JP4113495B2 - マルチビーム微細機械加工システム及び方法 - Google Patents

マルチビーム微細機械加工システム及び方法 Download PDF

Info

Publication number
JP4113495B2
JP4113495B2 JP2003504516A JP2003504516A JP4113495B2 JP 4113495 B2 JP4113495 B2 JP 4113495B2 JP 2003504516 A JP2003504516 A JP 2003504516A JP 2003504516 A JP2003504516 A JP 2003504516A JP 4113495 B2 JP4113495 B2 JP 4113495B2
Authority
JP
Japan
Prior art keywords
beams
acoustic wave
laser
segment
deflectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003504516A
Other languages
English (en)
Other versions
JP2004533724A5 (ja
JP2004533724A (ja
Inventor
リップマン、エリエザー
コトラー、ズビ
グロス、エイブラハム
Original Assignee
オーボテック リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーボテック リミテッド filed Critical オーボテック リミテッド
Publication of JP2004533724A publication Critical patent/JP2004533724A/ja
Publication of JP2004533724A5 publication Critical patent/JP2004533724A5/ja
Application granted granted Critical
Publication of JP4113495B2 publication Critical patent/JP4113495B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Description

本発明は、マルチレーザビームポジショニング及びエネルギ供給システムに関し、特に、電気回路基板に孔を形成するために使用されるレーザ微細機械加工システムに関する。
様々なレーザ微細機械加工装置が、基板にパターンを微細機械加工するために使用される。かかるシステムの多くは、電気回路基板の製造に使用される。電気回路基板の製造は、絶縁性、大抵は誘電体基板に導電性ラインやパッドなどの導電性素子を積層する工程を有する。かかる基板の複数が、一緒に接着されて電気回路基板を形成する。電気回路基板の様々な層間を電気的に相互接続するために、バイアと呼ばれる孔が、選択された基板層を貫通して穿設され、導体でメッキされる。電気回路基板は、大抵、数万から数十万のバイアを含む。
本発明の目的は、電気回路基板にバイアを形成するために特に有用な改良されたレーザ微細機械加工装置を提供することである。
本発明の他の目的は、複数のレーザビームの配置を同時に且つ互いに独立に行うように動作する改良されたレーザ微細機械加工装置を提供することである。
本発明のさらなる目的は、複数のレーザビームの配置を同時に且つ互いに独立に行うように動作するレーザビームポジショニングシステムを使用するレーザ微細機械加工装置を提供することである。
本発明のさらなる他の目的は、複数のパルスレーザビームの配置をレーザエネルギの損失を抑制しつつ互いに独立に行うレーザ微細機械加工装置を提供することである。
本発明のさらなる他の目的は、固体Qスイッチレーザなどのパルスレーザによって供給されるエネルギを有効に利用して電気回路基板にバイアを形成するレーザ微細機械加工装置を提供することである。
本発明のさらなる他の目的は、入力レーザビームを基板を微細機械加工するために使用される少なくとも1つの出力ビームへと分割することによって、レーザビームのエネルギ特性を制御するレーザ微細機械加工装置を提供することである。少なくとも1つの出力ビームは、単一のビーム、または複数のビームである。
本発明のさらなる他の目的は、入射レーザビームを選択可能な個数の出力ビームに分割するように動作するダイナミックビームスプリッタを提供することである。
本発明のさらなる他の目的は、入力レーザビームを、ほぼ均一なエネルギ特性を有する複数のサブビームへと選択可能に分割するように動作するダイナミックビームスプリッタを提供することである。
本発明のさらなる他の目的は、エネルギを基板上の選択可能な位置へと供給するために適した向きに予め配置された選択的に位置を変更可能なビーム反射器に、パルスビームを選択可能に偏向するシステムを提供することである。ビームの偏向は、レーザビームのパルスの反復と少なくとも同程度に速いデューティサイクルで行われる。
本発明のさらなる他の目的は、入力レーザビームを、各々が選択可能な方向に偏向される複数の出力レーザビームへと分割するように動作するダイナミックビームスプリッタを提供することである。本発明の実施の形態において、出力レーザビームの各々は、ビームスプリッタの異なる空間領域へと出射される。
本発明のさらなる他の目的は、共通面内を伝搬する複数のレーザビームが入力されて、レーザビームの各々を、共通面の外側にある2次元アレイ内の位置へと供給するレーザビーム供給器を提供することである。
本発明の実施の形態の概念により、レーザビームポジショニングシステムは、例えば、基板を微細機械加工するためには、有効であり、選択可能な方向に力学的に偏向される複数のサブビームを提供するように動作する。各サブビームは、互いに独立して位置を調整可能な偏向器のアレイに位置する偏向器に入射するように偏向され、そこで、サブビームは、偏向器によって偏向されて、基板上の選択可能な位置に入射する。本発明の実施の形態において、複数のサブビームは、力学的に制御されるビームスプリッタによって単一の入力ビームから生成される。
本発明の実施の形態の概念において、エネルギを基板に供給するシステムは、力学的に選択可能な方向に伝搬する複数の放射ビームを生成する力学的に方向を調整可能な放射エネルギ源を含む。複数のビーム操作素子において互いに独立して配置を調整可能なビーム操作素子は、ビームが入力されて、そのビームを基板上の選択可能な位置へと案内するように動作する。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、放射ビームを生成する少なくとも1つの放射エネルギ源と、各々が選択可能な方向に伝搬する複数のサブビームへとビームを分割するように動作するビームスプリッタと、互いに独立して配置を調整可能な複数のビーム操作素子とを有する。いくつかのビーム操作素子は、複数のサブビームが入力され、そのビームを基板の選択可能な場所へと案内する。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、放射ビームを形成する少なくとも1つの放射エネルギ源と、放射エネルギ源と基板との間に配置される力学的に変更可能なビームスプリッタとを有する。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、放射ビームを生成する少なくとも1つの放射エネルギ源と、放射エネルギ源と基板との間に配置されたオプトエレクトロニクスマルチビームジェネレータとを有する。マルチビームジェネレータは、ビームから少なくとも2つのサブビームを生成すると共に、各サブビームのエネルギ密度特性を選択するように動作する。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、光軸に沿って放射ビームパルスを生成する少なくとも1つのパルス放射エネルギ源と、放射エネルギ源と基板との間に配置されたマルチビーム選択可能且つ角度調整可能出力ビームスプリッタとを有する。パルスビームは、パルス間隔によって分離されるマルチパルスを含む。選択可能且つ角度調整可能出力ビームスプリッタは、光軸に対して選択された角度で複数のサブビームを出力するように動作する。角度は、パルス間隔よりも短い時間量で変更可能である。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、パルス放射ビームを形成する少なくとも1つのパルス放射エネルギ源と、放射エネルギ源と基板との間に配置されたビームスプリッタと、選択可能な空間配置調整可能な複数の偏向器とを有する。このビームパルスは、パルス間隔によって分離された複数のパルスを含む。ビームスプリッタは、複数のサブビームを、変更可能且つ選択可能な角度で出力するように動作する。偏向器は、パルス間隔よりも大きな時間量で3次元の配置を調整するように動作する。いくつかの空間配向偏向器は、サブビームが入力されるように、また、サブビームを基板に案内するように配置されている。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、放射ビームを生成する少なくとも1つの放射エネルギ源と、ビームを選択可能な本数の出力ビームへと分割するように動作するビームスプリッタと、出力ビームが入力されると共に出力ビームを案内して基板の一部を微細機械加工するビーム操作素子とを有する。この出力ビームは、出力ビームの選択可能な本数に対して機能的に関係したエネルギ特性を有する。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、1つの平面内を伝搬する複数の放射ビームを生成する少なくとも1つの放射エネルギ源と、複数のビームが入力すると共に、少なくともいくつかのビームを平面の外の所定位置へと偏向させる複数の偏向器とを有する。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、放射ビームを生成する少なくとも1つの放射エネルギ源と、ビームが入力されると共に1つの平面内を伝搬する複数のサブビームを出力するように動作するビームスプリッタと、複数のサブビームが入力すると共に、少なくともいくつかのサブビームを平面の外の所定位置へと偏向させる複数の偏向器とを有する。
本発明の実施の形態の他の概念において、エネルギを基板に供給する方法は、第1の複数のビームを第1の複数の位置へと案内する第1の期間の間に、第1の複数のビームを第1の複数の選択可能に配置調整可能な偏光器へと案内する行程と、第1の期間の間に、第2の複数の選択自在に配置可能な偏光器の位置を選択的に調整する行程と、第2の期間の間に、第1の複数の放射ビームを第2の複数の選択可能に配置調整可能な偏光器へと案内して第1の複数のビームを第2の複数の位置へと案内する行程とを有する。
本発明の実施の形態の他の概念において、エネルギを基板に供給するシステムは、少なくとも1つの放射ビームを生成する少なくとも1つの放射ビーム源と、少なくとも1つのビームが入力されて、ビームを基板上で少なくとも部分的に重畳する少なくとも第1及び第2の位置へ供給する少なくとも第1及び第2の偏光器とを有する。
本発明の実施の形態の他の概念において、レーザ微細機械加工装置は、複数の放射ビームを精製する少なくとも1つの放射ビーム源と、微細機械加工すべき基板と少なくとも1つの放射ビーム源との間に配置された互いに独立に配置が調整可能な複数の偏光器と、少なくとも1つの放射ビーム源と基板との間に配置されたフォーカシングレンズとを有する。互いに独立に配置が調整可能な複数の偏光器は、少なくとも1つの放射ビームを基板上の選択可能な位置へと独立に供給するように動作する。フォーカシングレンズは、複数の放射ビームが入力され、同時にビームを基板上の選択可能な位置へと集束させるように動作する。
本発明の実施の形態の他の概念において、音響光学装置は、光軸に沿って放射ビームが入力される光学素子と、光学素子と関係するトランスデューサとを有する。トランスデューサ波、同時に異なる音響周波数を有する音響波を光学素子の内部に形成する。光学素子は、光軸に対して異なる角度で複数のサブビームを出力するように動作する。
本発明の実施の形態の他の概念において、エネルギを基板へ供給する方法は、レーザビームをビームスプリッタ装置に供給する行程と、レーザビームを第1の個数の出力ビームに分割すると共に第1の個数の出力ビームを案内して多層基板の第1層に少なくとも1つの開口を形成する工程と、次に、レーザビームを第2の個数の出力ビームに分割すると共に第2の本数の出力ビームのいくつかを案内して多層基板の第2の層の選択部分を少なくとも1つの開口を介して除去する工程とを含む。
本発明のさらなる特徴及び概念は、以下に記載するものの様々な組み合わせを含む。
放射エネルギ源は、複数のビームを出力する放射エネルギパルス源からなる。複数のビームの各々は、放射エネルギパルスによって画定される。
放射エネルギパルス源は、少なくとも1つのQスイッチレーザからなる。
力学的に向きを調整可能な放射エネルギ源は、放射エネルギのビームが入力すると共にビームを選択可能な本数のサブビームに分割するように動作する。
力学的配向可能な放射エネルギ源は、放射エネルギビームが入力されるとともにビームを複数のサブビームへと分割し、サブビームの各々を選択可能な方向へと案内するように動作するビームスプリッタを有する。
ビームスプリッタは、動作が制御信号によって支配される音響光学偏向器を有する。
ビームスプリッタは、制御信号によって制御される音響波ジェネレータを有する音響光学偏向器を有する。この音響光学偏向器は、音響光学偏向器によって出力されるサブビームの本数を決定する音響波を生成する。
ビームスプリッタは、制御信号によって制御される音響波ジェネレータを有する音響光学偏向器を有する。この音響光学偏向器は、サブビームの選択可能な本数を決定する音響波を生成する。
音響光学偏向器における音響波は、複数の空間分離音響波セグメントを含む。空間分離音響波セグメントの各々は、異なる周波数を有する制御信号の一部によって画定される。
音響波での空間分離音響波セグメントの各々は、対応するサブビームの対応する空間的に異なる方向を決定する。この方向は、音響波セグメントに対応する制御信号の一部の周波数の関数である。
空間分離音響波セグメントの個数は、対応するサブビームの本数を決定する。
力学的に向きを調整可能な放射エネルギ源は、放射エネルギビームが入力されると共にビームを選択可能な本数のサブビームに分割する力学的に構成調整可能なビームスプリッタを有する。力学的に構成調整可能なビームスプリッタは、構成の調整期間内にサブビームの本数とその方向との少なくとも1つを変更可能である。放射エネルギのパルスは、構成調整期間よりも長いパルス間隔によって互いに分離されている。
互いに独立に配置調整可能な複数のビーム操作素子は、向きを変更している時間内にサブビームの方向を変更することができる。放射エネルギパルスは、向きを変更する時間よりも短いパルス間隔によって互いに分離されている。
ビーム操作素子の各々は、少なくとも1つの選択的に傾斜可能なアクチュエータに装着された反射器を含む。アクチュエータは、圧電装置や、MEM装置からなる。
ビーム操作素子の個数は、複数のサブビームに含まれるサブビームの個数を超えている。複数のサブビームの少なくともいくつかは、複数のビーム操作素子のうちの少なくともいくつかに案内され、一方、他の複数のビーム操作素子は、配置が調整されている。
選択可能な本数のサブビームは、全て1つの平面内にあり、ビーム操作素子の2次元アレイは、平面の外側にある。少なくとも1つの力学的に向きを調整可能な放射エネルギ源と、複数の互いに独立に配置が調整可能なビーム操作素子との間に必要に応じて挿入された固定偏光器のアレイは、平面内にあるビームを平面の外側の位置に向けて案内する。
本発明を、添付図面を参照しながら、以下の詳細な記載に基づいて説明する。
図1A及び図1Bを参照する。図1Aは、本発明の好ましい実施例により構成され動作する、電気回路を製造するシステム及び機能を説明する部分構成図である。図1Bは、図1Aのシステム及び機能にて使用されるレーザによって出力されるレーザパルスのタイミンググラフである。図1Aのシステムは、レーザ微細機械加工装置10を含み、さらに、エネルギを基板に供給する機能も含む。
装置10は、プリント回路基板の製造中に、プリント回路基板14にバイア12などの孔を微細機械加工する場合に特に有効である。装置10は、フラットパネルディスプレイでのアモルファスシリコンの選択アニールや電気回路の半田マスクの除去を含む、微細機械加工を使用する他の適宜の製造プロセスにおいても使用される。なお、本発明は、上記用途に限定されない。従って、本発明は、プリント回路基板を微細機械加工する内容で説明されているが、本発明を、この用途のみに限定すべきではない。
以下に記載するシステム及び方法を使用した微細機械加工に適した基板14などのプリント回路基板は、大抵、1つ以上の電気回路層を有する例えばエポキシガラスなどの誘電体基板を含む。そして、各電気回路層は、その一面に導電パターン16が選択的に形成されている。基板は、単一の層で形成されたり、あるは、複数の基板層が互いに接着されて形成されたラミネートシートで形成される。さらに、基板14の最外層は、図1Aに示すように、その上に導電パターン16が形成されている。或いは、基板14の最外層は、例えば、符号17にて示す領域によって示されるように、基板14の外面の一部を連続して実質的にカバーする金属箔からなる。
本発明の実施の形態において、図1Aに示すように、レーザ微細機械加工装置10は、パルスレーザビーム22を出力するパルスレーザ20を含む。パルスレーザビーム22は、レーザパルスグラフ26(図1B)のピーク24にて示すように、光パルスのストリームによって規定される。本発明の実施の形態において、パルスレーザ20は、周波数トリプル(frequency tripled)QスイッチYAGレーザであり、10〜50KHz、好ましくは10〜20KHzのパルス反復速度でUVパルスレーザビーム22を生成する。適切なQスイッチレーザは、例えば、アメリカ、カリフォルニア州のスペクトラ・フィジックス、ライトウエーブ・エレクトロニクス・アンド・コヒーレントから現在市販されている。プリント回路基板を製造するために使用される多くの材料と適切に相互作用する他の市販のパルスレーザを使用することも可能である。
ガラスを含む基板の微細機械加工に特に適したUVパルスレーザビームを出力するパルスレーザ20としての使用に適した他のレーザは、米国仮特許出願60/362,084の利益を主張して同時に出願された本出願人の同時係属米国特許出願 に記載されている。なお、この出願の開示は、本発明に取り込まれている。
図1Aに示す実施の形態は、レーザ微細機械加工装置10と、第1のレンズ28に入射するパルスレーザビーム22とを、示している。レンズ28は、好ましくは、音響光学偏向器(AOD)30などの第1の可変偏向器アセンブリにおける像面(図示せず)でビーム22を平坦にするように作用するシリンドリカルレンズである。好ましくは、AOD30は、トランスデューサ素子32と、クオーツや適宜の結晶材料から形成された透過結晶部材34とを含む。
トランスデューサ32は、制御信号36が入力されて、AOD30の透過結晶部材34を通過して伝搬する音響波38を生成する。制御信号36は、好ましくはRF変調器40によって生成されるRF信号である。RF変調器40は、好ましくは、ダイレクトデジタルシンセサイザ(DDS)42や、電圧制御オッシレータ(VCO)などの適宜の信号ジェネレータによって駆動される。システムコントローラ44は、DDS42及びレーザドライバ47と連動して、パルスレーザビーム22を規定するレーザパルス24と制御信号36の生成との間を調整するために設けられている。故に、基板14の一部は、製造される電気回路の所望の設計パターンに応じて、例えば、切断によって除去される。かかる設計パターンは、例えば、CAMデータファイル46や、製造される電気回路の適宜のコンピュータファイル表示によって提供される。
当該分野にて周知のように、結晶部材34の内部に音響波38が存在すると、ビーム22が結晶部材34に入射したとき、ビーム22は、角度θで偏向される。θは、次式による波動26の周波数fの関数になる。
θ =(Δf ×λ)/v
ここで、
Δf = f− f
λ = レーザビーム22の波長
= AOD30の透過結晶部材34の内部での音速
nは、以下に記載するように、レーザサブビームの指数を表す整数である。
本発明の実施の形態において、AOD30は、ダイナミックビームスプリッタとして機能し、ビーム22が分割されるセグメントの数とビームの偏向角度との少なくとも一方を制御する。信号36は、音響波38を結晶部材34を一定の周波数で伝搬させるように、選択可能に生成させてもよい。または、信号36は、音響波38を結晶部材34の内部を様々な周波数で伝搬させるように、選択可能に生成させてもよい。
ダイナミックビームスプリッタとしてのAOD30の構成、機能、及び動作の様々な概念を、図5〜7を参照して以下に記載する。他のタイプのAODの構成及び動作は、ダイナミックビームスプリッタ及び偏向器として機能するように構成され配置されて、「ダイナミックマルチパス・音響光学ビームスプリッタ及び偏向器」と題されて同時に本発明と出願された同時係属の米国仮出願 に記載されている。
本発明の実施の形態において、信号36によって、音響波38は、様々な周波数でAOD30の無い部に生成され、故に、音響波38がレーザパルス24と相互作用する時、音響波38は、少なくとも2つの異なる周波数を有する。音響波38を1つ以上の周波数で生成することによって、ビーム22は、1つ以上のセグメントへと分割される。大抵、レーザパルスがAOD30に入射する時に、様々な周波数が、AOD30の内部で空間的に分離される。または、異なる周波数は、合成波形に重畳される。
このように、音響波38が非均一な波形で結晶部材32を伝搬してレーザビーム22と相互作用する時、レーザビーム22は、複数のビームセグメント50、すなわちサブビームへとセグメント化される。各セグメントは、角度θで偏向される。θは、ピーク24(図1B)にて示されるレーザビーム22が結晶部材34に入射する時に、結晶部材34での音響波38の1つの音響波周波数、または複数の音響波周波数の関数になる。
本発明の実施の形態において、AOD30は、レーザビーム22のパルス繰り返し数よりも小さいデューティサイクルで動作する。すなわち、AOD30からの出力部でサブビーム50の個数とその方向との少なくとも一方を変化させるために、レーザパルス24が入射した時に異なる周波数成分を有するようにAOD30での音響波38の構成を変更するために必要な時間は、レーザビーム22での連続パルス24のパルス間隔よりも短い。
各ビームセグメント50は、例えば均一な音響波によって生成された単一のセグメント、または図1に示すような複数のセグメントであり、第2の可変偏向器アセンブリ52に向けて案内される。第2の可変偏向器アセンブリ52は、複数の互いに独立に傾斜可能なビーム操作反射素子54にて形成される。
本発明の実施の形態において、第2の可変偏向器アセンブリ52は、光学MEM装置を有し、或いは、適宜の圧電モータによって傾斜可能なミラーのアレイとして形成され、或いは、ガルバノメータのアレイとして形成され、または、互いに独立して傾斜可能な反射装置の適宜のアレイを有する。図1Aに示す第2の可変偏向器アセンブリ52の構成において、反射素子54の6×6のアレイが設けられている。互いに独立に傾斜可能な反射素子54の適宜の数を使用することもできる。
互いに独立して制御可能なディジタル光スイッチのアレイを形成する適宜の光MEM装置は、アメリカ、ダラスのテキサス・インスツルメントから市販されているディジタル・マイクロミラー装置(DMD(商標))に使用されている技術を使用する。または、反射素子54の適宜のアレイを、MEMS及びMOEMS技術及び応用(Rai−Choudhury編、SPIE出版、2000)において提示されたMignardi等の「ディジタルマイクロミラーデバイス−ディスプレイ目的のマイクロ・オプティカル電気機械装置」に詳細に記載されたDMD(商標)の製造原理により構成することもできる。なお、この文献は、本発明に参照文献として取り込まれている。
反射素子54の各々は、基板14の一部を所望の位置で微細機械加工、穿設、或いは除去するために、反射素子54に入射するビームセグメント50を別々に独立して操作して、目標領域55の選択可能な位置で基板14に入射させる。
図1Aに示すように、反射素子54の操作は、例えば、システムコントローラ44と連動するサーボコントローラ57によって制御され、故に、反射素子54が、製造される電気回路の所望の設計パターンに応じて、ビームセグメント50を基板14の必要な位置に、適切且つ直接に確実に入射させることができる。かかる設計パターンは、例えば、CAMデータファイル46、または製造される電気回路を表す適宜のコンピュータファイルによって提供される。
反射素子54の各々は、反射素子54に入射するビームが、対応するカバレッジ領域内の選択可能な位置に到達するように構成されている。本発明の実施の形態において、カバレッジ領域は、反射素子54の少なくともいくつかに相当し、少なくとも部分的に相互に重複している。
本発明の実施の形態において、第2の可変偏向器アセンブリ52における反射素子54の数は、AOD30によって出力されるビームセグメント50の最大数を超えている。反射素子54は、大抵、レーザビーム22のパルス繰り返し数よりも遅いデューティサイクルで動作する。すなわち、ある反射素子54に入射するビームセグメント50を基板14の新たな位置へと案内するために、この反射素子54の向きを調整するために必要な時間は、レーザビーム22の連続するパルス24間のパルス間隔よりも長い。
反射素子54における冗長性のために、レーザビーム22のあるパルス24に対しては、ビームセグメント50は、反射素子54のいくつかのみに入射し、他のものには入射しない。このように、反射素子54には、サブビーム50が入力しないことがあり、次のレーザパルス24からのサブビーム50の入力に備えて、新しい3次元的配置に調整される。同時に、他の反射素子54は、ビームセグメント50を案内して基板14へ入射させる。
図1Aに示すように、反射ミラー62、フォーカスレンズ63、テレセントリック(telecentric)描画レンズ64が、第2の可変偏向器アセンブリ52と基板14との間に差し込まれて、基板14の表面にビームセグメント50を誘導する。なお、レンズ63,64の光学領域は、互いに異なる方向に伸長する光軸に沿って伝搬するビームセグメント50に対応すべきである。
なお、システム形状及びエンジニアリング設計に応じて、単一の反射ミラー62、非反射ミラー、または多重反射ミラーを使用することもできる。さらに、フォーカスレンズ63及びテレセントリックレンズ64を組み合わせて単一の光学素子にしたり、または、レンズ62、64の各々を、マルチレンズ素子とすることもできる。さらに、システム10は、例えば、大きさが異なる基板14に孔やバイアを形成するために、1つ以上のビームセグメント50の断面のサイズを制御するズームレンズ(図示せず)を有することもできる。または、ズーム光学系を使用して、AODによって様々な径で出力されるビームセグメント50の径を一様にすることもできる。
本発明の実施の形態において、ビームセグメント50が入射レーザビーム22の光軸に対してAOD30によって偏向される角度θは、かなり小さく、10−2ラジアンのオーダである。システムをよりコンパクトにするために、望遠光学素子などのビームアングルエキスパンダを、好ましくは、AOD30の下流に設ける。ビームアングルエキスパンダは、レンズ56によって示され、ビームセグメント50の角度に関する相対的な発散を増加させるように作用する。
AOD30は、大抵、ビームセグメント50の光軸を一平面内に含むように、サブビーム50を偏向させる。図1Aに示すように、第2の可変偏向器アセンブリ52は、ビームセグメント50の光軸の面の外側に位置する2次元アレイを有する。図1Aに示すように、直線から2次元への写像アセンブリ58が、AOD30と第2の可変偏向器アセンブリ52との間に配置されている。写像アセンブリ58は、同一面内を伝搬するビームセグメント50が入力され、ビームセグメント50を、サブビーム50の面の外側の2次元アレイの位置へと案内する。
本発明の実施の形態において、写像アセンブリ58は、各々が適切に3次元の配置が変更される複数の写像セクション60を有する。故に、ある写像セクション60に入射するAOD30によって出力されたビームセグメント50は、反射素子54に向けて案内されて、ここに投影される。
システム10の動作及び機能を、以下に簡単に説明する。音響波は、38であり、レーザビーム22のパルス24と同期して透過結晶部材34内で生成される。故に、所望の音響波構造が、最初のレーザビームパルスが透過結晶部材34に入射する時に透過結晶部材34内に存在する。音響波38は、透過結晶部材34全体に亘って一様な周波数を有し、これによって、単一のビームセグメント50が生成される。または、音響波は、複数の異なる周波数を有することもできる。異なる周波数は、例えば、音響波38の長手方向に沿った別々の空間セグメントに存在し、若干離れた数本のビームセグメント50を生成する。本発明の実施の形態において、AOD30のデューティサイクルは、十分に高速であるために、レーザビーム22の各レーザパルス24を選択可能に且つ別々に分割したり偏向させるために力学的に構成が調整される。本発明の好ましい実施の形態において、ビームスプリッタの構成の調整は、レーザビーム22を規定するレーザパルス24の各々がAOD30に入射する時に、AOD30での互いに異なる構成を有する音響波を形成することによって行われる。
音響波38での様々な周波数によって、各ビームセグメント50は、選択可能な角度θで偏向されて、好ましくは、ビームエキスパンダレンズ56を通過した後で、写像アセンブリ58の選択された写像領域60に入射する。各ビームセグメント50は、第2の可変偏向器アセンブリ52で反射素子54の1つの対応する位置に、適切な写像領域60によって案内される。反射素子54は、ビームセグメント50が基板14の所望の位置を機械加工したり穿設するために、基板14のある位置へさらに案内されるように適切に傾斜されている。
本発明の実施の形態において、AOD30は、レーザビーム22のパルス繰り返し数よりも早いデューティサイクルで動作するが、AOD30が行う偏向は、相対的に小さな偏向角度でビームセグメント50を偏向するように、相対的に制限されている。ビームセグメント50は、全て同一平面内に位置する。
逆に、第2の可変偏向器アセンブリ52において各反射素子54の配置を調整するために必要な時間は、レーザビーム22を規定する連続するパルスのパルス間隔よりも大きい。しかしながら、反射素子54の各々は、相対的に大きな角度範囲で、好ましくは、少なくとも2次元で傾動斜されるので、反射素子54に入射するレーザサブビーム50は、比較的広い空間領域をカバーするように案内される。
本発明の実施の形態において、反射素子54の各々は、適切に傾斜可能であり、故に、隣接する反射素子54は、ビームセグメント50を誘導して基板14の表面にて相互に重複する領域をカバーするように動作する。さらに、第2の可変偏向器アセンブリ52の反射素子54は、ビームセグメント50を、レンズ63,64の視野68内の適宜の位置に案内できる。
視野68内の所望の位置55を機械加工した後、基板14及び装置10は、システム10に対して相対的に移動され、故に、視野68は、基板14の別の部分をカバーする。
本発明の実施の形態において、第2の可変偏向器アセンブリ52における反射素子54の個数は、多くの場合、レーザビーム22がAOD30によって分割されるビームセグメント50の個数を超えている。最初の期間では、ビームセグメント50は、第1の複数の反射素子54に入射するが、他の反射素子54には入射しない。最初の期間は、以下に記載するように、ビームセグメント50が入力しない他の反射素子54の位置を調整するために使用される。
次の第2の期間の間、ビームセグメント50は、AOD30によって偏向されて、前の期間ではビームセグメント50が入力しなかった反射素子54の少なくともいくつかに入射する。第2の期間で使用される反射素子54は、サブビーム50を基板14に偏向させるために位置が適切に調整されている。第2の期間の間、ビームセグメント50が入射しない反射素子の少なくともいくつかは、第1の期間に使用された反射素子を含む場合があるが、次の期間でに使用のために再び位置が調整される。このように、ある期間では使用されない反射素子54の位置を調整するプロセスが、繰り返される。
概して、第1のレーザパルスからのビームセグメント50が選択された反射素子54に入射する時、他の反射器は、次のビームパルスからビームセグメント50が入力されるように同時に位置が調整されている。
単一の反射素子54の位置を調整するのに要する時間は、1から10ミリ秒の間のオーダにあり、20KHzのQスイッチレーザの約20〜200パルスの間に相当する。反射素子54を配置するために使用される時間の長さは、レーザパルス24のデューティサイクルを超えており、安定したビーム配置の精度を保証する。さらに、マルチ反射器54の使用によって、基板14の一部の機械加工に続いて反射器54の位置を調整しつつパルスの損失を抑制する冗長性が確保される。なお、装置10の速度を増加させるとともに、各ビームセグメント50におけるエネルギ量を制御するために、複数のビームセグメント50を、同じ位置で基板14の面に同時に入射させることが必要になることがある。かかる構成において、マルチビームセグメント50は、各々が独立して偏向されて、別々の反射器54に入射する。各反射器54は、サブビーム50を同じ位置で基板14に入射させるように向きが調整されている。
図2を参照する。図2は、図1のシステム及び機能において電気回路を機械加工する装置110の一部を示す詳細な構成図である。一般的に、レーザ機械加工装置110は、基板にエネルギを供給するシステムと考えられている。
本発明の実施の形態において、図1に示すように、レーザ機械加工装置110は、パルスレーザビーム122を出力するパルスレーザ120を含む。パルスレーザビーム122は、光パルスのストリームによって規定される。本発明の実施の形態において、パルスレーザ20は、10〜50KHzの間、好ましくは10〜20KHzの間のパルス繰り返し数で、UVパルス光ビーム122を生成する周波数トリプルQスイッチYAGレーザである。適切なQスイッチレーザは、例えば、アメリカ、カリフォルニア州、スペクトラ・フィジックス、またはライトウエーブ・エレクトロニクス・アンド・コヒーレント社から現在市販されている。プリント回路基板を製造する際に使用される多くの材料と適切に相互作用する、市販されているパルスレーザも使用することができる。
ガラスを含む基板を微細機械加工するのに特に適したUVパルスレーザビームを出力するように動作する、パルスレーザ120としての使用に適したレーザは、米国仮特許出願第60/362,084号の利益を主張して本出願と同時に出願された、同時係属の米国特許出願 号に記載されている。この参照文献は、本出願に取り込まれている。
図2に示す実施の形態は、レーザ微細機械加工装置110の好ましい実施の形態を簡略化して示しており、パルスレーザビーム122が、第1のレンズ128に入射する。第1のレンズ128は、好ましくは、音響光学偏向器(AOD)130などの第1の可変偏向器アセンブリでの像面(図示せず)でビーム12を平らにするように作用するシリンドリカルレンズである。好ましくは、AOD130は、トランスデューサ素子132と、クオーツや適宜の結晶材料からなる透明結晶部材134とを含む。
トランスデューサ素子132は、図1Aに示す制御信号36の相当する制御信号(図示せず)によって制御され、図1Aに記載したものと同様に、AOD130の結晶部材134を通過して伝搬する音響波138を生成するように動作する。音響波138は、結晶部材134内でパルスレーザビーム122と作用して、パルスレーザビーム122のパルスを力学的且つ選択可能に分割し偏向させて、ビームセグメント150、すなわちサブビーム150を出力する。
このように、AOD130は、選択可能な波動構成を有する適切な音響波138を形成することによって、ビーム122が分割されるビームセグメント150の数と分割されたビームセグメントが案内される方向との少なくとも一方を制御するダイナミックビームスプリッタとして機能する。
ダイナミックビームスプリッタとしてのAOD130の構成、機能、及び動作の様々な概念を、図5乃至図7に基づいて以下に説明する。ダイナミックビームスプリッタとして機能するように構成された他のタイプのAODの構成及び動作を、「ダイナミックマルチパス、音響光学ビームスプリッタ及び偏向器」と題されて本出願と同時に出願された同時係属の仮出願第 号に記載する。
本発明の実施の形態において、音響波138は、様々な周波数を有するようにAOD30において形成される。故に、音響波138がパルスレーザビーム122と相互作用を起こす時、音響波138は、少なくとも2つの異なる周波数を有する。複数の周波数を有する音響波138を形成することによって、パルスレーザビーム122は、複数のビームセグメント150に分割される。レーザパルスがAOD130に入射する時、様々な周波数が、AOD130にて空間的に分離される。または、様々な周波数が、重畳されて合成波形になる。
音響波138は、非均一な波形で結晶部材132を伝搬するが、パルスレーザビーム122は、複数のビームセグメント150、すなわちサブビーム150にセグメント化される。各ビームセグメント150は、角度θで偏向される。この角度θは、レーザビーム122のレーザパルスが結晶部材134に入射した時に、結晶部材134内での音響波138の1つの音響波周波数、または複数の音響波周波数の関数になっている。
本発明の実施の形態において、AOD30は、レーザビーム122のパルス繰り返し数よりも短いデューティサイクルで動作する。このように、サブビーム150の個数及びそれぞれの方向の少なくとも一方を変えるために、レーザビーム122でのレーザパルスと相互に作用するときに、AOD130での音響波138を構成し直して周波数の様々な成分を構成するために必要な時間は、レーザビーム122において連続するパルスのパルス間隔よりも短い。
ビームセグメント150の各々は、例えば一様な音響波によって形成された単一のセグメント、或いは図2に示すような複数のセグメントであり、第2の可変偏向器アセンブリ52に配置された第1の選択可能な目標に案内される。第2の可変偏向器アセンブリ52は、複数の互いに独立して傾斜可能なビーム操作反射素子54から形成される。
反射素子154の各々も、図1Aに基づいて記載したように、反射素子154に入射するビームセグメント150を別々に且つ独立して操作して基板14に入射させるように動作する。次に、基板14に入射したビームセグメント150は、基板14の一部を微細機械加工したり、穿設したり、除去したりする。
本発明の実施の形態において、反射素子154の各々は、ポジショナアセンブリ242に実装されたミラー240や適宜の反射素子からなる。ポジショナアセンブリ242は、ベース244と、ミラーサポート246と、少なくとも1つの選択可能アクチュエータ248と、付勢コイル(図示せず)とからなる。なお、図2において、3つのアクチュエータが、星形に組み立てられて示されている。選択可能アクチュエータ248の各々は、例えば圧電アクチュエータであり、独のMarco Systemanalyse und Entwicklung GmbHから市販されているTORQUE−BLOCK(商標)アクチュエータである。選択可能アクチュエータ248は、ミラー240を所望の3次元の配置に選択的に傾斜させるために、矢印249によって示すように、位置を独立に上下動させることができる。これによって、選択可能アクチュエータ248には、ビームセグメント150が入力され、次にビームセグメント150を案内して基板14の表面の所望の位置に入射させることができる。
図2から明らかなように、図1Aを併せて考慮すると、選択可能アクチュエータ248の各々は、サーボコントローラ57に動作時には接続される。サーボコントローラ57は、図1Aに基づいて記載したシステムコントローラ44に、動作時には接続されて制御される。このように、CAMデータファイル46に含まれるプリント回路基板のバイアのパターンなどのパターン設計に応じて、反射素子154の相対的な空間配置や傾斜は、ビーム122を規定するレーザパルスと同期して、さらに、パルスレーザビーム122を力学的に分割して偏向するAOD130の動作を制御する制御信号の生成によって独立に制御される。ビームセグメント150は、所望の反射素子154に偏向される。次に、反射素子154は、適切な向きに調整されているので、ビームセグメント150は、所望の位置で基板14に最終的に入射する。
本発明の実施の形態において、反射素子154の各々は、サブビーム150が基板14の対応するカバレッジ領域内の選択可能な位置に到達するように構成されている。反射素子154の少なくともいくつかに相当するカバレッジ領域は、少なくとも部分的に互いに重なり合っている。
第2の可変偏向器アセンブリ152における反射素子154の個数は、大抵、AOD130によって出力されたビームセグメント150の最大数を超える。図2に示すように、第2の可変偏向器アセンブリは、36個の反射素子を含むが、6本のサブビーム150が、AOD130によって出力されている。反射素子154は、概して、レーザビーム122のパルス繰り返し数よりも小さいデューティサイクルで動作する。このように、反射素子154を機械的に再配置させて、そこに入射するビームセグメント150が基板14での新しい位置に向きを変えるために必要な時間は、レーザビーム122を定義する連続ビーム間のパルス間隔よりも大きい。
ビームセグメント150の各々に対する反射素子154の冗長性のために、レーザビーム122のあるパルスに対しては、ビームセグメント150は、いくつかの反射素子154には入射し、他の反射素子154には入射しないように偏向される。このように、ビームセグメント150が入力しない反射素子170のいくつかが、次のレーザパルス24の入力に備えて、新たな空間配置に位置が変更される。同時に、ビームセグメント150が入力される他の反射素子172は、ビームセグメント150を下流の基板14上に入射させる。
本発明の実施の形態において、入力するビーム122の光軸に対してAOD130によって偏向されるビームセグメント150の角度θは、小さく、10−2ラジアンのオーダである。システムをよりコンパクトにするために、望遠光学素子などのビームアングルエキスパンダが、好ましくはAOD130の下流側に設けられている。ビームアングルエキスパンダは、図面では、レンズ156によって示され、ビームセグメント150の相互角度発散を増加させるように動作する。
AOD130は、概して、ビーム50を偏向するように動作し、故に、ビームセグメント150の光軸は、ほぼ同一面内にある。一方、第2の可変偏向器アセンブリ152は、ビームセグメント150の光軸の面の外側に位置する2次元アレイからなる。
2次元写像アセンブリ180は、AOD130と第2の可変偏向器アセンブリ152との間に挿入される。写像アセンブリ180は、全てが1つの面内を伝搬するビームセグメント150が入力され、ビームセグメント150をサブビーム150の面内の外側に位置する2次元アレイへと案内する。
本発明の実施の形態において、写像アセンブリ180は、複数の光伝達部184からなる支持部材のアレイからなる。光伝達部184を介して、ビームセグメント150は通過でき、複数の反射部186は、そこに入射するビームセグメント150を反射するように動作する。
図2に示すように、反射部186は、各支持部材182から空間的に離れ、好ましくは、反射部186の各々の位置は、支持部材182の間で横方向に互い違いになっている。各反射部186は、対応する反射素子154に投影される。その結果、写像アセンブリ180に入るビームセグメント150の各々は、第1の支持部材187の対応する反射部によって受光され、または、1つ以上の支持部材を通過して、他の支持部材182の1つの反射部186によって受光される。
このように、写像アセンブリ180は、ビームセグメント150を偏向する手段を形成する。ビームセグメント150は、ビーム伝搬の面内にある光軸に沿って伝搬し、伝搬面内の外側に位置する2次元アレイに入射する。AOD130は、選択的にビームセグメント150を偏向して、写像アセンブリ180の支持部材182の1つに形成された反射部186の1つに入射させる。反射部186は、伝搬面内のX軸及びY軸の両方に沿って、互い違いになっている部分で伝搬面と交差するので、ビームセグメント150が選択的にAOD130によって偏向される角度によって、ビームセグメント150が入射する反射部186が決定される。このように、第2の可変偏向器アセンブリ152などにおいて、選択可能な位置の2次元アレイでの位置は、伝搬面の外側にある。
図3は、図2のシステム及び機能の一部の動作をより詳細に説明する構成図である。図3を参照する。レーザパルスタイミンググラフ226におけるレーザパルス224は、それぞれ符号234,236,238によって示されている。レーザ122は、時間が離れているレーザパルス224からなる。制御信号244,246,248が、それぞれレーザパルス234,236,238の下に示されている。制御信号244〜248は、パルス138の生成を制御し、AOD260と連動するトランスデューサ252へと送られることが示されている。AOD260は、図2に示すAOD130に相当する。音響波は、制御信号264〜268に相当し、AOD260に示されている。音響波264は、制御信号244に相当し、音響波266は、制御信号246に相当し、音響波268は、制御信号244に相当する。図示を簡単にするために、AOD260の一部のみを、レーザパルス224の各々に対して示す。
レーザパルス224の出射に相当する時刻において、入射レーザビーム270は、AOD260に入射する。音響波264〜268の各々によって、レーザビーム270は、ビームセグメントへとセグメント化され、符号250によって示されている。ビームセグメントは、各々が、音響波264〜268の対応する周波数に機能的に関連している偏向角度で偏向される。
第1、第2、及び第3の反射素子280,282,284は、それぞれ、図2のビーム操作反射素子154に相当し、AOD260の各々の下方に示されている。各レーザパルス224に相当する時刻に、ビームセグメント250は、偏向されて、反射素子280,282,284の1つに入射する。
図3は、レーザパルス224と、パルス224によって示されるパルス繰り返し数よりも早いデューティサイクルを有するダイナミックビーム偏向器としてのAOD260の動作と、パルス繰り返し数よりも遅いデューティサイクルを有する反射素子280、282、284の動作とのタイミング関係を示す。
上述のように、別の音響波をAOD260へ案内するのに必要な再構成時間は、パルス234のパルス間隔よりも小さい。このように、制御信号244〜248の各波形と、音響波264〜268の各波形とは、それぞれ異なり、故に、レーザパルス224の各々に対してビームセグメント250が選択可能に偏向される。しかしながら、連続して形成された制御信号244、246と、対応して連続して形成された音響波264,266とにより、第1の空間波セグメント290での周波数は変化するが、第2の空間波セグメント292での周波数は変化しない。
パルス234,236の両方に対して、第1ビームセグメント294は、第2の空間波セグメント292に相当し、第3の反射素子284に入射する。反射素子284は、静止状態に保持されて、パルス234,236の各々に対する第1のビームセグメント294が入射する。
第2のビームセグメント296は、音響波264の第1の空間セグメント290によって第1の方向に偏向される。一方、第3のビームセグメント298は、音響波264の第1の空間セグメント290によって別の方向に偏向される。
さらに、パルス234,236に対し、ビームセグメント250は、第1及び第2の偏向素子280、282の何れにも入射せずに、図示せぬ別の偏向素子に案内される。パルス234、236間のパルス間隔は、第1及び第2の反射素子280,282の空間配置を調整するために使用される。
音響波268の新しい波形が、AOD260において形成されて、パルス238でビーム270を選択可能に分割して偏向させる。パルス238の下方に示すように、ビームセグメント250のいずれも、第1の反射素子280にも第3の反射素子284にも入射しない。
第4のビームセグメント300が、偏向素子282に入射する。ビームセグメント300は、第2の空間セグメント292で音響波268の周波数に機能的に関係している方向に偏向される。なお、音響波268の第2の空間セグメント292における周波数は、音響波264、266に対して変化している。第5のビームセグメント302は、第1の空間セグメント290における音響波268の周波数に機能的に関係している方向に偏向される。
上記から、ビーム操作反射素子154などの反射素子280〜284の配置調整の時間は、パルス224のパルス間隔よりも遅い。それでも、ダイナミックビームスプリッタの配置変更所要時間が、パルスのパルス間隔よりも小さいために、余分の反射素子は、パルス間隔よりも長い期間に亘って配置を変更することができる。次に、適切に調整された反射素子は、パルスのパルス間隔よりも短い期間で選択される。
図4は、本発明の実施の形態により電気回路を製造する方法のフローチャート320である。この方法は、誘電体基板を覆う金属箔層を有する多層プリント回路基板にミクロのバイアを形成するプロセスについて記載する。
ここに記載され、電気回路を製造する方法は、複数の放射ビームを生成する少なくとも1つの放射エネルギ源を使用する。そして、各ビームは、力学的に選択可能な方向に伝搬する。ビームは、互いに独立して配置調整可能な複数のビーム操作素子に選択的に案内される。ビーム操作素子のいくつは、ビームが入力されて、このビームを、微細機械加工するプリント回路基板の選択可能な位置へと案内する。
力学的に選択可能な方向に伝搬する複数のビームを生成する適宜の装置が、図1Aに記載され、レーザ微細機械加工装置110が、図2に記載されている。このように、力学的に選択可能な方向に伝搬するビームは、例えば、少なくとも1つのQスイッチレーザによって出力された1つ以上のビームを、少なくとも1つのダイナミックビームスプリッタや偏向装置を通過させることによって生成される。或いは、複数の別々に生成されたビームを、別々に扱ったり、組み合わせて扱うこともできる。
本発明の実施の形態において、力学的偏向装置は、少なくとも1つの金属機械加工ビームセグメントを選択可能に生成するように動作する。本発明の実施の形態において、選択可能なビームスプリット機能を有する別のビームスプリット装置を設けることもできるが、ビームスプリッタ機能は、力学的偏向器に備えられている。金属機械加工ビームセグメントは、例えば、燃焼や切除によって金属箔層の一部を除去するのに適したエネルギ密度を有する。
各金属機械加工ビームセグメントは、力学的に偏向されて、図2の傾動可能な反射素子154などのビーム操作装置に入射する。ビーム操作装置は、適切に配置されているので、機械加工ビームセグメントは、PCB基板の選択可能な位置へと導かれ、そこにおいて、金属箔の一部を除去して下層の誘電体基板を露出させる。
金属機械加工ビームは、最初の位置で金属箔の一部を除去しながら、そのときに使用されていないビーム操作装置は、別の選択可能な位置での金属箔の除去のために適切に位置が調整される。このように、次のパルスは、ダイナミックビーム偏向器によって偏向されて、位置が調整済みのビーム操作装置に入射する。
金属箔が、所望の複数の場所から除去されるまで、金属箔の一部の除去は、選択可能な位置で継続される。
次の動作において、ダイナミック偏向装置は、少なくとも1つの誘電体機械加工ビームセグメントを生成する。このビームセグメントは、金属機械加工ビームセグメントとは異なるエネルギ特性を有する。ビームスプリット機能は、例えば、ダイナミック偏向器や、適切なビームスプリット装置によって提供される。例えば、誘電体加工ビームセグメントは、金属加工ビームセグメントよりもエネルギ密度が低い。誘電体加工ビームセグメントのエネルギ特性は、例えば、燃焼や除去による、誘電体層の一部の除去に適しているが、金属箔の一部の除去には適していない。
本発明の実施の形態において、ビームセグメント50,150の各々のエネルギ密度は、レーザビーム22,122を選択可能な本数のビームセグメント50,150に分割したり、ビームセグメントの数に拘わらず、分割されたビームセグメント150の径を維持することによって、制御される。
各誘電体加工ビームセグメントは、力学的に偏向されて、図2に示す傾動可能な反射素子154などのビーム操作装置に入射する。ビーム操作装置は、適切に配置されているので、誘電体加工ビームセグメントの各々は、金属箔の一部が既に除去されて誘電体層が露出している選択可能な場所に向けて案内され、誘電体の所望の一部が除去される。
誘電体機械加工ビームは、第1のセットの位置で誘電体の一部を除去しつつ、そのとき使用されていないビーム操作装置は、別の選択可能な場所での誘電体の除去のために適切に配置が調整される。このように、次のパルスは、ダイナミックビーム偏向器によって偏向されて、配置の調整が終了しているビーム操作装置に入射する。なお、誘電体を除去するためにエネルギ密度を低下させる必要が有るため、ビーム122は、より多数の誘電体加工ビームへと分割され、その結果、金属箔を除去する場合に比較して、誘電体を除去するためのシステムのスループットが大きくなる。
誘電体が金属箔が既に除去されている全ての場所で除去されるまで、誘電体の除去を、選択可能な場所で継続する。この動作が終了すると、基板は、次の部分の微細機械加工のために配置が変更される。
上記の如く、本発明の実施の形態において、AODは、入射する放射ビームを選択可能な本数のビームセグメントに力学的且つ選択可能に分割するように構成され、動作する。なお、分割されたビームセグメントは、選択可能な方向に力学的に案内される。
図5に、図1及び図2のシステム及び機能のダイナミックビームスプリッタによって生成されるレーザビームの数と角度とが変化する様子を示す。レーザパルスタイミンググラフ426におけるレーザパルス424は、それぞれ符号434,436,438で示す。レーザパルス424は、例えば、図2においてはビーム122であり、時間軸方向に分離している。
制御信号444,446,448は、レーザパルスタイミンググラフ426の上方に示され、それぞれパルス434,436,438に対応する。制御信号444〜448が、AOD460と関連するトランスデューサ452へと供給される様子が示されている。音響波464,466,468は、制御信号444〜448に相当し、AOD460の内部に示されている。音響波464は、制御信号444に相当し、音響波466は、制御信号446に相当し、音響波468は、制御信号448に相当する。
レーザパルス424が発せられた時刻において、入力レーザビーム470は、AOD460に入射する。音響波464〜468によって、それぞれレーザビーム470は、符号450で示す、選択可能な個数のビームセグメントにセグメント化される。ビームセグメント450の各々は、対応する音響波464〜468の一部の周波数に機能的に関係する偏向角度で偏向される。
図5は、レーザパルス424によって示されるパルス繰り返し数よりも小さいデューティサイクルで、入力ビーム470を選択可能な個数のビームセグメント450に分割するように動作するダイナミックビームスプリッタとしてのAOD460の動作とレーザパルス424との間のタイミングの関係を示す。
ほぼ均一な周波数を有する制御信号444は、AOD460において同様に均一な周波数を有する音響波464を生成する。パルス434に関連したビーム470がAOD460に入射する時、単一のビームセグメント480が出力される。なお、ビーム470の一部は、偏向しないことがあるが、これは、簡単に図示するために省略する。
制御信号446は、空間的に異なる6つのセグメント482〜492を有する。各セグメントは、互いにほぼ同一の周波数を有するが、隣のセグメントとは異なる周波数を有する。制御信号446は、AOD460の内部で、空間的に異なる6つのセグメント502,504,506,508,510,512を有する音響波466を生成する。空間的に異なるセグメント502〜512の各々は、それぞれ、ほぼ同一の周波数を有するが、隣のセグメントとは異なる周波数を有する。パルス436に関係したビーム470がAOD460に入射する時、6つの別々のビームセグメント522〜532が出力される。なお、ビーム470の一部が偏向しないことがあるが、これは、図示を簡単にするために省略する。
制御信号448は、空間的に異なる2つのセグメント542,544を有する。各セグメントは、ほぼ一様な周波数を有するが、隣のセグメントとは異なる周波数を有する。制御信号448は、AOD460の内部で、空間的に異なる2つのセグメント562,564を有する音響波468を生成する。空間的に異なるセグメント562,564の各々は、ほぼ一様な音響周波数を有し、隣のセグメントとは異なる音響周波数を有する。パルス438に関係するビーム470が460に入射する時、2つの異なるビームセグメント572,574が出力される。なお、ビーム470の一部は、偏向されないことがあるが、これは、図示を簡単にするために省略する。
図5に示す実施の形態において、レーザビーム470を異なる個数のビームセグメント450に分割すると、各々の幅が異なるビームセグメント450が生じる。かかる実施の形態において、ビームセグメント450の個数の影響を受ける基板14に入射するスポットのサイズを制御して、例えば一様な径を確保するために、AOD460の下流側に適切な光学系を備えることが望ましい。
図6に、図1A及び図2のシステム及び機能においてダイナミックビーム偏向器によって生成されるマルチレーザビームの角度の変化を示す。図6を参照すると、レーザパルスタイミンググラフ626におけるレーザパルス624は、それぞれ符号634,636によって示されている。レーザパルス624は、例えば、図1に示すビーム22と図2に示すビーム122とに相当し、互いに時間軸方向に分離されている。
制御信号644、646を、レーザパルスタイミンググラフ626の上方に示され、それぞれパルス634,636に対応する。制御信号644、646は、図1のAOD30及び図2のAOD130に相当するAOD660に関係するトランスデューサ652に供給される様子が示されている。音響波は、制御信号644,646に相当し、AOD660の内部に示されている。音響波664は制御信号644に相当し、音響波666は制御信号646に相当する。
レーザパルス624の出射に相当する時刻において、入力レーザビーム670は、AOD660に入射する。音響波664、666のそれぞれによって、レーザビーム670は、図5を参照して記載したように、選択可能な個数のビームセグメント650にセグメント化される。ビームセグメント650の各々は、対応する音響波664〜666の部分における周波数に機能面で関係している偏向角度で偏向される。
図6は、パルス624によって表されるパルス繰り返し数よりも小さいデューティサイクルで、入力ビーム670を選択可能な個数のビームセグメント650に分割して、ビームセグメント650を別々の偏向角度で全てを偏向するように動作するダイナミックビームスプリッタとしての、AOD660の動作と、レーザパルス634とのタイミング関係を示す。
制御信号644は、空間的に異なる6つのセグメント682〜692を有する。各セグメント波、ほぼ均一な周波数を有しながらも、隣のセグメントとは異なる周波数を有する。制御信号644は、AOD660の内部で同様に空間的に異なる6つのセグメント702,704,706,708,710,712を有する音響波664を生成する。空間的に異なるセグメント702〜712は、それぞれ、ほぼ均一の音響周波数でありながらも、隣のセグメントとは異なる音響周波数とを有する。パルス634に関係したビーム670がAOD660に入射する時、異なる6つのビームセグメント702〜712が出力される。なお、各セグメント702〜712の各々における周波数は、前のセグメントに対して、累積的に増加し、その結果、ビーム722〜732が偏向される角度は、対応して増加する。
制御信号646は、空間的に異なる6つのセグメント742〜752を有し、各セグメントは、ほぼ均一の周波数を有しながらも、隣のセグメントとは異なる周波数を有する。制御信号646は、空間的に異なる6つのセグメント762,764,766,768,770を有する音響波666をAOD660の内部に生成する。空間的に異なるセグメント762〜772の各々は、ほぼ同一の音響周波数を有しながらも、隣のセグメントとは異なる音響周波数を有する。パルス636に関連したビーム670がAOD660に入射する時、6つの別々のビームセグメント782〜790が出力される。このとき、ビームセグメント782は音響波セグメント762に相当し、ビームセグメント784は音響波セグメント764に相当し、ビームセグメント786は音響波セグメント766に相当し、ビームセグメント788は音響波セグメント768に相当し、ビームセグメント790は音響波セグメント770に相当し、ビームセグメント792は音響波セグメント792に相当する。
各音響波セグメント762〜772の対応する周波数の配置は、規則的に変化しない。従って、ビーム782〜790の幾つかがオーバーラップする。これによって、ビーム782〜790は、選択可能に偏向されて、例えば写像素子60(図1)に入射する。なお、ビーム722〜732に対して、ビーム782〜792に生じる角度の変化は、AOD660の内部での音響波の配置変更によって生じるものである。従って、音響波664から音響波666への音響波の構成の変化は、パルス634と636とのパルス間隔よりも短い期間で行われる。
図7は、例えば、図1A及び図2に示すシステム及び機能において、少なくとも一部が重複している異なる周波数成分を含む制御信号36を変調することによって、ダイナミックビームスプリッタによって生成される少なくとも一部が重複したレーザビームの角度を変える様子を示す。図7を参照する。制御信号844が、図1のAOD30及び図2のAOD130に相当するAOD860に関係するトランスデューサ852へと送られている様子が示されている。音響波864は、制御信号844に相当し、AOD860の内部に示されている。
制御信号844は、それぞれ異なる周波数を有する3つの制御信号(図示せぬ)の相互に重畳している部分に相当する。なお、より多くの制御信号、またはより少ない制御信号を合成しても良い。3つの制御信号の重畳は、図示を簡単にするためだけで選択したものである。
パルスレーザビーム22または122におけるレーザパルスの放出に相当する時刻において、入力レーザビーム870は、AOD860に入射し、3つのビームセグメント880,882,884へと分割される。各ビームセグメント880〜884は、AOD860の内部で音響波864の幅に関係するほぼ一様な幅を有する。各ビームセグメント880,882,884は、音響波864の1つの周波数成分に機能的に関係する角度で偏向され、少なくとも一部が重複する。
図8に、図1A及び図2のシステム及び機能でのダイナミックビームスプリッタによって生成されるマルチレーザビームセグメントの間でエネルギ分布が変化する様子を示す。概して、レーザビームのガウシャンエネルギ分布により、ビームの均一な空間分割により、図2に示すビームセグメント150などのビームセグメントになる。このビームセグメント150は、均一なエネルギ特性を持たない。なお、ビーム整形素子は、ダイナミックビームスプリッタの上流に配置され、非ガウシャン、好ましくはシルクハット型のエネルギ分布を有するビーム22,122などのビームを形成する。本発明の実施の形態において、上記のように、ほぼ均一なエネルギ特性を有するサブビームは、外付けのビーム整形素子を使用せずに形成される。さらに、サブビームのエネルギ特性は、パルスレーザのパルス間隔よりも短い期間で偏向される。
図8において、レーザパルスタイミンググラフ926でのレーザパルス924は、それぞれ符号934,936によって示されている。レーザパルス924は、例えば図2のビーム122を画定し、時間軸方向において相互に分離されている。入力エネルギグラフ940は、ビーム122などのレーザビームの1次元でのガウシャンエネルギ特性を示す。
制御信号944,946は、レーザパルスタイミンググラフ926の上方に示し、それぞれ、パルス934,936に相当する。制御信号944,946は、図1のAOD30及び図2のAOD130に相当するAOD960に関係するトランスデューサ952へと供給されている様子が示されている。音響波は、制御信号944,946に相当し、AOD960の内部に示されている。音響波964は、制御信号944に相当し、音響波966は、制御信号946に相当する。
レーザパルス924の出射に相当する時刻において、入力レーザビーム970は、AOD960に入射する。音響波964,966によって、それぞれ、レーザビーム970は、符号950によって示される選択可能な個数のビームセグメントにセグメント化される。ビームセグメント950の各々は、対応する音響波964,966の部分の異なる周波数に機能的に関係する偏向角度で偏向され、ビームセグメントの幅は、別々の周波数を有する音響波964,966の部分の幅に関係している。
図8から、信号944は、幅が同一ではない6つのセグメントに分割されていることが分かる。その結果、音響波964は、同様に、幅が等しくない6つのセグメントから形成される。さらに、生じたビームセグメント972〜982の各々の幅も、等しくない。
セグメント945の各幅は、力学的に配列されて変更されてビームセグメントを生成する。このビームセグメントは、空間的に異なる幅を有するが、ほぼ均一なエネルギ特性を有する。このように、音響波964の非均一なセグメントへの選択可能な分割によって、出力エネルギグラフ984の下方の領域によって示すような、各ビーム972〜982の選択可能なエネルギ特性を生成する。例えば、ビーム970の力学的分割は、ビーム970の高エネルギ部分の比較的小さい空間領域を使用してビームセグメント976,978を生成し、ビーム970の低エネルギ部分の比較的大きな空間部分を使用して、ビームセグメント972,982を生成し、ビーム970の中間サイズの空間部分を使用してビームセグメント974,980を生成するようなものである。エネルギの均一性をヒストグラム990に示す。
このように、出力ビームセグメントのエネルギ均一性は、制御されて、入力ビーム970のエネルギを減衰させずに、ビームセグメント972〜982の間にエネルギを分配することによって、ほぼ均一になる。さらに、エネルギの均一性は、ビーム970が分割されるビームセグメント984の個数や、各ビームセグメントの偏向の方向とは無関係に制御することができる。本発明の実施の形態において、適切な光学系(図示せぬ)が、ビームセグメント972〜982の各径を調整して制御するためにAOD960の下流に設けられている。なお、ビームセグメント972〜982の各々は、幅が異なるが、ほぼ均一なエネルギ分布を有する。
図8において、ビームセグメント972〜982の間のエネルギ分布は、パルス924間で変更することもできる。このように、パルス936に関係したグラフにおいて、制御信号946のセグメント1005は、ほぼ均一にされる。結果として、音響波966によって生じたビームセグメントの各々の空間の幅は、ほぼ均一である。しかしながら、音響波966及びビーム970の相互作用の結果生じたビームセグメント間でのエネルギ分布は、ヒストグラム1010に示すように均一ではない。
音響波966によって形成されたビームセグメント間でのエネルギ特性の均一性は、例えば、AOD960に外付けされて入力ビーム970のエネルギ分布を成形するように動作するビーム成形素子(図示せぬ)を備えることによって改善される。または、一般に振幅として表される様々なセグメント1015での音響波のパワーを変更しても良い。音響波966のパワーが増加すると、AODでの透過率が増大する。すなわち、より多くのエネルギがAOD960を通過する。このように、ほぼ一様なエネルギ特性を有するサブビーム950、972〜982を形成するために、970の空間部分から形成される比較的高エネルギレベルを有するビームセグメントのエネルギ特性を、音響波966のパワーを減らすことによって減衰させることができる。
図9A及び9Bに、図1及び2のシステム及び機能においてダイナミックビームスプリッタによって生成される径が一様なレーザビームの本数を変える様子を示す。図9A及び9Bに示すように、ビームサイズ調整器1120が設けられて、AOD1130に入射する入力ビーム1170のサイズを選択的に変更する。ビームサイズ調整器は、例えば、ビームエキスパンダや、ズームレンズ、シリンドリカル望遠鏡からなる。
図9A及び9Bに、図1のシステム及び機能においてダイナミックビームスプリッタによって生成される均一な径のレーザビームの個数を変える様子を示す。図9A及び9Bに示すように、サイズ修正ビーム1172が、ビームサイズ修正器1120から出力される。図9Aに示す実施の形態において、サイズ修正ビーム1172は、AOD1130の一部にのみ入射し、故に、AOD1130の動作部を減らす。制御信号1136が供給されて、AOD1130の内部に音響波1138を形成する。AOD1130は、サイズ修正ビーム1172を2つのビームセグメント1150へと選択可能に分割するように動作する。そして、この2つのビームセグメント1150の各々は、例えば標準モジュラサイズを有する。
図9Bに示すように、サイズ修正ビーム1182は、ビームサイズ修正器1120から出力される。図9Bに示す実施の形態において、ビーム1182のサイズは、ビーム1172とは異なり、実質的にビーム1170を修正するのではなく、AOD1130の動作部全体に入射する。制御信号1146が供給されて、AOD1130の内部で音響波1148を形成する。そして、AOD1130は、次に、ビーム1182を6つのビームセグメント1190へ選択可能に分割するように動作する。ビームセグメントの各々は、例えば、ビームセグメント1150のサイズに相当する標準モジュラサイズを有する。
図10A及び図10Bに、本発明の好ましい実施の形態により図9に示すようなダイナミックビームスプリッタによって生成される径が均一なレーザビームの本数を変える様子を示す。部分的に透過性を呈するビームスプリッタ素子1202〜1212のアレイ1200が、カスケードに設けられて、複数の異なるビームセグメントを生成する。そして、この複数のビームセグメントは、ダイナミックビーム偏向器1230に供給される。
各ビームスプリッタ素子の透過率は、アレイにおいて最後のビームスプリッタ素子に対する各ビームスプリッタ素子の位置の関数として決定される。このように、図10A及び図10Bに示すように、第1のビームスプリッタ素子1202は、入力ビームの16.7%を偏向し、第2のビームスプリッタ素子1204は、ここに到達した入力ビームの20%を偏向し、第3のビームスプリッタ素子1206は、ここに到達した入力ビームの25%を偏向し、第4のビームスプリッタ素子1208は、ここに到達した入力ビームの33.3%を偏向し、第5のビームスプリッタ素子1210は、ここに到達した入力ビームの50%を偏向し、第6、すなわち最後のビームスプリッタ素子1212は、ここに到達した入力ビームの100%を偏向する。
図10Aに示すように、全てのビームスプリッタ素子1202〜1212は、線条に配置されて、レーザ入力ビーム1222が入力され、複数の6つの異なるビームセグメント1224は、各々が入力ビーム1222の全エネルギのおよそ16.7%を有する。そして、6つのビームセグメント1224は、出力されて、ダイナミックビーム偏向器1230に入射する。空間的に仕切られた音響波1238が、AOD1230において形成され、ビームセグメント1222の各々を上記のように力学的に偏向するように機能する。
図10Bに示すように、ビームスプリッタ素子1202〜1208は、レーザ入力ビーム1222の光路の外側にあり、故に、ビーム1222は、最初に、ビームスプリッタ素子1210に入射する。各々が入力ビーム1222の全エネルギの約50%を有する2つの異なるビームセグメント1226のみが、出力されて、ダイナミックビーム偏向器1230に入射する。空間的に仕切られた音響波1238が、AOD1230の内部に形成され、ビームセグメント1222の各々を上記のように、力学的に偏向するように機能する。
なお、図5乃至図10Bに基づいた記載から、ダイナミック偏向器は、AODを有し、次の機能のうちの少なくとも1つを実行するように動作する。ずなわち、入力ビームを選択可能な本数の出力ビームに選択可能に分割すること、出力ビームのエネルギ特性を選択すること、出力ビームを選択可能な角度に案内することである。
当業者は、本発明は、ここに示したり記載したことに限定されないことを理解している。むしろ、本発明は、当業者が従来技術ではなく上記記載を読む時に思いつく変形例や変更例を含む。
本発明の好ましい実施の形態により構成されて動作する電気回路を製造するシステム及び機能を説明する構成図である。 図1のシステム及び機能において使用されるレーザによって出力されるレーザパルスのタイミンググラフである。 図1Aのシステム及び機能において電気基板を微細機械加工する装置の一部を詳細に説明する構成図である。 図2のシステム及び機能の一部の動作を詳細に説明する構成図である。 本発明の実施の形態による電気回路を製造する方法を示すフローチャートである。 図1A及び図2のシステム及び機能のダイナミックビームスプリッタによって生成されるレーザビームの本数と角度とを変更した結果を示す図である。 図1A及び図2のシステム及び機能のダイナミックビームスプリッタによって生成されるマルチレーザビームの角度を変更した結果を示す図である。 図1A及び図2のシステム及び機能において少なくとも部分的に周波数成分が重畳している変調制御信号によって生成されるダイナミックビームスプリッタによって生成される少なくとも一部が部分的に重畳しているマルチレーザビームの角度を変えた結果を示す図である。 図1A及び図2のシステム及び機能においてダイナミックビームスプリッタによって生成されるマルチレーザビームの間のエネルギ分布を変更する結果を示す図である。 図1A及び図2のシステム及び機能においてダイナミックビームスプリッタによって生成される径が一様なレーザビームの個数を変更する結果を示す図である。 図1A及び図2のシステム及び機能においてダイナミックビームスプリッタによって生成される径が一様なレーザビームの個数を変更する結果を示す図である。 本発明の好ましい実施の形態により図9A及び図9Bに示すようにダイナミックビームスプリッタによって生成される径が一様なレーザビームの個数を変更する結果を示す図である。 本発明の好ましい実施の形態により図9A及び図9Bに示すようにダイナミックビームスプリッタによって生成される径が一様なレーザビームの個数を変更する結果を示す図である。
符号の説明
10 レーザ微細機械加工装置
14 基板
20 放射エネルギ源
30 ビームスプリッタ
54 ビーム操作素子

Claims (27)

  1. エネルギを基板に供給するシステムであって、
    複数の放射ビームを生成する少なくとも1つの放射エネルギ源と、
    選択的に配置可能な複数の第1の偏向器と、
    選択的に配置可能な複数の第2の偏向器と
    を有し、
    前記複数の放射ビームは、第1の期間の間に、前記第1の偏向器に向けて案内されて前記基板の複数の第1の位置に向けて案内され、
    前記第2の偏向器は、前記第1の期間の間に選択的に配置が決められ、
    前記複数の放射ビームは、第2の期間の間に、前記第2の偏向器に向けて案内されて前記基板の複数の第2の位置に向けて案内されることを特徴とするシステム。
  2. 前記少なくとも1つの放射エネルギ源は、放射エネルギのパルス源を含み、前記複数のビームの各々は、放射エネルギのパルスによって画定されることを特徴とする請求項1に記載のシステム。
  3. 前記少なくとも1つの放射エネルギ源は、少なくとも1つのパルスレーザを含み、前記複数のビームは、少なくとも1つのパルスレーザビームを含むことを特徴とする請求項1に記載のシステム。
  4. 前記少なくとも1つのパルスレーザは、Qスイッチレーザであることを特徴とする請求項3に記載のシステム。
  5. 前記少なくとも1つの放射エネルギ源は、Qスイッチレーザであることを特徴とする請求項1に記載のシステム。
  6. 前記複数のビームは、個数が選択可能なサブビームからなることを特徴とする請求項1に記載のシステム。
  7. 前記複数のビームの各々は、選択可能な方向に案内されることを特徴とする請求項1に記載のシステム。
  8. 前記複数のビームの各々は、選択可能な方向に案内されることを特徴とする請求項6に記載のシステム。
  9. 前記複数の第1の偏向器の少なくとも1つは、制御信号によって動作が制御される音響光学偏向器を有することを特徴とする請求項8に記載のシステム。
  10. 前記音響光学偏向器は、前記制御信号によって制御される音響波ジェネレータを有し、前記音響波ジェネレータは、前記サブビームの個数を決定する音響波を生成することを特徴とする請求項9に記載のシステム。
  11. 前記音響光学偏向器は、前記制御信号によって制御される音響波ジェネレータを有し、前記音響波ジェネレータは、前記ビームの方向を選択的に決定する音響波を生成することを特徴とする請求項9に記載のシステム。
  12. 前記音響波は、前記ビームの方向も選択的に決定することを特徴とする請求項10記載のシステム。
  13. 前記音響波は、空間的に異なる複数の音響波セグメントを含み、空間的に異なる音響波セグメントの各々は、異なる周波数を有する前記制御信号の部分によって画定されることを特徴とする請求項12記載のシステム。
  14. 前記空間的に異なる音響波セグメントの各々は、対応するビームの空間的な方向を別々とするように決定し、前記方向は、前記音響波セグメントに対応する制御信号の部分の周波数の関数であることを特徴とする請求項13記載のシステム。
  15. 前記空間的に異なる音響波セグメントの個数は、ビームの個数を決定することを特徴とする請求項13記載のシステム。
  16. 前記複数のビームは、個数が選択可能なビームからなり、
    前記少なくとも1つの放射エネルギ源は、構成を変更可能な期間内に前記ビームの個数及び方向の少なくとも1つを変更可能であり、
    前記放射エネルギのパルスは、前記構成を変更可能な期間よりも長いパルス間隔によって時間的に互いに分離されていることを特徴とする請求項2記載のシステム。
  17. 前記複数の第1の偏向器は、向きを変更可能な期間内に前記ビームの方向を変更可能であり、
    前記放射エネルギのパルスは、前記向きを変更可能な期間よりも短いパルス間隔によって時間的に互いに分離されていることを特徴とする請求項2記載のシステム。
  18. 前記複数の第1の偏向器は、向きを変更可能な期間内に前記ビームの方向を変更でき、
    前記放射エネルギのパルスは、前記向きを変更可能な期間よりも短いパルス間隔によって時間的に互いに分離されていることを特徴とする請求項16記載のシステム。
  19. 前記複数の選択自在に配置自在な偏向器の各々は、少なくとも1つの選択的に傾斜するアクチュエータに装着されている反射器を有することを特徴とする請求項3記載のシステム。
  20. 前記複数の第1及び第2の偏向器の各々は、選択的に傾斜する少なくとも1つのアクチュエータに装着されている反射器を有することを特徴とする請求項18記載のシステム。
  21. 前記少なくとも1つのアクチュエータは、圧電装置からなることを特徴とする請求項19記載のシステム。
  22. 前記少なくとも1つのアクチュエータは、MEM装置からなることを特徴とする請求項19記載のシステム。
  23. 前記複数の第1の偏向器は、所定数の偏向器を含み、前記所定数は、前記複数のビームの個数を超える数であり、
    前記複数のビームのうちの少なくともいくつかは、前記所定数の偏向器のうちの少なくともいくつかに案内され、前記所定数の偏向器のうちの他のものは、配置が変更されていることを特徴とする請求項18記載のシステム。
  24. 前記選択可能な個数のビームは、全て同一面内に含まれることを特徴とする請求項6記載のシステム。
  25. 前記複数の第1の偏向器は、選択的に配置自在な偏向器の2次元アレイからなることを特徴とする請求項1記載のシステム。
  26. 固定反射器のアレイをさらに有し、前記固定反射器のアレイは、前記少なくとも1つの放射エネルギ源と、前記選択的に配置自在な偏向器との間に任意に挿入されることを特徴とする請求項25記載のシステム。
  27. 前記複数の第2の偏向器は、前記複数のビームを案内して前記基板の複数の第2の位置で前記基板の一部を除去するように動作することを特徴とする請求項1記載のシステム。
JP2003504516A 2001-06-13 2002-06-13 マルチビーム微細機械加工システム及び方法 Expired - Fee Related JP4113495B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29745301P 2001-06-13 2001-06-13
PCT/IL2002/000461 WO2002101888A2 (en) 2001-06-13 2002-06-13 Multi-beam micro-machining system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008038177A Division JP5231039B2 (ja) 2001-06-13 2008-02-20 マルチビーム微細機械加工システム及び方法

Publications (3)

Publication Number Publication Date
JP2004533724A JP2004533724A (ja) 2004-11-04
JP2004533724A5 JP2004533724A5 (ja) 2006-01-05
JP4113495B2 true JP4113495B2 (ja) 2008-07-09

Family

ID=23146371

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003504516A Expired - Fee Related JP4113495B2 (ja) 2001-06-13 2002-06-13 マルチビーム微細機械加工システム及び方法
JP2008038177A Expired - Fee Related JP5231039B2 (ja) 2001-06-13 2008-02-20 マルチビーム微細機械加工システム及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008038177A Expired - Fee Related JP5231039B2 (ja) 2001-06-13 2008-02-20 マルチビーム微細機械加工システム及び方法

Country Status (9)

Country Link
US (7) US7642484B2 (ja)
EP (1) EP1451907A4 (ja)
JP (2) JP4113495B2 (ja)
KR (4) KR100990300B1 (ja)
CN (1) CN1538893B (ja)
AU (1) AU2002311597A1 (ja)
IL (1) IL159199A0 (ja)
TW (1) TW574082B (ja)
WO (1) WO2002101888A2 (ja)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838794B2 (en) * 1999-12-28 2010-11-23 Gsi Group Corporation Laser-based method and system for removing one or more target link structures
US7723642B2 (en) 1999-12-28 2010-05-25 Gsi Group Corporation Laser-based system for memory link processing with picosecond lasers
US20060141681A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20030222324A1 (en) * 2000-01-10 2003-12-04 Yunlong Sun Laser systems for passivation or link processing with a set of laser pulses
US7671295B2 (en) 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
US7027155B2 (en) * 2001-03-29 2006-04-11 Gsi Lumonics Corporation Methods and systems for precisely relatively positioning a waist of a pulsed laser beam and method and system for controlling energy delivered to a target structure
US20070173075A1 (en) * 2001-03-29 2007-07-26 Joohan Lee Laser-based method and system for processing a multi-material device having conductive link structures
AU2002311597A1 (en) * 2001-06-13 2002-12-23 Orbotech Ltd. Multi-beam micro-machining system and method
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
EP1280007B1 (en) * 2001-07-24 2008-06-18 ASML Netherlands B.V. Imaging apparatus
EP1488481B1 (en) * 2002-03-19 2011-01-05 Lightwave Electronics Phase-locked loop control of passively q-switched lasers
US7563695B2 (en) 2002-03-27 2009-07-21 Gsi Group Corporation Method and system for high-speed precise laser trimming and scan lens for use therein
US6951995B2 (en) 2002-03-27 2005-10-04 Gsi Lumonics Corp. Method and system for high-speed, precise micromachining an array of devices
KR20030095313A (ko) * 2002-06-07 2003-12-18 후지 샤신 필름 가부시기가이샤 레이저 어닐링장치 및 레이저 박막형성장치
WO2004038870A2 (en) * 2002-10-28 2004-05-06 Orbotech Ltd. Selectable area laser assisted processing of substrates
JP2004259153A (ja) * 2003-02-27 2004-09-16 Canon Inc 情報処理装置とその制御方法及び制御プログラム
US6784400B1 (en) * 2003-03-03 2004-08-31 Paul S. Banks Method of short pulse hole drilling without a resultant pilot hole and backwall damage
DE10317363B3 (de) * 2003-04-15 2004-08-26 Siemens Ag Verfahren und Vorrichtung zum Bohren von Löchern in einem elektrischen Schaltungssubstrat
US6873398B2 (en) * 2003-05-21 2005-03-29 Esko-Graphics A/S Method and apparatus for multi-track imaging using single-mode beams and diffraction-limited optics
DE10339472A1 (de) * 2003-08-27 2005-03-24 Ralph Schmid Verfahren und Vorrichtung zur Laserbeschriftung
US7521651B2 (en) * 2003-09-12 2009-04-21 Orbotech Ltd Multiple beam micro-machining system and method
CN100544877C (zh) * 2003-10-17 2009-09-30 通明国际科技公司 活动扫描场
JP2005144487A (ja) * 2003-11-13 2005-06-09 Seiko Epson Corp レーザ加工装置及びレーザ加工方法
DE10360640B4 (de) * 2003-12-23 2016-02-18 Jochen Strenkert Vorrichtung mit einer Einheit zum Betätigen einer verstellbaren Antriebseinheit eines Kraftfahrzeugs
US7885311B2 (en) * 2007-03-27 2011-02-08 Imra America, Inc. Beam stabilized fiber laser
US20060000811A1 (en) * 2004-06-30 2006-01-05 Matsushita Electric Industrial Co., Ltd. Diffractive optical element changer for versatile use in laser manufacturing
US7525654B2 (en) * 2004-10-20 2009-04-28 Duquesne University Of The Holy Spirit Tunable laser-based chemical imaging system
US20060191884A1 (en) * 2005-01-21 2006-08-31 Johnson Shepard D High-speed, precise, laser-based material processing method and system
US7391794B2 (en) * 2005-05-25 2008-06-24 Jds Uniphase Corporation Injection seeding of frequency-converted Q-switched laser
JP5030512B2 (ja) * 2005-09-30 2012-09-19 日立ビアメカニクス株式会社 レーザ加工方法
US7385768B2 (en) * 2005-11-22 2008-06-10 D + S Consulting, Inc. System, method and device for rapid, high precision, large angle beam steering
US7945087B2 (en) * 2006-06-26 2011-05-17 Orbotech Ltd. Alignment of printed circuit board targets
US8084706B2 (en) * 2006-07-20 2011-12-27 Gsi Group Corporation System and method for laser processing at non-constant velocities
JP4917382B2 (ja) * 2006-08-09 2012-04-18 株式会社ディスコ レーザー光線照射装置およびレーザー加工機
KR100791005B1 (ko) * 2006-12-01 2008-01-04 삼성전자주식회사 사입사 조건에서의 포토마스크의 투과율 측정장치 및 그를이용한 측정방법
JP2008212999A (ja) * 2007-03-06 2008-09-18 Disco Abrasive Syst Ltd レーザー加工装置
US7897924B2 (en) * 2007-04-12 2011-03-01 Imra America, Inc. Beam scanning imaging method and apparatus
DE102007024700A1 (de) * 2007-05-25 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Materialbearbeitung mit Laserstrahlung sowie Vorrichtung zur Durchführung des Verfahrens
JP4880561B2 (ja) * 2007-10-03 2012-02-22 新光電気工業株式会社 フリップチップ実装装置
JP5259154B2 (ja) * 2007-10-24 2013-08-07 オリンパス株式会社 走査型レーザ顕微鏡
US9123114B2 (en) * 2007-12-06 2015-09-01 The United States Of America As Represented By The Secretary Of The Army System and processor implemented method for improved image quality and enhancement based on quantum properties
CN101909804B (zh) * 2008-01-10 2014-10-22 以色列商奥宝科技股份有限公司 于一基板中具有变化同时性的激光钻孔方法
JP5274085B2 (ja) * 2008-04-09 2013-08-28 株式会社アルバック レーザー加工装置、レーザービームのピッチ可変方法、及びレーザー加工方法
DE102008022014B3 (de) * 2008-05-02 2009-11-26 Trumpf Laser- Und Systemtechnik Gmbh Dynamische Strahlumlenkung eines Laserstrahls
WO2009153792A2 (en) * 2008-06-19 2009-12-23 Utilight Ltd. Light induced patterning
EP2352618B1 (en) * 2008-10-10 2019-06-19 IPG Microsystems LLC Laser machining system and method with multiple beamlet laser beam delivery system
US8652872B2 (en) * 2008-10-12 2014-02-18 Utilight Ltd. Solar cells and method of manufacturing thereof
US8680430B2 (en) * 2008-12-08 2014-03-25 Electro Scientific Industries, Inc. Controlling dynamic and thermal loads on laser beam positioning system to achieve high-throughput laser processing of workpiece features
EP2463051A4 (en) * 2009-08-03 2017-06-14 Toshiba Kikai Kabushiki Kaisha Pulse laser machining apparatus and pulse laser machining method
KR100958745B1 (ko) * 2009-11-30 2010-05-19 방형배 레이저를 이용한 스크라이빙 장치, 방법 및 스크라이빙 헤드
WO2011100041A1 (en) * 2009-12-30 2011-08-18 Resonetics Llc Laser machining system and method for machining three-dimensional objects from a plurality of directions
US9035673B2 (en) * 2010-01-25 2015-05-19 Palo Alto Research Center Incorporated Method of in-process intralayer yield detection, interlayer shunt detection and correction
US20120102907A1 (en) 2010-10-28 2012-05-03 Dole Fresh Vegetables, Inc. Mechanical Produce Harvester
JP5727518B2 (ja) * 2011-01-05 2015-06-03 清之 近藤 ビーム加工装置
US8312701B1 (en) 2011-06-10 2012-11-20 Dole Fresh Vegetables, Inc. Decoring mechanism with mechanized harvester
US20130020291A1 (en) * 2011-07-19 2013-01-24 Pratt & Whitney Canada Corp. Laser drilling methods of shallow-angled holes
US9434025B2 (en) 2011-07-19 2016-09-06 Pratt & Whitney Canada Corp. Laser drilling methods of shallow-angled holes
ES2530069T3 (es) * 2011-09-05 2015-02-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres y un dispositivo de desviación de combinación
EP2565996B1 (en) 2011-09-05 2013-12-11 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Laser device with a laser unit, and a fluid container for a cooling means of said laser unit
EP2565673B1 (en) 2011-09-05 2013-11-13 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Device and method for marking of an object by means of a laser beam
EP2565994B1 (en) 2011-09-05 2014-02-12 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Laser device and method for marking an object
EP2564975B1 (en) * 2011-09-05 2014-12-10 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers and individually adjustable sets of deflection means
ES2544269T3 (es) * 2011-09-05 2015-08-28 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres de gas con tubos de resonancia y medios de deflexión ajustables individualmente
EP2564972B1 (en) * 2011-09-05 2015-08-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers, deflection means and telescopic means for each laser beam
ES2544034T3 (es) 2011-09-05 2015-08-27 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con al menos un láser de gas y un termodisipador
KR101676931B1 (ko) 2011-12-22 2016-11-16 인텔 코포레이션 레이저 빔 스캐닝을 위한 음향 광학 편향기의 구성
CN103379681B (zh) * 2012-04-28 2016-03-30 清华大学 加热垫
US9279722B2 (en) 2012-04-30 2016-03-08 Agilent Technologies, Inc. Optical emission system including dichroic beam combiner
DE102013206363A1 (de) * 2013-04-11 2014-10-16 Tesa Scribos Gmbh Scanvorrichtung
JP2015025901A (ja) * 2013-07-25 2015-02-05 船井電機株式会社 レーザ走査装置
EP2902148B1 (en) 2013-11-25 2019-08-28 Preco, Inc. High density galvo housing for use with multiple laser beams ; galvo system and laser beam processing system with such housing
US10239155B1 (en) * 2014-04-30 2019-03-26 The Boeing Company Multiple laser beam processing
US9269149B2 (en) 2014-05-08 2016-02-23 Orbotech Ltd. Calibration of a direct-imaging system
WO2015172236A1 (en) 2014-05-15 2015-11-19 Mtt Innovation Incorporated Optimizing drive schemes for multiple projector systems
US20150343560A1 (en) * 2014-06-02 2015-12-03 Fracturelab, Llc Apparatus and method for controlled laser heating
EP3180652A4 (en) * 2014-08-14 2018-04-04 Mtt Innovation Incorporated Multiple-laser light source
US10423017B2 (en) * 2014-10-15 2019-09-24 Inserm (Institut National De La Sante Et De La Recherche Medicale) Method for determining the characteristics of a system for generating a spatial light modulation in phase and amplitude at high refresh rate
US9855626B2 (en) * 2015-01-29 2018-01-02 Rohr, Inc. Forming a pattern of apertures in an object with a plurality of laser beams
KR101586219B1 (ko) * 2015-07-02 2016-01-19 대륭포장산업 주식회사 Uv 레이저를 이용한 통기성 필름 제조 장치
US11433483B2 (en) * 2016-11-18 2022-09-06 Ipg Photonics Corporation System and method laser for processing of materials
KR102618163B1 (ko) * 2016-12-05 2023-12-27 삼성디스플레이 주식회사 레이저 가공 장치
WO2019197341A1 (en) * 2018-04-10 2019-10-17 Talens Systems, S.L.U. Apparatus and method for processing cardboard
TW202042946A (zh) * 2019-01-31 2020-12-01 美商伊雷克托科學工業股份有限公司 雷射加工設備、操作其之方法以及使用其加工工件的方法
US20220121082A1 (en) * 2019-03-06 2022-04-21 Orbotech Ltd. High-Speed Dynamic Beam Shaping
CN113874790A (zh) 2019-03-29 2021-12-31 迈康尼股份公司 长扫掠长度duv微光刻光束扫描声光偏转器和光学器件设计
DE102019115554A1 (de) * 2019-06-07 2020-12-10 Bystronic Laser Ag Bearbeitungsvorrichtung zur Laserbearbeitung eines Werkstücks und Verfahren zur Laserbearbeitung eines Werkstücks
DE102020102077B4 (de) 2020-01-29 2022-03-31 Pulsar Photonics Gmbh Laserbearbeitungsvorrichtung und Verfahren zur Laserbearbeitung eines Werkstücks
BE1027700B1 (fr) * 2020-04-24 2021-05-18 Laser Eng Applications Dispositif pour un système optique d’usinage laser
DE102020134422A1 (de) * 2020-12-21 2022-06-23 Trumpf Laser Gmbh Vorrichtung zur Strahlbeeinflussung eines Laserstrahls
FR3121760B1 (fr) * 2021-04-12 2023-12-29 Commissariat A Lenergie Atomique Et Aux Energies Alternatives Dispositif reflecteur destine a emettre une pluralite de faisceaux reflechis a partir d’un unique faisceau lumineux principal
TW202319163A (zh) * 2021-09-15 2023-05-16 南韓商Eo科技股份有限公司 溝槽形成裝置
FR3128140A1 (fr) 2021-10-19 2023-04-21 SteeLEMAT S.à r.l Dispositif de test non destructif à ultrasons hybride Transducteurs électromagnétiques acoustiques/Laser à assemblage optique rotatif monolithique de transmetteurs laser agiles matriciels pour le contrôle d'objets métallurgiques

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10A (en) * 1836-08-10 Gtttlslto andi
US3594081A (en) 1968-11-04 1971-07-20 Werner Tschink Adjustable illuminating device
US4060322A (en) * 1974-07-10 1977-11-29 Canon Kabushiki Kaisha Image information handling device
US4038108A (en) * 1976-05-10 1977-07-26 Union Carbide Corporation Method and apparatus for making an instantaneous thermochemical start
US4279472A (en) * 1977-12-05 1981-07-21 Street Graham S B Laser scanning apparatus with beam position correction
JPS5581095A (en) 1978-12-12 1980-06-18 Ricoh Co Ltd Ultra-fine hole processing method
US4258468A (en) 1978-12-14 1981-03-31 Western Electric Company, Inc. Forming vias through multilayer circuit boards
DE3138745A1 (de) 1981-09-29 1983-04-07 Siemens AG, 1000 Berlin und 8000 München Akustooptischer lichtablenker mit hoher aufloesung
GB2138584B (en) 1983-04-23 1986-09-17 Standard Telephones Cables Ltd Acousto-optic deflector systems
US4447291A (en) 1983-08-31 1984-05-08 Texas Instruments Incorporated Method for via formation in HgCdTe
US4950962A (en) * 1985-05-20 1990-08-21 Quantum Diagnostics, Ltd. High voltage switch tube
GB2187592B (en) 1985-12-26 1989-10-18 Yokogawa Electric Corp Semiconductor laser wavelength stabilizer
US4838631A (en) 1986-12-22 1989-06-13 General Electric Company Laser beam directing system
JPH01316415A (ja) * 1988-06-17 1989-12-21 Nippon Steel Corp ポリゴンミラーを用いたレーザ熱処理装置及び方法
JP2663560B2 (ja) 1988-10-12 1997-10-15 日本電気株式会社 レーザ加工装置
JPH082511B2 (ja) 1989-05-08 1996-01-17 松下電器産業株式会社 レーザ加工装置
JPH03142092A (ja) 1989-10-25 1991-06-17 Matsushita Electric Ind Co Ltd レーザ光学系及びこれを用いたレーザ加工方法
US5302798A (en) 1991-04-01 1994-04-12 Canon Kabushiki Kaisha Method of forming a hole with a laser and an apparatus for forming a hole with a laser
US5309178A (en) * 1992-05-12 1994-05-03 Optrotech Ltd. Laser marking apparatus including an acoustic modulator
US5475416A (en) * 1992-06-03 1995-12-12 Eastman Kodak Company Printing system for printing an image with lasers emitting diverging laser beams
US5408553A (en) 1992-08-26 1995-04-18 The United States Of America As Represented By The United States Department Of Energy Optical power splitter for splitting high power light
DE69415484T2 (de) 1993-06-04 1999-06-24 Seiko Epson Corp Vorrichtung und verfahren zum laserbearbeiten
US5404247A (en) 1993-08-02 1995-04-04 International Business Machines Corporation Telecentric and achromatic f-theta scan lens system and method of use
US5460921A (en) 1993-09-08 1995-10-24 International Business Machines Corporation High density pattern template: materials and processes for the application of conductive pastes
US6037968A (en) * 1993-11-09 2000-03-14 Markem Corporation Scanned marking of workpieces
US6480334B1 (en) * 1994-01-18 2002-11-12 Massachusetts Institute Of Technology Agile beam steering using phased-array-like elements
DE19513354A1 (de) * 1994-04-14 1995-12-14 Zeiss Carl Materialbearbeitungseinrichtung
EP0683007B1 (de) 1994-04-14 1998-05-20 Carl Zeiss Materialbearbeitungseinrichtung
US5614114A (en) 1994-07-18 1997-03-25 Electro Scientific Industries, Inc. Laser system and method for plating vias
US5593606A (en) 1994-07-18 1997-01-14 Electro Scientific Industries, Inc. Ultraviolet laser system and method for forming vias in multi-layered targets
US5841099A (en) 1994-07-18 1998-11-24 Electro Scientific Industries, Inc. Method employing UV laser pulses of varied energy density to form depthwise self-limiting blind vias in multilayered targets
JPH08108289A (ja) 1994-10-07 1996-04-30 Sumitomo Electric Ind Ltd レーザ加工用光学装置
US5674414A (en) * 1994-11-11 1997-10-07 Carl-Zeiss Stiftung Method and apparatus of irradiating a surface of a workpiece with a plurality of beams
JPH08243765A (ja) 1995-03-07 1996-09-24 Komatsu Ltd レーザ刻印装置
US5585019A (en) * 1995-03-10 1996-12-17 Lumonics Inc. Laser machining of a workpiece through adjacent mask by optical elements creating parallel beams
US6373026B1 (en) 1996-07-31 2002-04-16 Mitsubishi Denki Kabushiki Kaisha Laser beam machining method for wiring board, laser beam machining apparatus for wiring board, and carbonic acid gas laser oscillator for machining wiring board
KR100198832B1 (ko) * 1995-12-28 1999-06-15 김덕중 레이저 빔을 이용한 용접장치
DE19707834A1 (de) 1996-04-09 1997-10-16 Zeiss Carl Fa Materialbestrahlungsgerät und Verfahren zum Betrieb von Materialbestrahlungsgeräten
US5948288A (en) 1996-05-28 1999-09-07 Komag, Incorporated Laser disk texturing apparatus
US5837962A (en) 1996-07-15 1998-11-17 Overbeck; James W. Faster laser marker employing acousto-optic deflection
DE19734983A1 (de) 1996-09-04 1998-03-05 Zeiss Carl Fa Optische Anordnung
AT407312B (de) * 1996-11-20 2001-02-26 Sez Semiconduct Equip Zubehoer Rotierbarer träger für kreisrunde, scheibenförmige gegenstände, insbesondere halbleiterwafer oder -substrate
US6233044B1 (en) 1997-01-21 2001-05-15 Steven R. J. Brueck Methods and apparatus for integrating optical and interferometric lithography to produce complex patterns
US6040552A (en) 1997-01-30 2000-03-21 Jain; Kanti High-speed drilling system for micro-via pattern formation, and resulting structure
US5973290A (en) 1997-02-26 1999-10-26 W. L. Gore & Associates, Inc. Laser apparatus having improved via processing rate
US5948291A (en) 1997-04-29 1999-09-07 General Scanning, Inc. Laser beam distributor and computer program for controlling the same
KR100446052B1 (ko) 1997-05-15 2004-10-14 스미도모쥬기가이고교 가부시키가이샤 다수의갈바노스캐너를사용한레이저빔가공장치
US6172331B1 (en) * 1997-09-17 2001-01-09 General Electric Company Method and apparatus for laser drilling
US5933216A (en) 1997-10-16 1999-08-03 Anvik Corporation Double-sided patterning system using dual-wavelength output of an excimer laser
US5969877A (en) 1997-11-26 1999-10-19 Xerox Corporation Dual wavelength F-theta scan lens
DE19801364A1 (de) 1998-01-16 1999-07-22 Zeiss Carl Fa Werkstückbestrahlungsanlage
JP3324982B2 (ja) 1998-03-26 2002-09-17 松下電工株式会社 回路板の製造方法
US6037564A (en) * 1998-03-31 2000-03-14 Matsushita Electric Industrial Co., Ltd. Method for scanning a beam and an apparatus therefor
AU8882698A (en) 1998-08-20 2000-03-14 Orbotech Ltd. Laser repetition rate multiplier
US6313918B1 (en) 1998-09-18 2001-11-06 Zygo Corporation Single-pass and multi-pass interferometery systems having a dynamic beam-steering assembly for measuring distance, angle, and dispersion
US6252667B1 (en) 1998-09-18 2001-06-26 Zygo Corporation Interferometer having a dynamic beam steering assembly
JP3945951B2 (ja) 1999-01-14 2007-07-18 日立ビアメカニクス株式会社 レーザ加工方法およびレーザ加工機
DE60030195T2 (de) * 1999-04-02 2006-12-14 Murata Manufacturing Co., Ltd., Nagaokakyo Laserverfahren zur Bearbeitung von Löchern in einer keramischen Grünfolie
KR100691924B1 (ko) 1999-04-27 2007-03-09 지에스아이 루모닉스 인코퍼레이티드 재료 가공 장치 및 방법
JP3346374B2 (ja) 1999-06-23 2002-11-18 住友電気工業株式会社 レーザ穴開け加工装置
US6295171B1 (en) 1999-07-09 2001-09-25 Advanced Optical Technologies, Inc. Piezoelectric light beam deflector
EP1072350A1 (de) 1999-07-12 2001-01-31 MDC Max Dätwyler AG Bleienbach Verfahren zur Erzeugung einer Intensitätsverteilung über einen Arbeitslaserstrahl sowie Vorrichtung hierzu
CN1376100A (zh) 1999-09-28 2002-10-23 住友重机械工业株式会社 激光钻孔的加工方法及其加工装置
JP2001102886A (ja) * 1999-09-30 2001-04-13 Seiko Epson Corp 圧電振動素子の電極形成方法及び圧電振動素子の電極形成装置
US6420675B1 (en) 1999-10-08 2002-07-16 Nanovia, Lp Control system for ablating high-density array of vias or indentation in surface of object
US6310701B1 (en) * 1999-10-08 2001-10-30 Nanovia Lp Method and apparatus for ablating high-density array of vias or indentation in surface of object
EP1236383A2 (en) 1999-12-07 2002-09-04 Electro Scientific Industries, Inc. Switchable wavelength laser-based etched circuit board processing system
US6423935B1 (en) 2000-02-18 2002-07-23 The Regents Of The University Of California Identification marking by means of laser peening
US6386992B1 (en) * 2000-05-04 2002-05-14 Acushnet Company Golf ball compositions including microcellular materials and methods for making same
US6696008B2 (en) 2000-05-25 2004-02-24 Westar Photonics Inc. Maskless laser beam patterning ablation of multilayered structures with continuous monitoring of ablation
US6605796B2 (en) 2000-05-25 2003-08-12 Westar Photonics Laser beam shaping device and apparatus for material machining
JP4228552B2 (ja) * 2000-07-04 2009-02-25 宇部興産株式会社 1,5,9−シクロドデカトリエンのエポキシ化反応混合液の精製処理方法
US6329634B1 (en) 2000-07-17 2001-12-11 Carl-Zeiss-Stiftung Workpiece irradiation system
US6566627B2 (en) * 2000-08-11 2003-05-20 Westar Photonics, Inc. Laser method for shaping of optical lenses
US6491361B1 (en) * 2000-11-09 2002-12-10 Encad, Inc. Digital media cutter
US6515257B1 (en) * 2001-03-26 2003-02-04 Anvik Corporation High-speed maskless via generation system
US7027155B2 (en) 2001-03-29 2006-04-11 Gsi Lumonics Corporation Methods and systems for precisely relatively positioning a waist of a pulsed laser beam and method and system for controlling energy delivered to a target structure
AU2002311597A1 (en) * 2001-06-13 2002-12-23 Orbotech Ltd. Multi-beam micro-machining system and method
US6674564B2 (en) 2001-06-15 2004-01-06 Maniabarco, Inc. System, method and article of manufacture for a beam splitting acousto-optical modulator
JP4777826B2 (ja) * 2006-05-25 2011-09-21 日本碍子株式会社 シート加工機

Also Published As

Publication number Publication date
KR100938325B1 (ko) 2010-01-22
US20030019854A1 (en) 2003-01-30
CN1538893A (zh) 2004-10-20
US7642484B2 (en) 2010-01-05
US7633036B2 (en) 2009-12-15
US20040056009A1 (en) 2004-03-25
US20030024912A1 (en) 2003-02-06
US20060146395A1 (en) 2006-07-06
JP5231039B2 (ja) 2013-07-10
US6809290B2 (en) 2004-10-26
US20030042230A1 (en) 2003-03-06
US7629555B2 (en) 2009-12-08
WO2002101888A2 (en) 2002-12-19
WO2002101888A3 (en) 2004-05-13
KR100990300B1 (ko) 2010-10-26
KR20090108651A (ko) 2009-10-15
TW574082B (en) 2004-02-01
KR101012913B1 (ko) 2011-02-08
KR20090108652A (ko) 2009-10-15
KR100992262B1 (ko) 2010-11-05
KR20090108653A (ko) 2009-10-15
US20030048814A1 (en) 2003-03-13
JP2008207247A (ja) 2008-09-11
US7176409B2 (en) 2007-02-13
JP2004533724A (ja) 2004-11-04
US20030047546A1 (en) 2003-03-13
CN1538893B (zh) 2012-01-04
AU2002311597A1 (en) 2002-12-23
IL159199A0 (en) 2004-06-01
EP1451907A4 (en) 2007-05-09
EP1451907A2 (en) 2004-09-01
KR20040060853A (ko) 2004-07-06

Similar Documents

Publication Publication Date Title
JP4113495B2 (ja) マルチビーム微細機械加工システム及び方法
KR101115643B1 (ko) 다중 빔 마이크로 기계 가공 시스템 및 방법
US6706998B2 (en) Simulated laser spot enlargement
EP3322835A1 (en) Control of lift ejection angle
US20230048420A1 (en) Laser processing device and method for laser-processing a workpiece
JP2008129535A (ja) ビーム振り分け装置、及び、多軸レーザ照射装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080115

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Ref document number: 4113495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees