JP5259154B2 - 走査型レーザ顕微鏡 - Google Patents

走査型レーザ顕微鏡 Download PDF

Info

Publication number
JP5259154B2
JP5259154B2 JP2007276079A JP2007276079A JP5259154B2 JP 5259154 B2 JP5259154 B2 JP 5259154B2 JP 2007276079 A JP2007276079 A JP 2007276079A JP 2007276079 A JP2007276079 A JP 2007276079A JP 5259154 B2 JP5259154 B2 JP 5259154B2
Authority
JP
Japan
Prior art keywords
scanning
laser
light
acousto
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007276079A
Other languages
English (en)
Other versions
JP2009103958A (ja
Inventor
浩 佐々木
康成 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007276079A priority Critical patent/JP5259154B2/ja
Priority to EP08017965A priority patent/EP2053442B1/en
Priority to DE602008004052T priority patent/DE602008004052D1/de
Priority to US12/251,602 priority patent/US8054542B2/en
Publication of JP2009103958A publication Critical patent/JP2009103958A/ja
Application granted granted Critical
Publication of JP5259154B2 publication Critical patent/JP5259154B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control

Description

本発明は、走査型レーザ顕微鏡に関するものである。
従来、走査型のレーザ顕微鏡として、画像取得時間を短縮するためにマルチポイント走査方式のものが知られている(特許文献1、特許文献2参照。)。
特許文献1に開示されている走査型レーザ顕微鏡は、ニポウディスクとマイクロレンズアレイとを用いる方式のものである。また、特許文献2に開示されている走査型レーザ顕微鏡は、マイクロレンズアレイやレーザダイオードアレイにより多点のスポット光を形成し、該スポット光をガルバノミラーのような2組の偏光器により走査する方式のものである。
これら特許文献1,2に開示されている走査型レーザ顕微鏡によれば、多点の走査点を同時に標本上において走査させることにより、単一の走査点を走査させる場合と比較して短時間に標本の同一範囲を走査させることができる。
特開平5−60980号公報 特開平10−311950号公報
しかしながら、特許文献1,2に開示されている走査型レーザ顕微鏡はマイクロレンズアレイ等によって多重点光源を構成しているので、同時に走査する走査点の数、位置あるいは間隔等を変更することが困難であるという不都合がある。
本発明は、上述した事情に鑑みてなされたものであって、同時に走査する走査点の数、位置あるいは間隔等を光量ロスなく自由に変更することができ、画像取得時間の短縮だけでなく、用途に応じた観察をフレキシブルに行うことができる走査型レーザ顕微鏡を提供することを目的としている。
上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、レーザ光源と、該レーザ光源からのレーザ光の光路に配置され、結晶に加える振動の周波数を変化させることによりレーザ光の進行方向を変更可能な音響光学偏向素子と、該音響光学偏向素子の結晶に対して同時に複数の周波数の振動を加える周波数制御部と、前記レーザ光源からのレーザ光を集光して標本上にスポット光を生成する対物レンズと、前記レーザ光源からのレーザ光を直交する2方向に偏向することにより、前記標本上のスポット光からなる走査点を2次元走査する光走査手段とを備え、前記音響光学偏向素子、前記光走査手段、前記対物レンズの瞳位置が、光学的に共役な位置に配置されている走査型レーザ顕微鏡を提供する。
本発明によれば、レーザ光源から発せられたレーザ光が音響光学偏向素子を通過する際に偏向される。音響光学偏向素子には、周波数制御部により結晶に対して同時に複数の周波数の振動が加えられるので、音響光学偏向素子から出射されるレーザ光は周波数に応じた変更角度で複数方向に偏向されることにより複数に分割される。分割されたレーザ光は対物レンズによって標本上に集光されてスポット光を生成し、光走査手段によって2次元走査されることにより、標本上の所定の範囲に照射され、標本中の蛍光物質を励起し、あるいは標本の特定範囲に光刺激を与えることができる。この場合に、周波数制御部によって結晶に加える振動の周波数を調節することにより、同時に走査する走査点の数、位置あるいは間隔を光量ロスなくフレキシブルに自由に変更することができる。
また、この場合に、本発明によれば、音響光学偏向素子、光走査手段、対物レンズの瞳位置が、光学的に共役な位置に配置されているので、音響光学偏向素子により分割された全てのレーザ光を対物レンズの瞳の中心に通過させることができ、解像度よく観察することができる。
上記発明においては、前記音響光学偏向素子と前記対物レンズとの間の光路に、前記標本からの戻り光とレーザ光とを分岐するビームスプリッタと、前記ビームスプリッタにより分岐された前記標本からの戻り光を検出する光検出器とを備えていてもよい。
また、上記発明においては、前記音響光学偏向素子により異なる方向に偏向される複数のレーザ光の偏向方向が、前記光走査手段により走査される直交する2方向の内の副走査方向に一致し、前記ビームスプリッタにより分岐された標本からの戻り光の光路上に、標本上の複数の走査点から発する戻り光を通過させる共焦点ピンホールが備えられ、前記光検出器が、各走査点から発せられ、共焦点ピンホールを通過した戻り光を個別に検出するように複数備えられていてもよい。
また、上記発明においては、前記各検出器により取得された画像をつなぎ合わせて1つの画像を合成する画像処理手段を備えていてもよい。
また、上記発明においては、前記周波数制御部が、前記光走査手段の走査範囲の変更に応じて、前記音響光学偏向素子の結晶に印加する振動の周波数を調節することとしてもよい。
また、上記発明においては、前記共焦点ピンホールが、マトリックス状に配置された複数の微小素子を備え、複数の走査点と結像関係にある範囲の微小素子を有効にする微小素子アレイであってもよい。
また、上記発明においては、前記光検出器が、1次元検出器または2次元検出器であり、複数の走査点と結像関係にある位置のピクセルにより各走査点からの戻り光を検出することとしてもよい。
また、上記発明においては、前記光検出器が2次元検出器であり、前記共焦点ピンホールが、複数の走査点と結像関係にある位置の複数のピクセルを各走査点に対応して有効にすることにより構成されていてもよい。
また、上記発明においては、前記音響光学偏向素子の結晶に印加する複数の周波数の振動の大きさおよび数に対応付けて、共焦点ピンホールとして作用させるために有効とする微小素子の範囲を設定することとしてもよい。
また、上記発明においては、前記音響光学偏向素子の結晶に印加する複数の周波数の振動の大きさおよび数に対応付けて、光検出器上の検出に使用するピクセルを設定することとしてもよい。
また、上記発明においては、前記周波数制御部は、副走査方向に生成される走査点の間隔が、前記1次元検出器のピクセル列または前記2次元検出器の副走査方向に対応するピクセル列の間隔と一致するように、前記音響光学偏向素子の結晶に印加する複数の振動の周波数を調節して、前記標本に対してほぼライン状の照明を行うとともに、前記光検出器が、標本の複数の走査点からのライン状の戻り光を同時に検出することとしてもよい。
また、上記発明においては、前記ビームスプリッタと共焦点ピンホールとの間に配置された倍率可変レンズを備え、該可変倍率レンズが、前記画像取得範囲に応じて、その倍率を可変制御されることとしてもよい。
また、上記発明においては、前記音響光学偏向素子が、前記光走査手段の主走査方向と副走査方向の両方に光線を分割させることとしてもよい。
また、上記発明においては、副走査方向にレーザ光を偏向させる第1の音響光学偏向素子と、主走査方向にレーザ光を偏向させる第2の音響光学偏向素子とを備え、標本上にマトリクス状に複数の走査点を形成することとしてもよい。
また、上記発明においては、前記周波数制御部が、前記2つの音響光学偏向素子のそれぞれに複数の周波数の振動を印加することにより分割された複数のレーザ光により標本上に形成されるスポット光を、相互に隣接または一部重ねてマクロスポットを形成し、形成したマクロスポットの大きさを変化させるように、前記音響光学偏向素子に印加する振動の周波数の数および/または間隔を調節することとしてもよい。
また、上記発明においては、前記レーザ光源と音響光学偏向素子との間に前記対物レンズの瞳に入射するビーム径を可変するビーム径可変光学系を備えていてもよい。
また、上記発明においては、前記2つの音響光学偏向素子と前記対物レンズとの間の光路に、前記標本からの戻り光とレーザ光とを分岐するビームスプリッタと、前記ビームスプリッタにより分岐された前記標本からの戻り光を検出する光検出器とを備えていてもよい。
また、上記発明においては、前記レーザ光源が、異なる波長の刺激用レーザ光および観察用レーザ光を発振し、前記周波数制御部が、前記音響光学偏向素子に各レーザ光の波長に対応する周波数の振動を同時に印加して、各レーザ光の走査点を標本上の異なる位置に形成し、前記光検出器が、観察用レーザ光の走査点から発せられた戻り光を検出することとしてもよい。
また、上記発明においては、前記周波数制御部が、前記刺激用レーザ光の照射位置および前記観察用レーザ光の照射位置を切り替えるように、前記音響光学偏向素子に印加する振動の周波数を変更することとしてもよい。
また、上記発明においては、前記周波数制御部が、前記光走査手段による走査にかかわらず、前記刺激用レーザ光の照射位置を静止させるように、前記音響光学偏向素子に加える振動の周波数を走査することとしてもよい。
また、上記発明においては、前記周波数制御部が、前記標本上に形成される複数のマトリクス状のスポット光のX方向の間隔およびY方向の間隔をそれぞれ等間隔となるように前記音響光学偏向素子に加える振動の周波数を調節し、前記光走査手段が、前記スポット光の間隔に応じた主走査方向および副走査方向の走査範囲にスポット光を走査させ、前記各スポット光の結像位置に共焦点ピンホールが配置されていてもよい。
また、上記発明においては、前記光検出器により個別に取得された画像をつなぎ合わせて表示する表示手段を備えていてもよい。
また、上記発明においては、前記レーザ光源が、多光子励起観察用の近赤外パルスレーザ光源であってもよい。
本発明によれば、同時に走査する走査点の数、位置あるいは間隔等を光量ロスなく自由に変更することができ、画像取得時間の短縮だけでなく、用途に応じた観察をフレキシブルに行うことができるという効果を奏する。
本発明の第1の実施形態に係る走査型レーザ顕微鏡1について、図面を参照して以下に説明する。
本実施形態に係る走査型レーザ顕微鏡1は、図1に示されるように、レーザ光を発振するレーザ光源2と、該レーザ光源2からのレーザ光を偏向する音響光学偏向素子3と、該音響光学偏向素子3により偏向されたレーザ光を2次元走査する近接ガルバノミラー(光走査手段)4と、該近接ガルバノミラー4により2次元走査されたレーザ光を標本A上に集光する対物レンズ5とを備えている。
音響光学偏向素子3と近接ガルバノミラー4との間には、投影レンズ6が配置されている。また、近接ガルバノミラー4と対物レンズ5との間には、瞳投影レンズ7および結像レンズ8が配置されている。さらに、投影レンズ6と近接ガルバノミラー4との間の光路上には、標本Aから戻る蛍光を分岐する励起ダイクロイックミラー(ビームスプリッタ)9が配置され、該励起ダイクロイックミラー9により分岐された蛍光の光路には、集光レンズ10、倍率可変レンズ11、共焦点レンズ12、共焦点ピンホール13、分光ダイクロイックミラー14、バリアフィルタ15および光検出器(光電子増倍管)16が配置されている。
また、音響光学偏向素子3、近接ガルバノミラー4および倍率可変レンズ11には制御装置(周波数制御部)17が接続されている。制御装置17は、音響光学偏向素子3において結晶に加える振動の周波数を調節し、近接ガルバノミラー4によるレーザ光の走査範囲、走査速度および走査方向を調節し、倍率可変レンズ11による倍率を調節するようになっている。
レーザ光源2はArレーザ(488nm)2aとDPSS(560nm)2bとを備え、各レーザ光源2a,2bからのレーザ光は、合成ダイクロイックミラー2cにより光路合成されている。
図中、符号18は周波数発生器、符号19はミラー、符号20は対物レンズ5の瞳である。
音響光学偏向素子3、近接ガルバノミラー4および対物レンズ5の瞳20は光学的に共役な位置に設定されている。音響光学偏向素子3と近接ガルバノミラー4とは投影レンズ6により、近接ガルバノミラー4と対物レンズ5の瞳20は瞳投影レンズ7と結像レンズ8とによりそれぞれ共役な位置に設定されている。ここで、近接ガルバノミラー4は、レーザ光をX方向に偏向させる第1ミラーと、これと直交するY方向に偏向させる第2ミラーとを備え、両ミラーの間にリレー光学系を備えずに、できる限り近づけて配置したものである。近接ガルバノミラー4の2つのミラーのほぼ中間位置が、対物レンズ5の瞳20と共役な位置関係となっている。
音響光学偏向素子3は、図2に示されるように、レーザ光を入射させる結晶3a、該結晶3aに加える高周波振動を発生させるトランスデューサ3bとを備えている。矢印Bは高周波の進行方向を示している。結晶3aに加える高周波振動の周波数を変化させることで、レーザ光の偏向角度を変化させるもので、複数の周波数の高周波振動を同時に加えることにより、入射されたレーザ光を紙面に沿う方向(Y方向)に分割するようになっている。
図1および図2に示される例では、音響光学偏向素子3には、5種類の周波数の高周波振動が加えられており、レーザ光が5本に分割されるようになっている。
音響光学偏向素子3による偏向方向は、近接ガルバノミラー4による副走査方向と一致している。近接ガルバノミラー4の主走査方向は紙面に直交する方向である。
音響光学偏向素子3の結晶3aに印加する振動の周波数fと偏向角θとの関係は以下の式により表される。
θ=λ×f/Va
ここで、Vaは、結晶の音速である。
したがって、異なる周波数f1,f2,f3,f4,f5を同時に結晶3aに印加することにより、図2に示されるように、偏向角θ1,θ2,θ3,θ4,θ5の複数方向にレーザ光を1次光として分割できるようになっている(図1では、音響光学偏向素子に入射するレーザ光と、出射するレーザ光の中心光線が平行になっているが、実際には、図2のように若干曲がっている。したがって、図1は、図2の周波数f3の偏向角θ3の方向を光軸中心に一致させて示している。)。
5方向に分割されたレーザ光は、対物レンズ5により5点のスポット光からなる走査点を標本A上に形成し、近接ガルバノミラー4により、図3に示されるように、主走査方向と副走査方向に走査されるようになっている。走査領域は、副走査(Y)方向に5分割されるので、1枚の画像を取得する速度は、単一の走査点によって同一の走査領域全体を走査する場合の5倍になっている。
標本A上の5点の走査点より発する蛍光は、励起ダイクロイックミラー9により検出光路21に導かれ、集光レンズ10および倍率可変レンズ11により複数の離間する方向に導かれ、それぞれの光路に配置された共焦点レンズ12、共焦点ピンホール13、分光ダイクロイックミラー14およびバリアフィルタ15を介して、光検出器16により同時に検出されるようになっている。(これらの検出光の位置は、近接ガルバノミラー4によりディスキャンされるので、近接ガルバノミラー4で走査しても方向、位置ともに変化しない。)
これらの10個の光検出器16には、図示しない画像処理装置および表示装置が接続されていて、これらの光検出器16により取得される画像をつなぎ合わせて1枚の画像を合成し、表示するようになっている。
このように構成された本実施形態に係る走査型レーザ顕微鏡1によれば、レーザ光源2から出射されたレーザ光が音響光学偏向素子3に加える振動の周波数に応じた数、位置および間隔の複数のレーザ光に分割されて標本Aに同時に照射されるので、複数の走査点によって同時に標本Aを励起することができ、画像取得時間を短縮することができる。
また、本実施形態に係る走査型レーザ顕微鏡1によれば、画像取得時間を短縮する必要がない標本Aの場合であって、光刺激など強いレーザパワーが必要な場合は、制御装置17が、音響光学偏向素子3に加える振動の周波数として、周波数f3のみを加えることで、走査点を1点のみとし、5つの検出光路21の内の中心の光路のみが検出に使用される。このようにすることで、5等分されていたレーザ光の光量が、単一の光路に集約されるので光量に余裕を持たせることができる。また、観察用途で使用する場合には、高周波振動の振幅を減じることで光強度を調光することができる。
また、サンプリング解像度(画像ピクセル数)を変えずに近接ガルバノミラーの振り角の大きさを小さくすることで拡大画像を取得する、ガルバノズーム機能を使用する場合について説明する。例えば、ガルバノズーム2倍(すなわち、画像取得範囲を面積比で1/4にする)の場合には、図4に示されるように、制御装置17が、音響光学偏向素子3に加える振動の周波数(f1′,f2′,f3,f4′,f5′)を変更し、分割する角度を光軸(偏向角θ3)に対して半分にする。このようにすることで標本A上においても、5つのスポット光が、副走査方向に半分の間隔で並ぶことになる。そして、近接ガルバノミラー4の振り角を、主走査方向、副走査方向共に半分にする。
このときの音響光学偏向素子3でのレーザ光の偏向方向は、図4に示すようになる。光軸中心に一致する周波数f3はそのまま印加し、周波数f1′,f2′,f4′,f5′は、周波数f3に対しての偏向角の差が、図2に対して半分になるように周波数を設定する。
また、このとき、検出光路21に配されている倍率可変レンズ11の倍率を変更する。各走査点から発せられる蛍光は、倍率可変レンズ11の倍率の変更により、画像取得範囲の変更前の光路と同一の光路上に乗り、図5(a)に示されるように、それぞれの光路に配置された共焦点レンズ12、共焦点ピンホール13、分光ダイクロイックミラー14およびバリアフィルタ15を介して、光検出器16により、同時に検出される。これにより、図5(b)に示されるように、図3の1/4の走査範囲に対して、レーザ光を走査して観察することができる。
また、上記において半分にされた画像取得範囲を上方にシフトする場合は、図6(b)に示すように、副走査主方向の走査範囲を上方にずらせば良い。このときの倍率可変レンズ11の位置は上記と同じでよく、近接ガルバノミラー4によりディスキャンされるので、図6(a)に示されるように、5個の走査点は検出光路21の5つの光路に乗ってくる。
図5(a)および図6(a)においては、結像レンズ8による1次像位置から標本A側を省略して示している。
上記説明においては、走査点の数が1点および5点の場合の例を示しているが、走査点の数は、1点から5点までの任意の数を選択することができる。その場合、倍率可変レンズ11の倍率を、走査点の間隔に応じて、検出光が5本の検出光路21のどこかに一致するようにし、さらに、副走査方向の走査の中心位置を、画像全域を走査できるように設定する必要がある。
このように、本実施形態に係る走査型レーザ顕微鏡1によれば、同時走査点数に応じて光量が分割されるので、走査点数変更時の光量損失がなく有効利用ができる。したがって、光刺激の時など、1点のみに強い光をあてるような場合でも、大型光源を用意する必要がない。従来のマイクロレンズアレイ方式は1点のみの照射でも光量が複数個所に分岐されるので1点の光量が極めて低く、光刺激に利用することができなかった。
また、サンプリング解像度を変えずに、近接ガルバノミラー4の振り角変更により画像取得範囲を変更(すなわちガルバノズーム機能を使用)しても、走査点間隔を変えることで全ての点を観察に利用できる。これにより、対物レンズ5の開口数により決まる光学的な解像度を実現しつつ、走査速度を保つことが可能となる。従来のマイクロレンズアレイとガルバノミラーとを用いる方式ではガルバノミラーによりズームを行うと画像取得範囲外に走査点がはみ出してしまうので実質的に走査点数が減り、走査速度が遅くなっていた。また、無意味な光を標本に照射してしまうので、蛍光の退色や標本ダメージを余分に生じさせていた。
さらに、光検出器16の数の範囲内で同時走査点の数を任意に可変できる。したがって、解像度と標本Aの動きに合わせて、最適走査点に設定できる。また、レーザ光の分岐は対物レンズ5の瞳20と共役位置にある音響光学偏向素子3により行われるので、分岐した全てのレーザ光を対物レンズ5の瞳20の中心に通過させることができ、解像度よく観察することができるという利点がある。
なお、本実施形態においては、レーザ光源2として、波長488nmのArレーザ2aと、波長560nmのDPSS2bとを同時に発振させることとしてもよい。この場合に、波長488nmおよび560nmのレーザ光は同軸で音響光学偏向素子3に入射するが、偏向角θ1〜θ5に偏向させる周波数範囲が重ならないようにすることができる。したがって、10種類の周波数の振動を結晶3aに印加することにより、波長488nm、560nmのレーザ光をそれぞれ5方向に同軸に出射させることができる。
波長488nmのレーザ光により励起される蛍光は分光ダイクロイックミラー14において反射されて1CHの光検出器16により検出され、波長560nmのレーザ光により励起される蛍光は分光ダイクロイックミラー14を透過し、2CHの光検出器16で検出される。
画像取得範囲に対応する検出光路21の倍率可変レンズ11の位置は上記と同じパターンでよい。
このようにすることで多重染色標本でも上記と同様の効果を得ることができる。
次に、本発明の第2の実施形態に係る走査型レーザ顕微鏡30について、図7〜図11を参照して以下に説明する。
本実施形態の説明において、上述した第1の実施形態に係る走査型レーザ顕微鏡1と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る走査型レーザ顕微鏡30は、図7に示されるように、検出光路21にマトリクス状に配置された複数の微小ミラーを備える微小ミラーアレイからなるデジタルミラーデバイス31(以下、DMD31という。)およびラインセンサ(1次元の検出器)32を備えている。励起ダイクロイックミラー9において反射された検出光路21に配置されている集光レンズ10により、標本A上の複数の走査点からの蛍光はDMD31上に結像され、DMD31とラインセンサ32とはリレーレンズ33によって結像関係に配置されている。
DMD31上には図8に示されるように、複数の微小ミラー31aがマトリクス状に配置されており、それぞれの微小ミラー31aの方向を切り替える(ON/OFF)ことができるようになっている。微小ミラー31aをONにすると、光線は光軸上を進み、OFFにすると、光軸から大きく外れ、図示しないトラップ機構に導かれるようになっている。図8は説明の便宜上、反射光路ではなく、透過光路を直進する状態を微小ミラー31aのON状態としている。
このDMD31は、微小ミラー31aまたは微小ミラー31a群をONにすることで、光路上に導かれる光線を選択し、共焦点ピンホールとして機能させることができるようになっている。
ラインセンサ32のピクセル列の方向と音響光学偏向素子3によるレーザ光の分割方向とは、いずれも近接ガルバノミラー4の副走査方向(Y方向)に一致している。
音響光学偏向素子3により分割されるレーザ光は、図中に3本記載されているが、必要な画像取得時間、解像度、光量、画像取得範囲に応じて、自由に設定可能である。
音響光学偏向素子3に印加する振動の周波数の値に応じて分割されるレーザ光の進行方向は変化するが、共焦点ピンホールに対応するDMD31およびラインセンサ32ともに、レーザ光の分割方向(Y方向、副走査方向)に連続的に複数の微小ミラー31aまたはピクセルが配列されているので、標本A面に形成される複数の走査点(スポット光)と共役な位置にあるDMD31内の微小ミラー31a、およびラインセンサ32のピクセルを選択することで対応できるようになっている。
また、近接ガルバノミラー4による走査中には、蛍光は近接ガルバノミラー4によりディスキャンされるので、DMD31およびラインセンサ32上に結像している光は移動しない。したがって、DMD31の微小ミラー31aや、ラインセンサ32の有効ピクセルを走査に合わせて切り換えていく必要はない。
図9に、A)5点走査、B)10点走査、C)ライン走査、D)近接ガルバノミラー4の振り角を半分にして画像取得範囲を1/4にする5点走査(ガルバノズーム2X)のそれぞれにおけるラインセンサ32での走査点のパターン、DMD31内のONにする微小ミラー31a、ラインセンサ32上で検出に使用するピクセル(有効ピクセル)をそれぞれ示す。
B)の10点走査にすることにより、5点走査の場合と比較すると、1点あたりの光量は減少するが、副走査方向の走査範囲が半分になるので画像取得時間は半分になる。
C)のように、標本A面上の隣り合うスポット光のスポット径が重なるような間隔の周波数の振動を多数、音響光学偏向素子3に印加することで、標本A上においてライン状のレーザ光を走査することが可能である。
この場合には、分割方向(副走査方向)に存在する微小ミラー31aの列およびラインセンサ32の全ピクセルが検出時に使用される。また、近接ガルバノミラー4は副走査方向(Y方向)に固定され、主走査方向(X方向)のみ走査する。すなわち、Y方向を走査せず、X方向の1回の走査で画像取得でき、画像取得時間を大幅に短縮することができる。
ただし、1点あたりの光量はかなり落ちるので光量に余裕がある場合およびY方向の共焦点効果がなく、Y方向のピクセル分解能が、ラインセンサ32のピクセル数により制限されるので、分解能的な問題がない場合にのみ適用できる。
D)のように、5点走査で、サンプリングの解像度を変えずに画像取得範囲を1/4にする場合は、音響光学偏向素子3に印加する振動の周波数の大きさを変えて、5個の走査点の間隔を半分にする。この場合には、検出に使用するDMD31上でONになる微小ミラー31aの位置およびラインセンサ32のピクセル位置も、走査点の変更に応じて、間隔を半分に設定する。
上記ラインセンサ32としては、フォトダイオードアレイ、マルチチャンネルホトマルチプライヤおよび1次元の撮像素子が使用可能である。また、上記のDMD31の他に、液晶素子も使用できる。液晶素子はアレイ状に配置された各領域の透過、遮断を制御でき、透過型なので、反射型となるDMD31より配置が簡略化できるという利点がある。
本実施形態に係る走査型レーザ顕微鏡30によれば、第1の実施形態に係る走査型レーザ顕微鏡1の効果に加えて、標本A上の走査点の数および位置の変化に応じて、検出側の検出点の数および位置も、共焦点ピンホールとして使用するDMD31内の微小ミラー31aの位置の選択、ラインセンサ32内の検出に使用する有効ピクセルの選択により、フレキシブルに対応できる。したがって、画像取得時間、解像度、画像取得範囲を考慮して走査点数、走査点間隔を自由に設定でき、かつ、ライン走査も可能であるという利点がある。
また、分割数の制限はラインセンサ32のピクセル数以下まで対応可能である。ライン走査時のライン方向のピクセル解像度はラインセンサ32のピクセル数により制限される。
さらに、第1の実施形態において必要であった倍率可変レンズ11が不要となり、光学系がシンプルになり、性能が向上し、安価となる。
なお、DMD31内の選択する微小ミラー31aを走査点1点に対して1枚とすると、DMD31上に形成されるスポット光の径がDMD31の微小ミラー31aより大きい場合には、光量を大きく損失してしまう。このような場合には、図10のようにスポット径C内に含まれる複数の微小ミラー31a(図10では5×5=25枚)を1つの走査点に対応する微小ミラー31a群として使用すればよい。ライン走査の場合は5列の微小ミラー31aを選択すればよい。
また、共焦点効果を犠牲にしてでも明るい蛍光画像を取得した場合には、図11に示されるように、DMD31上に形成されるスポット径Cより広い範囲の微小ミラー31aを選択することも可能である。図11では9×9=81枚の微小ミラー31aをONにしており、スポット径Cの1.5倍強の範囲の光を検出できる。
また、逆に、より高い共焦点効果を得るために明るさを犠牲にして、選択する微小ミラー31aの範囲を小さくすることも可能である。例えば、2×2=4枚を選択すれば、スポット径Cの半分以下の面積となり、共焦点効果を高めることができる。
このようすることで、DMD31上にできるスポット径Cに応じて微小ミラー31a群の大きさを可変することで、共焦点効果と蛍光画像の明るさとのバランスを図ることができる。
そして、蛍光画像の明るさと共焦点効果とのバランスを容易に図ることができ、暗い標本Aに対しては、S/N比優先、明るい標本Aに対しては解像度(共焦点効果)優先の設定を簡単に行うことができる。
また、図7のDMD31の位置にCCDのような2次元の光検出器(図示略)を配置し、リレーレンズ33をなくしてもよい。この場合、バリアフィルタ15は、CCDの前段に配置する。
この場合には、標本A上の走査点と結像関係にある位置に配置されたピクセルを共焦点ピンホールおよび光検出器として使用することとすればよい。
このようにすることで、上述と同様に、スポット径Cに対応する範囲にある複数のピクセルの出力の合算値を1つの走査点の検出出力とすることにより、共焦点ピンホールと光検出器の機能の両方をCCDに持たせることが可能となる。
これにより、共焦点ピンホールとしてのDMD31が不要となり、また、リレーレンズ33も不要となるので安価かつ省スペースの走査型レーザ顕微鏡30を提供することができる。
次に、本発明の第3の実施形態に係る走査型レーザ顕微鏡40について、図12〜図15を参照して以下に説明する。
本実施形態の説明において、上述した第2の実施形態に係る走査型レーザ顕微鏡30と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る走査型レーザ顕微鏡40は、第2の実施形態に係る走査型レーザ顕微鏡30と比較すると、音響光学偏向素子3を主走査方向(X方向)にも分割できるように2個配置し、それぞれの音響光学偏向素子3X,3Yを第2投影レンズ41により光学的に共役に配置している点、および、ラインセンサ32の代わりに2次元検出器であるCCD42を用いている点において相違している。
X方向の音響光学偏向素子3Xに複数の周波数の振動を印加するとレーザ光が1次光としてX方向に複数に分割され、Y方向の音響光学偏向素子3Yに複数の周波数の振動を印加すると、X方向に分割されたレーザ光のそれぞれがさらにY方向に複数に分割されるようになっている。したがって、標本A上に複数のスポット光が、マトリクス状に配列されるようになっている。
スポット光の数および間隔は、X、Y方向共に、X、Y方向の音響光学偏向素子3X,3Yに印加する振動の周波数の大きさおよび数によって決まる。これらのスポット光の集合は、近接ガルバノミラー4および対物レンズ5を介して、標本A上の複数位置に同時に照射されるようになっている。
同時に照射された複数の走査点は、近接ガルバノミラー4により副走査方向および主走査方向に走査され、標本Aから発する蛍光は、走査点と結像関係にあるDMD31の微小ミラー31aを介してCCD42のピクセルにより検出される。検出光は近接ガルバノミラー4によりディスキャンされるので、DMD31およびCCD42上では、スポット光は動かない。
波長405nmおよび488nmは、音響光学偏向素子3X,3Yに対して使用する振動の周波数領域が重ならない波長である。したがって、波長405nmおよび488nmで2次元面内の任意の位置にマトリクス状の照明を同時に行うことができる。
図13に、本実施形態に係る走査型レーザ顕微鏡40を使用した各種観察方法および各々の観察での検出光路21の設定(DMD31内でONにする微小ミラー31aおよびCCD42上で検出に使用するピクセル(有効ピクセル))を示す。
A)1領域観察(488nm)+1領域刺激(405nm)、B)1点観察(488nm)+1点マクロ刺激(405nm)、C)領域観察(488nm)+1点マクロ刺激(405nm)、D)1点マクロ観察(488nm)+1点マクロ刺激(405nm)+1点ミクロ刺激(405nm)である。
A)は2つの音響光学偏向素子3X,3Yに波長405nmのレーザ光を回折させる周波数の振動と、波長488nmのレーザ光を回折させる周波数の振動を印加し、走査点を2個作り、1点は観察、1点は刺激に用いる。DMD31上でONにする微小ミラー31aおよびCCD42で検出に使用するピクセルは観察走査点と結像関係にある位置のものが選択される。近接ガルバノミラー4は1個なので刺激領域と観察領域のスキャンサイズは同じに制限されるが、刺激用の405nmと観察用の488nmの偏向角を異ならせることにより、図のように2つの光で別の領域を走査することができる。
B)は2つの音響光学偏向素子3X,3Yに波長488nmのレーザ光を回折させる周波数の振動を1種類印加し、波長488nmのレーザ光の観察用スポット光を1点、標本A上の任意の位置に形成し、波長405nmのレーザ光を回折させる周波数の振動を、スポット光43aが隣接するように3種類ずつかけて、3×3の刺激用スポット光43aを標本A上の任意の位置に形成する。これにより、刺激用の1個のマクロスポット光43は9個のスポット光43aで構成されるので、標本の広い領域に対して同時に光刺激を与えることができる(図14参照。)。なお、1点観察、1点刺激なので、近接ガルバノミラーは走査を行わず停止させた状態とする。
DMD31内でONにする微小ミラー31aおよびCCD42で検出に使用するピクセルは、観察走査点と結像関係にある1箇所(領域)のものが選択される。刺激と観察で波長が異なることが前提であるが、1点のマクロ刺激を行いながら1点の観察を行うことが可能となる。また、マクロ刺激用のマクロスポット光43の大きさは2つの音響光学偏向素子3X,3Yに印加する振動の周波数の数で調節できる。これにより、刺激を与える標本Aの範囲に応じてマクロ刺激用のマクロスポット光43を形成することができる。
C)はB)と同様の周波数の振動を印加し、1個の観察用スポット光(488nm)と、1個の刺激用のマクロスポット光(405nm、スポット光9個で構成)43を形成するものである。領域観察の為に近接ガルバノミラー4を、主走査方向および副走査方向に走査する。この時、刺激用マクロスポット光43が動かないように、刺激用マクロスポット光43を形成するために音響光学偏向素子3X,3Yに印加する振動の周波数を、ガルバノミラーの走査方向と逆方向にスキャンする。これにより、刺激と観察で波長が異なることが前提であるが1点のマクロ刺激を行いつつ領域観察を行うことが可能となる。
上記A)、B)、C)の観察で刺激と観察の場所を切り替えることも可能である。音響光学偏向素子3X,3Yに印加する振動の周波数を変更することで実現でき、高速切替が可能となる。
D)は、3×3の隣接する9個のスポット光からなる、観察用のマクロスポット光(488nm)と、同じ形状の刺激光用のマクロスポット光(405nm)を形成し、1点のマクロ刺激を行いながら、1点のマクロ観察を行うものである。検出に使用するDMD31内のONにする微小ミラー31aおよびCCD42の有効ピクセルは、観察用のマクロスポット光の大きさに対応して広めの範囲を選択する。マクロ観察の範囲は2つの音響光学偏向素子3X,3Yに印加する振動の周波数の数により調節でき、狭い範囲から広い範囲の1点観察が可能である。なお、近接ガルバノミラーは停止させた状態とする。
また、この状態から波長405nmのレーザ光によるマクロ刺激を、異なる場所での1点のミクロ刺激に高速に切り替えることができる。このとき、音響光学偏向素子3X,3Yに印加する刺激光(405nm)に対応する振動の周波数は、3個から1個に切り替え、周波数もミクロ刺激を行う標本A上の位置に対応する周波数とする。切り替えは音響光学偏向素子3X,3Yの切替速度に依存するので近接ガルバノミラー4での切り替えより高速に行うことができる。
このように、本実施形態に係る走査型レーザ顕微鏡40によれば、2つの音響光学偏向素子3X,3Yを用いることで任意の大きさのマクロスポットを容易に作成でき、刺激を与えたり、観察する範囲に応じて、刺激用スポット光および観察用スポット光の大きさをフレキシブルに設定したりすることができるという利点がある。
また、マクロ刺激とミクロ刺激を異なる場所に交互に高速に切り替えて行うことができる。
波長が異なれば、2次元方向に波長毎に同時に走査点を設定でき、標本A上で、視野内に散らばっている観察したい範囲を絞って、同時に、観察したり、刺激したりすることができる。
また、刺激と観察の波長が異なることが前提だが、2組の音響光学偏向素子3X,3Yに加える振動の周波数を近接ガルバノミラー4の走査方向とは逆方向に走査することにより、領域を観察しつつ、固定された1点の刺激を継続することができる。
なお、図15のA)に示されるように、2組の音響光学偏向素子3X,3Yにそれぞれ5個の周波数の振動を印加し、等間隔に25点の走査点を形成してもよい。このようにすると、これらの走査点に画像取得範囲を25分割し、小区画を近接ガルバノミラー4により25点同時に走査することができる。25点より発する蛍光は共焦点ピンホールとして機能するDMD31を介して2次元検出器であるCCD42により同時に検出される。選択される微小ミラー31aおよび検出ピクセルも図15の通りである。
25点は近接ガルバノミラー4によりディスキャンされるので、DMD31の微小ミラー31a上での結像位置およびCCD42における結像位置は動かない。
また、図15のB)に示されるように、近接ガルバノミラー4の振り角を半分にして、ズーム2Xにしてもよい。
このようにすることで、Y方向のライン数だけでなく、X方向の検出走査点の数が1/5になるので、さらに高速に画像取得することができる。また、近接ガルバノミラー4によるズーム時も形成した多点を全て使用でき、光量ロスがないという利点もある。
次に、本発明の第4の実施形態に係る走査型レーザ顕微鏡50について、図16を参照して説明する。
本実施形態の説明において、上述した第3の実施形態に係る走査型レーザ顕微鏡40と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る走査型レーザ顕微鏡50は、波長720nmのレーザ光を発振するIRパルスレーザ光源51aと、波長950nmのレーザ光を発振するIRパルスレーザ光源51bとを備える。波長720nmのパルスレーザ光は、標本Aに2光子励起による光刺激(Cagedなど)を与え、波長950nmのパルスレーザ光は、標本Aに2光子励起による蛍光(蛍光蛋白であるGFP、YFP)を発生させる。
2光子励起は光子密度が高い集光点でのみ蛍光が発生するので、共焦点ピンホールがなくてもZ方向の解像度を確保できる。そこで、近接ガルバノミラー4に蛍光を戻さずに、対物レンズ5と結像レンズ8との間に配置したダイクロイックミラー52(IRパルスレーザ光は反射し、蛍光は透過する特性を持つ)により導かれる光路にも光検出器53を配置している(ノンディスキャン検出と呼ばれ、散乱する蛍光も効率よく収集できる)。この場合、光検出器53と対物レンズ5の瞳20は光検出器53へのリレーレンズ54により共役になっている。図中、符号55はバリアフィルタである。
このダイクロイックミラー52は図示しない全反射ミラーと切替可能になっている。全反射ミラーに切り替えることにより、DMD31を介して、CCD42で検出する検出光路21に切り替えることができる。
波長720nm、950nmのレーザ光に対して音響光学偏向素子3X,3Yに印加する振動の周波数領域が重なっていなければ、図13のA)、B)の観察および刺激を、本実施形態においても同様に行うことができ、多光子検出に適したノンディスキャン検出も可能である。
このように、本実施形態に係る走査型レーザ顕微鏡50によれば、多光子励起による刺激および観察においても、上記第3の実施形態と同様の効果が得られるとともに、ノンディスキャン検出による明るい観察が可能となる。
なお、本実施形態においては、波長720nm、950nmのレーザ光の光路を合成する前の720nmの光路にビーム径を縮小することにより標本A上のスポット径を光学的に大きくするビームエクスパンダを設けてもよい。
このようにすることで、マクロ刺激の時に、光学的なスポット径を大きくでき、印加する振動の周波数の数を少なくして、重なり合うスポット径の範囲を広くすることができる。また、音響光学偏向素子3X,3Yによるスポット光の重ね合わせでは、XY方向にのみしかスポット径が大きくならないが、ビームエクスパンダにより光学的にスポット径を大きくすると、Z方向にも刺激光量の分布が広がるので、XYZ方向で大きなスポットを形成することができる。
本発明の第1の実施形態に係る走査型レーザ顕微鏡を示す全体構成図である。 図1の走査型レーザ顕微鏡に使用される音響光学偏向素子の構造とその作用を示す図である。 図1の走査型レーザ顕微鏡により標本上において走査されるスポット光の動きを示す図である。 図2の音響光学偏向素子に、異なる周波数の高周波振動を加えた場合のレーザ光の偏向角を示す図である。 図1の走査型レーザ顕微鏡により標本上のより狭い範囲にスポット光を走査する場合について示す(a)一部を省略した光路図、(b)スポット光の動きをそれぞれ示す図である。 図5の狭い範囲に走査されるスポット光をシフトする場合について示す(a)一部を省略した光路図、(b)スポット光の動きをそれぞれ示す図である。 本発明の第2の実施形態に係る走査型レーザ顕微鏡を示す全体構成図である。 図7の走査型レーザ顕微鏡に備えられるDMDの反射面を示す正面図である。 図7の走査型レーザ顕微鏡によるスポット光の走査パターンと、DMDおよびラインセンサにおいて使用する微小ミラーおよび有効ピクセルの位置とをそれぞれ場合分けして示す図である。 図8のDMDにおいて、1点のスポット光に対して複数の微小ミラーをONにする場合を示す図である。 図8のDMDにおいて、1点のスポット光に対して、該スポット光より広い範囲の微小ミラーをONにする場合を示す図である。 本発明の第3の実施形態に係る走査型レーザ顕微鏡を示す全体構成図である。 図12の走査型レーザ顕微鏡によるスポット光の走査パターンと、DMDおよびCCDにおいて使用する微小ミラーおよび有効ピクセルの位置とをそれぞれ場合分けして示す図である。 図13のB)〜D)において行われるマクロ刺激の場合の刺激用スポット光を示す拡大図である。 図13と同様に、走査型レーザ顕微鏡によるスポット光の走査パターンと、DMDおよびCCDにおいて使用する微小ミラーおよび有効ピクセルの位置とをそれぞれ場合分けして示す図である。 本発明の第4の実施形態に係る走査型レーザ顕微鏡を示す全体構成図である。
符号の説明
A 標本
1,30,40,50 走査型レーザ顕微鏡
2 レーザ光源
3 音響光学偏向素子
3a 結晶
3X 音響光学偏向素子(第2の音響光学偏向素子)
3Y 音響光学偏向素子(第1の音響光学偏向素子)
4 近接ガルバノミラー(光走査手段)
5 対物レンズ
9 励起ダイクロイックミラー(ビームスプリッタ)
11 倍率可変レンズ
13 共焦点ピンホール
16 光検出器
17 制御装置(周波数制御部)
18 周波数発生器(周波数制御部)
20 瞳
31 DMD(微小素子アレイ)
31a 微小ミラー(微小素子)
32 ラインセンサ(1次元検出器)
42 CCD(2次元検出器)
51a,51b IRパルスレーザ光源(近赤外パルスレーザ光源)

Claims (23)

  1. レーザ光源と、
    該レーザ光源からのレーザ光の光路に配置され、結晶に加える振動の周波数を変化させることによりレーザ光の進行方向を変更可能な音響光学偏向素子と、
    該音響光学偏向素子の結晶に対して同時に複数の周波数の振動を加える周波数制御部と、
    前記レーザ光源からのレーザ光を集光して標本上にスポット光を生成する対物レンズと、
    前記音響光学偏向素子からのレーザ光を直交する2方向に偏向することにより、前記標本上のスポット光からなる走査点を2次元走査する光走査手段とを備え、
    前記音響光学偏向素子、前記光走査手段、前記対物レンズの瞳位置が、光学的に共役な位置に配置されている走査型レーザ顕微鏡。
  2. 前記音響光学偏向素子と前記対物レンズとの間の光路に、前記標本からの戻り光とレーザ光とを分岐するビームスプリッタと、前記ビームスプリッタにより分岐された前記標本からの戻り光を検出する光検出器とを備える請求項1に記載の走査型レーザ顕微鏡。
  3. 前記音響光学偏向素子により異なる方向に偏向される複数のレーザ光の偏向方向が、前記光走査手段により走査される直交する2方向の内の副走査方向に一致し、
    前記ビームスプリッタにより分岐された標本からの戻り光の光路上に、標本上の複数の走査点から発する戻り光を通過させる共焦点ピンホールが備えられ、
    前記光検出器が、各走査点から発せられ、共焦点ピンホールを通過した戻り光を個別に検出するように複数備えられている請求項2に記載の走査型レーザ顕微鏡。
  4. 前記各検出器により取得された画像をつなぎ合わせて1つの画像を合成する画像処理手段を備える請求項3に記載の走査型レーザ顕微鏡。
  5. 前記周波数制御部が、前記光走査手段の走査範囲の変更に応じて、前記音響光学偏向素子の結晶に印加する振動の周波数を調節する請求項1から請求項4のいずれかに記載の走査型レーザ顕微鏡。
  6. 前記共焦点ピンホールが、マトリックス状に配置された複数の微小素子を備え、複数の走査点と結像関係にある範囲の微小素子を有効にする微小素子アレイである請求項3から請求項5のいずれかに記載の走査型レーザ顕微鏡。
  7. 前記光検出器が、1次元検出器または2次元検出器であり、複数の走査点と結像関係にある位置のピクセルにより各走査点からの戻り光を検出する請求項2から請求項6のいずれかに記載の走査型レーザ顕微鏡。
  8. 前記光検出器が2次元検出器であり、前記共焦点ピンホールが、複数の走査点と結像関係にある位置の複数のピクセルを各走査点に対応して有効にすることにより構成されている請求項2から請求項6のいずれかに記載の走査型レーザ顕微鏡。
  9. 前記音響光学偏向素子の結晶に印加する複数の周波数の振動の大きさおよび数に対応付けて、共焦点ピンホールとして作用させるために有効とする微小素子の範囲を設定する請求項6から請求項8のいずれかに記載の走査型レーザ顕微鏡。
  10. 前記音響光学偏向素子の結晶に印加する複数の周波数の振動の大きさおよび数に対応付けて、光検出器上の検出に使用するピクセルを設定する請求項7から請求項9のいずれかに記載の走査型レーザ顕微鏡。
  11. 前記周波数制御部は、副走査方向に生成される走査点の間隔が、前記1次元検出器のピクセル列または前記2次元検出器の副走査方向に対応するピクセル列の間隔と一致するように、前記音響光学偏向素子の結晶に印加する複数の振動の周波数を調節して、前記標本に対してほぼライン状の照明を行うとともに、
    前記光検出器が、標本の複数の走査点からのライン状の戻り光を同時に検出する請求項7に記載の走査型レーザ顕微鏡。
  12. 前記ビームスプリッタと共焦点ピンホールとの間に配置された倍率可変レンズを備え、
    該可変倍率レンズが、前記画像取得範囲に応じて、その倍率を可変制御される請求項3または請求項4に記載の走査型レーザ顕微鏡。
  13. 前記音響光学偏向素子が、前記光走査手段の主走査方向と副走査方向の両方に光線を分割させる請求項1に記載の走査型レーザ顕微鏡。
  14. 副走査方向にレーザ光を偏向させる第1の音響光学偏向素子と、主走査方向にレーザ光を偏向させる第2の音響光学偏向素子とを備え、標本上にマトリクス状に複数の走査点を形成する請求項13に記載の走査型レーザ顕微鏡。
  15. 前記周波数制御部が、前記2つの音響光学偏向素子のそれぞれに複数の周波数の振動を印加することにより分割された複数のレーザ光により標本上に形成されるスポット光を、相互に隣接または一部重ねてマクロスポットを形成し、形成したマクロスポットの大きさを変化させるように、前記音響光学偏向素子に印加する振動の周波数の数および/または間隔を調節する請求項14に記載の走査型レーザ顕微鏡。
  16. 前記レーザ光源と音響光学偏向素子との間に前記対物レンズの瞳に入射するビーム径を可変するビーム径可変光学系を備える請求項15に記載の走査型レーザ顕微鏡。
  17. 前記2つの音響光学偏向素子と前記対物レンズとの間の光路に、前記標本からの戻り光とレーザ光とを分岐するビームスプリッタと、前記ビームスプリッタにより分岐された前記標本からの戻り光を検出する光検出器とを備える請求項14から請求項16のいずれかに記載の走査型レーザ顕微鏡。
  18. 前記レーザ光源が、異なる波長の刺激用レーザ光および観察用レーザ光を発振し、
    前記周波数制御部が、前記音響光学偏向素子に各レーザ光の波長に対応する周波数の振動を同時に印加して、各レーザ光の走査点を標本上の異なる位置に形成し、
    前記光検出器が、観察用レーザ光の走査点から発せられた戻り光を検出する請求項17に記載の走査型レーザ顕微鏡。
  19. 前記周波数制御部が、前記刺激用レーザ光の照射位置および前記観察用レーザ光の照射位置を切り替えるように、前記音響光学偏向素子に印加する振動の周波数を変更する請求項18に記載の査型レーザ顕微鏡。
  20. 前記周波数制御部が、前記光走査手段による走査にかかわらず、前記刺激用レーザ光の照射位置を静止させるように、前記音響光学偏向素子に加える振動の周波数を走査する請求項18に記載の走査型レーザ顕微鏡。
  21. 前記周波数制御部が、前記標本上に形成される複数のマトリクス状のスポット光のX方向の間隔およびY方向の間隔をそれぞれ等間隔となるように前記音響光学偏向素子に加える振動の周波数を調節し、
    前記光走査手段が、前記スポット光の間隔に応じた主走査方向および副走査方向の走査範囲にスポット光を走査させ、
    前記各スポット光の結像位置に共焦点ピンホールが配置されている請求項17に記載の走査型レーザ顕微鏡。
  22. 前記光検出器により個別に取得された画像をつなぎ合わせて表示する表示手段を備える請求項21に記載の走査型レーザ顕微鏡。
  23. 前記レーザ光源が、多光子励起観察用の近赤外パルスレーザ光源である請求項1から請求項22のいずれかに記載の走査型レーザ顕微鏡。
JP2007276079A 2007-10-24 2007-10-24 走査型レーザ顕微鏡 Active JP5259154B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007276079A JP5259154B2 (ja) 2007-10-24 2007-10-24 走査型レーザ顕微鏡
EP08017965A EP2053442B1 (en) 2007-10-24 2008-10-14 Scanning laser microscope
DE602008004052T DE602008004052D1 (de) 2007-10-24 2008-10-14 Laser-Scanning-Mikroskop
US12/251,602 US8054542B2 (en) 2007-10-24 2008-10-15 Scanning laser microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276079A JP5259154B2 (ja) 2007-10-24 2007-10-24 走査型レーザ顕微鏡

Publications (2)

Publication Number Publication Date
JP2009103958A JP2009103958A (ja) 2009-05-14
JP5259154B2 true JP5259154B2 (ja) 2013-08-07

Family

ID=40228019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276079A Active JP5259154B2 (ja) 2007-10-24 2007-10-24 走査型レーザ顕微鏡

Country Status (4)

Country Link
US (1) US8054542B2 (ja)
EP (1) EP2053442B1 (ja)
JP (1) JP5259154B2 (ja)
DE (1) DE602008004052D1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864379B2 (en) * 2001-03-19 2011-01-04 Dmetrix, Inc. Multi-spectral whole-slide scanner
US8388609B2 (en) * 2008-12-01 2013-03-05 Amo Development, Llc. System and method for multibeam scanning
WO2011023593A1 (en) * 2009-08-24 2011-03-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Method of and apparatus for imaging a cellular sample
JP5502407B2 (ja) * 2009-09-17 2014-05-28 日本電子株式会社 共焦点stem像取得方法及び装置
JP5742101B2 (ja) * 2010-03-11 2015-07-01 株式会社リコー 静電潜像の測定方法と測定装置
CN103477267B (zh) * 2011-03-01 2016-09-14 通用电气医疗集团生物科学公司 可变取向照明模式旋转器
US9095414B2 (en) * 2011-06-24 2015-08-04 The Regents Of The University Of California Nonlinear optical photodynamic therapy (NLO-PDT) of the cornea
WO2013021615A1 (ja) * 2011-08-11 2013-02-14 株式会社ニコン 構造化照明装置及び構造化照明方法、並びに構造化照明顕微鏡装置
US9432592B2 (en) 2011-10-25 2016-08-30 Daylight Solutions, Inc. Infrared imaging microscope using tunable laser radiation
WO2013080542A1 (ja) * 2011-12-01 2013-06-06 株式会社ニコン 構造化照明装置、その構造化照明装置の調整方法、コンピュータ実行可能な調整プログラム、構造化照明顕微鏡装置、面形状測定装置
CN103033514B (zh) * 2012-12-13 2015-07-29 华中科技大学 一种基于声光偏转器的多路扫描与探测方法及装置
JP6205140B2 (ja) * 2013-03-01 2017-09-27 オリンパス株式会社 走査型レーザ顕微鏡装置
DE112014001147T5 (de) 2013-03-06 2015-11-19 Hamamatsu Photonics K.K. Fluoreszenz-Empfangsvorrichtung und Verfahren zum Empfangen von Fluoreszenz
EP2984514B9 (en) 2013-04-12 2021-04-07 Daylight Solutions Inc. Infrared refractive objective lens assembly
JP6234072B2 (ja) * 2013-06-05 2017-11-22 オリンパス株式会社 非線形光学顕微鏡装置
JP6210754B2 (ja) * 2013-06-24 2017-10-11 オリンパス株式会社 走査型光学顕微鏡
DE102013021482A1 (de) 2013-12-17 2015-06-18 Carl Zeiss Microscopy Gmbh Verfahren zur Scanning-Mikroskopie und Scanning-Mikroskop
DE102013022026A1 (de) * 2013-12-19 2015-06-25 Carl Zeiss Microscopy Gmbh Mehrfarben-Scanning-Mikroskop
US10130249B2 (en) 2015-05-01 2018-11-20 Canon Kabushiki Kaisha Inspection apparatus, image processing apparatus, method of operating inspection apparatus, image processing method, and recording medium
DE102016102286A1 (de) * 2016-02-10 2017-08-10 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur Multispot-Scanning-Mikroskopie
KR102585276B1 (ko) 2017-03-31 2023-10-05 라이프 테크놀로지스 코포레이션 이미징 유세포 분석을 위한 장치, 시스템, 및 방법
DE102017125688A1 (de) 2017-11-03 2019-05-09 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zum Abrastern einer Probe
US11860349B2 (en) 2018-07-02 2024-01-02 Universitat De Barcelona Programmable multiple-point illuminator, confocal filter, confocal microscope and method to operate said confocal microscope
DE102018123381A1 (de) 2018-09-24 2020-03-26 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zum Abrastern einer Probe
JP7004632B2 (ja) * 2018-10-05 2022-01-21 京セラ株式会社 電磁波検出装置
GB2588378A (en) * 2019-10-10 2021-04-28 Refeyn Ltd Methods and apparatus for optimised interferometric scattering microscopy
CN111751340B (zh) * 2020-06-24 2023-08-11 宁波舜宇仪器有限公司 光束复用共聚焦成像装置及成像方法
CN113504634B (zh) * 2021-06-30 2023-01-03 华南师范大学 点扫描长寿命荧光显微成像的智能高速扫描方法及装置
CN114504292A (zh) * 2022-04-18 2022-05-17 之江实验室 一种小型化高分辨高帧率光纤内窥成像装置及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827125A (en) * 1987-04-29 1989-05-02 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Confocal scanning laser microscope having no moving parts
JP2663780B2 (ja) 1991-05-29 1997-10-15 横河電機株式会社 共焦点用光スキャナ
JPH05203878A (ja) * 1992-01-27 1993-08-13 Jeol Ltd 走査型レーザー顕微鏡
US5255257A (en) * 1992-03-04 1993-10-19 Lasertape Systems, Inc. Frequency, phase and amplitude control apparatus and method for acousto-optic deflector optimization
JP3343276B2 (ja) * 1993-04-15 2002-11-11 興和株式会社 レーザー走査型光学顕微鏡
JPH09281405A (ja) * 1996-04-17 1997-10-31 Olympus Optical Co Ltd 顕微鏡システム
JP3816632B2 (ja) 1997-05-14 2006-08-30 オリンパス株式会社 走査型顕微鏡
DE19835072A1 (de) * 1998-08-04 2000-02-10 Zeiss Carl Jena Gmbh Anordnung zur Beleuchtung und/oder Detektion in einem Mikroskop
JP2000199855A (ja) * 1998-11-02 2000-07-18 Olympus Optical Co Ltd 走査型光学顕微鏡装置
ATE394697T1 (de) * 2000-09-18 2008-05-15 Vincent Lauer Optische konfokale abtastvorrichtung
DE10062683A1 (de) * 2000-12-15 2002-06-20 Heidelberger Druckmasch Ag Mehrstrahl-Abtastvorrichtung
US6856457B2 (en) * 2001-03-27 2005-02-15 Prairie Technologies, Inc. Single and multi-aperture, translationally-coupled confocal microscope
KR100990300B1 (ko) * 2001-06-13 2010-10-26 오르보테크 엘티디. 에너지 전달 시스템
JP2003185927A (ja) * 2001-12-13 2003-07-03 Olympus Optical Co Ltd 走査型レーザー顕微鏡
US7339148B2 (en) * 2002-12-16 2008-03-04 Olympus America Inc. Confocal microscope
JP4434882B2 (ja) * 2004-08-27 2010-03-17 オリンパス株式会社 レーザ走査型蛍光観察装置
JP2007276079A (ja) 2006-04-11 2007-10-25 Mitsubishi Materials Corp ろう付接合強度に優れた高硬度加工用立方晶窒化硼素基セラミックス切削工具、並びに切削工具に用いられるAg合金ろう材

Also Published As

Publication number Publication date
EP2053442B1 (en) 2010-12-22
DE602008004052D1 (de) 2011-02-03
JP2009103958A (ja) 2009-05-14
EP2053442A1 (en) 2009-04-29
US8054542B2 (en) 2011-11-08
US20090109527A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5259154B2 (ja) 走査型レーザ顕微鏡
US11762182B2 (en) SPIM microscope with a sequential light sheet
JP5642301B2 (ja) 走査型顕微鏡、および試料の光学検鏡画像形成のための方法
JP3816632B2 (ja) 走査型顕微鏡
JP4723806B2 (ja) 共焦点顕微鏡
JP6346615B2 (ja) 光学顕微鏡および顕微鏡観察方法
US9234846B2 (en) High-resolution microscope and method for determining the two- or three-dimensional positions of objects
JP5340799B2 (ja) レーザ走査型顕微鏡
JP6096814B2 (ja) スペクトル検出を伴う光走査型顕微鏡
US20070051869A1 (en) Scanning microscope and method for examining a sample by using scanning microscopy
US20140118750A1 (en) Method and Configuration for Depth Resolved Optical Detection of an Illuminated Specimen
JP2002323660A (ja) 試料の光学的深部分解による光学的把握のための方法および装置
JP2007506955A (ja) エバネッセント波照明を備えた走査顕微鏡
JP2019526829A (ja) ライトシート顕微鏡
JP5495740B2 (ja) 共焦点走査型顕微鏡
JP2007506146A (ja) 共焦点レーザ走査顕微鏡
JP7094225B2 (ja) 試料を検査する方法および顕微鏡
JP4869749B2 (ja) 走査型顕微鏡
JP2022500704A (ja) 試料を走査する方法および装置
JP5443939B2 (ja) レーザ照明装置、及び、それを備えたレーザ顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5259154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250