JP4127118B2 - 自動変速機の制御装置および制御方法 - Google Patents
自動変速機の制御装置および制御方法 Download PDFInfo
- Publication number
- JP4127118B2 JP4127118B2 JP2003146481A JP2003146481A JP4127118B2 JP 4127118 B2 JP4127118 B2 JP 4127118B2 JP 2003146481 A JP2003146481 A JP 2003146481A JP 2003146481 A JP2003146481 A JP 2003146481A JP 4127118 B2 JP4127118 B2 JP 4127118B2
- Authority
- JP
- Japan
- Prior art keywords
- control
- torque
- automatic transmission
- engine
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
- F16H61/0202—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
- F16H61/0204—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
- F16H61/0213—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Transmission Device (AREA)
Description
【発明の属する技術分野】
本発明は、予め設定された変速マップに基づいて変速制御を行なう自動変速機の変速制御技術に関し、特に、高地における自動変速機の変速制御技術に関する。
【0002】
【従来の技術】
一般に、車両に搭載される自動変速機の制御装置は、予め車速とスロットル開度(エンジン負荷)とをパラメータとして設定された複数のアップシフト線およびダウンシフト線により構成された変速マップに、2つの値に基づいてギヤ段を割り出して、自動的にギヤ段の切換えを行なう。
【0003】
また、変速マップとしては、平坦路で適切にギヤ段の切換えが行なわれる平坦路走行用の変速マップや、この通常走行用マップに比べてギヤ段切換ラインにおける低スロットル開度側が高車速側に設定されて低変速段領域が広く設けられた降坂路走行用の変速マップ、あるいは、ある特定の変速段の領域が通常走行用マップより広く設けられた登坂路走行用の変速マップが備えられる。自動変速機の制御装置は、車両が走行している路面の勾配を検出し、その検出結果から車両が降坂路を走行していると判断したときには、通常走行用マップから降坂路走行用マップに切り換えて、降坂路走行用マップに基づいて変速制御を行なうことにより降坂路の走行に適したエンジンブレーキが得られるようにする。あるいは、検出結果から車両が登坂路を走行していると判断したときには、通常走行用マップから登坂走行用マップに切り換えて、登坂走行用マップに基づいて変速制御を行なうことにより、登坂路の走行に適したトルクが得られるようにする。
【0004】
このような場合に、登坂走行用マップはある特定の変速段の領域が通常走行用マップより広く設けられるように設定されている。例えば、1速から4速までの4つのギヤ段を有する車両では、通常、3速から4速へのアップシフト線(以下、「3−4アップシフト線」などのアップシフト線が高車速側に移行されるとともに、3−2ダウンシフト線が高スロットル側に移行されて、3速の領域が広くなるように設定されている。これは、運転者は登坂路では大きなトルクで力強く登坂することを要求するため、通常走行の場合と違って所定の車速になっても3速から4速へのアップシフトを望まない場合が多いから、登坂路走行のときは通常走行のときに比べてアップシフトがされにくくなるように設定している。また、登坂路の走行においては、スロットル開度が平坦路の走行時より相対的に大きくなり、そのときの車速とスロットル開度との組合せが、通常走行用マップにおける3−2ダウンシフト線の近辺にあることが多く、運転者の意図しないダウンシフトが行なわれて運転者に違和感を与えることになる。そのため、登坂路を走行するときには、通常走行のときに比べてダウンシフトがされにくくなるように設定される。
【0005】
ところで、比較的標高の高い高地は、低地よりも大気圧が相対的に低く、エンジンに供給される酸素量が少なくなるから、エンジンの出力が低下することになる。よって、このような高地を走行するときは、スロットル開度が低地での走行に比べて比較的高くなる傾向にある。その場合に、そのような高地であっても平坦路であるときには、平坦路走行用の変速マップに基づいて変速制御を行っても問題はない。
【0006】
しかしながら、高地の登坂路であるときは、3−2ダウンシフト線が高スロットル側に移行された登坂路走行用の変速特性に基づいて変速制御が行なわれることになるが、この変速特性に基づいて変速制御を行なうと、スロットル開度が比較的高くなってもなかなかダウンシフトされず、2速で力強く走行したいという運転者の意思が反映されないという不具合が生じる。
【0007】
特開2000−88091号公報(特許文献1)は、特定の変速段からのダウンシフトを、車両が走行する登坂路の標高に応じて制御する自動変速機の制御装置を開示する。この制御装置は、車速に関する値とエンジン負荷に関する値とをパラメータとする変速特性として、平坦路走行用の変速特性と、その変速特性における所定のダウンシフト線が高エンジン負荷側に移行された登坂路走行用の変速特性とが備えられているとともに、走行路の勾配を検出する勾配検出センサと、勾配検出センサにより検出された走行路の勾配が所定勾配以上のときに変速特性を平坦路走行用の変速特性から登坂路走行用の変速特性に切り換える変速特性切換回路とが設けられている自動変速機の制御装置である。この制御装置は、大気圧を検出する大気圧検出センサと、変速特性切換回路により登坂路走行用の変速特性が選択されているときに、変速特性における所定のダウンシフト線を、大気圧検出センサによって検出された大気圧が低いときは高いときに比べて低エンジン負荷側に変更する変速特性変更回路とを備える。
【0008】
この制御装置によると、登坂路走行用の変速特性が選択されているときに、所定のダウンシフト線を、大気圧検出センサによって検出された大気圧が低いときは高いときに比べて低エンジン負荷側に変更するようになっている。つまり、登坂路を走行するときには、所定のダウンシフト線が高エンジン負荷側に移行された登坂路走行用の変速特性に基づいて変速制御が行なわれる。その登坂路の大気圧が低いときは、エンジンに供給される酸素量が少なくなってエンジン出力が低下するから、移行されたダウンシフト線を低エンジン負荷側に変更して制御する。これにより、大気圧が低い登坂路の走行時は、特定の変速段からダウンシフトが行なわれやすくなる。その結果、大気圧が低い登坂路を走行するときには、所定のダウンシフト線が登坂路走行用の変速マップに比べて低スロットル開度側に設定された変速マップに基づいて変速制御を行なうから、所定のダウンシフトが行なわれやすくなって、運転者の意思が反映される。
【0009】
【特許文献1】
特開2000−88091号公報
【0010】
【発明が解決しようとする課題】
低地を基準として、登坂路における3−2ダウンシフト線を高スロットル側に移行させているために、低地よりもエンジンの駆動力が低下する高地の登坂路において、なかなか2速にダウンシフトしないで駆動力が不足する状態が継続する。特許文献1に開示された制御装置では、これを解消するために、検知された大気圧が低いほど3−2ダウンシフト線を低スロットル側に移行させて、このように補正された変速マップに基づいて変速制御を行なう。
【0011】
しかしながら、特許文献1に開示された制御装置は、登坂路の変速制御における変速線を移行した後に、高地である場合における登坂路に対応させるように、変速線を補正するものにすぎない。特に、特許文献1に開示された制御装置では、路面勾配θを{(エンジントルクに基づいて算出された発生駆動力−加速度抵抗−空気抵抗−転動抵抗)/車両重量}で算出する。この路面勾配θが予め定められたしきい値以上の勾配の登坂路においては、変速線を補正する処理を行なう。このときのしきい値は固定値であって、高度に応じて変更される旨の記載は特許文献1にはない。
【0012】
特許文献1に限らず、高地において、走行中の路面が、登坂制御が必要であるほどの勾配を有する路面であるか否かを判断する必要がある。この判断に基づいて、特許文献1のような変速線の変更を行なったり、アップシフトを禁止したりする登坂制御が作動する。通常の変速線を用いたアップシフト禁止の登坂制御を行なう場合であっても、車両の走行時の状態に応じて算出された路面勾配と固定のしきい値とに基づいて、登坂路の判定を行なうと、高地において良好な判定を得られない場合がある。このことは、低地であることを前提として最適に設定されたしきい値では、高地においてはエンジンの余裕駆動力が低下するためである。その結果、高地においてアップシフト禁止の登坂制御が作動しにくく、アップシフトとダウンシフトとを繰返すビジーシフトになってしまいドライバビリティが悪化する。
【0013】
本発明は、上述の課題を解決するためになされたものであって、その目的は、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができ、その判定結果に基づいて的確な登坂制御または降坂制御を実行できる、自動変速機の制御装置および制御方法を提供することである。
【0014】
【課題を解決するための手段】
第1の発明に係る自動変速機の制御装置は、車両が走行している路面の勾配を検知するための検知手段と、車両に搭載されたエンジンの実トルクを算出するための手段と、エンジンの基準トルクを記憶するための手段と、実トルクおよび基準トルクに基づいて、勾配しきい値を補正するための補正手段と、検知された路面勾配と補正された勾配しきい値とに基づいて、車両に登坂制御または降坂制御を実行させるか否かを判定するための判定手段と、判定手段による結果に基づいて、登坂制御または降坂制御を実行させるように自動変速機を制御するための制御手段とを含む。
【0015】
第1の発明によると、判定手段は、自動変速機に登坂制御または降坂制御を実行させるか否かを判定するが、このときの判定には、補正手段により補正された登坂制御または降坂制御開始判定のための勾配しきい値が用いられる。この補正された勾配しきい値は、エンジンの実トルクおよび基準トルクに基づいて補正さる。車両が高地を走行している時には、エンジンの実トルクと、低地においてベンチテストで計測されたエンジンの基準トルクとが異なるので、これらに基づいて(たとえば、それら2つのトルクの比率に対応させて)、勾配しきい値が小さくなるように補正する。すなわち、高地においては低地よりも大気圧が相対的に低く、エンジンに供給される酸素量が少なくなるから、エンジンの出力が低下することになる。そのため、実トルクと低地において計測された基準トルクとを対応させて勾配しきい値を補正して的確に登坂制御の開始を判断する。このようにすると、たとえば、低地よりも高地の方がトルク不足になるので、登坂制御に入り易くなる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができ、その判定結果に基づいて的確な登坂制御または降坂制御を実行できる、自動変速機の制御装置を提供することができる。
【0016】
第2の発明に係る自動変速機の制御装置においては、第1の発明の構成に加えて、補正手段は、基準トルクに基づいて設定された登坂制御または降坂制御開始判定のための基準勾配しきい値と、実トルクおよび基準トルクに基づいて算出された補正値とに基づいて、補正された勾配しきい値を算出するための手段を含む。
【0017】
第2の発明によると、低地において計測された基準トルクに基づく登坂制御または降坂制御の開始判定のための基準勾配しきい値から、実トルクおよび基準トルクに基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0018】
第3の発明に係る自動変速機の制御装置においては、第2の発明の構成に加えて、補正値は、実トルクと基準トルクとの比率または実トルクと基準トルクとの差に基づいて算出されるものである。
【0019】
第3の発明によると、低地において計測された基準トルクに基づく登坂制御または降坂制御の開始判定のための基準勾配しきい値から、実トルクおよび基準トルクの比率や差に基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0020】
第4の発明に係る自動変速機の制御装置は、車両が走行している路面の勾配を検知するための検知手段と、大気圧を検知するための手段と、基準大気圧を記憶するための手段と、検知された大気圧および基準大気圧に基づいて、勾配しきい値を補正するための補正手段と、検知された路面勾配と補正された勾配しきい値とに基づいて、車両に登坂制御または降坂制御を実行させるか否かを判定するための判定手段と、判定手段による結果に基づいて、登坂制御または降坂制御を実行させるように自動変速機を制御するための制御手段とを含む。
【0021】
第4の発明によると、判定手段は、自動変速機に登坂制御または降坂制御を実行させるか否かを判定するが、このときの判定には、補正手段により補正された登坂制御または降坂制御開始判定のための勾配しきい値が用いられる。この補正された勾配しきい値は、検知された大気圧および基準大気圧に基づいて補正さる。このように、高地を走行している時の大気圧と、ベンチテスト等が行なわれる基準となる低地の基準大気圧とに基づいて(たとえば、それら2つの大気圧の比率に対応させて)、勾配しきい値が小さくなるように補正する。すなわち、高地においては低地よりも大気圧が相対的に低く、エンジンに供給される酸素量が少なくなるから、エンジンの出力が低下することになる。高地の大気圧と低地の基準大気圧とを対応させて勾配しきい値を補正する。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができ、その判定結果に基づいて的確な登坂制御または降坂制御を実行できる、自動変速機の制御装置を提供することができる。
【0022】
第5の発明に係る自動変速機の制御装置においては、第4の発明の構成に加えて、制御手段は、エンジンの基準トルクを記憶するための手段をさらに含む。補正手段は、基準トルクに基づいて設定された登坂制御または降坂制御開始判定のための基準勾配しきい値と、検知された大気圧および基準大気圧に基づいて算出された補正値とに基づいて、補正された勾配しきい値を算出するための手段を含む。
【0023】
第5の発明によると、低地における登坂制御または降坂制御の開始判定のための基準勾配しきい値から、検知された大気圧および基準大気圧に基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0024】
第6の発明に係る自動変速機の制御装置においては、第5の発明の構成に加えて、補正値は、検知された大気圧と基準大気圧との比率または検知された大気圧と基準大気圧との差に基づいて算出されるものである。
【0025】
第6の発明によると、低地における登坂制御または降坂制御の開始判定のための基準勾配しきい値から、検知された大気圧および基準大気圧の比率や差に基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0026】
第7の発明に係る自動変速機の制御装置においては、第1〜6のいずれかの発明の構成に加えて、検知手段は、エンジンの実トルクに基づいて、低地を想定した場合の基準加速度を算出するための手段と、車両の実加速度を検知するための手段と、基準加速度と実加速度とに基づいて、路面の勾配を検知するための手段とを含む。
【0027】
第7の発明によると、エンジン回転数やエンジンへの空気の吸入負荷率などに基づいて実トルクが算出され、その実トルクに基づいて、低地を想定した場合の基準加速度が算出される。この基準加速度と実加速度とに基づいて路面の勾配が検知される。このようにして、路面勾配を検知するので、高度によらず常に正確に路面勾配を検知できる。
【0028】
第8の発明に係る自動変速機の制御装置においては、第1〜6のいずれかの発明の構成に加えて、検知手段は、Gセンサにより検知された信号に基づいて、路面の勾配を検知するための手段を含む。
【0029】
第8の発明によると、Gセンサにより検知された信号に基づいて、路面の勾配を検知することができる。
【0030】
第9の発明に係る自動変速機の制御装置においては、第1〜6のいずれかの発明の構成に加えて、検知手段は、カーナビゲーション装置から出力される信号に基づいて、路面の勾配を検知するための手段を含む。
【0031】
第9の発明によると、車両の緯度と経度と加えて標高を検知できるカーナビゲーション装置から出力される信号に基づいて、たとえば単位時間当たりの標高差から、路面の勾配を検知することができる。
【0032】
第10の発明に係る自動変速機の制御装置においては、第1〜9のいずれかの発明の構成に加えて、制御手段は、登坂制御または降坂制御として、アップシフトまたはダウンシフトについての禁止または促進、フレックスロックアップ制御の禁止、変速線の変更、ロックアップ領域の変更、およびライン圧の変更の少なくともいずれかを実行するための手段を含む。
【0033】
第10の発明によると、登坂制御または降坂制御として、アップシフトまたはダウンシフトについての禁止または促進、フレックスロックアップ制御の禁止、変速線の変更、ロックアップ領域の変更、およびライン圧の変更の少なくともいずれかを実行する。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができ、その判定結果に基づいて的確な登坂制御または降坂制御を実行できる、自動変速機の制御装置を提供することができる。
【0034】
第11の発明に係る自動変速機の制御装置は、第1〜10のいずれかの発明の構成に加えて、勾配しきい値を補正するために用いられる補正値に基づいて、エンジンへの要求トルクを算出するための手段をさらに含む。
【0035】
第11の発明によると、高地のために用いられる補正値に基づいて、エンジンへの要求トルクを制御する。低地において設定されたエンジンへの要求トルクを用いてエンジンを制御しても、高地では要求されたトルクが発生できない。そのため、補正値に基づいて要求トルクが大きくなるように補正して、その補正された要求トルクでエンジンを制御することができる。
【0036】
第12の発明に係る自動変速機の制御装置は、第1〜11のいずれかの発明の構成に加えて、勾配しきい値を補正するために用いられる補正値に基づいて、エンジンが駆動状態であるか被駆動状態であるかを判断するための手段をさらに含む。
【0037】
第12の発明によると、低地において設定されたエンジンの駆動/被駆動の判断値を用いてエンジンの状態を判断しても、高地では的確に判断できない。そのため、補正値に基づいてエンジンの駆動/被駆動を判断するので、正確に判断できる。エンジンが駆動状態であるか被駆動状態であるのかは、車両を制御するための重要な要因であるので、たとえば正確な変速制御や故障診断を行なうことができる。
【0038】
第13の発明に係る自動変速機の制御方法は、車両が走行している路面の勾配を検知する検知ステップと、車両に搭載されたエンジンの実トルクを算出するステップと、エンジンの基準トルクを予め記憶するステップと、実トルクおよび基準トルクに基づいて、勾配しきい値を補正する補正ステップと、検知された路面勾配と補正された勾配しきい値とに基づいて、車両に登坂制御または降坂制御を実行させるか否かを判定する判定ステップと、判定ステップによる結果に基づいて、登坂制御または降坂制御を実行させるように自動変速機を制御する制御ステップとを含む。
【0039】
第13の発明によると、判定ステップにて、自動変速機に登坂制御または降坂制御を実行させるか否かを判定するが、このときの判定には、補正ステップにて補正された登坂制御または降坂制御開始判定のための勾配しきい値が用いられる。この補正された勾配しきい値は、エンジンの実トルクおよび基準トルクに基づいて補正される。車両が高地を走行している時には、エンジンの実トルクと、低地においてベンチテストで計測されたエンジンの基準トルクとが異なるので、これらに基づいて(たとえば、それら2つのトルクの比率に対応させて)、勾配しきい値が小さくなるように補正する。すなわち、高地においては低地よりも大気圧が相対的に低く、エンジンに供給される酸素量が少なくなるから、エンジンの出力が低下することになる。そのため、実トルクと低地において計測された基準トルクとを対応させて勾配しきい値を補正して的確に登坂制御の開始を判断する。このようにすると、たとえば、低地よりも高地の方がトルク不足になるので、登坂制御に入り易くなる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができ、その判定結果に基づいて的確な登坂制御または降坂制御を実行できる、自動変速機の制御方法を提供することができる。
【0040】
第14の発明に係る自動変速機の制御方法においては、第13の発明の構成に加えて、補正ステップは、基準トルクに基づいて設定された登坂制御または降坂制御開始判定のための基準勾配しきい値と、実トルクおよび基準トルクに基づいて算出された補正値とに基づいて、補正された勾配しきい値を算出するステップを含む。
【0041】
第14の発明によると、低地において計測された基準トルクに基づく登坂制御または降坂制御の開始判定のための基準勾配しきい値から、実トルクおよび基準トルクに基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0042】
第15の発明に係る自動変速機の制御方法においては、第14の発明の構成に加えて、補正値は、実トルクと基準トルクとの比率または実トルクと基準トルクとの差に基づいて算出されるものである。
【0043】
第15の発明によると、低地において計測された基準トルクに基づく登坂制御または降坂制御の開始判定のための基準勾配しきい値から、実トルクおよび基準トルクの比率や差に基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0044】
第16の発明に係る自動変速機の制御方法は、車両が走行している路面の勾配を検知する検知ステップと、大気圧を検知するステップと、基準大気圧を予め記憶するステップと、検知された大気圧および基準大気圧に基づいて、勾配しきい値を補正する補正ステップと、検知された路面勾配と補正された勾配しきい値とに基づいて、車両に登坂制御または降坂制御を実行させるか否かを判定する判定ステップと、判定ステップによる結果に基づいて、登坂制御または降坂制御を実行させるように自動変速機を制御する制御ステップとを含む。
【0045】
第16の発明によると、判定ステップにて、自動変速機に登坂制御または降坂制御を実行させるか否かを判定するが、このときの判定には、補正ステップにて補正された登坂制御または降坂制御開始判定のための勾配しきい値が用いられる。この補正された勾配しきい値は、検知された大気圧および基準大気圧に基づいて補正さる。このように、高地を走行している時の大気圧と、ベンチテスト等が行なわれる基準となる低地の基準大気圧とに基づいて(たとえば、それら2つの大気圧の比率に対応させて)、勾配しきい値が小さくなるように補正する。すなわち、高地においては低地よりも大気圧が相対的に低く、エンジンに供給される酸素量が少なくなるから、エンジンの出力が低下することになる。高地の大気圧と低地の基準大気圧とを対応させて勾配しきい値を補正する。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができ、その判定結果に基づいて的確な登坂制御または降坂制御を実行できる、自動変速機の制御方法を提供することができる。
【0046】
第17の発明に係る自動変速機の制御方法においては、第16の発明の構成に加えて、制御ステップは、エンジンの基準トルクを予め記憶するステップをさらに含む。補正ステップは、基準トルクに基づいて設定された登坂制御または降坂制御開始判定のための基準勾配しきい値と、検知された大気圧および基準大気圧に基づいて算出された補正値とに基づいて、補正された勾配しきい値を算出するステップを含む。
【0047】
第17の発明によると、低地における登坂制御または降坂制御の開始判定のための基準勾配しきい値から、検知された大気圧および基準大気圧に基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0048】
第18の発明に係る自動変速機の制御方法においては、第17の発明の構成に加えて、補正値は、検知された大気圧と基準大気圧との比率または検知された大気圧と基準大気圧との差に基づいて算出されるものである。
【0049】
第18の発明によると、低地における登坂制御または降坂制御の開始判定のための基準勾配しきい値から、検知された大気圧および基準大気圧の比率や差に基づいて算出された補正値を減算等して、小さくなるように補正された勾配しきい値を算出することができる。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができる。
【0050】
第19の発明に係る自動変速機の制御方法においては、第13〜18のいずれかの発明の構成に加えて、検知ステップは、エンジンの実トルクに基づいて、低地を想定した場合の基準加速度を算出するステップと、車両の実加速度を検知するステップと、基準加速度と実加速度とに基づいて、路面の勾配を検知するステップとを含む。
【0051】
第19の発明によると、エンジン回転数やエンジンへの空気の吸入負荷率などに基づいて実トルクが算出され、その実トルクに基づいて、低地を想定した場合の基準加速度が算出される。この基準加速度と実加速度とに基づいて路面の勾配が検知される。このようにして、路面勾配を検知するので、高度によらず常に正確に路面勾配を検知できる。
【0052】
第20の発明に係る自動変速機の制御方法においては、第13〜18のいずれかの発明の構成に加えて、検知ステップは、Gセンサにより検知された信号に基づいて、路面の勾配を検知するステップを含む。
【0053】
第20の発明によると、Gセンサにより検知された信号に基づいて、路面の勾配を検知することができる。
【0054】
第21の発明に係る自動変速機の制御方法においては、第13〜18のいずれかの発明の構成に加えて、検知ステップは、カーナビゲーション装置から出力される信号に基づいて、路面の勾配を検知するステップを含む。
【0055】
第21の発明によると、車両の緯度と経度と加えて標高を検知できるカーナビゲーション装置から出力される信号に基づいて、たとえば単位時間当たりの標高差から、路面の勾配を検知することができる。
【0056】
第22の発明に係る自動変速機の制御方法においては、第13〜21のいずれかの発明の構成に加えて、制御ステップは、登坂制御または降坂制御として、アップシフトまたはダウンシフトについての禁止または促進、フレックスロックアップ制御の禁止、変速線の変更、ロックアップ領域の変更、およびライン圧の変更の少なくともいずれかを実行するステップを含む。
【0057】
第22の発明によると、登坂制御または降坂制御として、アップシフトまたはダウンシフトについての禁止または促進、フレックスロックアップ制御の禁止、変速線の変更、ロックアップ領域の変更、およびライン圧の変更の少なくともいずれかを実行する。その結果、高度によらず正確に、登坂制御が必要な登坂路であるか否か、降坂制御が必要な降坂路であるか否かを判定することができ、その判定結果に基づいて的確な登坂制御または降坂制御を実行できる、自動変速機の制御方法を提供することができる。
【0058】
第23の発明に係る自動変速機の制御方法は、第13〜22のいずれかの発明の構成に加えて、勾配しきい値を補正するために用いられる補正値に基づいて、エンジンへの要求トルクを算出するステップをさらに含む。
【0059】
第23の発明によると、高地のために用いられる補正値に基づいて、エンジンへの要求トルクを制御する。低地において設定されたエンジンへの要求トルクを用いてエンジンを制御しても、高地では要求されたトルクが発生できない。そのため、補正値に基づいて要求トルクが大きくなるように補正して、その補正された要求トルクでエンジンを制御することができる。
【0060】
第24の発明に係る自動変速機の制御方法は、第13〜23のいずれかの発明の構成に加えて、勾配しきい値を補正するために用いられる補正値に基づいて、エンジンが駆動状態であるか被駆動状態であるかを判断するステップをさらに含む。
【0061】
第24の発明によると、低地において設定されたエンジンの駆動/被駆動の判断値を用いてエンジンの状態を判断しても、高地では的確に判断できない。そのため、補正値に基づいてエンジンの駆動/被駆動を判断するので、正確に判断できる。エンジンが駆動状態であるか被駆動状態であるのかは、車両を制御するための重要な要因であるので、たとえば正確な変速制御や故障診断を行なうことができる。
【0062】
【発明の実施の形態】
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。
【0063】
以下、本発明の実施の形態に係る制御装置を含む車両のパワートレーンについて説明する。本実施の形態に係る制御装置は、図1に示すECU(Electronic Control Unit)1000により実現される。本実施の形態では、自動変速機を、流体継手としてトルクコンバータを備えた、遊星歯車式減速機構を有する自動変速機として説明する。
【0064】
なお、本発明はこのような構成に限定されるものではなく、自動変速機は、たとえばベルト式などの無段変速機であってもよい。無段変速機の場合、以下の説明の中におけるギヤ段はギヤ比となる。
【0065】
図1を参照して、本実施の形態に係る制御装置を含む車両のパワートレーンについて説明する。本実施の形態に係る制御装置は、より詳しくは、図1に示すECU1000の中のECT(Electronic Controlled Automatic Transmission)_ECU1020により実現される。
【0066】
図1に示すように、この車両のパワートレーンは、エンジン100と、トルクコンバータ200と、自動変速機300と、ECU1000とから構成される。
【0067】
エンジン100の出力軸は、トルクコンバータ200の入力軸に接続される。エンジン100とトルクコンバータ200とは回転軸により連結されている。したがって、エンジン回転数センサ400により検知されるエンジン100の出力軸回転数NE(エンジン回転数NE)とトルクコンバータ200の入力軸回転数(ポンプ回転数)とは同じである。
【0068】
トルクコンバータ200は、入力軸と出力軸とを直結状態にするロックアップクラッチ210と、入力軸側のポンプ羽根車220と、出力軸側のタービン羽根車230と、ワンウェイクラッチ250を有するトルク増幅機能を発現するステータ240とから構成される。トルクコンバータ200と自動変速機300とは、回転軸により接続される。トルクコンバータ200の出力軸回転数NT(タービン回転数NT)は、タービン回転数センサ410により検知される。自動変速機300の出力軸回転数NOUTは、出力軸回転数センサ420により検知される。
【0069】
ロックアップクラッチ210は、油圧を供給するロックアップリレーバルブによって油圧の供給/排出が係合側と解放側とで切り換えられて作動させられ、ロックアップピストンが軸方向に移動することによって、ロックアップピストンとフロントカバーとが摩擦材を介して接離させる。また、ロックアップクラッチ210によってトルクコンバータ内が区画され、ロックアップピストンとフロントカバーとの間に、ロックアップクラッチ210を解放するための解放側油室が、ロックアップピストンとタービンランナとの間にロックアップクラッチ210を係合させるための係合側油室がそれぞれ形成され、解放側油室および係合側油室に、バルブボディ内の油圧回路から油圧が供給されるようになっている。このロックアップクラッチ210は、このようなロックアップクラッチ210を係合させる状態と解放させる状態とを切換えることとは別に、広範囲な領域において、スリップ制御することができる。このスリップ制御(フレックスロックアップ制御)については後述する。
【0070】
図2に自動変速機300の作動表を示す。図2に示す作動表によると、摩擦要素であるクラッチ要素(図中のC1〜C4)や、ブレーキ要素(B1〜B4)、ワンウェイクラッチ要素(F0〜F3)が、どのギヤ段の場合に係合および解放されるかを示している。車両の発進時に使用される1速時には、クラッチ要素(C1)、ワンウェイクラッチ要素(F0、F3)が係合する。
【0071】
これらのパワートレーンを制御するECU1000は、エンジン100を制御するエンジンECU1010と、自動変速機300を制御するECT_ECU1020と、VSC(Vehicle Stability Control)_ECU1030とを含む。
【0072】
ECT_ECU1020には、タービン回転数センサ410からタービン回転数NTを表わす信号が、出力軸回転数センサ420から出力軸回転数NOUTを表わす信号が入力される。また、ECT_ECU1020には、エンジンECU1010から、エンジン回転数センサ400にて検知されたエンジン回転数NEを表わす信号と、スロットルポジションセンサにて検知されたスロットル開度を表わす信号と、エンジン100に吸気を送り込む吸気管における空気圧力(吸気管圧力)を表わす信号とが入力される。
【0073】
ECT_ECU1020は、エンジンECU1010から入力された吸気管圧力に基づいて、吸入負荷率(=充填効率)を算出し、吸入負荷率とエンジン回転数とのマップに基づいてエンジン100の実トルクを算出する。なお、この場合、吸入負荷率(=充填効率)は、空気質量から算出するようにしてもよい。
【0074】
上述したこれらの回転数センサは、トルクコンバータ200の入力軸、トルクコンバータ200の出力軸および自動変速機300の出力軸に取り付けられた回転検出用ギヤの歯に対向して設けられている。これらの回転数センサは、トルクコンバータ200の入力軸、トルクコンバータ200の出力軸および自動変速機300の出力軸の僅かな回転の検出も可能なセンサであり、たとえば、一般的に半導体式センサと称される磁気抵抗素子を使用したセンサである。
【0075】
さらに、ECT_ECU1020には、VSC_ECU1030から、車両加速度を表わす信号と、運転者によりフットブレーキが操作されたことを表わす信号とが入力される。
【0076】
ECT_ECU1020から、自動変速機300に、ライン圧を制御するためのリニアソレノイド(SLT)への制御信号や、ロックアップクラッチ210のスリップ制御(フレックスロックアップ制御)するためのリニアソレノイド(SLU)への制御信号や、図2に示すギヤ段に変速するためにトランスミッションソレノイドへ制御信号が出力される。このソレノイド制御信号に基づいて、ライン圧を調圧したり、ロックアップクラッチ210のスリップ制御したり、自動変速機300のクラッチやブレーキやワンウェイクラッチを係合させたり解放させたりして遊星歯車式減速機構における所望のギヤ段を形成する。
【0077】
この自動変速機300を制御する油圧回路においては、作動油が、オイルポンプの吐出圧でオイルポンプからプライマリレギュレータバルブに供給される。プライマリレギュレータバルブは、リニアソレノイド(SLT)からの制御油圧により所望のライン圧に作動油の油圧を調圧する。リニアソレノイド(SLT)は、ECT_ECU1020に接続され、ECT_ECU1020からの制御信号(電圧信号、電流信号)により制御される。
【0078】
ECT_ECU1020は、エンジンECU1010からエンジン100のスロットル開度、エンジン吸気量、エンジン水温、エンジン回転数NEなどを受信して、それらの値と、自動変速機300の入力軸回転数(たとえばクラッチC2のスプラインを利用して検知した回転数)、自動変速機300の油温、ギヤ段、ポジション等に基づいて演算を行ない、リニアソレノイド(SLT)の制御信号を算出する。
【0079】
ECT_ECU1020で演算され、リニアソレノイド(SLT)のリニア特性によりプライマリレギュレータバルブが制御されて、オイルポンプの吐出圧が所望のライン圧に調圧される。この結果、このライン圧により自動変速機300のクラッチ、ブレーキおよびワンウェイクラッチの係合油圧を制御して、滑らかな変速特性を実現する。すなわち、自動変速機300の入力軸回転数センサや各種センサからの信号を監視して、クラッチなどの係合油圧をエンジン100の出力や車両の走行状況に応じて高精度かつきめ細やかに制御することができる。
【0080】
本実施の形態に係る制御装置であるECT_ECU1020は、高地の登坂路や降坂路において、このような油圧回路によるギヤ段の変速に関して、低地における登坂路および降坂路や、低地および高地における平坦路の場合とは異なる制御を実行する。たとえば、登坂制御の場合にはアップシフトを禁止して十分な出力軸トルクを発生させ、降坂制御の場合にはダウンシフトを促進して十分なエンジンブレーキを発生させたりする。また、高地においては、エンジン100のエンジントルク不足が発生しやすいので、エンジン100により駆動されるオイルポンプの負荷を抑制するために、ライン圧を下げるようにリニアソレノイド(SLT)の制御信号が算出される。
【0081】
自動変速機300においては、フレックスロックアップ制御を実現するために、ECT_ECU1020は、リニアソレノイド(SLU)に制御信号を出力する。ECT_ECU1020は、トルクコンバータ200の入力回転数(エンジン回転数)、トルクコンバータ200の出力回転数(自動変速機300の入力軸回転数)、エンジン100のスロットル開度および車速等に基づいて、低車速領域においてもロックアップクラッチ210をスリップ制御(フレックスロックアップ制御)させて、伝達効率の大幅な向上を実現する。
【0082】
油圧回路は、ロックアップクラッチ210の係合状態と解放状態とを切換えるためのロックアップリレーバルブと、リニアソレノイド(SLU)から出力されるスリップ制御用信号圧に基づいて係合側油室と解放側油室の圧力差を調節しロックアップクラッチのスリップ量を制御するためのロックアップコントロールバルブと、ロックアップクラッチ210の係合圧を発生させてスリップ制御を実現するためのスリップ制御用信号を発生させるリニアソレノイド(SLU)とを備える。
【0083】
ロックアップリレーバルブは、ロックアップクラッチ210の解放側油室と連通する解放側ポートと、係合側油室に連通する係合側ポートと、セカンダリレギュレータ圧が供給される入力ポートと、ロックアップクラッチ210の解放時に係合側油室内の作動油が排出される第1排出ポートと、係合時に解放側油室内の作動油が排出される第2排出ポートとを備える。
【0084】
このような構成を有するロックアップリレーバルブは、ロックアップクラッチ210の係合側としての位置と、ロックアップクラッチ210の解放側位置としての位置とをそれぞれ採ることになる。ロックアップクラッチ210の係合側において、ロックアップクラッチ210に供給されたセカンダリレギュレータ圧は、ロックアップクラッチ210の係合側油室に係合油圧、すなわち、オン圧として供給され、ロックアップクラッチ210の解放側において、セカンダリレギュレータ圧は、解放側油室に解放油圧、すなわち、オフ圧として供給される。
【0085】
すなわち、ロックアップクラッチ210にオフ圧が供給されると、ロックアップクラッチ210の解放側油室内の油圧が係合側油室内の油圧よりも高められて、ロックアップクラッチが解放されると同時に係合側油室内の作動油が第1排出ポートや逆止弁を介してドレンへ排出される。一方、ロックアップクラッチ210にオン圧が供給されると、ロックアップクラッチ210の係合側油室内の油圧が解放側油室内の油圧よりも高められて、ロックアップクラッチが係合されると同時に解放側油室内の作動油が第2排出ポートやロックアップコントロールバルブを介してドレンへ排出される。
【0086】
リニアソレノイド(SLU)は、ECT_ECU1020からの出力電圧に伴って大きくなるスリップ制御用信号圧を発生させ、このスリップ制御用信号圧をロックアップコントロールバルブに作用させる。
【0087】
ロックアップコントロールバルブは、セカンダリレギュレータ圧が供給されるライン圧ポートと、ロックアップリレーバルブの第2排出ポートから排出されるロックアップクラッチ210の解放油室側内の作動油を受け入れる受入レポートと、その受入ポートに受け入れられた作動油を排出するためのドレンポートとを備える。
【0088】
さらに、ロックアップコントロールバルブは、受入ポートとドレンポートとの間を連通させる第1位置と、受入ポートとライン圧ポートとの間を連通させる第2位置との間を移動可能に設けられたスプール弁と、そのスプール弁を第1位置に向かって付勢するためにそのスプール弁に当接可能に配置されたプランジャと、そのプランジャとスプール弁とにスリップ制御用信号圧を作用させて、それらプランジャおよびスプール弁に互いに離隔する方向の推力をそれぞれ発生させるためのスリップ制御用信号圧を受け入れる信号圧油室と、プランジャにロックアップクラッチ210の解放側油室内の作動油の油圧を作用させてそのプランジャ延いてはスプール弁に第1位置へ向かう推力を発生させるために油圧を受け入れる油室と、スプール弁にロックアップクラッチ210の係合側油室内の作動油の油圧を作用させてそのスプール弁にその第2位置へ向かう方向の推力を発生させるために油圧を受け入れる油室と、信号圧油室に収容されてスプール弁を第2位置へ向かう方向へ付勢するスプリングとを備える。
【0089】
このロックアップコントロールバルブでは、スプール弁が第1位置にあるときには、受入ポートとドレンポートとが連通させられてロックアップクラッチ210の解放側油室内の作動油が排出させられることによりロックアップクラッチ210の係合側油室内の作動油の油圧と解放側油室内の作動油の油圧との圧力差が増加させられる。一方、このロックアップコントロールバルブでは、スプール弁が第2位置にあるときには、受入ポートとライン圧ポートとが連通させられてロックアップクラッチ210の解放側油室内にセカンダリレギュレータ圧が供給させることによりロックアップクラッチ210の係合側油室内の作動油の油圧と解放側油室内の作動油の油圧との圧力差が減少させられる。
【0090】
このようにして、ロックアップコントロールバルブは、リニアソレノイド(SLU)から出力されるスリップ制御用信号圧に基づいて、係合側油室と解放側油室の圧力差を調節して、ロックアップクラッチのスリップ量を制御する。これにより、ロックアップクラッチ210がスリップ制御される。なお、ECT_ECUは、通常のロックアップ領域より広い領域で、このようなロックアップクラッチ210のスリップ制御(フレックスロックアップ制御)を実行する。
【0091】
本実施の形態に係る制御装置であるECT_ECU1020は、高地の登坂路や降坂路において、このような油圧回路によるロックアップクラッチ210についての、オン(係合)オフ(解放)制御に関してや、フレックスロックアップ制御に関して、低地における登坂路および降坂路や、低地および高地における平坦路の場合とは異なる制御を実行する。たとえば、高地における登坂制御および降坂制御の場合には、フレックスロックアップ制御を禁止してトルクコンバータ200によるトルク増幅機能により、駆動力が低下する高地において十分な出力軸トルクを発生させる。高地における登坂制御および降坂制御の場合には、ロックアップクラッチ210のオン領域を狭く変更してロックアップクラッチ210が係合されにくくしてトルクコンバータ200によるトルク増幅作用を発現させる。
【0092】
図3を参照して、ECT_ECU1020内のメモリに記憶される三次元マップについて説明する。図3に示すように、この三次元マップは、エンジン回転数NEと吸入負荷率とをパラメータとしエンジントルクを算出するマップである。ECT_ECU1020は、エンジンECU1010から入力されたエンジン回転数信号と吸気管圧力信号とに基づいて、エンジントルクを算出する。このとき、吸気管圧力に基づいて吸入負荷率(=充填効率)が算出される。なお、吸気管圧力の代わりに空気質量から吸入負荷率(=充填効率)を算出するようにしてもよい。図3に示す三次元マップは一例であって、本発明はこのマップに限定されるものではない。
【0093】
図4を参照して、ECT_ECU1020のメモリに記憶されるエンジントルク比を補正勾配との関係を示すマップについて説明する。図4に示すように、このマップは、エンジントルク比を横軸とし補正勾配を縦軸としたものである。エンジントルク比は、エンジントルク比=実エンジントルク/基準エンジントルクで算出される。基準エンジントルクとは、低地において行なわれたエンジンベンチテストで測定されるエンジントルクであって、スロットル開度−エンジン回転数のマップで、高地での空気密度の低下(エンジントルクの低下)が反映されないものである。実エンジントルクは、前述の図3の三次元マップを用いて算出されたエンジントルクである。図4に示すように、実エンジントルク/基準エンジントルクの比率を算出し、その比率が小さいほど(すなわち実エンジントルクが小さいほど)補正勾配が大きくなる。
【0094】
図5を参照して、本実施の形態に係る制御装置であるECT_ECU1020で実行されるプログラムの制御構造について説明する。
【0095】
ステップ(以下、ステップをSと略す。)100にて、ECT_ECU1020は、実エンジントルクより基準路面勾配を算出する。実エンジントルクから基準路面勾配(基準加速度)の算出方法は、基準路面勾配(基準加速度)とは、エンジントルクから算出される平地を想定した場合の車両の加速度のことであって、この実エンジントルクであれば平地であればどれぐらいの加速度になるかということを表わす加速度が基準路面勾配として算出される。
【0096】
S200にて、ECT_ECU1020は、出力軸回転数センサ420の値より車両実加速度を算出する。なお、この車両実加速度は、VSC_ECU1030からECT_ECU1020に入力される車両加速度信号に基づいて車両実加速度を算出するようにしてもよい。S300にて、ECT_ECU1020は、路面勾配を算出する。このとき、S100にて算出した基準路面勾配とS200にて算出した車両実加速度とに基づいて路面勾配が算出される。この処理において、基準路面勾配(基準加速度)と車両実加速度との差から、路面勾配が算出される。すなわち、路面勾配は、基準路面勾配(基準加速度)−車両実加速度の演算を実行することにより算出される。
【0097】
S400にて、ECT_ECU1020は、エンジントルク比を算出する。エンジントルク比は、実エンジントルク/基準エンジントルクの値である。
【0098】
S500にて、ECT_ECU1020は、路面勾配が、(基準トルクに基づく登坂制御開始判定勾配−エンジントルク比に応じた高地補正勾配)よりも大きいか否かを判断する。このとき、路面勾配はS300にて算出された値である。基準トルクに基づく路面制御開始判定勾配は、予め平地における登坂制御開始判定勾配用に記憶された値である。エンジントルク比に応じた高地補正勾配は、図4に示すエンジントルク比から求められた補正勾配である。路面勾配が、(基準トルクに基づく登坂制御開始判定勾配−エンジントルク比に応じた高地補正勾配)よりも大きいと(S500にてYES)、処理はS600へ移される。もしそうでないと(S500にてNO)、この処理は終了する。
【0099】
S600にて、ECT_ECUは登坂制御を実行する。
以上のような構造およびフローチャートに基づく、本実施の形態に係る制御装置であるECT_ECU1020を搭載した車両の動作について説明する。
【0100】
車両が予め定められたサンプリング間隔で図5に示すフローチャートにより表わされるプログラムがECT_ECU1020により実行される。車両が高地の登坂路に到達すると、実エンジントルクから基準路面勾配が算出され(S100)、出力軸回転数センサ420により検知された出力軸回転数NOUTから車両実加速度が算出される(S200)。基準路面勾配から車両実加速度を減算することにより路面勾配が算出される(S300)。実エンジントルク比/基準エンジントルクによりエンジントルク比が算出され(S400)、路面勾配が、(基準トルクに基づく登坂制御開始判定勾配−エンジントルク比に応じた高地補正勾配)よりも大きいと(S500にてYES)、登坂制御が実行される(S600)。
【0101】
このような車両の動作において、実エンジントルクは、図3に示す三次元マップによりエンジン100のエンジン回転数NEと吸入負荷率とに基づいて算出される。エンジントルク比に応じた高地補正勾配は図4に示すエンジントルク比に対応する補正勾配として算出される。
【0102】
また登坂制御の一例としては、アップシフト変速線自体を動かすのではなくアップシフトの変速判断自体を禁止することを行なう。
【0103】
以上のようにして、本実施の形態に係る制御装置によると、ECT_ECUは、自動変速機に登坂制御を実行させるか否かを判定するが、このときの判定には平地における基準トルクに基づく登坂制御開始判定勾配そのものの値をしきい値として用いるのではなくエンジントルク比に応じた高地補正勾配を考慮して補正された勾配しきい値が用いられる。この勾配しきい値は、実エンジントルクと基準エンジントルクとの比率により算出される補正勾配によって補正されており補正された勾配しきい値は平地における勾配しきい値よりも小さくなっている。すなわち、高地においては低地よりも大気圧が相対的に低く、エンジンに供給される酸素量が少なくなるからエンジンの出力が低下することになる。そのため実エンジントルクと低地において計測された基準エンジントルクとを対応させて勾配しきい値を補正して的確に登坂制御の開始を判断することができる。その結果、低地よりも高地の方がトルク不足になるので、登坂制御に入りやすくなり、高地における登坂路におけるドライバビリティを向上させることができる。
【0104】
なお、以下に、本実施の形態の変形例について順次説明する。
図4に示すエンジントルク比と補正勾配とのマップに代えて図6に示す大気圧比と補正勾配とのマップを用いるようにしてもよい。また、図7に示すようにエンジントルク低下量(=基準エンジントルク−実エンジントルク)と補正勾配との関係を表わすマップを用いるようにしてもよい。さらに、大気圧低下量と補正勾配との関係を表わすマップに基づいて、補正勾配を算出するようにしてもよい。
【0105】
さらに、前述の実施の形態においては、路面勾配が、(基準トルクに基づく登坂制御開始判定勾配−エンジントルク比に応じた高地補正勾配)よりも大きい場合に登坂制御を実行するとして説明したが、本発明はこれに限定されるものではない。フローチャートのS500における処理に代えて、路面勾配が、(−基準トルクに基づく登坂制御開始判定勾配+高地補正勾配)よりも小さいときにS600における登坂制御の実行に代えて降坂制御を実行するようにしてもよい。
【0106】
さらに、登坂制御として、高地での登坂路におけるフレックスロックアップ禁止制御を作動しやすくするようにしてもよい。すなわち、高地における登坂路や降坂路においてはフレックスロックアップを禁止させるように制御する。これは、トルクコンバータ200をスリップさせトルクコンバータのトルク増幅作用を発現させて、駆動力を確保するためである。したがって、エンジン100の駆動力が低下する高地においては、このようにフレックスロックアップの禁止領域を広げるようにすると駆動力が増大する。
【0107】
さらに、エンジントルク比に応じた高地補正勾配を用いて、エンジン100に対する要求トルク量を変更するようにしてもよい。高地では、低地で設定されたスロットル要求量、知覚要求量、アイドルアップ要求量、アクセル要求量、燃料噴射量要求量およびACIS(Acoustic Control Induction System:可変吸気システム)閉じ要求などの各要求量に対してエンジントルクが低下するため、目標とした量のエンジントルクの引上げおよび引下げができなくなる。その分を、エンジントルク比に応じた高地補正勾配を用いて補正する。
【0108】
さらに、登坂制御として、アップシフト線を高速側で、スロットル高開度側へ移動させるように制御するようにしてもよい。このようにすることによりアップシフトしにくくなり、高地におけるエンジントルクの低減の影響を少なくすることができる。
【0109】
さらに、登坂制御においてはロックアップクラッチ210のロックアップ線を変更して、高地では駆動力を確保するために、ロックアップクラッチ210が係合しにくくなるようにロックアップオフ領域を拡大するように制御するようにしてもよい。前述の説明と同様、ロックアップクラッチ210が係合しないため、トルクコンバータ200のトルク増幅作用を発現させ、高地におけるエンジン100のトルクの低下の影響を抑制することができる。
【0110】
さらに、登坂制御の実行として、通常はスロットル開度に連動させて油圧回路のライン圧を設定しているが、高地においてはエンジントルクの低下が発生するためライン圧を低下させるように制御するようにしてもよい。オイルポンプはエンジンの負荷であるため、高地におけるエンジントルクの低下分をオイルポンプの負荷を低減させることによりその影響を少なくするようにできる。
【0111】
さらに、エンジントルク比に応じた高地補正勾配を用いて、エンジン100の状態が駆動状態であるか非駆動状態であるかの判定するようにしてもよい。このようにすると、エンジン100の状態が駆動状態であるか非駆動状態であるかのを正確に判定できるようになる。すなわち、スロットル開度と入力回転数(タービン回転数やエンジン回転数)毎にエンジン100が駆動状態であるか非駆動状態であるかが設定されている。高地においては、エンジントルクが低下すると、エンジン100が非駆動状態であるにも拘らず、低地において設定されたスロットル開度に基づいて判断されるとエンジン100が駆動状態であると判定される可能性がある。そのため、エンジントルク比に応じた高地補正勾配を用いてエンジン100の駆動および非駆動判定を行ない、スロットル開度の高開度側に駆動判定線を移動するようにする。このようにするとエンジン100が駆動状態であるか非駆動状態であるかの判定が正確に行なわれ、変速制御を正確に行なうことができる。また、自動変速機300の機能の故障を検出する回路において、エンジン100が駆動状態であるか非駆動状態であるかに基づいて決定されるギア比の決定回路の故障を検出するときに、エンジン100の駆動状態と非駆動状態を誤ることがなくなり、正確に故障の検出を行なうことができる。
【0112】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る自動変速機の制御ブロック図である。
【図2】 図1に示す自動変速機の作動表である。
【図3】 エンジントルク算出用のマップを示す図である。
【図4】 エンジントルク比と補正勾配との関係を示す図である。
【図5】 ECUで実行されるプログラムの制御構造を示す図である。
【図6】 大気圧比と補正勾配との関係を示す図である。
【図7】 エンジントルク低下量と補正勾配との関係を示す図である。
【符号の説明】
100 エンジン、200 トルクコンバータ、210 ロックアップクラッチ、220 ポンプ羽根車、230 タービン羽根車、240 ステータ、250 ワンウェイクラッチ、300 自動変速機、310 入力クラッチ、400エンジン回転数センサ、410 タービン回転数センサ、420 出力軸回転数センサ、1000 ECU、1010 エンジンECU、1020 ECT_ECU、1030 VSC_ECU。
Claims (18)
- 車両に搭載された自動変速機の制御装置であって、
前記車両が走行している路面の勾配を検知するための検知手段と、
前記車両に搭載されたエンジンの実トルクを、前記エンジンへの吸入負荷率に基づいて算出するための手段と、
低地において測定された前記エンジンの基準トルクを記憶するための手段と、
前記基準トルクに対して前記実トルクが小さい場合には、前記実トルクが小さいほど勾配しきい値を小さくなるように補正するための補正手段と、
前記検知された路面勾配と前記補正された勾配しきい値とに基づいて、前記車両に登坂制御または降坂制御を実行させるか否かを判定するための判定手段と、
前記判定手段による結果に基づいて、登坂制御または降坂制御を実行させるように前記自動変速機を制御するための制御手段とを含む、自動変速機の制御装置。 - 前記補正手段は、前記低地における登坂制御または降坂制御開始判定のための基準勾配しきい値と、前記実トルクおよび前記基準トルクに基づいて算出された補正値とに基づいて、補正された勾配しきい値を算出するための手段を含む、請求項1に記載の自動変速機の制御装置。
- 前記補正値は、前記実トルクと前記基準トルクとの比率または前記実トルクと前記基準トルクとの差に基づいて算出される、請求項2に記載の自動変速機の制御装置。
- 前記検知手段は、
前記実トルクに基づいて、平地を想定した場合の基準加速度を算出するための手段と、
前記車両の実加速度を検知するための手段と、
前記基準加速度と前記実加速度とに基づいて、路面の勾配を検知するための手段とを含む、請求項1〜3のいずれかに記載の自動変速機の制御装置。 - 前記検知手段は、Gセンサにより検知された信号に基づいて、路面の勾配を検知するための手段を含む、請求項1〜3のいずれかに記載の自動変速機の制御装置。
- 前記検知手段は、カーナビゲーション装置から出力される信号に基づいて、路面の勾配を検知するための手段を含む、請求項1〜3のいずれかに記載の自動変速機の制御装置。
- 前記制御手段は、登坂制御または降坂制御として、アップシフトまた
はダウンシフトについての禁止または促進、フレックスロックアップ制御の禁止、変速線の変更、ロックアップ領域の変更、およびライン圧の変更の少なくともいずれかを実行するための手段を含む、請求項1〜6のいずれかに記載の自動変速機の制御装置。 - 前記制御装置は、前記勾配しきい値を補正するために用いられる補正値に基づいて、前記エンジンへの要求トルクを算出するための手段をさらに含む、請求項1〜7のいずれかに記載の自動変速機の制御装置。
- 前記制御装置は、前記勾配しきい値を補正するために用いられる補正値に基づいて、前記エンジンが駆動状態であるか被駆動状態であるかを判断するための手段をさらに含む、請求項1〜8のいずれかに記載の自動変速機の制御装置。
- 車両に搭載された自動変速機の制御方法であって、
前記車両が走行している路面の勾配を検知する検知ステップと、
前記車両に搭載されたエンジンの実トルクを、前記エンジンへの吸入負荷率に基づいて算出するステップと、
低地において測定された前記エンジンの基準トルクを予め記憶するステップと、
前記基準トルクに対して前記実トルクが小さい場合には、前記実トルクが小さいほど勾配しきい値を小さくなるように補正する補正ステップと、
前記検知された路面勾配と前記補正された勾配しきい値とに基づいて、前記車両に登坂制御または降坂制御を実行させるか否かを判定する判定ステップと、
前記判定ステップによる結果に基づいて、登坂制御または降坂制御を実行させるように前記自動変速機を制御する制御ステップとを含む、自動変速機の制御方法。 - 前記補正ステップは、前記低地における登坂制御または降坂制御開始判定のための基準勾配しきい値と、前記実トルクおよび前記基準トルクに基づいて算出された補正値とに基づいて、補正された勾配しきい値を算出するステップを含む、請求項10に記載の自動変速機の制御方法。
- 前記補正値は、前記実トルクと前記基準トルクとの比率または前記実トルクと前記基準トルクとの差に基づいて算出される、請求項11に記載の自動変速機の制御方法。
- 前記検知ステップは、
前記実トルクに基づいて、平地を想定した場合の基準加速度を算出するステップと、
前記車両の実加速度を検知するステップと、
前記基準加速度と前記実加速度とに基づいて、路面の勾配を検知するステップとを含む、請求項10〜12のいずれかに記載の自動変速機の制御方法。 - 前記検知ステップは、Gセンサにより検知された信号に基づいて、路面の勾配を検知するステップを含む、請求項10〜12のいずれかに記載の自動変速機の制御方法。
- 前記検知ステップは、カーナビゲーション装置から出力される信号に基づいて、路面の勾配を検知するステップを含む、請求項10〜12のいずれかに記載の自動変速機の制御方法。
- 前記制御ステップは、登坂制御または降坂制御として、アップシフトまたはダウンシフトについての禁止または促進、フレックスロックアップ制御の禁止、変速線の変更、ロックアップ領域の変更、およびライン圧の変更の少なくともいずれかを実行するステップを含む、請求項10〜15のいずれかに記載の自動変速機の制御方法。
- 前記制御方法は、前記勾配しきい値を補正するために用いられる補正値に基づいて、前記エンジンへの要求トルクを算出するステップをさらに含む、請求項10〜16のいずれかに記載の自動変速機の制御方法。
- 前記制御方法は、前記勾配しきい値を補正するために用いられる補正値に基づいて、前記エンジンが駆動状態であるか被駆動状態であるかを判断するステップをさらに含む、請求項10〜17のいずれかに記載の自動変速機の制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003146481A JP4127118B2 (ja) | 2003-05-23 | 2003-05-23 | 自動変速機の制御装置および制御方法 |
US10/847,919 US7359784B2 (en) | 2003-05-23 | 2004-05-19 | Control apparatus and control method for automatic transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003146481A JP4127118B2 (ja) | 2003-05-23 | 2003-05-23 | 自動変速機の制御装置および制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004347062A JP2004347062A (ja) | 2004-12-09 |
JP4127118B2 true JP4127118B2 (ja) | 2008-07-30 |
Family
ID=33487114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003146481A Expired - Fee Related JP4127118B2 (ja) | 2003-05-23 | 2003-05-23 | 自動変速機の制御装置および制御方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7359784B2 (ja) |
JP (1) | JP4127118B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200055210A (ko) | 2018-11-12 | 2020-05-21 | 현대자동차주식회사 | 차량 변속 제어 장치 및 방법 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006039153A1 (de) * | 2006-08-21 | 2008-03-27 | Siemens Ag | Verfahren und Vorrichtung zum Ermitteln einer aktuellen Fahrzeuglängsgeschwindigkeit |
US8504258B2 (en) * | 2006-11-20 | 2013-08-06 | GM Global Technology Operations LLC | GPS altitude data for transmission control systems and methods |
US7908069B2 (en) * | 2006-12-22 | 2011-03-15 | Schaeffler Technologies Gmbh & Co. Kg | Method of operating a clutch during a vehicle launch |
JP2009127817A (ja) * | 2007-11-27 | 2009-06-11 | Fuji Heavy Ind Ltd | 自動変速機のニュートラル制御装置 |
DE602008006660D1 (de) * | 2008-02-01 | 2011-06-16 | Fiat Group Automobiles Spa | Verfahren zum Steuern der Aufnahme bergauf für ein Motorfahrzeug, das mit einem automatischen oder Robotergetriebe ausgestattet ist |
JP4720870B2 (ja) * | 2008-08-01 | 2011-07-13 | トヨタ自動車株式会社 | 機関用燃料診断装置及び同装置を備える自動変速機の制御装置 |
US8301349B2 (en) * | 2009-04-03 | 2012-10-30 | Zf Friedrichshafen Ag | Use of gradient road resistance strategies |
US8630779B2 (en) | 2010-04-09 | 2014-01-14 | Navteq B.V. | Method and system for vehicle ESC system using map data |
JP5080627B2 (ja) * | 2010-09-30 | 2012-11-21 | ジヤトコ株式会社 | 無段変速機及び変速制御方法 |
KR101881873B1 (ko) * | 2011-05-31 | 2018-07-25 | 콘티넨탈 오토모티브 시스템 주식회사 | 차량의 주행 도로 경사도 학습 보정 장치 및 방법 |
CN102425657A (zh) * | 2011-10-25 | 2012-04-25 | 北京理工大学 | 一种电动汽车上坡amt系统换挡综合控制方法 |
CN102619971A (zh) * | 2012-04-11 | 2012-08-01 | 北京理工大学 | 一种配置amt系统的电动汽车上坡行驶换挡综合控制方法 |
US10570839B2 (en) * | 2012-11-29 | 2020-02-25 | Ford Global Technologies, Llc | System and method for improving vehicle performance |
CN103527768B (zh) * | 2013-11-01 | 2015-12-30 | 北京理工大学 | 一种基于重型amt车辆道路负载估计的档位决策方法 |
KR101509988B1 (ko) * | 2013-11-26 | 2015-04-07 | 현대자동차주식회사 | 차량용 사륜 구동 제어방법 |
GB2527100B (en) * | 2014-06-12 | 2017-11-08 | Jaguar Land Rover Ltd | Hill ascent method |
GB2527510B (en) * | 2014-06-23 | 2016-12-14 | Jaguar Land Rover Ltd | Launch speed ratio selection in an automatic transmission |
KR102537877B1 (ko) * | 2018-11-01 | 2023-05-30 | 현대자동차주식회사 | 하이브리드 자동차 및 그를 위한 주행 제어 방법 |
CN110159743B (zh) * | 2019-04-29 | 2020-11-10 | 东风商用车有限公司 | 一种重型车amt发动机与离合器自适应协调控制方法 |
CN112797155B (zh) * | 2021-01-08 | 2022-05-17 | 东风汽车股份有限公司 | 一种电动汽车自动变速箱换挡控制方法 |
CN114909280B (zh) * | 2022-04-07 | 2024-05-17 | 潍柴动力股份有限公司 | 基于多源信息反馈优化的液压泵控制方法及系统 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62246650A (ja) * | 1986-04-18 | 1987-10-27 | Fuji Heavy Ind Ltd | エンジンブレ−キ制御装置 |
JP3165414B2 (ja) * | 1987-10-30 | 2001-05-14 | マツダ株式会社 | 自動変速機の制御装置 |
JP2817937B2 (ja) * | 1989-03-13 | 1998-10-30 | 株式会社エクセディ | 自動変速機の制御装置 |
JP2689640B2 (ja) * | 1989-09-11 | 1997-12-10 | トヨタ自動車株式会社 | 自動変速機の変速制御装置 |
JP2981477B2 (ja) | 1991-09-14 | 1999-11-22 | 本田技研工業株式会社 | 車両用自動変速機の制御装置 |
US5489247A (en) | 1992-07-06 | 1996-02-06 | Eaton Corporation | Adaptive shift control method/system for modifying engine delay rate or vehicle coast deceleration during upshifts |
JPH0694116A (ja) * | 1992-09-08 | 1994-04-05 | Hitachi Ltd | 自動変速制御装置 |
JP2000322695A (ja) * | 1993-03-17 | 2000-11-24 | Denso Corp | 車両制御装置 |
JP3122920B2 (ja) | 1993-07-20 | 2001-01-09 | 三菱電機株式会社 | 降坂路ダウンシフト制御付き自動変速機 |
JPH0763256A (ja) * | 1993-08-26 | 1995-03-07 | Mitsubishi Motors Corp | 車両用自動変速機の変速制御装置 |
JP2959937B2 (ja) * | 1993-08-31 | 1999-10-06 | 本田技研工業株式会社 | 車両用自動変速機の制御装置 |
JP3203976B2 (ja) * | 1994-09-05 | 2001-09-04 | 日産自動車株式会社 | 車両用駆動力制御装置 |
JP3396098B2 (ja) * | 1994-11-10 | 2003-04-14 | ジヤトコ株式会社 | 走行状態検出装置、ならびに自動変速機の制御装置、ならびにエンジンの制御装置 |
JP3540398B2 (ja) * | 1994-11-14 | 2004-07-07 | ジヤトコ株式会社 | 自動変速機の制御装置 |
JPH08291856A (ja) * | 1995-04-20 | 1996-11-05 | Aisin Aw Co Ltd | 自動変速機の制御装置 |
JP3639035B2 (ja) * | 1996-04-10 | 2005-04-13 | 株式会社日立製作所 | 車両の走行抵抗検出装置及び当該装置を用いた車両用自動変速機の変速制御装置 |
JPH1038067A (ja) * | 1996-07-18 | 1998-02-13 | Toyota Motor Corp | 車両の制御装置 |
JP3768296B2 (ja) * | 1996-08-05 | 2006-04-19 | 三菱自動車工業株式会社 | 筒内噴射型火花点火式内燃エンジンの制御装置 |
JPH10213220A (ja) * | 1997-01-28 | 1998-08-11 | Unisia Jecs Corp | 車両用自動変速機の変速制御装置 |
JP3688463B2 (ja) * | 1998-04-28 | 2005-08-31 | アイシン・エィ・ダブリュ株式会社 | 車両制御装置及びそのプログラムを記録した記録媒体 |
JP3737882B2 (ja) * | 1998-05-11 | 2006-01-25 | トヨタ自動車株式会社 | 車両の制御装置 |
JPH11325234A (ja) * | 1998-05-19 | 1999-11-26 | Toyota Motor Corp | 車両の制御装置 |
JP4195741B2 (ja) | 1998-08-26 | 2008-12-10 | 本田技研工業株式会社 | 車両の走行制御方法 |
JP2000088091A (ja) * | 1998-09-17 | 2000-03-28 | Mazda Motor Corp | 自動変速機の制御装置 |
JP2000213640A (ja) * | 1999-01-28 | 2000-08-02 | Mazda Motor Corp | 自動変速機の制御装置 |
DE60016500T2 (de) * | 1999-05-20 | 2006-01-05 | Nissan Motor Co., Ltd., Yokohama | Abstandsbezogenes Fahrgeschwindigkeitsregelsystem |
JP3409738B2 (ja) * | 1999-05-20 | 2003-05-26 | 日産自動車株式会社 | 先行車追従制御装置 |
DE50013434D1 (de) * | 1999-08-20 | 2006-10-19 | Continental Teves Ag & Co Ohg | Verfahren zur erkennung einer bergauf- oder bergabfahrt eines kraftfahrzeuges |
JP4257019B2 (ja) * | 2000-05-25 | 2009-04-22 | 本田技研工業株式会社 | 車両用自動変速機の制御装置 |
JP3458830B2 (ja) * | 2000-07-21 | 2003-10-20 | 日産自動車株式会社 | 変速比無限大無段変速機の制御装置 |
JP2002130467A (ja) * | 2000-10-27 | 2002-05-09 | Nissan Motor Co Ltd | 自動変速機の自動エンジンブレーキ制御装置 |
DE10158258B4 (de) * | 2000-11-30 | 2012-08-23 | Hyundai Motor Co. | Schaltregelungsverfahren für ein Automatikgetriebe eines Fahrzeugs |
JP4609689B2 (ja) * | 2001-08-07 | 2011-01-12 | マツダ株式会社 | 画像データ提供用サーバ、画像データ提供方法、及び、画像データ提供用プログラム |
-
2003
- 2003-05-23 JP JP2003146481A patent/JP4127118B2/ja not_active Expired - Fee Related
-
2004
- 2004-05-19 US US10/847,919 patent/US7359784B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200055210A (ko) | 2018-11-12 | 2020-05-21 | 현대자동차주식회사 | 차량 변속 제어 장치 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
US7359784B2 (en) | 2008-04-15 |
US20040249542A1 (en) | 2004-12-09 |
JP2004347062A (ja) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4127118B2 (ja) | 自動変速機の制御装置および制御方法 | |
US6988976B2 (en) | Control of transmission shift points for hybrid vehicle having primary and secondary power sources | |
JP4240089B2 (ja) | 自動変速機の制御装置 | |
US20070162210A1 (en) | Controller of driver for vehicle | |
JP4289276B2 (ja) | 車両の制御装置 | |
JPH0914431A (ja) | 自動変速機の制御装置 | |
JP5620949B2 (ja) | 自動変速機の制御装置 | |
US20040158382A1 (en) | System and method of controlling automatic transmission | |
JP5267493B2 (ja) | 車両用ロックアップクラッチの制御装置 | |
US7809485B2 (en) | Shift control apparatus and method of continuously variable transmission | |
EP1158220B1 (en) | Road surface gradient detecting apparatus | |
JP2008045637A (ja) | 車両用自動変速機の制御装置 | |
JP5225322B2 (ja) | 自動変速機の制御装置及び制御方法 | |
JP2011149524A (ja) | 自動変速機の制御装置 | |
JP5194753B2 (ja) | 車両用変速機の変速制御装置 | |
JP2006342825A (ja) | 自動変速機の制御装置 | |
JP5789839B2 (ja) | ロックアップクラッチの制御装置 | |
JP3104520B2 (ja) | 車両用自動変速機の変速制御装置 | |
JPH06341332A (ja) | 自動車急発進時の駆動力制御装置 | |
JP2009257364A (ja) | 車両の制御装置および制御方法 | |
JP4075671B2 (ja) | 車両の制御装置 | |
JP3627448B2 (ja) | 車両用道路勾配判定装置 | |
JP4001003B2 (ja) | 車両の制御装置 | |
JP5040823B2 (ja) | ロックアップクラッチ制御装置 | |
JP3699821B2 (ja) | 自動車の制御装置および制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080422 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080505 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4127118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |