じた車両モデルで車体横すべり角を推定する車体横すべり角推定手段と、前記車体横すべり角推定手段で推定された車体横すべり角を時間微分して演算されたすべり角速度と、検出された横加速度、検出されたヨーレート及び検出された車速に基づいて演算されたすべり角速度との差分を演算し、この演算された差分値と所定のしきい値を比較し、この比較結果に基づいて車両が傾斜路を走行していることを検出する傾斜路走行検出手段と、前記傾斜路走行検出手段で検出された場合に、検出された横加速度を補正する補正手段とを有することを特徴とする。
【0007】
また、前記車体横すべり角推定手段は、前記補正手段で補正された横加速度に基づいて、前記車体横すべり角を推定することを特徴とする。
【0009】
また、前記補正手段は、検出されたヨーレートと検出された車速との積と前記検出された横加速度との差分を前記検出された横加速度から減じることで補正することを特徴とする。
【0010】
また、前記補正手段は、車両の上下方向の重力加速度に基づいて前記検出された横加速度を補正することを特徴とする。
【0011】
本発明においては、傾斜路(バンク路)の検出と、傾斜路における横加速度等の検出値の補正を分けて行う。すなわち、傾斜路の検出は、路面のすべり状態に応じた車両モデルを用いて高精度に推定されたすべり角から算出されたすべり角速度と、実際に検出されたすべり角速度との差分に基づいて行う。路面のすべり状態に応じた車両モデルを用いて得られたすべり角には、路面のすべりに起因する誤差は含まれておらず、路面のカントに伴う定数的な(DC成分)エラーが含まれており、その時間変化であるすべり角速度にはこのDCエラーは含まれない。一方、センサにより検出されたすべり角速度には、路面のカントに伴うDCエラーが含まれている。したがって、両者の差分は、路面のカントの存在を示すDCエラー分であり、路面のすべり状態によらずに高精度に傾斜路(バンク路)を検出することができる。そして、傾斜路を検出できた場合には、例えば検出された横加速度に含まれるDCエラー成分を、検出されたヨーレートと検出された車速の積と検出された横加速度の差分を演算することで算出し、検出された横加速度から減じることで補正することができる。検出されたヨーレートと検出された車速の積と検出された横加速度の差分は、路面のカントにより生じる横加速度のDCエラー成分であるが、横加速度のエラー成分は一般に平坦路であっても路面がすべる状態において生じてしまう。したがって、仮に横加速度の差分を演算して横加速度を常に補正する構成とすると、平坦路において誤補正してしまう。本発明のように高精度に傾斜路を検出し、傾斜路であることが明らかとなった場合にのみ検出された横加速度を補正することで、誤補正を防ぐことができ、平坦路だけでなく傾斜路においても高精度の横加速度検出を行うことができる。
【0012】
路面のすべり状態に応じた車両モデルを用いて推定されたすべり角からすべり角速度を得るには、例えば微分器で時間微分すればよく、これにより推定すべり角に含まれるDCエラー成分は除去される。また、すべり角速度はセンサで検出された横加速度、ヨーレート及び車速に基づき、所定の関係式から演算により検出することができる。両すべり角の差分値は、路面の傾斜角とともに増大するから、差分値を所定のしきい値と比較することで、傾斜路であることを確実に検出することができる。
【0013】
本発明により補正された横加速度は、例えば横すべり角推定に用いることができ、これにより平坦路のみならず傾斜路においても高精度の横すべり角推定を行うことができる。補正前の横加速度を用いて横すべり角を推定すると、その推定値にはエラー成分が含まれているが、補正後の横加速度を用いて推定することで、路面のカントの影響を受けずに高精度の横すべり角が得られる。
【0014】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について、横加速度に基づいて車体横すべり角を推定する場合を例にとり説明する。
【0015】
図1には、本実施形態の構成ブロック図が示されている。操舵角センサ、横加速度センサ、ヨーレートセンサ及び車速センサでそれぞれ検出された舵角δf、横加速度y(・・)、ヨーレートθ(・)、車速Vが走行状態検出装置10に入力される。なお、(・)は時間微分、(・・)は2階の時間微分を示す。舵角δf、横加速度y(・・)、ヨーレートθ(・)、車速Vは、走行状態検出装置10内の車体横すべり角推定回路30に供給される。
【0016】
車体横すべり角推定回路30は、路面のすべり状態を考慮した車両モデルを用いて車体横すべり角を推定する。車体横すべり角推定回路30としては、例えば特開平9−311042号公報に記載された車両モデルを用いることができる。以下、車体横すべり角推定回路30の構成について説明する。
【0017】
図2には車体横すべり角推定回路30の構成ブロック図が示されている。車体横すべり角推定回路30はタイヤ特性決定回路32と、車体横すべり角推定回路34と、推定値補正回路36、加算器38、ローパス回路40とを含んで構成される。タイヤ特性決定回路32は、舵角δf、横加速度y(・・)、車速Vから路面判定を行い、さらに車体横すべり角推定回路30の出力値、δf、ヨーレートθ(・)、車速Vおよび路面判定結果から前後輪のタイヤ特性を選択する。
【0018】
タイヤ特性決定回路32は後述のタイヤの非線形パラメータである前後輪のタイヤのコーナリングパワーCp 、コーナリングフォースSF 、タイヤすべり角βF を選択結果として車体横すべり角推定回路34および推定値補正回路36に出力する。さらに、路面判定結果Roadを推定値補正回路36に出力する。
【0019】
車体横すべり角推定回路34は、δf、y(・・)、θ(・)、Vおよびタイヤ特性決定回路32からのタイヤの非線形パラメータCp ,SF ,βF を用いて運動方程式より車体横すべり角推定値を演算し、加算器38に出力する。推定値補正回路36は、車体横すべり角推定回路30の出力値およびδf、y(・・)、θ(・)、Vから、タイヤの非線形パラメータCp ,SF ,βF および路面判定結果に基づき車体横すべり角の補正値Δβを演算し、加算器38に出力する。
【0020】
加算器38は、車体横すべり角と補正値Δβを加算してローパス回路40に出力する。ローパス回路40は入力した加算値の高周波ノイズを除去して最終的な車体横すべり角の推定値β(^)として出力する。
【0021】
図3には、図2におけるタイヤ特性決定回路32の構成ブロック図が示されている。タイヤ特性決定回路32は定常円旋回モデル42と、路面判定回路44と、タイヤ特性選択回路46とを含んで構成される。
【0022】
定常円旋回モデル42はδf、Vと所定の車両定数にしたがい横加速度(横G)モデル値を路面判定回路44へ出力する。車両定数は、具体的には車両重量m=1450kg、ヨー慣性モーメントI=3709kg・m2、前輪コーナリングパワーCf=2×33991N/rad、後輪コーナリングパワーCr=2×57090N/rad、前輪と重心間の距離Lf=1276m、後輪と重心間の距離Lr=1414m、後輪と横速度センサ間の距離Lx=1.3m、前輪ギア日Gr=14.5である。もちろん、これらの数値は例示であり、適当な値を用いることができる。
【0023】
路面判定回路44は、定常円旋回モデル42の横Gモデル値と検出された横加速度y(・・)とを比較して乾燥路、湿潤路、雪上路、氷上路等の路面のいずれであるかを判定し、路面判定結果Roadを出力する。
【0024】
タイヤ特性選択回路46は前記路面判定結果Roadに基づき、路面に応じて予め用意したタイヤ非線形パラメータのテーブルを選択し、車体横すべり角推定回路30の出力値、δf、θ(・)、Vから演算されたタイヤすべり角より前後輪各々の前記非線形パラメータCp, SF, βF を決定する。
【0025】
図4には図2における推定値補正回路36の構成ブロック図が示されている。推定値補正回路36は通常状態補正回路48と、旋回異常状態補正回路50と、旋回異常判定回路52と、補正切り換え回路54とを含んで構成される。ここで、通常状態とはレーンチェンジ〜旋回異常直前までの状態を表し、旋回異常状態とは過度な操舵による旋回時の不安定な走行状態を表す。
【0026】
図5には図4における通常状態補正回路48の構成ブロック図、図6には図4における旋回異常状態補正回路50の構成ブロック図がそれぞれ示されている。通常状態補正回路48はすべり角速度算出回路56と、微分回路58と、ローパス回路60と、補正ゲイン62と、補正回路64とを含んで構成される。すべり角速度算出回路56はy(・・)、θ(・)及びVから物理的関係式よりすべり角速度β(・)=dβ/dtを算出する。
【0027】
微分回路58は、車体横すべり角推定回路30の出力値を時間微分してすべり角速度推定値を算出し、すべり角速度β(・)とのすべり角速度誤差Δβ(・)=d(Δβ)/dtを求め、ローパス回路60に出力する。
【0028】
ローパス回路60はセンサノイズ及び前記微分操作によるノイズを除去し、補正ゲイン62に出力する。
【0029】
補正ゲインK1 は、前記路面判定結果Roadに基づく可変ゲインであり、低μ路面ほど小さな補正ゲインK1 を選択する。そして、前記ローパス処理されたすべり角速度誤差Δβ(・)と補正ゲインK1 との積を求め補正回路64に出力する。
【0030】
補正回路64は前記出力結果と前記タイヤ非線形パラメータCp と車両質量mから、通常状態の推定補正値Δβを算出する。
【0031】
また、図6に示されるように、旋回異常状態推定回路50は微分回路66と、ヨー角加速度推定回路68と、横G推定回路70と、積分回路72と、累積誤差比較回路74と、ゲイン切り換え回路76と、補正ゲイン78と、補正ゲイン80と、補正回路82とを含んで構成される。微分回路66はθ(・)を時間微分し、ヨー角加速度θ(・・)=d2 θ/dt2 を算出する。
【0032】
ヨー角加速度推定回路68は車体横すべり角推定回路30の出力値、δf、θ(・)及びVとタイヤ非線形パラメータCp,SF,βF を用いて運動方程式に基づきヨー角加速度推定値を算出し、前記ヨー角加速度との誤差Δθ(・・)=d2 (Δθ)/dt2 を求める。
【0033】
横G推定回路70は車体横すべり角推定回路30の出力値を時間微分し、θ(・)、Vから物理的関係式より横Gを推定し出力する。そして、検出されたy(・・)との誤差Δy(・・)=d2 (Δy)/dt2 を求め積分回路72に出力する。
【0034】
積分回路72は疑似積分動作により横G誤差Δy(・・)を時間積分し、積分結果Δy(・)=d(Δy)/dtを累積誤差比較回路74に出力する。
【0035】
累積誤差比較回路74は積分結果Δy(・)=d(Δy)/dtの絶対値を予め設定されたしきい値と比較し、しきい値以下であれば補正ゲインK2 、しきい値以上であれば補正ゲインK3 を選択する信号SELをゲイン切り換え回路76に出力する。
【0036】
ゲイン切り換え回路76は累積誤差比較回路74からの信号SELをもとにヨー角加速度誤差Δθ(・・)=d2(Δθ)/dt2 の補正ゲインK2 、K3 への経路の切り換えを行う。そして、切り換えられた側の補正ゲインとヨー角加速度誤差Δθ(・・)=d2(Δθ)/dt2 との積を求め補正回路82に出力する。
【0037】
補正回路82は前記出力結果と前記タイヤ非線形パラメータCp とヨー慣性モーメントI、重心〜前後輪までの距離Lf, Lr から、旋回異常状態の推定補正値を算出する。
【0038】
そして、旋回異常判定回路52は、タイヤ特性決定回路32からの横Gモデル値を用いて旋回異常状態かどうかを判定し、旋回異常判定結果SPINを補正切り換え回路54に出力する。
【0039】
補正切り換え回路54は、旋回異常判定結果SPINに基づき通常状態補正回路48の補正値Δβ、旋回異常状態補正回路50の補正値Δβのいずれかを選択して出力する。
【0040】
このように、車体横すべり角推定回路30では、タイヤの非線形性、路面のすべり状態に依存するタイヤ特性変化に対応して、車体横すべり角を推定して出力する。なお、車体横すべり角推定回路30の詳細は、特開平9−311042号公報を参照されたい。
【0041】
車体横すべり角推定回路30から出力された推定値、すなわち路面のすべり状態を考慮した車両モデルで推定した車体横すべり角推定値β(^)は微分器12に供給される。微分器12では、推定値β(^)を微分してすべり角速度β(^)(・)を算出し、減算器13に供給する。ここで、車両が傾斜路(バンク路)を走行している場合には、本来のy(・・)の他にカントに応じた重力加速度が加わることになるから、車体横すべり角推定回路30で推定したすべり角β(^)にもカントに伴うDC成分が含まれることになるが、微分器12で微分することでカントに伴うDC成分が除去され、高精度の横すべり角速度が得られる。
【0042】
一方、y(・・)、θ(・)、Vは走行状態検出装置10内のすべり角速度を検出するすべり角速度演算回路14にも供給される。なお、y(・・)は後述する減算器28を介してすべり角速度演算回路14に供給されるが、当初は減算器28にはy(・・)しか入力されないので、センサからのy(・・)が供給されることになる。
【0043】
図7には、すべり角速度演算回路14の機能ブロックが示されている。すべり角速度演算回路14は、y(・・)、θ(・)、Vを入力し、
【数1】
Figure 0004194724
にしたがってすべり角速度β(・)を算出する。車両が傾斜路を走行している場合、y(・・)にはカントに応じた重力成分のDC成分が含まれているから、このすべり角速度β(・)にも当然ながらカントによるDC成分がオフセットとして含まれることになる。算出されたすべり角速度β(・)は減算器13に供給される。なお、車速Vが一定の場合には図7に示されたすべり角速度演算回路14で良いが、車速Vが一定ではない場合には、図8に示されるように加速度を考慮してすべり角速度を算出するのが好適である。すなわち、
【数2】
Figure 0004194724
によりすべり角速度β(・)を算出すればよい。
【0044】
減算器13では、微分器12からの高精度のすべり角速度β(^)(・)とすべり角速度演算回路14で検出されたすべり角速度β(・)との差分を演算する。上述したように、β(^)(・)はカントに伴うDC成分を含まず、高精度のすべり角速度値を示すものであり、一方、β(・)はカントに伴うDC成分を含んでいる。したがって、両者の差分を演算することで、カントに伴うDC成分、すなわちカントにより生じる重力加速度成分に起因するすべり角速度のみを抽出することができる。
【0045】
減算器13の出力、すなわちすべり角速度の偏差Δβ(・)はローパスフィルタ16に供給されて高周波成分が除去され、さらにバンク路検出回路18に供給される。バンク路検出回路18では、Δβ(・)の値に応じて路面のカントを検出する。すなわち、路面のカントが大きい程Δβ(・)は大きくなるから、比較器を用いてΔβ(・)の値を所定のしきい値と比較し、しきい値を超えた場合にカントがある、すなわちバンク路であると判定することができる。
【0046】
なお、バンク路であることを確実、かつ迅速に検出するためには、以下のようにして判定することも好適である。図9には、Δβ(・)に比例するE=Δβ(・)×V/δfの時間変化が示されている。図において、横軸は時間(t)、縦軸はEである。車両がバンク路を走行し始めると、Eも時間とともに増大していく。そして、比較器により所定のしきい値E0を超えたと判定した場合に所定の時間間隔t1、t2、t3、・・・でEを検出し、それぞれの時間におけるEの値E(t1)、E(t2)、E(t3)、・・・を順次加算していく。そして、加算結果がある一定値を超えた場合にバンク路であることを検出する。バンク路が急峻であればある程、加算値は短時間で一定値に達するので、ノイズの影響を受けにくく、かつ急峻なバンク路も迅速に検出することができる。
【0047】
また、傾斜路は一般に傾斜変化が穏やかであるため、ほぼ一定の重力加速度が横加速度y(・・)に含まれ、周波数領域はほぼDC領域であるので、ローパスフィルタ16の周波数は低くて良いが、あまり低くしすぎると判定に遅れを生じてしまうのである程度の大きさ、具体的には0.05Hz程度が好適である。
【0048】
以上のようにしてバンク路検出回路18でバンク路、すなわち路面のカントを検出すると、バンク路検出回路18は検出信号を切換器20に供給する。
【0049】
一方、θ(・)及びVは乗算器22にも入力し、乗算器22はこれらの積θ(・)×Vを算出して減算器24に出力する。減算器24にはy(・・)も入力され、これらの差分y(・・)−θ(・)×Vを算出する。既述したように、車両が傾斜路を走行している場合、y(・・)にはカントに応じた重力成分のDC成分が含まれており、このようなy(・・)からθ(・)×Vを減じると、このDC成分のみを抽出することができる。差分値は、さらにローパスフィルタ回路26に供給されて高周波成分が除去され、y(・・)に含まれるカントによるDCエラー成分Δy(・・)として切換器20に供給される。
【0050】
そこで、本実施形態では、ローパスフィルタ回路26からの横加速度の偏差Δy(・・)を切換器20に供給し、バンク路検出回路18で現在車両が傾斜路を走行していることが検出された場合に限ってこの偏差Δy(・・)を減算器28に供給してセンサで検出されたy(・・)を補正することで、高精度のy(・・)を得ている。すなわち、傾斜路ではなく単に低μ路である場合には、バンク路検出回路18はバンク路であることを検出せず、切換器20はバンク路検出回路18からの制御信号に基づいて0を減算器28に出力する(すなわち、この場合にはセンサで検出されたy(・・)は補正されない。車体横すべり角推定回路30では路面のすべり状態に応じてすべり角を推定するため、最終的なすべり角推定値β(^)は真値に近い高精度な値となる)。また、バンク路である場合には、バンク路検出回路18からの制御信号に基づいて切換器20は減算器28に偏差Δy(・・)を供給し、検出されたy(・・)から偏差Δy(・・)を減じる、すなわちy(・・)−Δy(・・)により路面のカントにより生じた偏差を除去して真のy(・・)を算出する。補正されたy(・・)は車体横すべり角推定回路30に供給され、路面のカントによらず正確なすべり角を推定することができる。
【0051】
このように、本実施形態では、乾燥路や雪上路等の路面のすべり状態を考慮して精度良くすべり角速度を算出し、センサ値から得られたすべり角速度との差分、すなわち路面のカントによるすべり角速度のエラー成分に基づいてバンク路であることを高精度に検出し、バンク路である場合に限ってヨーレートと車速の積と検出横加速度との差分を路面カントによるDCエラー成分として横加速度の補正を行うので、路面状態によらずバンク路を確実に検出でき、平坦路、バンク路のいずれにおいても高精度の横加速度、ひいては車体横すべり角を得ることができる。
【0052】
なお、本実施形態において、車両がバンク路を走行し、かつ、タイヤのすべりが生じているような状況においては、偏差Δy(・・)にはカントによるエラー成分とすべりによるエラー成分が含まれ、切換器20はΔy(・・)を減算器28に供給して補正するため、正確な横加速度y(・・)が得られないおそれもあるが、このようは走行状況はほとんど発生せず、実用的には問題ない。
【0053】
以上、本発明の実施形態について説明したが、車体横すべり角推定回路30の構成としては、図2〜図4に示された構成以外の構成で横すべり角を推定することも可能である。
【0054】
図11には、車体横すべり角推定回路30の他の構成が示されている。すべり角速度を積分することで算出する積分系120と、非線形モデルに基づく推定系122が設けられる。これらの算出部のうち、積分系120はセンサからの横Gy(・・)、ヨーレートθ(・)、車速(V)に基づいて、また、推定系122は、y(・・)、θ(・)、δf、Vに基づいて横すべり角を推定するものであるが、積分系120から出力される推定値には積分誤差が含まれているため、限界状態に達するまでは高精度の算出が可能な非線形モデルに基づく推定系122で横すべり角を推定し、限界状態に達し非線形モデルが適用できなくなった時点で推定系122から積分系120に切り替えて車体横すべり角推定値を出力する構成である。そして、積分系120と推定系122の切換を行うために限界判定器124が用いられる。
【0055】
図12には、非線形モデルに基づく推定系122の構成ブロック図が示されている。基本的な動作原理は、特開平9−311042号公報に開示された車体横すべり角検出装置と同様である。センサからのy(・・)、θ(・)、δf、Vはすべり角推定部(乾燥路(Dry)用)1a、すべり角推定部(雪上路(Snow)用)1b、すべり角推定部(氷上路(Ice)用)1cに供給される。各すべり角推定部1a〜1cでは、それぞれ乾燥路、雪上路、氷上路におけるタイヤ特性(非線形タイヤ特性モデル)を用いた運動方程式で横すべり角を推定し、これに補正値Δβを加えて横すべり角推定値β(^)Dry、β(^)Snow、β(^)Iceを出力する。
【0056】
具体的には、例えばすべり角推定部(乾燥路(Dry)用)1aにおいては、横方向の車両運動方程式から、横すべり角は
【数3】
Figure 0004194724
で求めることができ、車体のロールによる荷重移動やタイヤ特性のモデル化誤差に起因する誤差を解消するために、上式で求めた値に、補正値Δβを加算する。補正値Δβは、横すべり角速度算出部2からのβ(・)と、フィードバックされた横すべり角推定値の時間微分β(・)(^)との差分Δβ(・)(^)を算出し、推定補正値算出部で
【数4】
Figure 0004194724
により補正値Δβを算出する。最終的な乾燥路における横すべり角推定値β(^)Dryは、上述したように運動方程式から得られた値β’(^)に補正値Δβを加えることで算出できる。なお、上記の式で、Cfは前輪コーナリングパワー、Crは後輪コーナリングパワー、mは車体質量、y(・・)は横G、Lfは前軸と重心間の距離、Lrは後軸と重心間の距離、θ(・)はヨーレート、Vは車速、δfは舵角であり、例えばβ(・)はβの時間微分、β(・)(^)はβの推定値の時間微分であることを示す。
【0057】
そして、各横すべり角推定部1a〜1cから推定値β(^)Dry、β(^)Snow、β(^)Iceが出力され、路面判定部からの路面判定結果に基づいていずれかの推定値を選択して出力する。路面判定は、乾燥路、雪上路、氷上路を想定してそれぞれのタイヤ特性を規定し、各路面状態において算出したy(・・)と実際に検出されたy(・・)との残差を求め、残差が最も小さい路面を現在の路面状態と判定することができる。
【0058】
一方、限界判定器124は、限界走行時には実際のタイヤで全すべりが生じてコーナリングフォースも飽和するため、非線形タイヤ特性に基づいてy(・・)を算出すると、この演算値はセンサで検出されたy(・・)値と乖離することになるので、演算値を所定の限界値と比較することで、限界走行状態にあると判定する。限界状態を判定すると、推定系122から積分系124に切り換えて車体横すべり角推定値β(^)を出力する。なお、図11及び図12の構成の詳細については、特願平11−34984号に記載されている。
【0059】
図10には、本実施形態の構成により横加速度y(・・)を補正し、さらに車体横すべり角を推定した結果が示されている。(a)はセンサで検出された横加速度y(・・)や車速Vなどからすべり角速度演算回路14で検出された車体横すべり角(センサ値から得られたすべり角速度)と、車体横すべり角推定回路30で推定したすべり角を微分器12で微分して得られるすべり角速度(すべり角推定値の微分値)の時間変化である。図において、横軸は時間(s)、縦軸はすべり角速度(deg/sec)である。平坦路を走行している場合には両者は一致するが、車両がバンク路を走行するとセンサ値から得られたすべり角速度には路面のカントに応じた重力加速度成分に起因する分のすべり角速度が含まれ、両者には差分が生じる。この差分が一定値を超えた場合に、バンク路であると検出することになる。図では、時刻t1でバンク路を検出している。
【0060】
(b)はローパスフィルタ回路26からの横加速度偏差Δy(・・)の時間変化であり、横軸は時間(s)、縦軸はΔy(・・)(m/s2)である。Δy(・・)は路面カントに応じた重力加速度成分であり、車両の本来のy(・・)のエラーに相当するのでこれをDCエラーと称している。平坦路を走行している場合には偏差は0であるが、バンク路を走行し始めるとy(・・)に重力加速度成分が加わるため、偏差Δy(・・)が生じる。
【0061】
(c)は、(a)のすべり角速度の差分値からバンク路であることを検出し、検出されたy(・・)から(b)に示された偏差Δy(・・)を減じることで補正し、この補正されたy(・・)に基づいて車体横すべり角推定回路30で推定した車体横すべり角β(^)の時間変化が一点鎖線で示されている。横軸は時間(s)、縦軸は横すべり角(deg)である。また、同図には比較のため、真値(実線)、減算器28で補正せず検出されたy(・・)をそのまま用いて車体横すべり角推定回路30で推定した横すべり角(二点鎖線)も示されている。車両がバンク路に進入すると、推定値は真値から乖離し始め、補正しないy(・・)を用いて推定し続けると、y(・・)に含まれるDCエラー成分のため真値から大きく乖離してしまう(二点鎖線参照)。ところが、時刻t1でバンク路であることを検出してy(・・)を補正すると、真値に近いy(・・)を得ることができるため、これに基づいて推定される横すべり角も、真値に近い高精度の値を得ることができる(一点鎖線参照)。
【0062】
また、車体横すべり角推定回路30としては、定常円旋回モデルを想定し、
【数5】
Figure 0004194724
により横すべり角を推定してもよい。ここで、Tは車両動特性を与えるためのフィルタ定数、sはラプラス演算子、A、Bはタイヤ特性や車両質量等により定まる車両定数、Vは車速、δfは舵角である。この式において、A、Bの値を路面のすべり状態に応じて適宜変更することで、路面のすべり状態に応じて正確な横すべり角を推定することができ、バンク路であることを検出できる。また、オブザーバを用いて推定してもよい。いずれにせよ、車体横すべり角推定回路30としては、路面のすべり状態を考慮して高精度に横すべり角を推定することが好適である。
【0063】
また、本実施形態では、バンク路検出回路18でバンク路であることを検出した場合に、y(・・)−Δy(・・)により検出されたy(・・)を補正しているが、他の方法でy(・・)を補正することも可能である。例えば、車両の上下方向の重力加速度を検出するGセンサを設け、検出された重力加速度に基づいて
【数6】
φ=cos-1(Gz/g)
により路面のカントあるいは傾斜角φを算出する。ここで、GzはGセンサで検出された重力加速度であり、gは平坦路における重力加速度(9.8m/s2)である。そして、この傾斜角φに基づき、検出されたy(・・)に対してy(・・)cosφとすることで補正することができる。
【0064】
【発明の効果】
以上説明したように、本発明によれば、路面状態によらず車体横すべり角などの車両走行状態量を高精度に検出することができる。
【図面の簡単な説明】
【図1】 実施形態の全体構成図である。
【図2】 図1における車体横すべり角推定回路の構成図である。
【図3】 図2におけるタイヤ特性決定回路の構成図である。
【図4】 図2における推定値補正回路の構成図である。
【図5】 図4における通常状態補正回路の構成図である。
【図6】 図4における旋回異常状態補正回路の構成図である。
【図7】 図1におけるすべり角速度演算回路の機能ブロック図である。
【図8】 図1におけるすべり角速度演算回路の他の機能ブロック図である。
【図9】 図1におけるバンク路検出回路の動作を示すグラフ図である。
【図10】 実施形態のすべり角等の時間変化を示すタイミングチャートである。
【図11】 図1における車体横すべり角推定回路の他の構成図である。
【図12】 図11における非線形モデルに基づく推定系の構成図である。
【符号の説明】
10 走行状態検出装置、12 微分器、13 減算器、14 すべり角速度演算回路、18 バンク路検出回路、20 切換器、22 乗算器、24,28減算器、26 ローパスフィルタ回路、30 車体横すべり角推定回路。

Claims (4)

  1. 路面のすべり状態に応じた車両モデルで車体横すべり角を推定する車体横すべり角推定手段と、
    前記車体横すべり角推定手段で推定された車体横すべり角を時間微分して演算されたすべり角速度と、
    検出された横加速度、検出されたヨーレート及び検出された車速に基づいて演算されたすべり角速度との差分を演算し、この演算された差分値と所定のしきい値を比較し、この比較結果に基づいて車両が傾斜路を走行していることを検出する傾斜路走行検出手段と、
    前記傾斜路走行検出手段で検出された場合に、検出された横加速度を補正する補正手段と、
    を有することを特徴とする車両走行状態検出装置。
  2. 請求項1記載の装置において、
    前記車体横すべり角推定手段は、前記補正手段で補正された横加速度に基づいて、前記車体横すべり角を推定することを特徴とする車両走行状態検出装置。
  3. 請求項1記載の装置において、
    前記補正手段は、検出されたヨーレートと検出された車速との積と前記検出された横加速度との差分を前記検出された横加速度から減じることで補正することを特徴とする車両走行状態検出装置。
  4. 請求項1記載の装置において、
    前記補正手段は、車両の上下方向の重力加速度に基づいて前記検出された横加速度を補正することを特徴とする車両走行状態検出装置。
JP28736899A 1999-10-07 1999-10-07 車両走行状態検出装置 Expired - Fee Related JP4194724B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28736899A JP4194724B2 (ja) 1999-10-07 1999-10-07 車両走行状態検出装置
DE10049565A DE10049565B4 (de) 1999-10-07 2000-10-06 Fahrzeugfahrzustand-Erfassungsvorrichtung
US09/684,923 US6374172B1 (en) 1999-10-07 2000-10-10 Vehicle driving condition detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28736899A JP4194724B2 (ja) 1999-10-07 1999-10-07 車両走行状態検出装置

Publications (2)

Publication Number Publication Date
JP2001108701A JP2001108701A (ja) 2001-04-20
JP4194724B2 true JP4194724B2 (ja) 2008-12-10

Family

ID=17716467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28736899A Expired - Fee Related JP4194724B2 (ja) 1999-10-07 1999-10-07 車両走行状態検出装置

Country Status (3)

Country Link
US (1) US6374172B1 (ja)
JP (1) JP4194724B2 (ja)
DE (1) DE10049565B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067044A (ko) * 2016-12-12 2018-06-20 현대오트론 주식회사 요 레이트 센서 및 횡가속도 센서의 이상 검출, 차량 제어 시스템 및 방법.

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4076740B2 (ja) * 2001-06-22 2008-04-16 住友ゴム工業株式会社 路面勾配判定装置および方法、ならびに勾配判定のプログラム
JP4793615B2 (ja) * 2001-08-06 2011-10-12 株式会社ジェイテクト 車両挙動制御装置
DE10144880A1 (de) * 2001-09-12 2003-03-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steilwanderkennung
DE10154651C1 (de) * 2001-10-30 2003-05-22 Kaessbohrer Gelaendefahrzeug Kettenfahrzeug mit einem Antriebssystem
US6718248B2 (en) * 2002-06-19 2004-04-06 Ford Global Technologies, Llc System for detecting surface profile of a driving road
JP4135569B2 (ja) 2002-09-18 2008-08-20 株式会社デンソー 車両用側方衝突保護装置
DE10251381A1 (de) * 2002-11-01 2004-05-19 Continental Aktiengesellschaft Verfahren zur Ermittlung des Kraftschlussbeiwertes zwischen Reifen und Fahrbahn
US6819998B2 (en) * 2002-11-26 2004-11-16 General Motors Corporation Method and apparatus for vehicle stability enhancement system
JP4127062B2 (ja) * 2003-01-22 2008-07-30 トヨタ自動車株式会社 横加速度センサのドリフト量推定装置、横加速度センサの出力補正装置及び路面摩擦状態推定装置
US6856885B2 (en) * 2003-04-01 2005-02-15 General Motors Corporation Vehicle stability enhancement control
JP3891290B2 (ja) 2003-04-02 2007-03-14 株式会社ジェイテクト 車両の運動制御方法および車両の運動制御装置
WO2005007426A1 (de) * 2003-07-11 2005-01-27 Robert Bosch Gmbh An das wankverhalten eines fahrzeugs angepasstes fahrdynamikregelungssystem
US6856886B1 (en) * 2004-03-23 2005-02-15 General Motors Corporation Vehicle stability enhancement control and method
JP4392599B2 (ja) * 2004-03-25 2010-01-06 株式会社デンソー センサシステム
US7774103B2 (en) * 2005-07-28 2010-08-10 Gm Global Technology Operations, Inc. Online estimation of vehicle side-slip under linear operating region
US7966113B2 (en) * 2005-08-25 2011-06-21 Robert Bosch Gmbh Vehicle stability control system
FR2894669B1 (fr) * 2005-12-08 2008-03-21 Peugeot Citroen Automobiles Sa Methode d'estimation en temps reel d'un effort et d'un effort arriere appliques par le sol a un vehicule
JP4919693B2 (ja) * 2006-04-28 2012-04-18 株式会社ブリヂストン 車体スリップ角の推定方法
US7885750B2 (en) * 2006-08-30 2011-02-08 Ford Global Technologies Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine a sideslip angle
DE102006052106A1 (de) * 2006-11-04 2008-05-21 Zf Friedrichshafen Ag Verfahren zum fahrstreckenneigungsabhängigen Steuern und/oder Regeln eines Automatgetriebes eines Fahrzeuges
JP2008265461A (ja) * 2007-04-18 2008-11-06 Honda Motor Co Ltd 車体スリップ角推定装置
DE102007052752A1 (de) 2007-11-06 2009-05-07 Robert Bosch Gmbh Verfahren zur Radschlupfberechnung in Fahrzeugen
EP2093114A1 (en) * 2008-02-23 2009-08-26 GM Global Technology Operations, Inc. Method and apparatus for estimating the side-slip angle of a vehicle
JP5173854B2 (ja) 2008-04-21 2013-04-03 株式会社豊田中央研究所 センサドリフト量推定装置
JP4603596B2 (ja) * 2008-05-16 2010-12-22 本田技研工業株式会社 車体流れ抑制装置
US8150651B2 (en) * 2008-06-11 2012-04-03 Trimble Navigation Limited Acceleration compensated inclinometer
US7856336B2 (en) 2008-06-11 2010-12-21 Trimble Navigation Limited Forward-looking altitude detector
US9157737B2 (en) 2008-06-11 2015-10-13 Trimble Navigation Limited Altimeter with calibration
US8566034B1 (en) 2008-06-11 2013-10-22 Trimble Navigation Limited Inclinometer with calibration
US8886434B2 (en) * 2009-02-04 2014-11-11 GM Global Technology Operations LLC Method of operating an electronic stability control
US20120089297A1 (en) * 2009-06-03 2012-04-12 Toyota Jidosha Kabushiki Kaisha Sensor offset amount estimate device
US8509993B2 (en) 2010-04-19 2013-08-13 Gm Global Technology Operations, Inc Systems and methods for controlling a vehicle along a road with a road bank
GB201105277D0 (en) 2011-03-29 2011-05-11 Jaguar Cars Speed and category trigger for an active device of a vehicle
WO2016062327A1 (en) * 2014-10-20 2016-04-28 Politecnico Di Milano Method for estimating a vehicle side slip angle, computer program implementing said method, control unit having said computer program loaded, and vehicle comprising said control unit
WO2016158720A1 (ja) * 2015-03-27 2016-10-06 カルソニックカンセイ株式会社 電動車両の駆動力制御装置
KR102200521B1 (ko) * 2015-10-22 2021-01-11 현대자동차주식회사 차량의 횡슬립각 추정장치
US20180154902A1 (en) * 2016-12-06 2018-06-07 GM Global Technology Operations LLC Vehicle control using road angle data
EP3759457B1 (en) * 2018-03-02 2023-02-08 Volvo Truck Corporation Device, method, and program for tire failure detection, and computer-readable recording medium recording tire failure detection program
US11702084B2 (en) * 2019-11-25 2023-07-18 The Goodyear Tire & Rubber Company Vehicle sideslip angle estimation system and method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706771A (en) * 1985-01-31 1987-11-17 Nissan Motor Co., Ltd. Vehicle steering control system using desired vehicle model
DE4018081C1 (en) * 1990-06-06 1991-08-29 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Designating rated value of force in power assisted steering - reducing supporting force in dependence on speed of change of steering angle
DE4325413C2 (de) * 1993-07-29 1995-05-18 Daimler Benz Ag Verfahren zur Bestimmung des Fahrverhalten charakterisierender Größen
JP3282449B2 (ja) * 1995-06-09 2002-05-13 トヨタ自動車株式会社 車輌の横滑り状態量検出装置
DE19607050A1 (de) * 1996-02-03 1997-08-07 Teves Gmbh Alfred Verfahren zur Bestimmung von Größen, die das Fahrverhalten eines Fahrzeugs beschreiben
JP3217700B2 (ja) * 1996-05-22 2001-10-09 株式会社豊田中央研究所 車体横すべり角検出装置
DE19708508A1 (de) * 1996-09-24 1998-03-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung einer die Fahrzeugbewegung repräsentierenden Bewegungsgröße
DE19650691C2 (de) * 1996-12-07 1998-10-29 Deutsch Zentr Luft & Raumfahrt Verfahren zur Lenkunterstützung eines Fahrers eines Straßenfahrzeugs
JPH10267685A (ja) * 1997-03-21 1998-10-09 Unisia Jecs Corp 車両の横滑り角推定方法
JPH10264796A (ja) * 1997-03-24 1998-10-06 Mazda Motor Corp 車両の姿勢制御装置
JPH10273031A (ja) * 1997-03-31 1998-10-13 Mazda Motor Corp 車両の姿勢制御装置
DE19749058A1 (de) * 1997-07-02 1999-01-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung einer die Fahrzeugbewegung repräsentierenden Bewegungsgröße
DE19821617C1 (de) * 1998-05-15 1999-09-30 Daimler Chrysler Ag Verfahren und Vorrichtung zur Messung des Neigungswinkels in seitlich geneigten Kurven und deren Verwendung
JP2000233738A (ja) * 1999-02-12 2000-08-29 Toyota Central Res & Dev Lab Inc 車両用走行状態判定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067044A (ko) * 2016-12-12 2018-06-20 현대오트론 주식회사 요 레이트 센서 및 횡가속도 센서의 이상 검출, 차량 제어 시스템 및 방법.

Also Published As

Publication number Publication date
DE10049565B4 (de) 2006-06-22
DE10049565A1 (de) 2001-05-03
JP2001108701A (ja) 2001-04-20
US6374172B1 (en) 2002-04-16

Similar Documents

Publication Publication Date Title
JP4194724B2 (ja) 車両走行状態検出装置
JP3008833B2 (ja) 車体の横滑り速度推定装置
JP3331310B2 (ja) 路面摩擦係数検出装置
US8682599B2 (en) Road surface friction coefficient estimating device and road surface friction coefficient estimating method
JP5011866B2 (ja) 横すべり角推定装置、自動車、及び横すべり角推定方法
JP3060923B2 (ja) 車両状態推定装置
JP4127062B2 (ja) 横加速度センサのドリフト量推定装置、横加速度センサの出力補正装置及び路面摩擦状態推定装置
JP3800901B2 (ja) 車線追従走行制御装置
US9914461B2 (en) Vehicle roll angle estimation device
JP2019537535A (ja) ステアリングホイールの手動操作を検出するための装置及び方法
JP5039143B2 (ja) 摩擦係数を推定する方法および装置
JP2004074842A (ja) 路面摩擦状態推定装置
JP4071529B2 (ja) セルフアライニングトルク推定装置及び横グリップ度推定装置
JP7349978B2 (ja) 異常判定装置、異常判定方法、異常判定プログラム、及び、車両状態推定装置
US8090492B2 (en) Vehicle motion measurement apparatus, a vehicle abnormal motion prevention apparatus and a drive recorder
JP4246628B2 (ja) 走行方向に対して横方向に傾斜している走行路面の検出方法および装置
JP3748334B2 (ja) 車両の姿勢制御装置
JP2003097945A (ja) 路面勾配推定装置
KR20090030587A (ko) 차량의 안정성 제어장치 및 제어방법
JP3344648B2 (ja) 車両用走行状態判定装置
JP3282449B2 (ja) 車輌の横滑り状態量検出装置
JPH1151668A (ja) 角速度検出装置
JPH08268257A (ja) 実車速推定装置
JP2000233738A (ja) 車両用走行状態判定装置
JP4479219B2 (ja) 路面摩擦係数検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees