TW202042946A - 雷射加工設備、操作其之方法以及使用其加工工件的方法 - Google Patents

雷射加工設備、操作其之方法以及使用其加工工件的方法 Download PDF

Info

Publication number
TW202042946A
TW202042946A TW108147621A TW108147621A TW202042946A TW 202042946 A TW202042946 A TW 202042946A TW 108147621 A TW108147621 A TW 108147621A TW 108147621 A TW108147621 A TW 108147621A TW 202042946 A TW202042946 A TW 202042946A
Authority
TW
Taiwan
Prior art keywords
aod
laser energy
optical
beam path
positioner
Prior art date
Application number
TW108147621A
Other languages
English (en)
Other versions
TWI843784B (zh
Inventor
詹姆斯 布魯克伊塞
傑恩 克雷能特
馬克 寇摩斯基
提摩太 紐寇斯
傑瑞德 瑞智特爾
吉野郁世
史蒂夫 密里薩
穆罕默德 阿爾帕伊
劉源
克爾特 伊藤
Original Assignee
美商伊雷克托科學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商伊雷克托科學工業股份有限公司 filed Critical 美商伊雷克托科學工業股份有限公司
Publication of TW202042946A publication Critical patent/TW202042946A/zh
Application granted granted Critical
Publication of TWI843784B publication Critical patent/TWI843784B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/704Beam dispersers, e.g. beam wells

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

揭示了眾多具體實例。在一個具體實例中,一種雷射加工設備包括配置於光束路徑內之定位器,雷射能量光束可沿該光束路徑傳播。控制器可用以控制該定位器之操作以使該光束路徑在第一主要角範圍及第二主要角範圍內偏轉,且使該光束路徑偏轉至該第一主要角範圍及該第二主要角範圍中之每一者內的複數個角度。在另一具體實例中,一種整合式光束截止器系統包括:框架;及耦接至該框架之檢拾器鏡面及光束截止器。在又一具體實例中,一種波前校正光學件包括具有反射表面之鏡面,該反射表面具有特徵在於條紋任尼克項Z4及Z9之特定比率的形狀。揭示有更多具體實例。

Description

雷射加工設備、操作其之方法以及使用其加工工件的方法
本文中所描述之具體實例大體上涉及雷射加工設備及其組件,且涉及其操作技術。 相關申請案
本申請案主張2019年1月31日提交之美國臨時申請案第62/799,218號、2019年4月10日提交之美國臨時申請案第62/832,064號及2019年5月30日提交之美國臨時申請案第62/854,579號的權益,所述申請案各自以全文引用之方式併入。
大體而言,工件之雷射加工係藉由以下操作實現:用雷射能量輻照工件以使形成工件之一或多種材料受熱、熔融、蒸發、剝蝕、開裂、褪色、拋光、粗化、碳化、發泡,或以其他方式修改該一或多種材料之一或多個性質或特性。舉例而言,諸如印刷電路板(printed circuit board;PCB)之工件可經受雷射加工以在其中形成通孔。為了快速加工工件,可能需要使用高功率雷射源產生雷射能量、快速改變用雷射能量輻照工件之位置,及能夠快速改變雷射能量之性質(例如,就脈衝持續時間、脈衝能量、脈衝重複率或其類似者而言)及其類似者。此外,可取決於待加工之工件之類型而選擇在雷射加工期間使用之雷射能量之波長。然而,經開發用於使用具有一個特定波長範圍(例如,在電磁波譜之紫外線範圍內的波長)之雷射能量進行雷射加工的某些習知組件及技術可能不適於使用具有另一特定波長範圍(例如,在電磁波譜之長波紅外線範圍內的波長)之雷射能量進行相同雷射加工。開發本文所論述之具體實例以認識到本發明人發現之此等及其他問題。
本發明之一個具體實例之特徵可為一種雷射加工設備,其包括:雷射源,其可操作以產生雷射能量光束,其中該雷射能量光束可沿光束路徑傳播;第一定位器,其配置於該光束路徑內,其中該第一定位器可操作以使該光束路徑偏轉;及控制器,其耦接至該第一定位器。該控制器可經配置以控制該第一定位器之操作以使該光束路徑在第一主要角範圍內及在第二主要角範圍內偏轉,其中該第二主要角範圍不與第一角範圍重疊且不與該第一主要角範圍鄰接。該控制器可進一步經配置以控制該第一定位器之操作以使該光束路徑偏轉至該第一主要角範圍內之第一複數個角度及第二主要角範圍內之第二複數個角度。
本發明之另一具體實例之特徵可為一種整合式光束截止器(dump)系統,其包括:框架;檢拾器(pickoff)鏡面,其耦接至該框架且經配置以反射雷射能量光束;及光束截止器,其耦接至該框架且經配置以吸收該雷射能量光束。
本發明之另一具體實例之特徵可為一種整合式光束截止器系統,其包括具有第一表面及至少一個第二表面之框架。該第一表面可經配置以反射一雷射能量光束,且該至少一個第二表面可經配置以吸收該雷射能量光束。
本發明之另一具體實例之特徵可為一種波前校正光學件,其包括具有反射表面之鏡面,其中該反射表面之形狀之特徵為條紋任尼克項Z4及Z9,且其中Z9對Z4之係數比率在-0.1至-0.3之範圍內。
本發明之另一具體實例之特徵可為一種波前校正光學件,其包括:可變形鏡面,其具有反射表面;主體;及凹穴,其界定於該主體內。該主體可包括在該反射表面與該凹穴之間的可變形膜區,且該膜區之中心部分可具有第一厚度,且該膜區之周邊部分具有大於該第一厚度之第二厚度。
本發明之另一具體實例之特徵可為一種波前校正光學件,其包括:可變形鏡面,其具有反射表面;主體,其包括至少一個肋狀物;及複數個凹穴,其界定於該主體內。該主體可包括在該反射表面與該凹穴之間的可變形膜區,且該至少一個肋狀物可插入於該複數個凹穴之間。
本發明之另一具體實例之特徵可為一種波前校正光學件系統,其包括:膜狀可變形鏡面,其具有可加壓凹穴;基座,其耦接至該鏡面且具有延伸穿過其中之至少一個孔,其中該至少一個孔與該可加壓凹穴流體連通;及安裝板,其耦接至該基座及一光學安裝構件。
本發明之另一具體實例之特徵可為一種系統,其包括:第一光學組件,其可操作以透射雷射能量光束,其中該第一光學組件易受到熱致透鏡的影響;波前補償光學件,其經配置以校正由該第一光學組件透射之該雷射能量光束中且可歸因於該熱致透鏡之波前像差;及光學中繼器系統,其經佈置且經配置以將該第一光學組件在第一平面處之影像中繼至第二平面。該波前補償光學件可配置於該第二平面處,且該第一光學中繼器系統可經配置以使得該第一光學組件在該第二平面處之該影像的尺寸不同於該第一光學組件在該第一平面處之該影像的尺寸。
本發明之另一具體實例之特徵可為一種系統,其包括聲光偏轉器(acousto-optic deflector;AOD);色散補償器,其包括從稜鏡及光柵組成之群組中所選擇的至少一者;第一光學組件,其在該色散補償器之光學上游之一位置處光學耦接至該色散補償器,該第一光學組件經配置以放大入射雷射能量光束;及第二光學組件,其在光學上在該色散補償器與該AOD之間的一位置處光學耦接至該色散補償器及該AOD,該第二光學組件經配置以縮小入射於其上之雷射能量光束。
本發明之另一具體實例之特徵可為一種系統,其包括:聲光偏轉器(acousto-optic deflector;AOD),其可操作以使入射雷射能量光束繞射且沿一光束路徑輸出經繞射雷射能量光束,其中該AOD可操作以使該入射雷射能量光束可變地繞射,從而使該光束路徑在第一角範圍內及在第二角範圍內偏轉;第一色散補償器,其包括從稜鏡及光柵組成之群組中所選擇的至少一者,該第一色散補償器光學耦接至該AOD之輸出且配置於在該第一角範圍內偏轉之該光束路徑中;及第二色散補償器,其包括從稜鏡及光柵組成之群組中所選擇的至少一者,該第二色散補償器光學耦接至該AOD之該輸出且配置於在該第二角範圍內偏轉之該光束路徑中。
本發明之另一具體實例之特徵可為一種系統,其包括:雷射源,其可操作以產生雷射能量光束,其中該雷射能量光束可沿光束路徑傳播;定位器,其配置於該光束路徑內且可操作以使該光束路徑偏轉,其中該定位器包括第一聲光偏轉器(acousto-optic deflector;AOD)及光學耦接至該第一AOD之輸出的第二AOD;及控制器,其耦接至該定位器,其中該控制器經配置以在至少一個片斷(slice)時段期間操作該第一AOD及該第二AOD,以將該雷射能量光束在時間上劃分成至少一個脈衝片斷。
本文中參看隨附圖式來描述實例具體實例。除非以其它方式明確地陳述,否則在圖式中,組件、特徵、元件等的大小、位置等以及其間的任何距離未必依據比例,而是出於明晰之目的而放大。在圖式中,相同編號通篇指相同元件。因此,可能在參考其他圖式時描述相同或類似數字,即使所述數字在對應圖式中未提及亦未描述。又,即使未經參考數字指示之元件亦可參考其他圖式加以描述。
本文中所使用之術語僅出於描述特定實例具體實例之目的,且並不意欲為限制性的。除非另外定義,否則本文中所使用之所有術語(包括技術及科學術語)具有所屬技術領域中具有通常知識者通常所理解之相同意義。如本文中所使用,除非上下文另外明確地指示,否則單數形式「一(a/an)」及「該(the)」意欲亦包括複數形式。應認識到,術語「包含(comprise及/或comprising)」在用於本說明書中時指定所陳述之特徵、整體、步驟、操作、元件及/或組件之存在,但並不排除一或多個其他特徵、整體、步驟、操作、元件、組件及/或其群組之存在或添加。除非另外指定,否則在敍述值範圍時,值範圍包括該範圍之上限及下限兩者以及在其間的任何子範圍。除非另外指示,否則諸如「第一(first)」、「第二(second)」等術語僅用於區別一個元件與另一元件。舉例而言,一個節點可稱為「第一節點(first node)」,且類似地,另一節點可稱為「第二節點(second node)」,或反之亦然。
除非另外指示,否則術語「約(about)」、「大約(thereabout)」等意謂量、大小、配方、參數及其他量及特性並非且不必為精確的,而視需要可為大致的及/或更大或更小,從而反映容限、轉換因素、捨入、量測誤差及其類似者,以及所屬技術領域中具有知識者已知之其他因素。為易於描述,諸如「在……下方(below)」、「在……之下(beneath)」、「下部(lower)」、「在……上方(above)」及「上部(upper)」以及其類似者之空間相對術語可在本文中使用以易於描述如在圖式中所說明的一個元件或特徵與另一元件或特徵之關係。應認識到,所述空間相對術語意欲涵蓋除圖式中所描繪之定向之外的不同定向。舉例而言,若將圖式中之物件翻轉,則描述為在其他元件或特徵「下方」或「之下」的元件將定向為在其他元件或特徵「上方」。因此,例示性術語「在...下方」可涵蓋上方及下方兩者之定向。物件可以其他方式定向(例如,旋轉90度或處於其他定向),且本文中所使用之空間相對描述詞可相應地進行解釋。
本文中所使用之章節標題僅用於組織目的,且除非另外明確地陳述,否則所述章節標題不應被理解為限制所描述之主題。將瞭解,許多不同形式、具體實例及組合係可能的,而不會背離本發明之精神及教示,且因此,本發明不應被視為限於本文中所闡述之實例具體實例。確切而言,提供此等實例及具體實例,使得本發明將為透徹且完整的,且將向所屬技術領域中具有知識者充分傳達本發明之範圍。I. 綜述
本文中所描述之具體實例大體上係關於用於雷射加工(或者,更簡單地,「加工(processing)」)工件之方法及設備。大體而言,該加工係藉由以下操作來完全或部分地實現:用雷射輻射輻照工件,以使形成工件之一或多種材料受熱、熔融、蒸發、剝蝕、開裂、褪色、拋光、粗化、碳化、發泡,或以其他方式修改該一或多種材料之一或多個性質或特性(例如,就化學組成、原子結構、離子結構、分子結構、電子結構、微結構、奈米結構、密度、黏度、折射率、磁導率、相對電容率、紋理、色彩、硬度、電磁輻射透射率或其類似者或其任何組合而言)。待加工之材料在加工之前或期間可存在於工件外部,或在加工之前或期間可完全位於工件內(亦即,不存在於工件外部)。
可由用於雷射加工之所揭示設備進行的製程之特定實例包括鑽孔或其他孔形成、切割、穿孔、焊接、刻劃、雕刻、標記(例如,表面標記、次表面標記等)、雷射引發之正向傳送、清潔、漂白、明亮像素修復(例如,彩色濾光片暗化、將OLED材料改質等)、除去塗層、表面紋理化(例如,粗化、平滑化等)或其類似者,或其任何組合。因此,作為加工之結果,可形成於工件上或內的一或多個特徵可包括開口、槽孔、通孔或其他孔、凹槽、溝槽、切割道、鋸口、凹陷區域、導電跡線、歐姆觸點、光阻圖案、人工或機器可讀標記(例如,由具有一或多個視覺上或質地上可區分之特性的工件中或上的一或多個區組成)或其類似者,或其任何組合。當自俯視平面圖檢視時,諸如開口、槽孔、通孔、孔等特徵可具有任何適合或合乎需要的形狀(例如,圓形、橢圓形、正方形、矩形、三角形、環形或其類似者或其任何組合)。另外,諸如開口、槽孔、通孔、孔等特徵可完全延伸穿過工件(例如,以便形成所謂的「穿孔(through via)」、「穿通孔(through hole)」等)或僅部分地延伸穿過工件(例如,以便形成所謂的「盲孔(blind via)」、「未穿孔(blind hole)」等)。
可加工之工件一般之特徵可為由一或多種金屬、聚合物、陶瓷、複合物或其任何組合(例如,不論是否為合金、化合物、混合物、溶液、複合物等)形成。因此,可加工之材料包括一或多種金屬,諸如Al、Ag、Au、Cr、Cu、Fe、In、Mg、Mo、Ni、Pt、Sn、Ti或其類似物,或其任何組合(例如,是否作為合金、複合物等)、導電金屬氧化物(例如,ITO等)、透明導電聚合物、陶瓷、蠟、樹脂、層間介電材料(例如,二氧化矽、氮化矽、氮氧化矽等)、有機介電材料(例如,SILK、苯環丁烯、鸚鵡螺(皆由陶氏(Dow)製造)、聚氟四乙烯(由杜邦(DuPont)製造)、FLARE(由聯合化學(Allied Chemical)製造)等或其類似物或其任何組合)、半導體或光學裝置基板材料(例如,Al2 O3 、AlN、BeO、Cu、GaAS、GaN、Ge、InP、Si、SiO2 、SiC、Si1-x Gex (其中0.0001 <x < 0.9999)或其類似物,或其任何組合或合金)、玻璃(例如,熔融石英、鈉鈣矽玻璃、硼矽酸鈉玻璃、氧化鉛玻璃、鋁矽酸鹽玻璃、氧化鍺玻璃、鋁酸鹽玻璃、磷酸鹽玻璃、硼酸鹽玻璃、硫化物玻璃、非晶形金屬,或其類似物或其任何組合)、藍寶石、聚合材料(例如,聚醯胺、聚醯亞胺、聚酯、聚萘二甲酸乙二酯(PEN)、聚對苯二甲酸乙二酯(PET)、聚縮醛、聚碳酸酯、經改質之聚苯醚、聚對苯二甲酸丁二酯、聚苯硫醚、聚醚碸、聚醚醯亞胺、聚醚醚酮、液晶聚合物、丙烯腈丁二烯苯乙烯或其任何化合物、複合物或合金)、皮革、紙張、累積材料(例如,味素累積膜,亦被稱作「ABF」等)、阻焊劑或其類似物或任何複合物、層合物或其其他組合。
可加工之工件之特定實例包括:印刷電路板(printed circuit board;PCB)(在本文中亦被稱作「PCB面板」)之面板、PCB、PCB層合物(例如,FR4、高Tg環氧樹脂、BT、聚醯亞胺或其類似物或其任何組合)、PCB層合物預浸材、基板類PCB(substrate-like PCB;SLP)、可撓性印刷電路(flexible printed circuit;FPC)之面板(在本文中亦被稱作「FPC面板」)、FPC、覆蓋層(coverlay)薄膜、積體電路(integrated circuit;IC)、IC基板、IC封裝(IC package;ICP)、發光二極體(light-emitting diode;LED)、LED封裝、半導體晶圓、電子或光學裝置基板、中介層、引線框架、引線框架、引線框架坯料、顯示器基板(例如,其上形成有TFT、彩色濾光片、有機LED(OLED)陣列、量子點LED陣列或其類似者或其任何組合之基板)、透鏡、鏡面、渦輪葉片、粉末、薄膜、箔片、板、模具(例如,蠟模具、用於射出模製製程、包模鑄造製程等之模具)、織品(織物、氈製品等)、手術器械、醫學植入物、零售包裝商品、鞋、腳踏車、汽車、汽車或航空零件(例如,框架、主體面板等)、電器(例如,微波爐、烤箱、冰箱等)、裝置外殼(例如,用於手錶、電腦、智慧型手機、平板電腦、可穿戴電子裝置或其類似者或其任何組合)。II. 系統概述
圖1示意性說明根據本發明之一個具體實例的雷射加工設備。
參看圖1中所展示之具體實例,用於加工工件102a及102b(各自一般被稱作「工件102(workpiece 102)」)之雷射加工設備100(在本文中亦簡稱為「設備(apparatus)」)之特徵可為包括用於產生雷射能量光束之雷射源104、第一定位器106、複數個第二定位器(例如,第二定位器108a及108b,各自一般被稱作「第二定位器108(second positioner 108)」)、第三定位器110及複數個掃描透鏡(例如,掃描透鏡112a及112b,各自一般被稱作「掃描透鏡112(scan lens 112)」)。儘管圖1說明雷射加工設備100包括兩個第二定位器108之具體實例,但將瞭解,本文中所揭示之眾多具體實例可應用於僅包括單一第二定位器108之雷射加工設備或可應用於多於兩個第二定位器108。
掃描透鏡112及對應第二定位器108可視情況整合至共用外殼或「掃描頭(scan head)」中。舉例而言,掃描透鏡112a及對應第二定位器108(亦即,第二定位器108a)可整合至共同掃描頭120a中。同樣,掃描透鏡112b及對應第二定位器108(亦即,第二定位器108b)可整合至共同掃描頭120b中。如本文中所使用,掃描頭120a及掃描頭120b中之每一者在本文中亦一般被稱作「掃描頭120(scan head 120)」。
儘管圖1說明通常支撐複數個工件102之單一第三定位器110,但將瞭解,可提供複數個第三定位器110(例如,以各自支撐不同工件102,支撐共同工件102,或其類似操作或其任何組合)。然而,鑒於以下描述,應認識到,若不需要由任何第二定位器108或第三定位器110提供之功能,則包括任何第二定位器108或第三定位器110係視情況選用的。
如下文更詳細地論述,第一定位器106可操作以使雷射能量光束繞射、反射、折射或以其他方式偏轉,以便使光束路徑114偏轉至第二定位器108中之任一者。如本文中所使用,術語「光束路徑(beam path)」係指雷射能量光束中之雷射能量在自雷射源104傳播至掃描透鏡112時行進所沿的路徑。當使光束路徑114偏轉至第二定位器108a時,光束路徑114可在第一角度範圍(在本文中亦被稱作「第一主要角範圍116a(first primary angular range 116a)」)內偏轉任何角度(例如,如相對於入射於第一定位器106上之光束路徑114所量測)。同樣,當使光束路徑114偏轉至第二定位器108b時,光束路徑114可在第二角度範圍(在本文中亦被稱作「第二主要角範圍116b(second primary angular range 116b)」)內偏轉任何角度(例如,如相對於入射於第一定位器106上之光束路徑114所量測)。如本文中所使用,第一主要角範圍116a及第二主要角範圍116b中之每一者在本文中亦可一般被稱作「主要角範圍116(primary angular range 116)」。大體而言,第一主要角範圍116a不與第二主要角範圍116b重疊,且不與其鄰接。第一主要角範圍116a可大於、小於或等於第二主要角範圍116b。如本文中所使用,使光束路徑114在主要角範圍116中之一或多者內偏轉的動作在本文中被稱作「光束分支(beam branching)」。
每一第二定位器108可操作以對由雷射源104產生且由第一定位器106偏轉(亦即,以使雷射能量光束「偏轉(deflect)」)之雷射能量光束進行繞射、反射、折射或其類似操作或其任何組合,以便使光束路徑114偏轉至對應掃描透鏡112。舉例而言,第二定位器108a可使光束路徑114偏轉至掃描透鏡112a。同樣地,第二定位器108b可使光束路徑114偏轉至掃描透鏡112b。當使光束路徑114偏轉至掃描透鏡112a時,第二定位器108a可使光束路徑114在第一角度範圍(在本文中亦被稱作「第一次要角範圍118a(first secondary angular range 118a)」)內偏轉任何角度(例如,如相對於掃描透鏡112a之光軸所量測)。同樣,當使光束路徑114偏轉至掃描透鏡112b時,第二定位器108b可使光束路徑114在第二角度範圍(在本文中亦被稱作「第二次要角範圍118b(second secondary angular range 118b)」內偏轉任何角度(例如,如相對於掃描透鏡112b之光軸所量測)。第一次要角範圍118a可大於、小於或等於第二次要角範圍118b。
偏轉至掃描透鏡112之雷射能量典型地由掃描透鏡112聚焦且經透射以沿束軸傳播,以便遞送至工件102。舉例而言,偏轉至掃描透鏡112a之雷射能量被遞送至工件102a,且偏轉至掃描透鏡112b之經透射雷射能量被遞送至工件102b。遞送至工件102之雷射能量之特徵可為具有高斯型空間強度剖面或非高斯型(亦即,「成形(shaped)」)空間強度剖面(例如,「頂帽型(top-hat)」空間強度剖面、超高斯空間強度剖面等)。
儘管圖1說明複數個工件102,其中之每一者經佈置以便與不同束軸相交,但將瞭解,單一較大工件102可由已自多個掃描透鏡遞送之雷射能量加工。另外,儘管圖1說明複數個掃描透鏡112,其中之每一者經佈置以便透射沿已由不同第二定位器108偏轉之光束路徑傳播之雷射能量,但將瞭解,設備100可經配置(例如,利用鏡面、稜鏡、分光器或其類似者或其任何組合)以使得沿由多個第二定位器108偏轉之光束路徑傳播之雷射能量由共同掃描透鏡112透射。
如本文中所使用,術語「光點尺寸(spot size)」係指在束軸與工件102之將由經遞送雷射能量光束至少部分地加工之區相交的位置處遞送之雷射能量光束的直徑或最大空間寬度(亦被稱作「製程光點(process spot)」、「光點位置(spot location)」,或簡稱為「光點(spot)」)。本文中出於論述之目的,將光點尺寸量測為自束軸至束軸處的光學強度下降至至少光學強度的1/e2 之位置處的徑向或橫向距離。大體而言,雷射能量光束之光點尺寸將在光束腰處達到最小值。一旦遞送至工件102,光束內之雷射能量之特徵可為以介於2 μm至200 μm範圍內之光點尺寸照射工件102。然而,將瞭解,可使光點尺寸小於2 μm或大於200 μm。因此,遞送至工件102之雷射能量光束可具有大於、小於或等於2 μm、3 μm、5 μm、7 μm、10 μm、15 μm、30 μm、35 μm、40 μm、45 μm、50 μm、55 μm、80 μm、100 μm、150 μm、200 μm等或介於此等值中之任一者之間的光點尺寸。
設備100亦可包括一或多個其他光學組件(例如,光束捕集器、光束擴展器、光束塑形器、分光器、孔隙、濾光器、準直儀、透鏡、鏡面、稜鏡、偏振器、相位延遲器、繞射光學元件(在此項技術中通常被稱為DOE)、折射光學元件(在此項技術中通常被稱為ROE)或其類似者或其任何組合),以在雷射能量光束沿光束路徑114傳播時對該雷射能量光束進行聚焦、擴展、準直、塑形、偏振、濾光、分離、組合、修剪(crop)、吸收或以其他方式修改、調節、引導等。在諸如光束擴展器、透鏡、分光器、稜鏡、二向色濾光器、窗、波板、DOE、ROE等光學組件由既定透射入射雷射能量光束之塊體透明材料(其可視情況塗佈有一或多個抗反射塗層或其類似者)形成的限度內,此類光學組件在本文中一般被稱作「透射光學組件(transmissive optical component)」。如本文中所使用,定位器及其他光學組件之集合當一起裝配至雷射加工設備100中時可被視為構成「光束路徑構件(beam path assembly)」。 A.  雷射源
在一個具體實例中,雷射源104可操作以產生雷射脈衝。因而,雷射源104可包括脈衝雷射源、CW雷射源、QCW雷射源、叢發模式雷射或其類似者或其任何組合。在雷射源104包括QCW或CW雷射源之情況下,雷射源104可在脈衝模式中操作,或可在非脈衝模式中操作但進一步包括脈衝閘控單元(例如,聲光(acousto-optic;AO)調變器(acousto-optic modulator;AOM)、截光器等)以在時間上調變自QCW或CW雷射源輸出之雷射輻射光束。儘管未說明,但設備100可視情況包括經配置以轉換由雷射源104輸出之光波長的一或多個諧波產生晶體(亦被稱作「波長轉換晶體(wavelength conversion crystal)」)。然而,在另一具體實例中,雷射源104可提供為QCW雷射源或CW雷射源且不包括脈衝閘控單元。因此,雷射源104之特徵廣泛地可為可操作以產生雷射能量光束,該雷射能量光束可表現為一系列雷射脈衝或者連續或準連續雷射光束,該雷射能量光束此後可沿光束路徑114傳播。儘管本文中所論述之許多具體實例參考雷射脈衝,但應認識到,每當適當或需要時,可替代地或另外使用連續或準連續光束。
由雷射源104輸出之雷射能量可具有在電磁波譜之紫外線(ultraviolet;UV)、可見光或紅外線(infrared;IR)範圍內的一或多個波長。電磁波譜之UV範圍內之雷射能量可具有在10 nm(或上下)至385 nm(或上下)之範圍內的一或多個波長,諸如100 nm、121 nm、124 nm、157 nm、200 nm、334 nm、337 nm、351 nm、380 nm等,或介於此等值中之任一者之間。電磁波譜之可見綠色範圍內之雷射能量可具有在500 nm(或上下)至560 nm(或上下)之範圍內的一或多個波長,諸如511 nm、515 nm、530 nm、532 nm、543 nm、568 nm等,或介於此等值中之任一者之間。電磁波譜之IR範圍中之雷射能量可具有在750 nm(或上下)至15 μm(或上下)之範圍內的一或多個波長,諸如600 nm至1000 nm、752.5 nm、780 nm至1060 nm、799.3 nm、980 nm、1047 nm、1053 nm、1060 nm、1064 nm、1080 nm、1090 nm、1152 nm、1150 nm至1350 nm、1540 nm、2.6 μm至4 μm、4.8 μm至8.3 μm、9.4 μm、10.6 μm等,或介於此等值中之任一者之間。
當雷射能量光束表現為一系列雷射脈衝時,由雷射源104輸出之雷射脈衝可具有在10 fs至900 ms之範圍內的脈衝寬度或脈衝持續時間(亦即,基於脈衝中之光學功率對時間的半高全寬(full-width at half-maximum;FWHM))。然而,將瞭解,可使脈衝持續時間小於10 fs或大於900 ms。因此,由雷射源104輸出之至少一個雷射脈衝可具有小於、大於或等於10 fs、15 fs、30 fs、50 fs、100 fs、150 fs、200 fs、300 fs、500 fs、600 fs、750 fs、800 fs、850 fs、900 fs、950 fs、1 ps、2 ps、3 ps、4 ps、5 ps、7 ps、10 ps、15 ps、25 ps、50 ps、75 ps、100 ps、200 ps、500 ps、1 ns、1.5 ns、2 ns、5 ns、10 ns、20 ns、50 ns、100 ns、200 ns、400 ns、800 ns、1000 ns、2 μs、5 μs、10 μs、15 μs、20 μs、25 μs、30 μs、40 μs、50 μs、100 μs、300 μs、500 μs、900 μs、1 ms、2 ms、5 ms、10 ms、20 ms、50 ms、100 ms、300 ms、500 ms、900 ms、1 s等或介於此等值中之任一者之間的脈衝持續時間。
由雷射源104輸出之雷射脈衝可具有在5 mW至50 kW範圍內之平均功率。然而,將瞭解,可使平均功率小於5 mW或大於50 kW。因此,由雷射源104輸出之雷射脈衝可具有小於、大於或等於5 mW、10 mW、15 mW、20 mW、25 mW、50 mW、75 mW、100 mW、300 mW、500 mW、800 mW、1 W、2 W、3 W、4 W、5 W、6 W、7 W、10 W、15 W、18 W、25 W、30 W、50 W、60 W、100 W、150 W、200 W、250 W、500 W、2 kW、3 kW、20 kW、50 kW等或介於此等值中之任一者之間的平均功率。雷射脈衝可由雷射源104以在5 kHz至5 GHz範圍內之脈衝重複率輸出。然而,將瞭解,可使脈衝重複率小於5 kHz或大於5 GHz。因此,雷射脈衝可由雷射源104以小於、大於或等於5 kHz、50 kHz、100 kHz、175 kHz、225 kHz、250 kHz、275 kHz、500 kHz、800 kHz、900 kHz、1 MHz、1.5 MHz、1.8 MHz、1.9 MHz、2 MHz、2.5 MHz、3 MHz、4 MHz、5 MHz、10 MHz、20 MHz、50 MHz、60 MHz、100 MHz、150 MHz、200 MHz、250 MHz、300 MHz、350 MHz、500 MHz、550 MHz、600 MHz、900 MHz、2 GHz、10 GHz等或介於此等值中之任一者之間的脈衝重複率輸出。
除波長、平均功率以及當雷射能量光束表現為一系列雷射脈衝時之脈衝持續時間及脈衝重複率之外,遞送至工件102之雷射能量光束之特徵可在於諸如脈衝能量、峰值功率等一或多個其他特性,所述特性可經選擇(例如,視情況基於諸如波長、脈衝持續時間、平均功率及脈衝重複率等一或多個其他特性)而以足以加工工件102(例如,形成一或多個特徵)之光學強度(以W/cm2 量測)、通量(以J/cm2 量測)等輻照製程光點處的工件102。
雷射源104之雷射類型之實例之特徵可為氣體雷射(例如,二氧化碳雷射、一氧化碳雷射、準分子雷射等)、固態雷射(例如,Nd:YAG雷射等)、棒雷射、光纖雷射、光子晶體棒/光纖雷射、被動模式鎖定固態塊體或光纖雷射、染料雷射、模式鎖定二極體雷射、脈衝雷射(例如,ms、ns、ps、fs脈衝雷射)、CW雷射、QCW雷射或其類似者或其任何組合。取決於所述雷射之組態,氣體雷射(例如,二氧化碳雷射等)可經配置以在一或多個模式中(例如,在CW模式、QCW模式、脈衝模式或其任何組合中)操作。可提供為雷射源104之雷射源之特定實例包括一或多個雷射源,諸如:由EOLITE製造之BOREAS、HEGOA、SIROCCO或CHINOOK系列雷射;由PYROPHOTONICS製造之PYROFLEX系列雷射;PALADIN進階355、DIAMOND系列(例如,DIAMOND E、G、J-2、J-3、J-5系列)、由COHERENT製造之FLARE NX、MATRIX QS DPSS、MEPHISTO Q、AVIA LX、AVIA NX、RAPID NX、HYPERRAPID NX、RAPID、HELIOS、FIDELITY、MONACO、OPERA或RAPID FX系列雷射;由SPECTRA HYSICS製造之ASCEND、EXCELSIOR、EXPLORER、HIPPO、NAVIGATOR、QUANTA-RAY、QUASAR、SPIRIT、TALON或VGEN系列雷射;由SYNRAD製造之PULSTAR或FIRESTAR系列雷射;全部由TRUMPF製造之TRUFLOW系列雷射(例如,TRUFLOW 2000、2600、3000、3200、3600、4000、5000、6000、6000、8000、10000、12000、15000、20000)、TRUCOAX系列雷射(例如,TRUCOAX 1000)或TRUDISK、TRUPULSE、TRUDIODE、TRUFIBER或TRUMICRO系列雷射;由IMRA AMERICA製造之FCPA pJEWEL或FEMTOLITE系列雷射;由AMPLITUDE SYSTEMES製造之TANGERINE及SATSUMA系列雷射(以及MIKAN及T-PULSE系列振盪器);由IPG PHOTONICS製造之CL、CLPF、CLPN、CLPNT、CLT、ELM、ELPF、ELPN、ELPP、ELR、ELS、FLPN、FLPNT、FLT、GLPF、GLPN、GLR、HLPN、HLPP、RFL、TLM、TLPN、TLR、ULPN、ULR、VLM、VLPN、YLM、YLPF、YLPN、YLPP、YLR、YLS、FLPM、FLPMT、DLM、BLM或DLR系列雷射(例如,包括GPLN-100-M、GPLN-500-QCW、GPLN-500-M、GPLN-500-R、GPLN-2000-S等),或其類似者或其任何組合。 B.  第一定位器
大體而言,第一定位器106可操作以賦予束軸相對於工件102沿X軸(或方向)、Y軸(或方向)或其組合之移動(例如,藉由使光束路徑114在第一主要角範圍116a內、在第二主要角範圍116b內偏轉,或其組合)。儘管未說明,但Y軸(或Y方向)應理解為指正交於所說明之X及Y軸(或方向)之軸(或方向)。
在一個具體實例中,可控制第一定位器106之操作以使光束路徑114偏轉至第二定位器108a(例如,在第一分支時段期間)且接著使光束路徑114偏轉至第二定位器108b(例如,在第一分支時段之後的第二分支時段期間),或反之亦然,或其任何組合。在另一實例中,可控制第一定位器106之操作以同時使光束路徑114偏轉至第二定位器108a及第二定位器108b。在本文中所論述之具體實例中,第一分支時段之持續時間可大於、小於或等於第二分支時段之持續時間。第一分支時段及第二分支時段中之每一者的持續時間可大於、等於或小於第一定位器106之定位時段。在一個具體實例中,第一分支時段及第二分支時段中之每一者之持續時間之特徵可為第一定位器106之定位時段的整數倍數(其中整數可為諸如1、2、3、4、5、10、20、50、100等或介於此等值中之任一者之間的任何整數)。參見下文之此章節以關於第一定位器106之「定位時段(positioning period)」進一步論述。在一些具體實例中,每一分支時段之持續時間大於、等於或小於200 μs、125 μs、100 μs、50 μs、33 μs、25 μs、20 μs、13.3 μs、12.5 μs、10 μs、4 μs、2 μs、1.3 μs、1 μs、0.2 μs、0.1 μs、0.05 μs、0.025 μs、0.02 μs、0.013 μs、0.01 μs、0.008 μs、0.0067 μs、0.0057 μs、0.0044 μs、0.004 μs等或介於此等值中之任一者之間。
當由雷射源104輸出之雷射能量光束表現為一系列雷射脈衝時,每一分支時段可具有大於或等於雷射能量光束內之雷射脈衝之脈衝持續時間的持續時間。然而,在另一具體實例中,一或多個分支時段可具有小於雷射能量光束內之雷射脈衝之脈衝持續時間的持續時間。在此類具體實例中,光束分支之動作可導致在時間上劃分雷射脈衝,且因此亦可被稱作「脈衝分段(pulse slicing)」。下文將更詳細地描述脈衝分段,且可結合光束分支來實施,或可與光束分支分開地實施。亦即,可在操作第一定位器106以使光束路徑114在單一主要角範圍116內(例如,在第一主要角範圍116a內在或第二主要角範圍116b內)偏轉不同角度的同時實現脈衝分段。因此,脈衝分段可結合光束分支來實施,或可與光束分支分開地實施,且在時間上劃分雷射脈衝之時段一般可被稱作「片斷時段(slice period)」。儘管脈衝分段技術在本文中描述為應用於在時間上劃分雷射脈衝,但將瞭解,此等技術可同樣應用於在時間上劃分表現為連續或準連續雷射光束之雷射能量光束。
束軸相對於工件102之移動在由第一定位器106賦予時大體上受限制,使得可掃描、移動或以其他方式將製程光點定位於由掃描透鏡112投影之第一掃描場內。大體而言,且取決於諸如第一定位器106之組態、第一定位器106沿光束路徑114之位置、入射於第一定位器106上之雷射能量光束之光束尺寸、光點尺寸等一或多個因素,第一掃描場可在X或Y方向中之任一者上延伸至小於、大於或等於0.01 mm、0.04 mm、0.1 mm、0.5 mm、1.0 mm、1.4 mm、1.5 mm、1.8 mm、2 mm、2.5 mm、3.0 mm、3.5 mm、4.0 mm、4.2 mm、5 mm、10 mm、25 mm、50 mm、60 mm等或介於此等值中之任一者之間的距離。如本文中所使用,術語「光束尺寸(beam size)」係指雷射能量光束之直徑或寬度,且可量測為自束軸至光學強度下降至沿光束路徑114之傳播軸處之光學強度之1/e2 的位置之徑向或橫向距離。第一掃描場之最大尺寸(例如,在X或Y方向上,或以其他方式)可大於、等於或小於待形成於工件102中之特徵(例如,開口、凹陷、通孔、溝槽等)之最大尺寸(如在X-Y平面中所量測)。
大體而言,第一定位器106可提供為電流計鏡面系統、AO偏轉器(AO deflector;AOD)系統、電光(electro-optic;EO)偏轉器(EO deflector;EOD)系統、快速轉向鏡面(fast-steering mirror;FSM)系統或其類似者或其任何組合。AOD系統之AOD通常包括由諸如以下各物之材料形成的AO單元:結晶鍺(Ge)、砷化鎵(GaAs)、鉬鉛礦(PbMoO4 )、二氧化碲(TeO2 )、結晶石英、玻璃態SiO2 、三硫化砷(As2 S3 )、鈮酸鋰(LiNbO3 )或其類似物或其任何組合。EOD系統之EOD通常包括由鈮酸鋰、鉭鈮酸鉀等形成之EO單元。在AO單元及EO單元經配置以透射入射雷射能量光束之限度內,AO及EO單元可被視為透射光學組件之類型。
第一定位器106之特徵可為具有「第一定位速率(first positioning rate)」,其係指第一定位器106將製程光點定位於第一掃描場內之任何位置處(因此移動束軸)的速率。舉例而言,第一定位速率可大於、等於或小於8 kHz、10 kHz, 20 kHz、30 kHz、40 kHz、50 kHz、75 kHz、80 kHz、100 kHz、250 kHz、500 kHz、750 kHz、1 MHz、5 MHz、10 MHz、20 MHz、40 MHz、50 MHz、75 MHz、100 MHz、125 MHz、150 MHz、175 MHz、200 MHz、225 MHz、250 MHz等,或介於此等值中之任一者之間。此範圍在本文中亦被稱作第一定位頻寬。在第一定位器106之操作期間,驅動信號可重複地施加至第一定位器106,且第一定位頻寬對應於(例如,等於或至少實質上等於)應用驅動信號之速率。應用驅動信號之速率亦被稱作「更新速率(update rate)」或「再新率(refresh rate)」。第一定位速率之倒數在本文中被稱作「第一定位時段」,且因此指在製程光點之位置自第一掃描場內之一個位置改變至第一掃描場內之另一位置之前經過的最小時間量。因此,第一定位器106之特徵可為具有大於、等於或小於200 μs、125 μs、100 μs、50 μs、33 μs、25 μs、20 μs、15 μs、13.3 μs、12.5 μs、10 μs、4 μs、2 μs、1.3 μs、1 μs、0.2 μs、0.1 μs、0.05 μs、0.025 μs、0.02 μs、0.013 μs、0.01 μs、0.008 μs、0.0067 μs、0.0057 μs、0.0044 μs、0.004 μs等或介於此等值中之任一者之間的第一定位時段。 i.    大體關於作為第一定位器之AOD系統的具體實例
在一個具體實例中,第一定位器106提供為AOD系統,其包括至少一個(例如,一個、兩個、三個、四個、五個、六個等)單元件AOD、至少一個(例如,一個、兩個、三個、四個、五個、六個等)多元件AOD,或其類似者或其任何組合。僅包括一個AOD之AOD系統在本文中被稱作「單單元AOD系統(single-cell AOD system)」,且包括多於一個AOD之AOD系統在本文中被稱作「多單元AOD系統(multi-cell AOD system)」。如本文中所使用,「單元件(single-element)」AOD係指僅具有聲學耦接至AO單元之一個超音波換能器元件的AOD,而「多元件(multi-element)」AOD包括聲學耦接至共同AO單元之至少兩個超音波換能器元件。AOD系統可藉由以對應方式使光束路徑114偏轉而提供為單軸AOD系統(例如,可操作以使束軸沿單一軸偏轉)或提供為多軸AOD系統(例如,可操作以使束軸沿一或多個軸偏轉,諸如沿X軸、沿Y軸或其任何組合)。大體而言,多軸AOD系統可提供為單單元或多單元AOD系統。多單元多軸AOD系統典型地包括多個AOD,所述AOD各自可操作以使束軸沿不同軸偏轉。舉例而言,多單元多軸系統可包括可操作以使束軸沿一個軸(例如,沿X軸)偏轉之第一AOD(例如,單元件或多元件AOD系統),及可操作以使束軸沿第二軸(例如,沿Y軸)偏轉之第二AOD(例如,單元件或多元件AOD)。單單元多軸系統典型地包括單一AOD,該AOD可操作以使束軸沿兩個軸(例如,沿X及Y軸)偏轉。舉例而言,單單元多軸系統可包括聲學耦接至共同AO單元之正交配置平面、刻面、側面等的至少兩個超音波換能器元件。
如所屬技術領域中具有通常知識者將認識到,AO技術(例如,AOD、AOM等)利用由一或多個聲波產生之繞射效應,該一或多個聲波傳播通過AO單元(亦即,沿AOD之「繞射軸(diffraction axis)」)以使入射光波(亦即,在本申請案之上下文中,雷射能量光束)繞射,同時傳播通過AO單元(亦即,沿AOD內之「光軸(optical axis)」)。使入射雷射能量光束繞射產生繞射圖案,其典型地包括零階及一階繞射峰,且亦可包括其他高階繞射峰(例如,二階、三階等)。如此項技術中已知,經繞射雷射能量光束在零階繞射峰中之部分被稱為「零階(zero-order)」光束,經繞射雷射能量光束在一階繞射峰中之部分被稱為「一階(first-order)」光束,等等。大體而言,零階光束及其他繞射階光束(例如,一階光束等)在射出AO單元(例如,穿過AO單元之光學輸出側)後沿不同光束路徑傳播。舉例而言,零階光束沿零階光束路徑傳播,一階光束沿一階光束路徑傳播,等等。
典型地藉由將RF驅動信號(例如,來自第一定位器106之一或多個驅動器)施加至超音波換能器元件而將聲波發射至AO單元中。因此,可藉由將RF驅動信號施加至AOD系統之一或多個超音波換能器元件來驅動AOD系統。可控制(例如,基於由控制器122、組件特定控制器或其類似者或其任何組合輸出之一或多個控制信號)RF驅動信號之特性(例如,振幅、頻率、相位等)以調整繞射入射光波之方式。舉例而言,所施加RF驅動信號之頻率將判定光束路徑114偏轉之角度。如此項技術中已知,可如下計算光束路徑114偏轉之角度Θ
Figure 02_image001
其中λ 為雷射能量光束之光學波長,f 為所施加RF驅動信號之頻率,且v 為AO單元中之聲波之速度。若所施加RF驅動信號之頻率由多個頻率構成,則光束路徑114將同時偏轉多個角度。
射出AO單元之一階光束路徑可典型地被視為已在AO單元內旋轉或偏轉之光束路徑114。除非本文中另外明確地陳述,否則射出AO單元之光束路徑114對應於一階光束路徑。當操作或驅動AOD以使入射雷射能量光束繞射時,射出AO單元之光束路徑114旋轉(例如,在入射於AO單元上時相對於光束路徑114)所圍繞的軸(在本文中亦被稱作「旋轉軸(rotation axis)」)與AO單元之繞射軸及入射雷射能量光束在AO單元內傳播所沿之光軸兩者正交。因此,AOD使入射光束路徑114在含有(或另外大體平行於)AO單元之繞射軸及AO單元內之光軸的平面(在本文中亦被稱作「偏轉平面(plane of deflection)」)內偏轉。AOD可使光束路徑114在偏轉平面內偏轉所跨越的空間範圍在本文中被稱作彼AOD之「掃描場(scan field)」。因此,第一定位器106之第一掃描場可被視為對應於單一AOD之掃描場(例如,在第一定位器106包括單一AOD之情況下),或對應於多個AOD之經組合掃描場(例如,在第一定位器106包括多個AOD之情況下)。
將瞭解,形成AO單元之材料將取決於沿光束路徑114傳播以便入射於AO單元上之雷射能量的波長。舉例而言,可使用諸如結晶鍺之材料,其中待偏轉之雷射能量之波長在2 µm(或上下)至20 µm(或上下)之範圍內,可使用諸如砷化鎵及三硫化砷之材料,其中待偏轉之雷射能量光束之波長在1 µm範圍內(或上下)至11 µm(或上下)之範圍內,且可使用諸如玻璃態SiO2 、石英、鈮酸鋰、鉬鉛礦及二氧化碲之材料,其中待偏轉之雷射能量之波長在200 nm範圍內(或上下)至5 µm(或上下)之範圍內。C. 第二定位器
大體而言,第二定位器108可操作以賦予束軸相對於工件102沿X軸(或方向)、Y軸(或方向)或其組合之移動(例如,藉由使光束路徑114在第一次要角範圍118a內或在第二次要角範圍118b內偏轉)。
如由第二定位器108賦予的束軸相對於工件102之移動大體上受限制,使得製程光點可掃描、移動或以其他方式定位於由掃描透鏡112投影之第二掃描場內。大體而言,且取決於諸如第二定位器108之組態、第二定位器108沿光束路徑114之位置、入射於第二定位器108上之雷射能量光束的光束尺寸、光點尺寸等一或多個因素,第二掃描場可在X或Y方向中之任一者上延伸至大於第一掃描場之對應距離的距離。鑒於上文,第二掃描場可在X或Y方向中之任一者上延伸至小於、大於或等於1 mm、25 mm、50 mm、75 mm、100 mm、250 mm、500 mm、750 mm、1 cm、25 cm、50 cm、75 cm、1 m、1.25 m、1.5 m等或介於此等值中之任一者之間的距離。第二掃描場之最大尺寸(例如,在X或Y方向上,或以其他方式)可大於、等於或小於待形成於工件102中之特徵(例如,開口、凹陷、通孔、溝槽、切割道、導電跡線等)之最大尺寸(如在X-Y平面中所量測)。
鑒於本文中所描述之組態,應認識到,由第一定位器106賦予的束軸之移動可與由第二定位器108賦予的束軸之移動重疊。因此,第二定位器108可操作以在第二掃描場內掃描第一掃描場。
大體而言,第二定位器108能夠將製程光點定位於第二掃描場內之任何位置處(因此使束軸在第二掃描場內移動及/或在第二掃描場內掃描第一掃描場)的定位速率跨越小於第一定位頻寬之範圍(在本文中亦被稱作「第二定位頻寬(second positioning bandwidth)」)。在一個具體實例中,第二定位頻寬在500 Hz(或上下)至8 kHz(或上下)範圍內。舉例而言,第二定位頻寬可大於、等於或小於500 Hz、750 Hz、1 KHz、1.25 KHz、1.5 KHz、1.75 KHz、2 KHz、2.5 KHz、3 KHz、3.5 KHz、4 KHz、4.5 KHz、5 KHz、5.5 KHz、6 KHz、6.5 KHz、7 KHz、7.5 KHz、8 KHz等,或介於此等值中之任一者之間。
在一個具體實例中,第二定位器108可提供為包括兩個電流計鏡面組件之電流計鏡面系統,亦即,經佈置以賦予束軸相對於工件102沿X軸之移動的第一電流計鏡面組件(例如,X軸電流計鏡面組件),及經佈置以賦予束軸相對於工件102沿Y軸之移動的第二電流計鏡面組件(例如,Y軸電流計鏡面組件)。然而,在另一具體實例中,第二定位器108可提供為僅包括單一電流計鏡面組件之電流計鏡面系統,該單一電流計鏡面組件經佈置以賦予束軸相對於工件102沿X及Y軸之移動。在另外其他具體實例中,第二定位器108可提供為旋轉多邊形鏡面系統等。因此,將瞭解,取決於第二定位器108及第一定位器106之特定組態,第二定位頻寬可大於或等於第一定位頻寬。 D.  第三定位器
第三定位器110可操作以賦予工件102(例如,工件102a及102b)相對於掃描透鏡112之移動,且因此賦予工件102相對於束軸之移動。工件102相對於束軸之移動大體上受限制,使得製程光點可掃描、移動或以其他方式定位於第三掃描場內。取決於諸如第三定位器110之組態的一或多個因素,第三掃描場可在X方向、Y方向或其任何組合上延伸至大於或等於第二掃描場之對應距離的距離。然而,大體而言,第三掃描場之最大尺寸(例如,在X或Y方向上,或以其他方式)將大於或等於待形成於工件102中之任何特徵之對應最大尺寸(如在X-Y平面中所量測)。視情況,第三定位器110可操作以使工件102相對於束軸在掃描場內移動,該掃描場在Z方向上(例如,在1 mm與50 mm之間的範圍內)延伸。因此,第三掃描場可沿X、Y及/或Z方向延伸。
鑒於本文中所描述之組態,應認識到,製程光點相對於工件102之移動(例如,如由第一定位器106及/或第二定位器108賦予)可與如由第三定位器110賦予的工件102之移動重疊。因此,第三定位器110可操作以在第三掃描場內掃描第一掃描場及/或第二掃描場。大體而言,第三定位器110能夠將工件102定位於第三掃描場內之任何位置處(因此移動工件102,在第三掃描場內掃描第一掃描場及/或在第三掃描場內掃描第二掃描場)的定位速率跨越小於第二定位頻寬之範圍(在本文中亦被稱作「第三定位頻寬(third positioning bandwidth)」)。在一個具體實例中,第三定位頻寬小於500 Hz(或上下)。舉例而言,第三定位頻寬可等於或小於500 Hz、250 Hz、150 Hz、100 Hz、75 Hz、50 Hz、25 Hz、10 Hz、7.5 Hz、5 Hz、2.5 Hz、2 Hz、1.5 Hz、1 Hz等,或介於此等值中之任一者之間。
在一個具體實例中,第三定位器110提供為一或多個線性平台(例如,各自能夠賦予工件102沿X、Y及/或Z方向之平移移動)、一或多個旋轉平台(例如,各自能夠賦予工件102圍繞平行於X、Y及/或Z方向之軸的旋轉移動),或其類似者或其任何組合。在一個具體實例中,第三定位器110包括用於使工件102沿X方向移動之X平台,及由X平台支撐(且因此可藉由X平台沿X方向移動)的用於使工件102沿Y方向移動之Y平台。
儘管圖中未示,但設備100可視情況包括耦接至第三定位器110之平台的夾具(例如,卡盤)。夾具可包括支撐區,且工件102可經機械夾持、固定、固持、緊固至夾具或以其他方式由夾具支撐於支撐區內。在一個具體實例中,工件102可經夾持、固定、固持、緊固或以其他方式支撐,以便直接接觸夾具之主要典型平整支撐表面。在另一具體實例中,工件102可經夾持、固定、固持、緊固或以其他方式支撐,以便與夾具之支撐表面間隔開。在一個具體實例中,工件102可藉助於自夾具施加至工件102或另外存在於工件102與夾具之間的力(例如,靜電力、真空力、磁力)來固定、固持或緊固。
如目前所描述,設備100可將所謂的「堆疊式(stacked)」定位系統用作第三定位器110,該第三定位器使工件102能夠移動,同時諸如第一定位器106、第二定位器108、掃描透鏡112等其他組件之位置保持在設備100內相對於工件102靜止(例如,經由一或多個支撐件、框架等,如此項技術中已知)。在另一具體實例中,第三定位器110可經佈置且可操作以使諸如第一定位器106、第二定位器108、掃描透鏡112或其類似者或其任何組合之一或多個組件移動,且工件102可保持靜止。
在又一具體實例中,第三定位器110可提供為所謂的「分離軸(split-axis)」定位系統,其中諸如第一定位器106、第二定位器108、掃描透鏡112或其類似者或其任何組合之一或多個組件由一或多個線性或旋轉平台承載(例如,安裝於框架、台架等上)且工件102由一或多個其他線性或旋轉平台承載。在此類具體實例中,第三定位器110包括經佈置且可操作以使諸如掃描頭(例如,包括第二定位器108及掃描透鏡112)之一或多個組件移動的一或多個線性或旋轉平台,及經佈置且可操作以使工件102移動的一或多個線性或旋轉平台。舉例而言,第三定位器110可包括用於賦予工件102沿Y方向之移動的Y平台及用於賦予掃描頭沿X方向之移動的X平台。可有益地或有利地用於設備100中之分離軸定位系統的一些實例包括以下各項中所揭示之系統中的任一者:美國專利第5,751,585號、第5,798,927號、第5,847,960號、第6,606,999號、第7,605,343號、第8,680,430號、第8,847,113號或美國專利申請公開案第2014/0083983號或其任何組合,其中之每一者以全文引用之方式併入本文中。
在第三定位器110包括Z平台之一個具體實例中,Z平台可經佈置且經配置以使工件102沿Z方向移動。在此情況下,Z平台可由其他前述平台中之一或多者承載以用於移動或定位工件102,可承載其他前述平台中之一或多者承載以用於移動或定位工件102,或其任何組合。在第三定位器110包括Z平台之另一具體實例中,Z平台可經佈置且經配置以沿Z方向移動掃描頭。因此,在第三定位器110提供為分離平台定位系統之情況下,Z平台可承載X平台或由X平台承載。沿Z方向移動工件102或掃描頭可導致工件102處之光點尺寸改變。
在又一具體實例中,諸如第一定位器106、第二定位器108、掃描透鏡112等一或多個組件可由鉸接式多軸機器人臂(例如,2軸、3軸、4軸、5軸或6軸臂)承載。在此類具體實例中,第二定位器108及/或掃描透鏡112可視情況由機器人臂之末端執行器承載。在又一具體實例中,工件102可直接承載於鉸接式多軸機器人臂之末端執行器上(亦即,不具有第三定位器110)。在又一具體實例中,第三定位器110可承載於鉸接式多軸機器人臂之末端執行器上。 D.  掃描透鏡
掃描透鏡112(例如,提供為簡單透鏡或化合物透鏡)大體上經配置以聚焦沿光束路徑引導之雷射能量光束,典型地以便產生可定位於所要製程光點處或附近的光束腰。掃描透鏡112可提供為f-θ透鏡(如所展示)、遠心f-θ透鏡、軸錐透鏡(在此情況下,產生一系列光束腰,從而得到沿束軸彼此移位的複數個製程光點),或其類似者或其任何組合。
在一個具體實例中,掃描透鏡112提供為固定焦距透鏡,且耦接至可操作以移動掃描透鏡112(例如,以便改變光束腰沿束軸之位置)之掃描透鏡定位器(例如,透鏡致動器,圖中未示)。舉例而言,透鏡致動器可提供為可操作以使掃描透鏡112沿Z方向線性地平移之音圈。在此情況下,掃描透鏡112可由諸如以下各物之材料形成:熔融矽石、光學玻璃、硒化鋅、硫化鋅、鍺、砷化鎵、氟化鎂等。在另一具體實例中,掃描透鏡112提供為可變焦距透鏡(例如,變焦透鏡,或併有由COGNEX、VARIOPTIC等當前提供之技術的所謂「液體透鏡(liquid lens)」),該可變焦距透鏡能夠經致動(例如,經由透鏡致動器)以改變光束腰沿束軸之位置。改變光束腰沿束軸之位置可導致工件102處之光點尺寸改變。
在設備100包括透鏡致動器之具體實例中,透鏡致動器可耦接至掃描透鏡112(例如,以便實現掃描透鏡112在掃描頭內相對於第二定位器108之移動)。替代地,透鏡致動器可耦接至掃描頭120(例如,以便實現掃描頭自身之移動,在此情況下,掃描透鏡112及第二定位器108將一起移動)。在另一具體實例中,掃描透鏡112及第二定位器108整合至不同外殼中(例如,使得整合有掃描透鏡112之外殼可相對於整合有第二定位器108之外殼移動)。 F.   控制器
大體而言,設備100包括一或多個控制器,諸如控制器122,以控制或促進控制設備100之操作。在一個具體實例中,控制器122(例如,經由一或多個有線或無線、串列或並列之通信鏈路,諸如USB、RS-232、乙太網路、Firewire、Wi-Fi、RFID、NFC、藍芽、Li-Fi、SERCOS、MARCO、EtherCAT,或其類似者或其任何組合)以通信方式耦接至設備100之一或多個組件,諸如雷射源104、第一定位器106、第二定位器108、第三定位器110、透鏡致動器、掃描透鏡112(當提供為可變焦距透鏡時)、夾具等,該一或多個組件因此可回應於由控制器122輸出之一或多個控制信號而操作。
舉例而言,控制器122可控制第一定位器106、第二定位器108或第三定位器110或其任何組合之操作,以賦予束軸與工件之間的相對移動,以便引起製程光點與工件102之間沿工件102內之路徑或軌跡(在本文中亦被稱作「製程軌跡(process trajectory)」)的相對移動。將瞭解,可控制此等定位器中之任兩者或此等定位器中之全部三者,使得兩個定位器(例如,第一定位器106及第二定位器108、第一定位器106及第三定位器110,或第二定位器108及第三定位器110)或全部三個定位器同時賦予製程光點與工件102之間的相對移動(從而賦予束軸與工件之間的「化合物相對移動(compound relative movement)」)。當然,在任何時間,有可能僅控制一個定位器(例如,第一定位器106、第二定位器108或第三定位器110)以賦予製程光點與工件102之間的相對移動(從而賦予束軸與工件之間的「非化合物相對移動(non-compound relative movement)」)。
在一個具體實例中,控制器122可控制第一定位器106之操作以使光束路徑114以賦予化合物相對移動(例如,與對應第二定位器108協調、與第三定位器110協調,或其任何組合)或束軸與每一工件102之間的非化合物相對移動的方式在每一主要角範圍116內偏轉,以便引起製程光點與工件102之間沿工件102內之製程軌跡的相對移動。舉例而言,可控制第一定位器106之操作以使光束路徑114以賦予化合物相對移動(例如,與對應第二定位器108a協調、與第三定位器110協調,或其任何組合)或束軸與工件102a之間的非化合物相對移動的方式在第一主要角範圍116a內偏轉,以便引起製程光點與工件102a之間沿工件102a內之第一製程軌跡的相對移動。同樣,可控制第一定位器106之操作以使光束路徑114以賦予化合物相對移動(例如,與對應第二定位器108b協調、與第三定位器110協調,或其任何組合)或束軸與工件102b之間的非化合物相對移動的方式在第二主要角範圍116b內偏轉,以便引起製程光點與工件102b之間沿工件102b內之第二製程軌跡的相對移動。第一製程軌跡可與第二製程軌跡相同或不同。
在另一具體實例中,控制器122可控制第一定位器106之操作從而以補償由任何對應第二定位器108引入之追蹤誤差的方式使光束路徑114在每一主要角範圍116內偏轉。舉例而言,可控制第一定位器106之操作從而以補償由對應第二定位器108a引入之追蹤誤差的方式使光束路徑114在第一主要角範圍116a內偏轉。同樣,可控制第一定位器106之操作從而以補償由對應第二定位器108b引入之追蹤誤差的方式使光束路徑114在第二主要角範圍116b內偏轉。
可控制前述組件中之一或多者以執行的操作之一些其他實例包括任何操作、功能、製程及方法等,如在前述美國專利第5,751,585號、5,847,960號、6,606,999號、8,680,430號、8,847,113號中所揭示,或如在美國專利第4,912,487號、第5,633,747號、第5,638,267號、第5,917,300號、第6,314,463號、第6,430,465號、第6,600,600號、第6,606,998號、第6,816,294號、第6,947,454號、第7,019,891號、第7,027,199號、第7,133,182號、第7,133,186號、第7,133,187號、第7,133,188號、第7,244,906號、第7,245,412號、第7,259,354號、第7,611,745號、第7,834,293號、第8,026,158號、第8,076,605號、第8,288,679號、第8,404,998號、第8,497,450號、第8,648,277號、第8,896,909號、第8,928,853號、第9,259,802號中所揭示,或在美國專利申請公開案第2014/0026351號、第2014/0196140號、第2014/0263201號、第2014/0263212號、第2014/0263223號、第2014/0312013號中所揭示,或在德國專利第DE102013201968B4號中所揭示,或在國際專利公開案第WO2009/087392號中所揭示,其中之每一者以全文引用之方式併入本文中。在另一實例中,控制器122可控制包括一或多個AOD之任何定位器(例如,在一些具體實例中,第一定位器106、第二定位器108或其組合)的操作以改變遞送至加工光點之雷射能量光束之光點形狀或光點尺寸(例如,藉由啁啾施加至一或多個AOD之一或多個超音波換能器元件的RF信號,藉由將經光譜塑形之RF信號施加至一或多個AOD之一或多個超音波換能器元件,或其類似操作或其任何組合),如例如國際專利公開案第WO2017/044646A1號中所揭示,其以全文引用之方式併入本文中。所施加之RF信號可以任何所要或適合方式線性地或非線性地啁啾。舉例而言,所施加之RF信號可以第一速率且接著以第二速率啁啾,以使雷射能量光束繞射,從而以兩種不同方式運送AO單元。在此情況下,第一速率可比第二速率慢或快。
大體而言,控制器122包括可操作以在執行指令後產生前述控制信號之一或多個處理器。處理器可提供為可操作以執行指令之可程式化處理器(例如,包括一或多個通用電腦處理器、微處理器、數位信號處理器或其類似者或其任何組合)。可由處理器執行之指令可實施為軟體、韌體等,或為任何適合形式之電路系統,包括可程式化邏輯裝置(programmable logic device;PLD)、場可程式化閘陣列(field-programmable gate array;FPGA)、場可程式化物件陣列(field-programmable object array;FPOA)、特殊應用積體電路(application-specific integrated circuit;ASIC)-包括數位、類比及混合類比/數位電路系統,或其類似者或其任何組合。指令之執行可在一個處理器上執行、分配在多個處理器中、跨一裝置內之處理器或跨裝置之網路並行地進行,或其類似者或其任何組合。
在一個具體實例中,控制器122包括諸如電腦記憶體之有形媒體,其可藉由處理器存取(例如,經由一或多個有線或無線通信連結)。如本文中所使用,「電腦記憶體」包括磁性媒體(例如,磁帶、硬碟機等)、光碟、揮發性或非揮發性半導體記憶體(例如,RAM、ROM、反及型快閃記憶體、反或型快閃記憶體、SONOS記憶體等)等,且可本端、遠端(例如,跨網路)或以其組合方式存取。大體而言,指令可儲存為可易於由技術人員根據本文中所提供之描述授權的電腦軟體(例如,可執行碼、檔案、指令等,庫檔案等),其例如以C、C++、Visual Basic、Java、Python、Tel、Perl、Scheme、Ruby、組合語言、硬體描述語言(例如,VHDL、VERILOG等)等編寫。電腦軟體通常儲存於藉由電腦記憶體輸送之一或多個資料結構中。
儘管圖中未示,但一或多個驅動器(例如,RF驅動器、伺服驅動器、線驅動器、電源等)可以通信方式耦接至一或多個組件之輸入端以用於控制此等組件,該一或多個組件諸如雷射源104、第一定位器106、第二定位器108、第三定位器110、透鏡致動器、掃描透鏡112(當提供為可變焦距透鏡時)、夾具等。因此,諸如雷射源104、第一定位器106、第二定位器108、第三定位器110、透鏡致動器、掃描透鏡112(當提供為可變焦距透鏡時)、夾具等一或多個組件可被視為亦包括任何適合驅動器,如此項技術中已知。此等驅動器中之每一者典型地將包括以通信方式耦接至控制器122之輸入端,且控制器122可操作以產生一或多個控制信號(例如,觸發信號等),該一或多個控制信號可傳輸至與設備100之一或多個組件相關聯的一或多個驅動器。諸如雷射源104、第一定位器106、第二定位器108、第三定位器110、透鏡致動器、掃描透鏡112(當提供為可變焦距透鏡時)、夾具等組件因此回應於由控制器122產生之控制信號。
儘管圖中未示,但一或多個額外控制器(例如,組件特定控制器)可視情況以通信方式耦接至驅動器之輸入端,該輸入端以通信方式耦接至諸如雷射源104、第一定位器106、第二定位器108、第三定位器110、透鏡致動器、掃描透鏡112(當提供為可變焦距透鏡時)、夾具等組件(且因此與該組件相關聯)。在此具體實例中,每一組件特定控制器可以通信方式耦接至控制器122且可操作以回應於自控制器122接收之一或多個控制信號而產生一或多個控制信號(例如,觸發信號等),該一或多個控制信號可接著傳輸至控制器以通信方式耦接至的驅動器之輸入端。在此具體實例中,組件特定控制器可以與關於控制器122所描述之方式類似的方式操作。
在提供一或多個組件特定控制器之另一具體實例中,與一個組件(例如,雷射源104)相關聯的組件特定控制器可以通信方式耦接至與一個組件(例如,第一定位器106等)相關聯的組件特定控制器。在此具體實例中,組件特定控制器中之一或多者可操作以回應於自一或多個其他組件特定控制器接收的一或多個控制信號而產生一或多個控制信號(例如,觸發信號等)。III. 關於第一定位器之實例具體實例 A.  關於AOD系統之具體實例
參考圖2,當第一定位器106提供為AOD系統(例如,如上文所論述)時,第一定位器106可經操作以實施光束路徑偏轉方案,在該光束路徑偏轉方案中,零階光束路徑200位於第一主要角範圍116a與第二主要角範圍116b之間。在此偏轉方案中,可藉由反轉所施加RF驅動信號之相位而操作或驅動第一定位器106(例如,回應於具有特定頻率之所施加RF驅動信號)以使光束路徑114在第一主要角範圍116a或第二主要角範圍116b內偏轉。在所說明之具體實例中,光束捕集器202經佈置以便吸收沿光束路徑200傳播之雷射能量。
參考圖3,當第一定位器106提供為AOD系統(例如,如上文所論述)時,第一定位器106可經操作以實施光束路徑偏轉方案,在該光束路徑偏轉方案中,零階光束路徑300不位於第一主要角範圍116a與第二主要角範圍116b之間。在此偏轉方案中,可藉由改變所施加RF驅動信號之頻率且在不反轉所施加RF驅動信號之相位情況下(例如,回應於具有特定頻率之所施加RF驅動信號)操作或驅動第一定位器106以使入射光束路徑114在第一主要角範圍116a或第二主要角範圍116b內偏轉。在所說明之具體實例中,光束捕集器202經佈置以便吸收沿光束路徑300傳播之雷射能量。
在上文關於圖2及3所論述之具體實例中之任一者中,第一定位器106可提供為單軸AOD系統或多軸AOD系統。取決於AOD系統內之AOD之構造(例如,如上文所論述),AOD之特徵可為縱向模式AOD或剪切模式AOD,且AOD可操作以使經線性偏振或圓形偏振之雷射能量光束繞射。因此,取決於雷射能量光束之波長及形成AOD系統中之任何AOD之AO單元的材料,該AOD系統中之任何AOD皆可定向,使得AOD中之AO單元之繞射軸平行或垂直於(或至少實質上平行或垂直於)入射至該AO單元中之雷射能量光束的偏振平面。舉例而言,若雷射能量光束之波長在電磁波譜之紫外線或可見綠色範圍內且AOD之AO單元由諸如石英之材料形成,則AOD可經定向以使得AO單元之繞射軸垂直於(或至少實質上垂直於)入射至該AO單元中之雷射能量光束的偏振平面。在另一實例中,若雷射能量光束之波長在電磁波譜之所謂的中波長或長波長紅外線之內(亦即,跨越3 µm(或上下)至15 µm(或上下)之範圍內的波長)且AOD之AO單元由諸如結晶鍺之材料形成,則AOD可經定向以使得AO單元之繞射軸平行於(或至少實質上平行於)入射至該AO單元中之雷射能量光束的偏振平面。
參看圖4,多軸AOD系統可提供為包括第一AOD 402及第二AOD 404之多單元多軸AOD系統400。第一AOD 402及第二AOD 404兩者可以如上文所描述之任何方式提供。第一AOD 402經佈置且可操作以使入射雷射能量光束(例如,沿光束路徑114傳播)圍繞第一旋轉軸在第一角度範圍(在本文中亦被稱作「第一AOD角範圍406(first AOD angular range 406)」)內旋轉任何角度(例如,如相對於入射於第一AOD 402上之光束路徑114所量測),以便透射沿經偏轉光束路徑114傳播之一階光束。同樣,第二AOD 404經佈置且可操作以使由第一AOD 402透射之入射雷射能量光束(其可為零階光束、一階光束或其類似者或其任何組合)圍繞第二旋轉軸在第二角度範圍(在本文中亦被稱作「第二AOD角範圍408(second AOD angular range 408)」)內旋轉任何角度(例如,如相對於入射於第二AOD 404上之光束路徑114'所量測),以便透射沿經偏轉光束路徑114''傳播之一階光束。如將瞭解,光束路徑114'及光束路徑114''中之每一者表示雷射能量光束傳播可沿之路徑之特定實例;因此,光束路徑114'及光束路徑114''中之每一者在本文中亦可一般被稱作「光束路徑114(beam path 114)」。
大體而言,第二AOD 404相對於第一AOD 402定向,使得第二旋轉軸不同於第一旋轉軸。舉例而言,第二旋轉軸可正交於第一旋轉軸或相對於第一旋轉軸傾斜。然而,在另一具體實例中,第二AOD 404相對於第一AOD 402定向,使得第二旋轉軸平行於(或至少實質上平行於)第一旋轉軸。在此情況下,一或多個光學組件可配置於光束路徑114'中以使第一AOD 402之偏轉平面旋轉(例如,90度或上下),使得第一AOD 402之偏轉平面在投影至第二AOD 404上時相對於第二AOD 404之偏轉平面之定向旋轉(例如,90度或上下)。參見例如國際公開案第WO 2019/060590 A1號關於偏轉平面可如何旋轉之實例,如上文所論述。
大體而言,第一AOD 402中之AO單元由可與第二AOD 404中之AO單元相同或不同之材料形成。另外,第一AOD 402用以(亦即,剪切模式或縱向模式)使入射雷射能量光束偏轉之聲波類型可與第二AOD 404用以使入射雷射能量光束偏轉之聲波類型相同或不同。
將瞭解,可在任何時間操作AOD系統400,使得僅第一AOD 402產生一階光束,僅第二AOD 404產生一階光束,或第一AOD 402及第二AOD 404兩者產生一階光束。因此,由第一定位器106產生之光束路徑114的偏轉可被視為僅由自光束路徑114'獲得之偏轉引起,僅由自光束路徑114''獲得之偏轉引起,或由自光束路徑114'及114''獲得之偏轉的疊加引起。同樣,主要角範圍116可僅被視為第一AOD角範圍406,僅被視為第二AOD角範圍408,或被視為第一AOD角範圍406及第二AOD角範圍408之疊加。最後,圖4中所說明之主要角範圍116可為圖2或圖3中之任一者中所展示之第一主要角範圍116a或第二主要角範圍116b中之任一者。
在圖4中所說明之具體實例中,射出第一AOD 402之零階光束經透射至第二AOD 404中,且由第二AOD 404透射之零階光束可由光束捕集器(圖中未示)吸收。然而,在另一具體實例中,由第一AOD 402透射之零階光束可被截斷(例如,藉由插入於第一AOD 402與第二AOD 404之間的光束捕集器或鏡面(圖中未示))以防止沿零階光束路徑自第一AOD 402傳播之雷射能量透射至第二AOD 404中。若第一AOD 402具有相對較高繞射效率且可在雷射脈衝之完整持續時間內保持接通,則可能需要截斷如上文所描述之零階光束。然而,使第一AOD 402在完整脈衝持續時間內保持接通可增加第一AOD 402及第二AOD 404上之平均熱負荷,此係由於兩個AOD上之熱負荷常常相對相等,因此第二AOD 404可補償第一AOD 402。AOD之增加之熱負荷可引起可能不合需要之光束失真(例如,歸因於熱致透鏡)。
不管上文如何,將零階光束透射至第二AOD 404中有時可有助於將第二AOD 404之AO單元維持在與第一AOD 402之AO單元相同的溫度(或接近於與第一AOD 402之AO單元相同的溫度)下。將零階光束透射至第二AOD 404中亦可有助於維持第二AOD 404之AO單元(在第二AOD 404之操作期間經由該AO單元運送雷射能量光束)之區內的相對均一溫度分佈,從而消除或以其他方式減少在第二AOD 404之操作期間的不合需要之效應,諸如熱致透鏡、光束偏移等。鑒於上文,將零階光束透射至第二AOD 404中在形成AO單元之材料在待偏轉之雷射能量光束之波長下具有相對較高吸收係數時可為特別有利的。舉例而言,已知結晶鍺在電磁波譜之中波長至長波長紅外線範圍內之波長下具有相對較高吸收係數(例如,相比於在電磁波譜之近UV至可見光波長範圍內之波長下之石英的吸收係數)。
當第一定位器106提供為OD系統(諸如,AOD系統400)時,第一定位器106可視情況包括一或多個其他額外光學組件,諸如光束捕集器、光束擴展器、光束塑形器、孔隙、濾光器、準直儀、透鏡、鏡面、相位延遲器、偏振器或其類似者或其任何組合。 B.  大體關於光束截止器系統之具體實例
在一些具體實例中,第一定位器106包括一或多個光束截止器系統以捕獲及吸收(亦即,捕集)沿非所需光束路徑自AOD傳播的雷射能量。習知地,自AOD傳播之非所需雷射能量使用檢拾器鏡面來轉向,該檢拾器鏡面將雷射能量(例如,來自該檢拾器鏡面之反射表面)反射至遠端定位之光束捕集器。雷射能量可直接自檢拾器鏡面反射至光束捕集器,或間接地經由一或多個額外中繼器鏡面反射。檢拾器鏡面及光束捕集器(及其間之任何中繼器鏡面)構成光束截止器系統。
參看圖5,第一定位器106可包括配置於第一AOD 402之光學輸出側處的光束截止器系統500(在本文中亦被稱作「第一光束截止器系統(first beam dump system)」)。第一AOD 402典型地經操作以繞射入射雷射能量光束,從而產生分別沿零階光束路徑300及一階光束路徑114'自第一AOD 402傳播之零階及一階光束。通常,亦產生其他繞射階之一或多個光束,所述光束中之每一者可沿一或多個其他光束路徑自第一AOD 402傳播,一般在圖5中在502處標註。光束截止器系統500經配置以捕集沿光束路徑(諸如光束路徑502中之任一者)傳播之雷射能量,同時准許分別沿零階光束路徑300及一階光束路徑114'傳播之雷射能量繼續傳播(例如,至第二AOD 404)。在另一具體實例中,光束截止器系統500亦可經配置以捕集沿零階光束路徑300傳播之雷射能量(亦即,以防止雷射能量傳播至第二AOD 404)。
參看圖6,第一定位器106可包括配置於第二AOD 404之光學輸出側處的光束截止器系統600(在本文中亦被稱作「第二光束截止器系統(second beam dump system)」)。第二AOD 404典型地經操作以使入射雷射能量光束繞射(例如,沿一階光束路徑114'自第一AOD 402傳播,及視情況沿零階光束路徑300自第一AOD 402傳播)。在第二AOD 404之操作期間,使沿光束路徑114'之傳播入射雷射能量光束繞射以產生沿一階114''自第二AOD 404傳播之一階光束。如同第一AOD 402一般,其他繞射階之一或多個光束亦可在第二AOD 404之操作期間產生,所述光束中之每一者可沿一或多個其他光束路徑自第二AOD 404傳播,一般在圖6中在602處標註。另外,沿零階光束路徑300自第一AOD 402傳播之雷射能量光束之至少一部分可沿零階光束路徑300自第二AOD 404傳播。光束截止器系統600經配置以捕集沿光束路徑(諸如光束路徑300及602)傳播之雷射能量,同時准許沿一階光束路徑114''傳播之雷射能量繼續傳播(例如,至第二定位器108)。
在一個具體實例中,第一定位器106包括第一光束截止器系統500及第二光束截止器系統600兩者。然而,在另一具體實例中,第一定位器106可包括第一光束截止器系統500但不包括第二光束截止器系統600,或可包括第二光束截止器系統600但不包括第一光束截止器系統500。儘管第一光束截止器系統500及第二光束截止器系統600(各自在本文中一般被稱作「光束截止器系統(beam dump system)」在本文中描述為併入於提供為多單元多軸AOD系統400之第一定位器106內,但將瞭解,本文中所描述之任何數目個光束截止器系統可併入於僅包括一個AOD之第一定位器106中,或可結合其他光學組件(諸如稜鏡、透鏡、電流計鏡面系統、快速轉向鏡面系統或其類似者或其任何組合)使用。 i.    關於光束截止器系統之實例具體實例
在一個具體實例中,光束截止器系統之檢拾器鏡面及光束捕集器(及其間之任何中繼器鏡面)提供為實體上分離之組件,所述組件中之每一者分開提供及安裝(例如,藉助於螺釘、黏著劑、夾鉗或其類似者或其任何組合)至共同光學模型板上等。儘管此提供彈性的方案,但此等組件相對於彼此之對準可能為困難且耗時的製程。
在解決與光束截止器系統之分開提供之組件相關聯的前述潛在問題時,根據另一具體實例之光束截止器系統可將檢拾器鏡面、光束捕集器及任何介入中繼器鏡面整合(且視情況預對準)至共同封裝中。此類光束截止器系統(在本文中亦被稱作「整合式光束截止器系統(integrated beam dump system)」)可接著易於以此項技術中已知的任何適合方式併入至光束路徑構件中,其中待進行之唯一對準為整合式光束截止器系統之光學輸入與任何非所需光束路徑對準。
在一個實例具體實例中,整合式光束截止器系統可包括一或多個分開提供之檢拾器鏡面、一或多個光束捕集器及視情況選用之在檢拾器鏡面與光束捕集器之間的一或多個中繼器鏡面,所述裝置皆安裝(例如,藉助於螺釘、黏著劑、夾鉗或其類似者或其任何組合)至共同結構,諸如光學模型板。如所屬技術技術中已知,光學模型板為大體板狀結構,其由諸如鋼、黃銅、鋁或鋁合金、碳纖維強化聚合物複合物等材料形成,且其提供光學組件可安裝至之平坦表面(例如,藉助於螺釘、黏著劑、夾鉗或其類似者或其任何組合)。光學模型板隨後又可安裝至雷射加工設備100之光束路徑構件中。
在另一實例具體實例中,分開提供之組件安裝至之共同結構可為框架(例如,由諸如鋼、黃銅、鋁或鋁合金、銅或銅合金、碳纖維強化聚合物複合物等材料形成)。在此情況下,框架提供多個表面(其中之至少兩者不共面),分開提供之組件中之不同組件可個別地安裝(例如,藉助於螺釘、黏著劑、夾鉗或其類似者或其任何組合)至所述表面。框架可以此項技術中已知的任何適合或所要方式製造,例如藉由CNC銑削、鑄造、焊接、真空裝袋、壓縮模製或其類似方式或其任何組合。
在另一實例具體實例中,框架可以此方式提供或以其他方式加工以便形成一或多個反射表面(例如,適合於充當檢拾器鏡面、中繼器鏡面或其任何組合)、一或多個光學吸收表面或結構(例如,適合於充當光束捕集器或其部分),或其類似者或其任何組合。舉例而言,當框架由諸如鋼、黃銅、鋁或鋁合金、銅或銅合金等金屬材料形成時,框架之表面可經研磨及/或拋光(例如,化學、機械或其任何組合)以形成反射表面。在另一實例中,且不管形成框架之材料,可用對入射於表面上之雷射能量光束中之光波長具反射性的材料塗佈框架之表面(例如,經由電鍍製程、無電電鍍製程、真空沈積製程或其類似製程或其任何組合)。可塗佈至框架上以形成反射表面之例示性材料包括鋁、金、銀、銅或其類似物或其任何組合。
在另一實例中,當框架由諸如鋼、鋁或鋁合金、銅或銅合金等金屬材料形成時,框架之表面可經蝕刻、粗化、氧化、陽極氧化等以形成適合吸收入射雷射能量光束(例如,適合於充當光束捕集器或其部分)之表面或其他結構。在另一實例中,且不管形成框架之材料,可用對入射至框架之表面中之雷射能量光束具有適合吸收性的材料塗佈該表面(例如,經由電鍍製程、無電電鍍製程、真空沈積製程、塗漆製程或其類似製程或其任何組合)。
取決於一或多個因素,諸如光束捕集器之建構及由雷射能量吸收之光束之功率及波長,光束捕集器可能在雷射能量被吸收時不合需要地變熱。因此,整合式光束截止器系統可包括熱耦接至光束捕集器且經配置以自該光束捕集器移除熱之一或多個冷卻系統。適合冷卻系統之實例包括散熱片、熱管、帕耳帖熱泵、水冷頭(water block)或其類似者或其任何組合。在一個具體實例中,一或多個冷卻系統可熱耦接至光學模型板或框架。在另一具體實例中,一或多個冷卻系統可與光學模型板或框架一體地形成,或以其他方式機械耦接至光學模型板或框架。ii. 關於整合式光束截止器系統之實例具體實例
參看圖7,諸如整合式光束截止器系統700之整合式光束截止器系統可包括由諸如鋼、黃銅、鋁或鋁合金、銅或銅合金或其類似物或其任何組合之材料形成的框架702。框架702可藉由此項技術中已知之任何適合或所要製程(例如,藉由CNC銑削、鑄造、焊接或其類似製程或其任何組合)形成以形成複數個表面,諸如表面704、706、708、710、712、714及716。大體而言,表面704、706及708提供為反射表面,且表面710、712、714及716提供為光學吸收表面。舉例而言,且如關於圖8及圖9更詳細地論述,表面704及706可充當檢拾器鏡面,表面708可充當中繼器鏡面,且表面710、712、714及716可相對於彼此配置以便形成光束捕集器718。因此,表面704及706可使沿非所需光束路徑傳播之雷射能量轉向至表面708,該表面將經轉向雷射能量反射至光束捕集器718。
可使得表面704、706及708在形成框架702期間或在形成框架702之後具反射性。舉例而言,在形成框架702之後,藉由在形成有表面704、706及708中之一或多者的框架702之區上執行一或多個研磨或拋光操作(例如,如上文所論述),藉由用適合反射材料塗佈表面704、706及708中之一或多者(例如,如上文所論述)或其類似操作或其任何組合,可使得表面704、706及708具反射性。
可使得表面710、712、714及716在形成框架702期間或在形成框架702之後具吸收性。舉例而言,可形成框架702,使得表面704、706、708、710、712、714及716具反射性,且此後,可遮蔽表面704、706及708以防止應用於框架702之後續製程(例如,包括一或多個蝕刻操作、粗化操作、氧化操作、陽極氧化操作、塗佈操作或其類似操作或其任何組合)使表面704、706及708呈現光學吸收性。可用以遮蔽表面704、706及708之例示性遮蔽材料包括帶、蠟、漆、遮蔽樹脂等,如所屬技術領域中已知。在已適當遮蔽表面704、706及708之後,可執行(例如,如上文所論述)一或多個操作以使表面710、712、714及716顯現光學吸收性。此後,可自靜止反射表面704、706及708移除遮蔽材料。
在一個具體實例中,框架702可藉由機械加工(例如,CNC銑削)塊(例如,由鋁或氧化鋁形成)而形成,且框架702之所得表面可經陽極氧化以形成厚度足以至少部分(或至少實質上)吸收入射雷射能量光束之陽極氧化層。大體而言,陽極氧化層應具有以提供雷射能量之所要光吸收的最小厚度將取決於待吸收之雷射能量之波長。舉例而言,已發現,形成為至少45 µm之厚度的陽極氧化層足以提供在9.4 µm之波長下之雷射能量的適合吸收。在對框架702陽極氧化之後,可研磨及/或拋光形成有表面704、706及708中之一或多者的框架702之區以移除陽極氧化層且因此形成適合反射之表面。替代地,可在陽極氧化框架702之前遮蔽表面704、706及708(例如,如上文所描述),且可在框架702之未遮蔽部分(例如,表面710、712、714及716)已經適合陽極氧化之後移除遮蔽材料。
參看圖8,表面704可充當檢拾器鏡面以將沿非所需光束路徑(例如,自第一AOD 402或第二AOD 404傳播之光束路徑800)傳播之雷射能量轉向至表面708。表面708可充當中繼器鏡面以將由表面704反射之雷射能量反射至光束捕集器718(例如,至表面716),在該光束捕集器中,雷射能量被吸收。儘管圖8將光束路徑800說明為在表面716處終止(因此表明沿光束路徑800傳播之所有雷射能量皆被吸收),但將瞭解,一些雷射能量可在表面716處被反射。在此情況下,雷射能量將自表面716反射至表面712,在表面712處,剩餘雷射能量將被完全吸收或部分地反射回表面716,在表面716處,該剩餘雷射能量將被至少部分吸收。
類似地,參看圖9,表面706可充當檢拾器鏡面以將沿非所需光束路徑(例如,自第一AOD 402或第二AOD 404傳播之光束路徑900)傳播之雷射能量轉向至表面708。表面708可充當中繼器鏡面以將由表面704反射之雷射能量反射至光束捕集器718(例如,至表面710),在該光束捕集器中,雷射能量被吸收。儘管圖9將光束路徑900說明為在表面710處終止(因此表明沿光束路徑900傳播之所有雷射能量皆被吸收),但將瞭解,一些雷射能量可在表面710處被反射。在此情況下,雷射能量將自表面710反射至表面714,在表面714處,剩餘雷射能量將被完全吸收或部分地反射回表面710,在表面710處,該剩餘雷射能量將被至少部分吸收。
返回參看圖7,框架702可進一步包括充當整合式光束截止器系統700之光學輸入端的開口720。如所展示,開口720經佈置且經尺寸設定以使得沿任何光束路徑自第一AOD 402或第二AOD 404(例如,沿光束路徑114或300,如圖7中所展示,或沿其他光束路徑,諸如分別如圖8或圖9中所展示之光束路徑800或900,或其任何組合)傳播之雷射能量可透射穿過該開口。框架702可進一步包括各自充當整合式光束截止器系統700之光學輸入端的開口722及724。具體言之,開口722經佈置且經尺寸設定以便准許沿光束路徑114傳播之雷射能量透射穿過該開口。同樣,開口724經佈置且經尺寸設定以便准許沿光束路徑300傳播之雷射能量透射穿過該開口。
參看圖10,諸如整合式光束截止器系統1000之整合式光束截止器系統可包括由諸如鋼、黃銅、鋁或鋁合金、銅或銅合金或其類似物或其任何組合之材料形成的框架1002。框架1002可藉由此項技術中已知之任何適合或所要製程(例如,以如上文關於框架702所描述之任何方式)形成以形成複數個表面,諸如表面1004、1006、1008、1010、1012、1014、1016、1018及1020。大體而言,表面1004、1006、1008、1010及1012提供為反射表面,且表面1014、1016、1018及1020提供為光學吸收表面。表面1004、1006、1008、1010及1012中之任一者可以任何方式(例如,以與關於表面704、706及708所論述之方式相同或類似的方式)形成,以便適合地反射入射雷射能量光束。同樣,表面1014、1016、1018及1020中之任一者可以任何方式(例如,以與關於表面710、712、714及716所論述之方式相同或類似的方式)形成,以便適合地吸收入射雷射能量光束。因此,且如關於圖11至圖14更詳細地論述,表面1004、1006及1008可充當檢拾器鏡面,表面1010及1012可充當中繼器鏡面,且表面1014、1016、1018及1020可相對於彼此配置以便形成光束捕集器1022。因此,表面1004、1006及1008可使沿非所需光束路徑傳播之雷射能量轉向。特定言之,表面1004經配置以將入射雷射能量直接反射至光束捕集器1020,而表面1006及1008經配置以將入射雷射能量分別反射至表面1010及1012。表面1010及1012及各自經配置以將經轉向雷射能量反射至光束捕集器1022。
參看圖11,表面1004可充當檢拾器鏡面以將沿非所需光束路徑(例如,自第一AOD 402或第二AOD 404傳播之光束路徑1100)傳播之雷射能量轉向至表面1014。儘管圖11將光束路徑1100說明為在表面1014處終止(因此表明沿光束路徑1100傳播之所有雷射能量皆被吸收),但將瞭解,一些雷射能量可在表面1014處被反射。在此情況下,雷射能量將自表面1014反射至表面1018,在表面1018處,剩餘雷射能量將被完全吸收或部分地反射回表面1014,在表面1014處,該剩餘雷射能量將被至少部分吸收。
類似地,參看圖12,表面1008可充當檢拾器鏡面以將沿非所需光束路徑(例如,自第一AOD 402或第二AOD 404傳播之光束路徑1200)傳播之雷射能量轉向至表面1014。儘管圖12將光束路徑1200說明為在表面1016處終止(因此表明沿光束路徑1200傳播之雷射能量中的一些由表面1014反射,且沿光束路徑1200傳播之所有此類經反射雷射能量在表面1016處被吸收),但將瞭解,一些雷射能量可在表面1016處被反射。在此情況下,雷射能量將最可能自表面1016反射至表面1020,在表面1020處,剩餘雷射能量將被完全吸收或部分地反射回表面1016,在表面1016處,該剩餘雷射能量將被至少部分吸收。
參看圖13,表面1006可充當檢拾器鏡面以將沿非所需光束路徑(例如,自第一AOD 402或第二AOD 404傳播之光束路徑1300)傳播之雷射能量轉向至表面1010。表面1010可充當中繼器鏡面以將由表面1004反射之雷射能量反射至光束捕集器1022(例如,至表面1016),在該光束捕集器中,雷射能量被吸收。儘管圖13將光束路徑1300說明為在表面1016處終止(因此表明沿光束路徑1300傳播之所有雷射能量皆被吸收),但將瞭解,一些雷射能量可在表面1016處被反射。在此情況下,雷射能量將自表面1016反射至表面1020,在表面1020處,剩餘雷射能量將被完全吸收或部分地反射回表面1016,在表面1016處,該剩餘雷射能量將被至少部分吸收。
類似地,參看圖14,表面1008可充當檢拾器鏡面以將沿非所需光束路徑(例如,自第一AOD 402或第二AOD 404傳播之光束路徑1400)傳播之雷射能量轉向至表面1012。表面1012可充當中繼器鏡面以將由表面1008反射之雷射能量反射至光束捕集器1022(例如,至表面1016),在該光束捕集器中,雷射能量被吸收。儘管圖14將光束路徑1400說明為在表面1016處終止(因此表明沿光束路徑1400傳播之所有雷射能量皆被吸收),但將瞭解,一些雷射能量可在表面1016處被反射。在此情況下,雷射能量將自表面1016反射至表面1020,在表面1020處,剩餘雷射能量將被完全吸收或部分地反射回表面1016,在表面1016處,該剩餘雷射能量將被至少部分吸收。
返回參看圖10,框架1002可進一步包括充當整合式光束截止器系統1000之光學輸入端的開口1024。如所展示,開口1024經佈置且經尺寸設定以使得沿任何光束路徑自第一AOD 402或第二AOD 404(例如,沿光束路徑114,如圖10中所展示,或沿其他光束路徑,諸如分別如圖11、圖12、13或圖14中所展示之光束路徑1100、1200、1300或1400,或其任何組合)傳播之雷射能量可透射穿過該開口。框架1002可進一步包括充當整合式光束截止器系統1000之光學輸入端的開口1026。具體言之,開口1026經佈置且經尺寸設定以便准許沿光束路徑114傳播之雷射能量透射穿過該開口。在整合式光束截止器系統1000中,零階光束路徑300(例如,自第一AOD 402或第二AOD 404傳播)經轉向且發送至光束捕集器1022。在此情況下,零階光束路徑300可由例如光束路徑1200或1300表示。
鑒於上文關於整合式光束截止器系統700及1000之論述,將瞭解,由框架702及1002提供之前述表面界定一內部區,雷射能量可經由該內部區傳播至各別光束捕集器。舉例而言,由框架702提供之前述表面界定內部區726,且由框架1002提供之前述表面界定內部區1028。為了防止或以其他方式最小化灰塵或其他顆粒或物體不合需要地進入至此等內部區中,整合式光束截止器系統700或1000中之任一者可視情況包括橫跨內部區之一或多個板。舉例而言,整合式光束截止器系統700可包括耦接至框架702(例如,在其第一側處)之第一板726、耦接(例如,藉助於螺釘、黏著劑、夾鉗或其類似者或其任何組合)至框架702(例如,在其第二側處,該第二側與第一側相對)之第二板728(以虛線展示於圖7中),或其組合。舉例而言,整合式光束截止器系統1000可包括耦接至框架1002(例如,在其第一側處)之第一板1030、耦接(例如,藉助於螺釘、黏著劑、夾鉗或其類似者或其任何組合)至框架1002(例如,在其第二側處,該第二側與第一側相對)之第二板1032(以虛線展示於圖10中),或其組合。關於整合式光束截止器系統1000,儘管上文已將框架1002描述為提供表面1008,但表面1008可由耦接(例如,藉助於螺釘、黏著劑、夾或其類似者或其任何組合)至第一板1030之塊(例如,塊1034)提供。
在一個具體實例中,耦接至整合式光束截止器系統700或1000之框架的前述板中之任一者可由導熱材料(例如,鋼、黃銅、鋁或鋁合金、銅或銅合金或其類似者或其任何組合)形成,以便遠離相關聯光束捕集器(亦即,光束捕集器718或1022)傳導熱。在另一具體實例中,一或多個冷卻系統(例如,散熱片、熱管、帕耳帖熱泵、水冷頭或其類似者或其任何組合)可耦接至板728、730、1030或1032中之一或多者或以其他方式完全或部分地整合至板728、730、1030或1032中之一或多者中。 C.  大體關於相位延遲器之具體實例
取決於第一定位器106中所包括的AOD之類型,可能需要使光之偏振平面(亦即,電場振盪之平面)在由AOD透射之一階光束路徑中旋轉。若使入射雷射能量光束之大部分繞射成一階光束所需之RF驅動功率之量高度取決於經偏轉雷射能量光束之偏振狀態,則將需要旋轉偏振平面。另外,若多單元AOD系統中之每一AOD包括由相同材料形成之AO單元,且若多單元AOD系統中之每一AOD使用相同類型之聲波以使入射雷射能量光束偏轉,且若需要使一階光束中由多單元AOD系統中之第一AOD(例如,多軸AOD系統400中之第一AOD 402)透射之光的偏振狀態為線性的且相對於多單元AOD系統中之第二AOD(例如,多軸AOD系統400中之第二AOD 404)之繞射軸定向於特定方向上,則類似地需要使一階光束中由第二AOD透射之光的偏振狀態相對於一階光束中由第一AOD透射之光的偏振狀態旋轉,正如第二AOD之定向相對於第一AOD之定向旋轉一般。
可併入至第一定位器106中之相位延遲器之實例包括一或多個透射相位延遲器(例如,半波板、四分之一波板、八分之一波板或其類似者或其任何組合)、一或多個反射相位延遲器(例如,經配置以賦予180度相移、90度相移或其類似者或其任何組合),或其類似者或其任何組合。大體而言,視需要,一或多個相位延遲器可插入至入射於AOD上之雷射能量光束的光束路徑(例如,一階光束路徑或其他路徑)中以使入射於AOD上之經線性偏振雷射能量光束之偏振平面與AOD中之AO單元的繞射軸對準。舉例而言,一或多個相位延遲器可配置於光束路徑114'中、第一AOD與第二AOD之間的位置處,以使射出第一AOD之將變得入射於第二AOD上之經線性偏振雷射能量光束的偏振平面與第二AOD中之AO單元之繞射軸對準。 D.  大體關於波前失真補償之具體實例
通常,透射光學組件將吸收入射於其上之一定量的光。當入射光為高功率雷射能量光束時,經吸收光可加熱形成透射光學組件之材料。有時,當雷射能量光束具有非均一空間強度剖面(例如,如同高斯型空間強度剖面)時,光束之不同區將透射光學組件之不同部分加熱至不同溫度。舉例而言,具有高斯型空間強度分佈之光束之中心區將比光束之周邊區更多地加熱透射光學組件之一個區。因為形成透射光學組件之許多材料之折射率隨著溫度變化(被稱為熱光學效應),所以將隨著高功率雷射能量光束傳播通過透射光學組件而修改該高功率雷射能量光束之波前。另外,透射光學組件之相對熱區可凸出(由於熱膨脹),且此凸出可使透射光學組件之形狀類似於透鏡之形狀。折射率之改變亦可由透射光學組件內之熱引發之機械應力(被稱為光彈性效應)造成。如本文中所使用,以不同方式加熱透射光學組件之不同部分的動作亦可被稱作透射光學組件之「差別加熱(differential heating)」。透射光學組件之差別加熱亦可藉由除雷射能量吸收以外之手段來實現。舉例而言,透射光學組件可置放於熱源附近。舉例而言,當操作併有諸如EO或AO單元之透射光學組件的系統時,可區別地加熱所述透射光學組件。如此項技術中已知,透射光學組件之差別加熱可能引發透射光學組件內之折射率之差別改變,此為被稱為「熱致透鏡(thermal lensing)」之效應。熱致透鏡可能在雷射能量光束沿光束路徑114傳播通過光束路徑構件時不合需要地使該雷射能量光束之波前聚焦、散焦或以其他方式失真。
解決與熱致透鏡相關聯之可能不利影響的一種方式為使用透射光學組件,所述透射光學組件對入射雷射能量光束之光波長實質上透明(亦即,使得不發生熱致透鏡)。另一技術為僅降低雷射能量光束中之功率。然而,若不存在實質上透明的透射光學組件,或若無法視需要使用相對較低功率雷射能量光束來加工工件,則此等方法可能難以實施或不可能實施。因此,根據下文更詳細地描述之一些具體實例,一或多個光學組件(在本文中被稱作「波前補償光學件(wavefront compensation optics)」)可配置於光束路徑114中以補償(亦即,完全或部分地補償)可由光束路徑構件之一或多個透射光學組件內之熱致透鏡引發的波前失真。
在本文所描述之具體實例中,輸入至透射光學組件之雷射能量光束典型地為軸向對稱的(亦即,圓形或至少實質上圓形的),且由熱致透鏡引發之失真通常由一或多個相位像差支配,該一或多個相位像差亦為軸向對稱的。可藉由任尼克多項式與其係數之適當量值的組合描述對雷射能量光束之波前賦予的相位像差,如此項技術中已知。亦即:
Figure 02_image003
其中ρ 為來自所考慮之孔隙之中心的正規化徑向座標(其中,在此上下文中,「正規化(normalized)」意謂ρ 在所考慮之孔隙之邊緣處採用值1),θ 為所考慮之孔隙內之角座標,aj 為具有距離單位(例如,以λ 為單位,其中λ 為雷射能量光束中之光學光波長,如上文所論述)之第j 個任尼克多項式項的係數值,且Zj 為第j 個任尼克多項式項。
出於本文中之論述之目的,將使用「條紋(fringe)」(亦被稱作「亞利桑那大學(University of Arizona)」編號及正規化方案來描述第j 個任尼克多項式項。由於以下術語最受關注,因此其在以下表1中明確陳述。 表1.
j Zj (ρ ,θ )
1 1
4 2ρ 2 -1
9 6ρ 4 - 6 ρ 2 + 1
16 20ρ 6 - 30 ρ 4 + 12 ρ 2 - 1
     
讀者應注意,此等術語為徑向對稱的,且因此,Z j (ρ ,θ )並不取決於θ
經由本申請人所執行之實驗,已發現,當具有高斯型空間強度剖面之雷射能量光束加熱透射光學組件之塊體透明材料以引起透射光學組件內之熱致透鏡時,Z9 項之係數之正負號幾乎始終與Z4 項之係數之正負號相反,Z9 項之係數之量值趨向於小於Z4 項之係數之量值,且Z9 對Z4 項之係數比率不隨著所吸收之雷射功率之量改變而明顯改變。因而,Z4 及Z9 項之係數之獨立且任意的校正並非絕對必需的。此等觀測結果在某種程度上取決於用以界定條紋任尼克多項式擬合之孔徑尺寸的任意選擇,但在稍微小於雷射能量光束之4σ寬度至雷射能量光束之4σ寬度之約兩倍範圍內的孔徑尺寸為最適用的(對於完美高斯光束,4σ寬度等效於光束在偏心點處之全寬,其中峰值處之強度為1/e2 )。
舉例而言,圖15說明展示Z4 及Z9 項之係數(及其比率)如何隨著由結晶鍺塊(例如,具有用以形成AO單元之類型)形成之塊體透明材料之溫度而改變的一組實驗結果之圖表。在此情況下,自CO2 雷射源產生且具有在8 µm至12 µm範圍內之波長及恆定功率的雷射能量光束照射至鍺塊上。當塊由雷射能量光束照射時,鍺塊之溫度藉由改變在鍺塊周圍循環之冷卻水之溫度而改變。因此,由鍺塊吸收之雷射能量之量隨著冷卻水之溫度升高而增加。自圖15中所說明之圖表,可看出,Z9 項之係數的正負號(亦即,標註為「a9 」之資料)始終與Z4 項(亦即,標註為「a4 」之資料)之係數的正負號相對,且Z9 項之係數的量值趨向於小於Z4 項之係數的量值。亦可見,Z9 對Z4 項之係數比率(亦即,標註為「a9 /a4 」之資料)不明顯改變。應注意,圖表中之資料係基於觀測結果,其中孔徑為入射雷射能量光束之4σ寬度之約1.6倍。
儘管上文已關於由結晶鍺形成之塊體透明材料與波長在8 µm至12 µm範圍內之高功率雷射能量光束的組合進行關於熱致透鏡之特定論述,但將瞭解,亦可在用以形成AO單元之諸如二氧化碲的其他塊體透明材料中觀測熱致透鏡(例如,取決於一或多個因素,諸如塊體透明材料中之雜質之存在、傳播通過塊體透明材料之雷射能量光束之功率、傳播通過塊體透明材料之雷射能量光束之波長,或其類似者或其任何組合)。另外,儘管上文已關於AO單元中所使用之塊體透明材料進行關於熱致透鏡之特定論述,但將瞭解,熱致透鏡亦可在諸如透鏡、分光器、稜鏡、二向色濾光片、窗、波板、DOE、ROE等由塊體透明材料(其視情況可塗佈有一或多個抗反射塗層或其類似者)形成之其他透明光學組件以及諸如雷射增益介質之其他光學組件中觀測到。因此,用於校正或補償由熱致透鏡造成的雷射能量光束中之波前像差的技術通常適用於校正由雷射源104產生之雷射能量光束中之波前像差,而不管在哪一透明光學組件中引發熱致透鏡。 i.    關於波前補償光學件之實例具體實例
在已論述可藉由熱致透鏡引發之雷射能量光束中之像差之性質後,下文論述波前補償光學件之眾多具體實例,所述波前補償光學件可安置於光束路徑114中以補償像差。然而,大體而言,波前補償光學件可提供為一或多個光學組件,諸如一或多個透鏡、鏡面或其類似者或其任何組合。
在一個具體實例中,波前補償光學件可提供為具有反射表面之反射光學組件(例如,球面或以其他方式彎曲之鏡面),該反射表面具有特徵在於條紋任尼克項(例如,Z4 、Z9 、Z16 或其類似者或其任何組合)之形狀,其中條紋任尼克項之係數經選擇以便補償雷射能量光束中之波前失真。反射表面可藉由此項技術中已知的任何適合技術(例如,藉由鏡面之高精確度金剛石車削、藉由用磁流變方法對鏡面基板精確度拋光(MRF拋光)等)來塑形。
在另一具體實例中,波前補償光學件可提供為具有折射表面之透射光學組件(例如,球面透鏡或其類似者),該折射表面具有特徵在於條紋任尼克項(例如,Z4 、Z9 、Z16 或其類似者或其任何組合)之形狀,其中條紋任尼克項之係數經選擇以便補償雷射能量光束中之波前失真。在另一具體實例中,透射光學組件可包括更多的兩個球面透鏡,其設定成相隔一定距離以產生Z9 項之係數的所要值。
在又一具體實例中,波前補償光學件可提供為一或多個反射光學組件(例如,如上文所論述而提供)與一或多個透射光學組件(例如,如上文所論述而提供)之組合。在此情況下,Z4 項之係數之任何補償量可在一或多個透射光學組件之一或多個表面上實現,且Z9 項之係數之補償可由一或多個反射光學組件之一或多個表面實現。
上文所論述之反射及透射光學組件典型地提供對由透射光學組件內之熱致透鏡產生之效應的靜態補償,且因此被視為「靜態波前補償光學件(static wavefront compensation optic)」之實例。在另一具體實例中,波前補償光學件可提供對由透射光學組件內之熱致透鏡產生之效應的動態補償,且因此可被視為「動態波前補償光學件(dynamic wavefront compensation optic)」。在此情況下,動態波前補償光學件可單獨地或以任何組合包括一或多個可變焦距透鏡或透鏡構件、一或多個可變形鏡面、一或多個光學透射空間光調變器。可變形鏡面之實例類型包括分段型可變形鏡面(亦即,由可獨立致動之平整鏡面片段構成,其可視情況藉由MEMS技術形成)及膜狀可變形鏡面(亦即,由反射膜構成,其可以此項技術中已知之任何方式-以機械方式、氣動方式、液壓方式、機械方式等變形),及其類似者。動態波前補償光學件亦可包括一或多個固定焦距透鏡或透鏡構件,或更多非可變形鏡面,或其類似者或其任何組合,其可相對於彼此可移動(例如,一或多個變焦透鏡)。
無論波前補償光學件中之光學組件之類型,波前補償光學件可經配置以補償以下任何波前失真:(a)已由雷射能量光束在波前補償光學件之「光學上游(optically upstream)」的光束路徑114中之一或多個位置處累積(亦即,在傳播至波前補償光學件之前);(b)預期待由雷射能量光束在波前補償光學件之「光學下游(optically downstream)」的光束路徑114中之一或多個位置處累積(亦即,在自波前補償光學件傳播之後);或(c)(a)與(b)之任何組合。如本文中所使用,在傳播至波前補償光學件之前已由雷射能量光束累積之波前失真亦被稱作「實際波前失真(actual wavefront distortion)」,且預期在自波前補償光學件傳播之後由雷射能量光束累積之波前失真亦被稱作「預期波前失真(expected wavefront distortion)」。 a.   關於膜狀可變形鏡面之實施具體實例
在一個具體實例中,且參看圖16及圖16A,膜狀可變形鏡面可提供為鏡面1600。大體而言,鏡面1600包括反射表面1602、主體1604及形成於主體1604中之凹穴1606(例如,自主體之後表面朝向反射表面1602延伸)。因此,主體1604之特徵可為包括相對薄膜區1608(例如,形成於反射表面1602與凹穴1606之間)及相對厚周邊區1610(例如,圍繞凹穴1606之周邊)。在一個具體實例中,主體1604可由諸如銅之材料形成,且反射表面1602可由與主體1604相同的材料形成(例如,主體1604可經拋光以形成反射表面1602),或反射表面1602可形成為膜或形成於主體1604上之其他塗層。
膜區1608經佈置以便藉由改變凹穴1606內之壓力而變形。舉例而言,且參看圖17,鏡面1600可耦接至基座1700(例如,經由黏著劑、一或多個焊接件、一或多個夾鉗、一或多個螺釘或其類似者或其任何組合)以便形成沿凹穴1606之周邊延伸之密封件(亦即,其中鏡面1600之周邊區1610抵靠基座1700之表面1702偏置或黏附至該表面)。基座1700包括孔1704,流體(例如,空氣)可行進通過該孔以便對凹穴1606加壓或減壓,如此項技術中已知。當凹穴1606未經充分加壓時(例如,當凹穴1606內之壓力等於凹穴1606外部之環境之環境壓力時),反射表面1602為實質上平坦的。當凹穴1606經充分加壓時(例如,當凹穴1606內之壓力比凹穴1606外部之環境之環境壓力大預定臨限量時),反射表面1602之形狀改變以便具有與尋求補償之波前失真(實際波前失真、預期波前失真或其任何組合)至少實質上相同的特性。膜區1608之幾何形狀可經配置以確保在反射表面1602改變時,可用以表徵反射表面1602之形狀的條紋任尼克項之係數(例如,Z4 、Z9 、Z16 或其類似者或其任何組合)改變以便補償雷射能量光束中之波前失真(實際波前失真、預期波前失真或其任何組合)。
大體而言,對凹穴1606內之壓力的控制可由一或多個控制元件實現,該一或多個控制元件諸如調節器(例如,固定壓力調節器或可變壓力調節器等)、控制閥(例如,可回應於由控制器122或其他控制器輸出之一或多個命令信號而電子控制之控制閥),或其類似者或其任何組合。控制元件可為用以將加壓空氣導引至凹穴1606中(例如,當操作雷射源104以產生雷射能量光束以加工工件時)及對凹穴1606減壓(例如,當雷射源104關閉時、當操作雷射源104以產生低功率光束雷射能量以促進對準時等)的元件。在此情況下,軟管(例如,氣動軟管、液壓軟管等)之第一末端典型地耦接至基座1700以便與孔1704流體連通,且軟管之第二末端(與第一末端相對)與控制元件流體連通。
在一個具體實例中,設備100可視情況包括雷射功率監測器、波前感測器或其類似者或其任何組合,其經佈置(例如,在第一定位器106之光學上游之位置處,在第一定位器106與第二定位器108之間的光學中游之位置處,在第二定位器108之光學下游之位置處,或其類似者或其任何組合)且經配置以產生表示雷射能量光束之功率(在雷射功率監測器之情況下)、波前(在波前感測器之情況下)等之量測信號。量測信號可輸出至控制器122、與調節器或控制閥相關聯之組件特定控制器,或其類似者或其任何組合。基於所接收量測信號,控制器(無論是控制器122抑或與調節器或控制閥相關聯之組件特定控制器)可接著將控制信號輸出至調節器及/或控制閥以在量測信號指示雷射能量光束之功率例如已增大至超出預定臨限功率、具有預定波前等時增加凹穴1606內之壓力。
返回參看圖16及圖16A,在一個具體實例中,膜區1608之幾何形狀可經配置以確保可用以表徵反射表面1602之形狀的前述條紋任尼克項中之一或多者之係數與凹穴1606內之壓力線性(或至少實質上線性或另外極線性)相依。大體而言,凹穴1606內之壓力可在0 psi(或上下)至85 psi(或上下)範圍內變化。在另一具體實例中,膜區1608之幾何形狀可經配置以確保可用以表徵反射表面1602之形狀的前述條紋任尼克項中之至少兩者之係數之間的比率(在本文中亦被稱作「補償比率(compensation ratio)」)在預定範圍內。舉例而言,膜區1608之幾何形狀可經配置以確保Z9 項之係數對Z4 項之係數的補償比率(亦即,Z9 :Z4 )在-0.1至-0.3範圍內(例如,在-0.15至-0.25範圍內,在-0.18至-0.23範圍內,在-0.19至-0.22範圍內,在-0.19至-0.21範圍內,或其類似者)。補償比率可基於凹穴1606內之壓力在前述範圍內變化,或可為恆定的(或至少實質上恆定的)而與凹穴1606內之壓力無關。
鑒於上文,當以平面圖檢視時,膜區1608可為至少實質上圓形的(亦即,如圖16中所展示),且膜區1608之中心部分可具有第一厚度t1,該第一厚度小於膜區1608之周邊部分之第二厚度t2。膜區1608之特徵可為具有第一半徑r1,且膜區1608之前述中心部分(亦即,膜區1608之具有第一厚度t1的部分)之特徵可為具有第二半徑r2。第一厚度t1可在0.8 mm(或上下)至0.3 mm(或上下)範圍內,例如為0.5 mm(或上下)。第二厚度t2可在1.0 mm(或上下)至2.0 mm(或上下)範圍內,例如為1.5 mm(或上下)。第一半徑r1可在3.0 mm(或上下)至4.0 mm(或上下)範圍內,例如為3.5 mm(或上下)。第二半徑r2可在16.0 mm(或上下)至18.0 mm(或上下)範圍內,例如為17.0 mm(或上下)。大體而言,鏡面1600自身之特徵可為具有大於第二半徑r2之第三半徑r3,且鏡面1600之周邊區1610將具有比第二厚度t2大得多的第三厚度t3。舉例而言,第三半徑r3可在24 mm(或上下)至26 mm(或上下)範圍內(例如,為25 mm或上下),且第三厚度t3可在8 mm(或上下)至10 mm(或上下)範圍內(例如,為10 mm或上下)。圖16A說明其中兩個不同表面將以其他方式會合之小半徑(例如,在由虛線圓圍封之區內之半徑)。此等半徑可減少鏡面基板上在此等區處之應力,且降低裂紋將形成且自此等區傳播之可能性。可預期,就鏡面1600在永久地改變鏡面形狀之前可承受之間歇(on-and-off)壓力循環的數目而言,半徑之存在增加鏡面1600之較長使用壽命。
在一個具體實例中,鏡面1600係藉由獲得盤形主體(例如,具有至少大體上彼此平行之前表面及後表面)且接著自後表面機械加工主體以形成凹穴1606,如所說明,該凹穴包括第一空腔1612及第二空腔1614。在形成凹穴1606之後,主體之前表面藉由此項技術中已知之一或多種適合技術(例如,平整拋光、金剛石車削、磁流變加工(magnetorheological finishing;MRF)或其類似者或其任何組合)拋光為平整的。經拋光前表面可塗佈有適合於反射雷射能量光束之一或多個高反射率塗層。
在另一具體實例中,鏡面1600可如上文所論述而形成,而非機械加工主體以形成第一空腔1612及第二空腔1614,僅需要形成第一空腔1612以形成膜區1608。隨後,具有任何適合形狀、硬度、厚度及材料之一或多個加強件可接合至第一空腔1612之與所要反射表面1602相對的表面。加強件之形狀、硬度、厚度及材料可經選擇以確保膜區1608以便於以上文所論述之方式補償雷射能量光束中之波前失真(實際波前失真、預期波前失真或其任何組合)的方式變形。在另一具體實例中,鏡面1600可藉由將可變形反射膜安裝至圓筒而形成。
如上文所描述而建構,膜狀可變形鏡面1600之反射表面1602變形以便採用特徵可在於諸如Z4 及Z9 之徑向對稱條紋任尼克多項式之組合的形狀(或一系列形狀)。在其他具體實例中,可以此項技術中已知之任何適合方式修改膜狀可變形鏡面1600之建構,使得反射表面1602之形狀在變形後特徵可適合地在於單一對稱條紋任尼克多項式(例如,Z9 )。
舉例而言,且參看圖18,膜狀可變形鏡面可提供為鏡面1800。鏡面1800可如關於鏡面1600類似地論述而提供;然而,鏡面1800可包括多個凹穴,諸如凹穴1802、1804及1806。凹穴1804及1806具有環形形狀,且沿凹穴1802之周邊延伸。凹穴1802、1804及1806藉由自可變形區1608之後表面延伸的一對環形肋狀物1808及1810彼此徑向分離。凹穴1802、1804及1806(且因此,肋狀物1808及1810)可藉由任何適合技術(例如,藉由製造鏡面1800所藉以之機械加工主體之後表面)形成。在另一具體實例中,凹穴1802、1804及1806可藉由首先機械加工製造鏡面1800所藉以之主體之後表面中之單一空腔,且接著將環形肋狀物1808及1810接合至可變形區1608之後表面而形成。
當鏡面1800適合地耦接至基座1700(例如,經由黏著劑、一或多個焊接件、一或多個夾鉗、一或多個螺釘或其類似者或其任何組合)時,鏡面1800之周邊區1610以及肋狀物1808及1810抵靠基座1700之表面1702偏置或黏附至該表面。因此,形成複數個密封件,其沿凹穴1802、1804及1806之周邊延伸(亦即,其中一或多個肋狀物抵靠表面1702偏置或黏附至該表面,且其中周邊區1610抵靠表面1702偏置或黏附至該表面)。
如圖18中所展示,基座1700具備第一孔1812、視情況選用之第二孔1814及第三孔1816。第一孔1812與凹穴1802流體連通,第二孔1814(若存在)與凹穴1804流體連通,且第三孔1816與凹穴1806流體連通。對凹穴1802及凹穴1806內之壓力之控制可使用如上文例示性地描述之一或多個軟管(例如,連接至第一孔1812及第三孔1816中之每一者)及一或多個控制元件(例如,連接至軟管)來實現。若存在,則第二孔1814對外部環境敞開,使得凹穴1804與凹穴1804外部之周圍環境流體連通。在一個具體實例中,可獨立於凹穴1806內之壓力而控制凹穴1802內之壓力。在另一具體實例中,可以取決於凹穴1806內之壓力的方式控制凹穴1802內之壓力,或反之亦然。舉例而言,第一孔1812可耦接至不同於第二孔1816之控制元件。在另一實例中,第一孔1812及第二孔1816可通常耦接至同一控制元件,該控制元件又可操作以相對於凹穴1806對凹穴1802加壓或減壓,或反之亦然,或可操作以通常對凹穴1802及凹穴1806加壓或減壓。
當凹穴1802及1806未經充分加壓時(例如,當凹穴1802及1806內之壓力等於凹穴1802及1806外部之外部環境之環境壓力時),反射表面1602為實質上平坦的。當凹穴1802及1806經充分加壓時(例如,當凹穴1802及1806中之每一者內之壓力比凹穴1804外部之環境之環境壓力大預定臨限量時),膜區1608之由凹穴1802及1806曝露之部分凸面變形(例如,以便向外彎曲,遠離基座1700之表面1702),從而使膜區1608之由凹穴1804曝露之部分凹面變形(例如,以便向內彎曲,朝向基座1700之表面1702)。在此情況下,膜區1608與肋狀物1808及1810之間的連接充當環形支點,從而准許膜區1608在對應於凹穴1802及1806之位置處凸面變形,以引發膜區1608在對應於凹穴1804之位置處的凹面變形。鏡面1800之幾何形狀可因此經配置以確保當反射表面1602之形狀改變時,條紋任尼克項Z9 之係數改變以便補償雷射能量光束中之球面像差。
在另一具體實例中,且參看圖19,膜狀可變形鏡面可提供為鏡面1900。鏡面1900可如關於鏡面1800類似地論述而提供;然而,鏡面1900僅包括單一環形肋狀物1906以界定一對凹穴(亦即,凹穴1902及凹穴1904)。凹穴1904具有環形形狀,且沿凹穴1902之周邊延伸。凹穴1902及1904(且因此肋狀物1906)可藉由任何適合技術(例如,如上文關於鏡面1800所論述)形成。
當鏡面1900適合地耦接至基座1700(例如,經由黏著劑、一或多個焊接件、一或多個夾鉗、一或多個螺釘或其類似者或其任何組合)時,鏡面1900之周邊區1610以及肋狀物1906抵靠基座1700之表面1702偏置或黏附至該表面。因此,形成複數個密封件,所述密封件沿凹穴1902及1904之周邊延伸。
如圖19中所展示,基座1700具備第一孔1908及第二孔1910。第一孔1908與凹穴1902流體連通,且第二孔1910與凹穴1904流體連通。對凹穴1902及凹穴1904內之壓力之控制可使用如上文例示性地描述之一或多個軟管(例如,連接至第一孔1908及第二孔1910中之每一者)及一或多個控制元件(例如,連接至軟管)來實現。在一個具體實例中,可獨立於凹穴1910內之壓力而控制凹穴1902內之壓力,或反之亦然。在另一具體實例中,可以取決於凹穴1904內之壓力的方式控制凹穴1902內之壓力,或反之亦然。舉例而言,第一孔1908可耦接至不同於第二孔1910之控制元件。在另一實例中,第一孔1908及第二孔1910可通常耦接至同一控制元件,該控制元件又可操作以相對於凹穴1904對凹穴1902加壓或減壓,或反之亦然,或可操作以通常對凹穴1902及凹穴1904加壓或減壓。
當凹穴1902及1904未經充分加壓時(例如,當凹穴1902及1904內之壓力等於凹穴1902及1904外部之外部環境之環境壓力時),反射表面1602為實質上平坦的。當凹穴1902及1904經充分加壓時(例如,當凹穴1902及1904中之每一者內之壓力比凹穴1902及1904外部之環境之環境壓力大預定臨限量時),膜區1608之由凹穴1902及1904曝露之部分凸面變形(例如,以便向外彎曲,遠離基座1700之表面1702)。在此情況下,膜區1608與肋狀物1906之間的連接充當環形支點,從而准許膜區1608之前述凸面變形,以引發膜區1608在肋狀物1906處之前述凹面變形。鏡面1900之幾何形狀可因此經配置以確保當反射表面1602之形狀改變時,條紋任尼克項Z9 之係數改變以便補償雷射能量光束中之球面像差。
將瞭解,以上文所描述之方式形成及建構的前述膜狀可變形鏡面中之任一者可以此項技術中已知之任何適合方式修改,使得反射表面1602之形狀在變形後可採用廣泛多種形狀,並非僅藉由上文所論述之徑向對稱條紋任尼克多項式之組合界定的形狀。舉例而言,關於圖16、圖18及圖19所描述之膜狀可變形鏡面之凹穴為徑向對稱的。若膜狀可變形鏡經修改以具有非徑向對稱之凹穴,則反射表面1602之形狀在變形後將不為徑向對稱的。 ii.   大體關於光學中繼器系統之使用的具體實例
大體而言,由透射光學組件內之熱致透鏡引發之波前像差出現於透射光學組件內之特定位置處,該特定位置可由本文中被稱作「物件平面(object plane)」或「第一平面(first plane)」之平面近似。理想地,在物件平面處(亦即,所述波前像差在其中產生)校正波前像差。然而,此在實體上通常為不可能的。因此,物件平面再成像至位於透射光學組件外部之另一平面(在下文被稱作「影像平面(image plane)」或「第二平面(second plane)」),且波前補償光學件位於影像平面處以補償波前像差(例如,以上文所論述之方式)。
因此,在一些具體實例中,光束路徑構件可包括配置於光束路徑114內之光學中繼器系統以將物件平面中繼或再成像至波前補償光學件(亦即,以將影像平面置放至波前補償光學件上)。大體而言,光學中繼器系統可包括任何數目個光學組件(例如,一或多個鏡面、一或多個透鏡或其類似者或其任何組合)。可提供光學中繼器系統內之光學組件之組態及配置,如此項技術中已知,以便確保影像平面處之物件之影像尺寸不同於(例如,大於或小於)物件平面處之實際物件之尺寸。 a.   關於光束中繼器系統之實例具體實例
參看圖20,諸如光學中繼器系統2000之光學中繼器系統可包括第一光學中繼器2000a、第二光學中繼器2000b或第一光學中繼器2000a與第二光學中繼器2000b之組合。光學中繼器系統2000併入於光束路徑構件內,該光束路徑構件包括波前補償光學件2002及第一光學組件2004a及第二光學組件2004b中之一或兩者。大體而言,第一光學組件2004a及第二光學組件2004b中之至少一者表示歸因於熱致透鏡(例如,如上文所論述)可使入射雷射能量光束之波前失真的光學組件。因此,波前補償光學件2002可經配置以補償由於第一光學組件2004a內之熱致透鏡由雷射能量光束累積的實際波前失真,補償由於第二光學組件2004b內之熱致透鏡待由雷射能量光束累積的預期波前失真,或其組合。波前補償光學件2002可提供為靜態波前補償光學件、動態波前補償光學件或其類似者或其任何組合。然而,大體而言,波前補償光學件2002對入射至其上之雷射能量光束透射,且經配置以透射入射雷射能量光束。
如例示性地說明,提供第一光學中繼器2000a及第二光學中繼器2000b中之每一者作為一組透鏡。儘管圖20將第一光學中繼器2000a及第二光學中繼器2000b中之每一者說明為不包括透鏡之間的任何光學組件,但在其他具體實例中,可存在插入於第一光學中繼器2000a及第二光學中繼器2000b中之一者或兩者之透鏡之間的一或多個光學組件(例如,鏡面等)。第一光學中繼器2000a經佈置且經配置以將第一物件平面(亦即,在第一光學組件2004a內之平面處)處之雷射能量光束之影像中繼至第一影像平面(亦即,在位於波前補償光學件2002處或內之平面處)上,使得雷射能量光束之經中繼影像在第一影像平面處比其在第一物件平面處更大。第二光學中繼器2000b經佈置且經配置以將第二物件平面(亦即,在波前補償光學件2002內之平面處,該平面可與第一影像平面相同)處之雷射能量光束之影像中繼至第二影像平面(亦即,在位於第二光學組件2004b處或內之平面處)上,使得雷射能量光束之經中繼影像在第二影像平面處比其在第二物件平面處更大。在一個具體實例中,第一光學中繼器2000a及第二光學中繼器2000b經佈置且經配置以使得第二影像平面處之雷射能量光束之經中繼影像的尺寸與第一物件平面處之雷射能量光束之影像的尺寸相同。在其他具體實例中,第一光學中繼器2000a及第二光學中繼器2000b可經佈置且經配置以使得第二影像平面處之雷射能量光束之經中繼影像的尺寸大於或小於第一物件平面處之雷射能量光束之影像的尺寸。
參看圖21,前述光學中繼器系統2000可併入於光束路徑構件內,該光束路徑構件包括第一光學組件2004a及第二光學組件2004b中之一或兩者,但包括波前補償光學件2100而非波前補償光學件2002。類似於波前補償光學件2002,波前補償光學件2100可經配置以補償由於第一光學組件2004a內之熱致透鏡由雷射能量光束累積的實際波前失真,補償由於第二光學組件2004b內之熱致透鏡待由雷射能量光束累積的預期波前失真,或其組合。此外,波前補償光學件2100可提供為靜態波前補償光學件、動態波前補償光學件或其類似者或其任何組合。然而,在所說明具體實例中,波前補償光學件2100經配置以反射入射至其上之雷射能量光束(與透射入射雷射能量光束相反)。在此具體實例中,波前補償光學件2100可為以任何適合方式提供之膜狀可變形鏡面(例如,上文例示性地描述)。
根據圖20及圖21中例示性地展示之具體實例,第一光學中繼器2000a及第二光學中繼器2000b提供為完全分開的組件。亦即,第一光學中繼器2000a及第二光學中繼器2000b不實體地併有共同組件(例如,透鏡、鏡面等)。然而,在其他具體實例中,第一光學中繼器2000a及第二光學中繼器2000b可併有一或多個共同組件(例如,透鏡、鏡面或其類似者或其任何組合)。舉例而言,且參看圖22,諸如光學中繼器系統2200之光學中繼器系統可包括第一光學中繼器2200a及第二光學中繼器2200b。在此情況下,第一光學中繼器2200a併有第一透鏡2202及第二透鏡2204,且第二光學中繼器2200b併有第二透鏡2204及第三透鏡2206。光學中繼器系統2200併入於光束路徑構件內,該光束路徑構件包括波前補償光學件(例如,前述波前補償光學件2100)以及第一光學組件2004a及第二光學組件2004b中之一或兩者。
第一光學中繼器2200a經佈置且經配置以將第一目標平面(亦即,在第一光學組件2004a內之平面處)處之雷射能量光束(例如,沿光束路徑114傳播)之影像中繼至第一影像平面(亦即,在位於波前補償光學件2100處或內之平面處)上,使得雷射能量光束之經中繼影像在第一影像平面處比在第一物件平面處更大。第二光學中繼器2200b經佈置且經配置以將第二物件平面(亦即,在波前補償光學件2100內之平面處,該平面可與第一影像平面相同)處之雷射能量光束之影像中繼至第二影像平面(亦即,在位於第二光學組件2004b處或內之平面處)上,使得雷射能量光束之經中繼影像在第二影像平面處比其在第二物件平面處更小。在一個具體實例中,第一光學中繼器2200a及第二光學中繼器2200b經佈置且經配置以使得第二影像平面處之雷射能量光束之經中繼影像的尺寸與第一物件平面處之雷射能量光束之影像的尺寸相同。在其他具體實例中,第一光學中繼器2200a及第二光學中繼器2200b可經佈置且經配置以使得第二影像平面處之雷射能量光束之經中繼影像的尺寸大於或小於第一物件平面處之雷射能量光束之影像的尺寸。
儘管圖22將第一光學中繼器2200a及第二光學中繼器2200b中之每一者說明為不包括透鏡之間的任何光學組件,但在其他具體實例中,可存在插入於第一光學中繼器2200a及第二光學中繼器2200b中之一者或兩者之透鏡之間的一或多個光學組件(例如,鏡面等)。舉例而言,且參看圖23,前述光學中繼器系統2200可經修改(因此產生光學中繼器系統2300)以併有沿第二透鏡2204與第三透鏡2206之間的光束路徑114定位之複數個鏡面(例如,鏡面2302及2304)。
大體而言,圖20、圖21、圖22、圖23及圖24中之任一者中所展示之第一光學組件2004a及第二光學組件2004b中之一或兩者可提供為前述透射光學組件、雷射增益介質或其類似者或其任何組合中任一者之一或多者。在一個具體實例中,第一光學組件2004a及第二光學組件2004b中之至少一者提供為上文所論述之AOD系統中之任一者的AO單元(例如,由結晶Ge、GaAs、PbMoO4 、TeO2 、結晶石英、玻璃態SiO2 、As2 S3 、LiNbO3 等形成)或其類似者。舉例而言,第一光學組件2004a可提供為前述第一AOD 402之AO單元,且第二光學組件2004b可提供為前述第二AOD 404之AO單元。因此,第一光學組件2004a可被視為第一AOD 402之部分,且第二光學組件2004b可被視為第二AOD 404之部分。在一個特定實例中,第一AOD 402及第二AOD 404之AO單元可皆由相同材料(例如,Ge、GaAs、PbMoO4 、TeO2 、石英、SiO2 、As2 S3 、LiNbO3 或其類似物或其任何組合)形成。在此情況下,且儘管未說明,但可提供諸如相位延遲器之一或多個額外光學組件(例如,出於上文所論述之目的)以便配置於第一光學組件2004a與第二光學組件2004b之間的光束路徑內(例如,圖22或圖23中之任一者中所展示之光束路徑114內或圖24中所展示之光束路徑114'內)。舉例而言,一或多個相位延遲器(諸如上文所論述之彼等相位延遲器)可配置於光束路徑內、第一光學組件2004a與第一透鏡2202之間的位置處、第二光學組件2004b與第三透鏡2206之間的位置處、第一透鏡2202與第三透鏡2206之間的位置處,或其類似者或其任何組合。
當第一光學組件2004a及第二光學組件2004b分別提供為前述第一AOD 402及第二AOD 404之AO單元時,圖23中展示之自第一光學組件2004a傳播的光束路徑114可對應於自第一AOD 402傳播之一階光束114'(例如,如圖4中所展示),且可提供光束截止器(圖中未示)以吸收亦將自第一光學組件2004a傳播之零階光束(圖中亦未示)。在另一具體實例中,可允許零階光束自第一光學組件2004a傳播至第二光學組件2004b(例如,如圖24中所展示)。
參看圖24,除了鏡面2302及2304之配置及組態之外,提供透鏡2202、2204及2206之配置及組態,使得一階光束路徑114與第二光學組件2004b內之零階光束路徑300之間的角差之量值及方向與在移除所有介入光學件及第二光學組件2004b僅配置於第一光學組件2004a之光學輸出處之情況下的量值及方向相同(或至少實質上相同)。此可用於促進沿非所需光束路徑自第二光學組件2004b傳播(例如,使用如上文例示性地描述之光束截止器系統)之雷射能量的捕獲及吸收(亦即,捕集)。
如圖24中例示性地展示,零階光束路徑300並不遵循與一階光束路徑114'相同的光學組件序列。亦即,零階光束路徑300不傳播通過光學中繼器系統2300且不由波前補償光學件2100反射,而一階光束路徑114'傳播通過光學中繼器系統2300且由波前補償光學件2100反射。因此,由第一光學組件2004a中之一階光束累積的熱致透鏡效應(其可包括聚焦效應以及其他失真,如上文所論述)由一階光束到達第二光學組件2004b之時間補償,而由第一光學組件2004a中之零階光束累積的熱致透鏡效應(其亦可包括聚焦效應)保持未由零階光束到達第二光學組件2004b之時間補償。因此,到兩個光束到達第二光學組件2004b時,自第一光學組件2004a傳播之零階光束將顯著小於一階光束。為了補償此差,光學中繼器系統2300可經修改(因此產生光學中繼器系統2400)以包括配置於自第一光學組件2004a傳播之零階光束路徑300內的透鏡2402(例如,單一發散透鏡),從而調整最終傳播至第二光學組件2004b之尺寸零階光束。在一個具體實例中,透鏡2402之位置及/或定向可調整以便使零階光束入射於第二光學組件2004b上之位置移位。
雖然關於圖24所論述之具體實例提供不遵循與一階光束路徑114'相同之光學組件序列的零階光束路徑300,但將瞭解,在替代具體實例中,零階光束路徑300可遵循與一階光束路徑114'相同之光學組件序列。舉例而言,可提供一或多個光學元件(例如,一或多個鏡面)以引導零階光束路徑300在射出第一光學組件2004a後沿至少大體上平行於一階光束路徑114'之方向穿過第一透鏡2202(例如,使得零階光束路徑300依序傳播通過第二透鏡2204,到達波前校正光學件2100,到達鏡面2302,到達鏡面2304,通過第三透鏡2206,且到達第二光學組件2004b)。在此情況下,可自光束路徑構件省略透鏡2402。在另一實例中,第一透鏡2202、第二透鏡2204、波前校正光學件2100、鏡面2302、鏡面2304及第三透鏡2206中之一或多者的尺寸及配置可經調整以便處於零階光束路徑300及一階光束路徑114'兩者中。 E.  關於光學組件之安裝的具體實例
諸如透鏡、窗口、相位延遲器、濾光片、鏡面等前述光學組件中之任一者可使用光學座架固持於光束路徑構件內之位置內。光學座架又典型地耦接至設備100之框架或壁、併入於設備100內之光學模型板或其類似者。通常,座架經配置以將一或多個壓縮力施加至光學組件以在一系列環境條件下固持及維持光學組件之位置。然而,一些光學組件之光學表面可對機械應力極敏感,使得甚至相對較小壓縮力亦可能不合需要地使光學表面變形。如本文中所使用,「光學表面(optical surface)」可指反射表面(例如,當光學組件為鏡面時)、折射表面(例如,當光學組件為透鏡或其類似者時)。
具有尤其可易受非所要變形影響之光學表面的一種特定類別之光學組件為膜狀可變形鏡面。因此,且在圖25中例示性地展示之一個具體實例中,用於保持膜狀可變形鏡面之座架2500可包括基座(諸如關於圖17所展示且論述之基座1700)及耦接至基座1700之安裝板2502。安裝板2502在其耦接部分2504處耦接至基座1700。在一個具體實例中,耦接部分2504係帶螺紋的,且安裝板2502包括經配置以與帶螺紋耦接部分2504配合之內部帶螺紋孔。在其他具體實例中,耦接部分2504藉由任何其他耦接手段(例如,黏著劑、焊接、一或多個夾鉗、一或多個螺釘等)固定於安裝板2502之孔內。安裝板2502可以此項技術中已知之任何方式(例如,經由一或多個螺釘、夾鉗、彈簧、黏著劑等)耦接至任何適合或已知的固定或可調整光學安裝構件(圖中未示)。在耦接部分2504旋擰至安裝板2502之帶螺紋孔中的具體實例中,安裝台2500亦可包括自鎖螺帽2506。自鎖螺帽2506可旋擰至安裝板2502之帶螺紋孔中,以幫助將耦接部分2504鎖定於安裝板2502之帶螺紋孔內。
在所說明具體實例中,膜狀可變形鏡面1600耦接至基座1700,使得在鏡面1600之膜區1608內不會引發應力(或顯著應力)。另外,孔1704展示為自表面1702延伸穿過耦接部分2504之整個長度,流體(例如,空氣)可行進通過孔1704從而以上文所論述之方式對凹穴1606加壓或減壓。為了促進流體經由孔1704之傳送,配件2508可插入至孔1704之一個末端中。配件2508可經配置以按任何適合或已知方式耦接至軟管(例如,至諸如上文所論述之氣動軟管、液壓軟管等軟管之第一末端)。
儘管圖25將座架2500說明為耦接至圖17中所展示之基座1700(亦即,用於緊固鏡面1600),將瞭解,座架2500可耦接至任何其他基座以緊固鏡面1600或任何其他膜狀可變形鏡面。舉例而言,座架2500可耦接至圖18中所展示之基座1700(亦即,用於緊固鏡面1800)或耦接至圖19中所展示之基座1700(亦即,用於緊固鏡面1900)。此外,儘管座架2500已在上文論述為包括用於緊固膜狀可變形鏡面之基座,但將瞭解,座架2500可包括用於緊固任何其他光學組件之任何其他適合基座。 F.   大體關於波長色散之補償的具體實例
應認識到,AOD為光譜色散元件,且因此,雷射能量光束由AOD偏轉之角度將取決於雷射能量光束之波長。若入射於AOD上之雷射能量光束之光譜線寬過大,則AOD內之入射光束之繞射將產生經偏轉雷射能量光束,該經偏轉雷射能量光束可能不合需要地空間失真(其可產生工件102處之不合需要地失真(例如,細長)製程光點)或空間地分解成具有不同波長或光譜線寬之許多小光束。對於諸如上文所論述之應用的雷射加工應用,因此需要最終入射於第一定位器106中之AOD上的雷射能量光束具有適合地變窄以最小化或避免AOD內繞射事件對寬線寬光雷射能量光束之前述不利影響的光譜線寬。可基於例如雷射能量光束中之光學功率光譜密度的半高全寬(full-width at half-maximum;FWHM)來量測光譜線寬。
由可操作以產生在電磁光譜之紫外線、可見光或NIR範圍內之雷射輸出的許多習知雷射源104產生之雷射能量光束的光譜線寬對於雷射加工應用適合地變窄。在一些情況下,諸如高功率CW氣體雷射(例如,具有大於約300 W之平均功率的二氧化碳或一氧化碳CW雷射)及其他低功率CW或脈衝氣體雷射(例如,具有小於約300 W之平均功率)之雷射源104可產生具有在SWIR、MWIR或LWIR範圍內之光譜線寬的雷射脈衝,所述光譜線寬對於雷射加工應用適合地變窄。在此等情況下,由此類氣體雷射輸出窄光譜線寬係藉由將一或多個光譜選擇性裝置(例如,標準具或光柵)併入於雷射源104之雷射諧振器內來達成。
然而,在一些具體實例中,最終入射於AOD上之雷射能量光束的光譜線寬對於雷射加工應用將不適合地變窄。舉例而言,由缺少足夠光譜選擇性裝置之氣體雷射(例如,高功率或低功率CW或脈衝二氧化碳或一氧化碳氣體雷射)產生之雷射能量光束可產生具有不合需要地寬的光譜線寬之雷射能量光束。當AOD(例如,併有由結晶鍺形成之AO單元)用於使此類光束偏轉時,AOD將產生可不合需要地空間失真或空間分解之經偏轉雷射能量光束,如上文所論述。在此類具體實例中,光束路徑構件可包括安置於光束路徑114中之一或多個波長色散補償器(各自在本文中亦僅被稱作「色散補償器(dispersion compensator)」)。大體而言,色散補償器可提供為稜鏡、光柵或其類似者或其任何組合。將瞭解,色散補償器之組態將取決於一或多個因素而變化,該一或多個因素諸如沿光束路徑114傳播之雷射能量光束的波長、雷射能量光束之光束尺寸及其類似者。舉例而言,當沿光束路徑114傳播之雷射能量光束具有在電磁光譜之紅外線範圍內(例如,在MWIR或LWIR範圍內,跨越在3 µm(或上下)至15 µm(或上下)之範圍內的波長,或其類似者)之波長時,色散補償器可提供為由諸如熔融矽石、矽、氟化鈣、氟化鎂、鍺、硒化鋅、硫化鋅、溴化鉀、藍寶石、氯化鈉或其類似物之材料形成的色散稜鏡。 i.    關於色散補償器之實例具體實例
在一個具體實例中,且參看圖26,色散補償器2600安置於光束路徑114中、AOD 2602光學上游之位置處。大體而言,色散補償器2600應經定向以便使雷射能量光束在平行於(或至少大體上或實質上平行於)AOD 2602之偏轉平面的平面中色散。在圖26中所說明之具體實例中,AOD 2602為第一定位器106之AOD(例如,第一AOD 402或第二AOD 404)。
在另一具體實例中,且參看圖27,色散補償器2600安置於光束路徑114中、AOD 2602之光學上游及光學中繼器系統之組件之間的位置處。舉例而言,光學中繼器系統可包括配置於色散補償器2600之光學上游之位置處的第一光束擴展器2700及配置於色散補償器2600之光學下游之位置處的第二光束擴展器2702。第一光束擴展器2700經佈置且經配置以放大沿光束路徑114傳播之雷射能量光束(例如,自第一光束尺寸至第二光束尺寸,所述第二光束尺寸大於第一光束尺寸),且第二光束擴展器2702經佈置且經配置以使沿光束路徑114自色散補償器2600傳播之雷射能量光束變小(或「縮小(demagnify)」)(例如,自第二光束尺寸(或上下)至第一光束尺寸或至第三光束尺寸)。第三光束尺寸可小於第二光束尺寸,且小於或大於第一光束尺寸。如同圖26中所說明之具體實例一般,圖27中所說明之AOD 2602為第一定位器106之AOD(例如,第一AOD 402或第二AOD 404)。若由第一光束擴展器2700提供之光束尺寸放大率足夠大,則色散補償器2600之設計規格可有利地放寬(大體上減少產生色散補償器2600之成本)。
在一些情況下,一階雷射能量光束在沿光束路徑114'傳播時發散。因此,沿一階光束路徑114'之第一位置處(例如,在第二定位器108之光學輸入處)的一階雷射能量光束之光束尺寸可大於AOD 2602之表面處的雷射能量光束之光束尺寸(例如,當AOD 2602為前述第一AOD 402時)。在此情況下,且參看圖28,色散補償器2600可安置於光束路徑114中、AOD 2602之光學下游的位置處。在圖28中所說明之具體實例中,AOD 2602為第一定位器106之第二AOD 404;因此光束路徑114對應於一階光束路徑114''。因此,所說明距離「d」(在本文中亦被稱作「路徑長度(path length)」)表示沿第二AOD 404之光學輸出與第二光束定位器108(例如,第二定位器108a或第二定位器108b)之光學輸入之間的光束路徑114(例如,一階光束路徑114'')之長度的量值。大體而言,距離「d」可在1 m(或上下)至5 m(或上下)範圍內。然而,將瞭解,若例如一或多個散焦元件(例如,一或多個適合透鏡、鏡面等)插入至光束路徑114中,則距離「d」可縮短。
在圖26至圖28中所說明之具體實例中,色散補償器2600提供為色散稜鏡(例如,等邊色散稜鏡),但將瞭解,可使用任何其他適合稜鏡幾何形狀(例如,直角稜鏡)或另一類型之色散補償器,諸如光柵。
在設備100包括複數個第二定位器108(例如,第二定位器108a及108b,如上文關於圖1所論述)之具體實例中,設備100之光束路徑構件可包括對應複數個色散補償器2600。舉例而言,且參看圖29,光束路徑構件可包括第一色散補償器2600a及第二色散補償器2600b。第一色散補償器2600a配置於已在第一主要角範圍116a內偏轉之光束路徑114中,且第二色散補償器2600b配置於已在第二主要角範圍116b內偏轉之光束路徑114中。在光束路徑114為已由第一定位器106偏轉之光束路徑的具體實例中(亦即,如上文關於圖4所論述),光束路徑114對應於前述一階光束路徑114''。
在圖29中所說明之具體實例中,第一色散補償器2600a及第二色散補償器2600b各自附接到光學壁2902(例如,其第一側2904)。同樣,第二定位器108a及108b亦可附接至光學壁2902之第一側2904,但情況不必如此。如由第一定位器106偏轉之光束路徑114可在第一主要角範圍116a或第二主要角範圍116b內偏轉。當在第一主要角範圍內偏轉時,光束路徑114中繼通過形成於光學壁2902中之光學埠(亦即,第一光學埠2906a),其中該光束路徑此後被導引(例如,由一組第一鏡面反射,諸如鏡面2908a1、2908a2及2908a3,其各自一般被稱作「第一鏡面2908a(first mirror 2908a)」)至第一色散補償器2600a。同樣,當在第二主要角範圍116b內偏轉時,光束路徑114中繼通過形成於光學壁2902中之光學埠(亦即,第二光學埠2906b),其中該光束路徑此後被導引(例如,由一組第二鏡面反射,諸如鏡面2908b1、2908b2及2908b3,其各自一般被稱作「第二鏡面2908a(second mirror 2908b)」)至第二色散補償器2600b。在射出第一色散補償器2600a後,光束路徑114被導引(例如,由鏡面2910a反射)至第二定位器108a。同樣,在射出第二色散補償器2600b之後,光束路徑114被導引(例如,由鏡面2910b反射)至第二定位器108b。
在圖29中所說明之具體實例中,鏡面2908a、2908b、2910a及2910b中之每一者附接至光學壁2902之第一側2904。然而,將瞭解,可使用任何其他適合技術在光束路徑114中提供此類光學組件。將進一步瞭解,可以不同方式提供圖29中所說明之光束路徑構件(例如,藉由鏡面2908a、2908b、2910a及2910b之不同配置,藉由第二定位器108之不同配置,藉由比所說明鏡面更多或更少的鏡面,或其類似者或其任何組合)。在一個具體實例中,第一色散補償器2600a之定向(例如,相對於第一鏡面2908a3)不同於第二色散補償器2600a之定向(例如,相對於第一鏡面2908b3)以考慮在第一定位器106經操作以使光束路徑114在第一主要角範圍116a內偏轉時對在第一定位器106經操作以使光束路徑114在第二主要角範圍116b內偏轉時引入於一階雷射能量光束中的色散差。 G.  關於光束路徑構件之額外具體實例
儘管圖29中未說明,但設備100可包括一或多個鏡面,該一或多個鏡面配置於光學板2902之第二側處(與第一側2904相對)、第一定位器106之光學輸出與第一光學埠2906a之間,以經由第一光學埠2906a導引在第一主要角範圍116a內偏轉之光束路徑114。同樣,設備100可包括一或多個鏡面,該一或多個鏡面配置於光學板2902之第二側處、第一定位器106之光學輸出與第二光學埠2906b之間,以經由第二光學埠2906b導引在第二主要角範圍116b內偏轉之光束路徑114。關於圖30論述了關於光學板2902之第二側處之光束路徑構件的例示性具體實例。
參看圖30,在3000處標識光學板2902之第二側。亦說明了第一光學埠2906a、第二光學埠2906b、第一光學組件2004a、第二光學組件2004b及前述雷射源104。在圖30中所示之具體實例中,第一光學組件2004a提供為第一AOD 402之AO單元(例如,如上文所論述),且第二光學組件2004b提供為第二AOD 404之AO單元(例如,如上文所論述)。因此,第一光學組件2004a可被視為第一AOD 402之部分,且第二光學組件2004b可被視為第二AOD 404之部分。
如圖30中例示性地說明,可提供複數個鏡面以促進將光束路徑114自雷射源104導引至第一光學埠2906a及第二光學埠2906b。舉例而言,可提供第一組鏡面3004a及3004b以將光束路徑114自雷射源104導引至第一光學組件2004a,可提供第二組鏡面3006a及3006b以將光束路徑114自第一光學組件2004a導引至第二光學組件2004b,可提供第三組鏡面3008a、3010a及3012a以將光束路徑114(亦即,當在第一主要角範圍116a內偏轉時)自第二光學組件2004a導引至第一光學埠2906a,且可提供第四組鏡面3008b、3010b及3012b以將光束路徑114(亦即,當在第二主要角範圍116b內偏轉時)自第二光學組件2004a導引至第二光學埠2906b。在圖30中所展示之光束路徑構件中,鏡面3008a可提供為檢拾器鏡面。
諸如第一光學組件2004a、第二光學組件2004b及鏡面3004a、3004b、3006a、3006b、3008a、3008b、3010a、3010b、3012a及3012b之光學組件可藉由本文中所論述或以其他方式在此項技術中已知之任何適合技術附接至光學板2902之第二側3000。然而,將瞭解,可使用任何其他適合技術在光束路徑114中提供此類光學組件。將進一步瞭解,可以不同方式提供圖30中所說明之光束路徑構件(例如,藉由鏡面3004a、3004b、3006a、3006b、3008a、3008b、3010a、3010b、3012a及3012b之不同配置,藉由光學組件2004a及2004b之不同配置,藉由比所說明鏡面更多或更少的鏡面,或其類似者或其任何組合)。舉例而言,第一光學組件2004a可配置於光束路徑114中、鏡面3006b與第二光學組件2004b之間的位置處。在另一實例中,第二光學組件2004b可配置於光束路徑114中、第一光學組件2004a與鏡面3006a之間的位置處。 i.    關於第一光學組件及第二光學組件之論述
在一個具體實例中,第一光學組件2004a相對於第二光學組件2004b定向,亦即,定向於圖30中所展示之光束路徑構件中,使得與併有第二光學組件2004b之第二AOD 404相關聯的第二旋轉軸平行於(或至少實質上平行於)與併有第一光學組件2004a之第一AOD 402相關聯的第一旋轉軸。在此情況下,鏡面3006a及3006b經定向以便確保第一AOD 402之偏轉平面在投射至第二AOD 404上時不同於(例如,正交於或傾斜於)第二AOD 404之偏轉平面。參見例如國際公開案第WO 2019/060590 A1號關於偏轉平面可如何旋轉之實例。
在另一具體實例中,第一光學組件2004a相對於第二光學組件2004b定向,亦即,定向於圖30中所展示之光束路徑構件中,使得與併有第二光學組件2004b之第二AOD 404相關聯的第二旋轉軸正交於(或至少實質上正交於,或傾斜於)與併有第一光學組件2004a之第一AOD 402相關聯的第一旋轉軸。在此情況下,鏡面3006a及3006b經定向以便確保第一AOD 402之偏轉平面在投射至第二AOD 404上時保持正交於(例如,至少實質上正交於,或傾斜於)第二AOD 404之偏轉平面。參見例如國際公開案第WO 2019/060590 A1號關於偏轉平面可如何防止旋轉之實例。ii. 關於額外光學組件之論述
儘管未說明,但一或多個其他光學組件(例如,光束捕集器、光束截止器系統、光束擴展器、光束塑形器、分光器、孔隙、濾光器、準直儀、透鏡、鏡面、稜鏡、偏振器、相位延遲器、DOE、ROE或其類似者或其任何組合)可提供於圖30中所展示之光束路徑構件內,以在雷射能量光束沿光束路徑114傳播(例如,自雷射源104至光學埠2906a及2906b中之一或兩者)時對該雷射能量光束進行聚焦、擴展、準直、塑形、偏振、濾光、分離、組合、修剪、吸收或以其他方式修改、調節、引導等。下文之內容為可併入至圖30中所展示之光束路徑構件中的額外光學組件之簡要論述。將瞭解,光束路徑構件可以任何組合包括此等額外光學組件中之一或多者或所有。
在一個具體實例中,諸如光束擴展器、準直儀或其類似者或其任何組合之光學組件可配置於光束路徑114中、鏡面3004b與第一光學組件2004a之間的位置處。
在另一具體實例中,可提供一或多個光束捕集器或光束截止器系統以捕獲或吸收沿任何非所需光束路徑自第一光學組件2004a、自第二光學組件2004b或其組合傳播之雷射能量。舉例而言,第一光束捕集器或光束截止器系統可配置於鏡面3006b與第二光學組件2004b之間的位置處,以選擇性地捕集沿除一階光束路徑114'(且視情況,零階光束路徑300(未說明))以外的所有光束路徑自第一光學組件2004a傳播之雷射能量。同樣,第二光束捕集器或光束截止器系統可配置於第二光學組件2004b與鏡面3008a之間的位置處以捕集沿除一階光束路徑114''以外的光束路徑自第二光學組件2004b傳播之雷射能量。在一個具體實例中,第一光束截止器系統提供為整合式光束截止器系統700,且第二光束截止器系統提供為整合式光束截止器系統1000。
在另一具體實例中,可提供諸如波前補償光學件2002或2100或其類似者或其任何組合之波前補償光學件(例如,配置於光束路徑114中、第一光學組件2004a與第二光學組件2004b之間的位置處,亦即,配置於光束路徑114'中之位置處)以補償實際波前失真或預期波前失真(例如,如上文所論述)。
在另一具體實例中,形成諸如上文關於圖20、圖21、圖22、圖23及圖24中之任一者所論述的光學中繼器系統2000、2200、2300或2400之光學中繼器系統的一或多個光學組件可具備波前補償光學件以促進波前失真之補償(例如,如上文所論述)。
在另一具體實例中,一或多個相位延遲器(例如,如上文所論述)可配置於光束路徑114中,如圖30中例示性地展示,以使入射於第二光學組件2004b上之雷射能量光束之偏振平面旋轉,從而確保雷射能量光束之偏振平面平行或垂直於(或至少實質上平行或垂直於)第二光學組件2004b之繞射軸(例如,取決於雷射能量光束之波長及形成第二光學組件2004b之材料,如上文所論述)。視需要,一或多個相位延遲器可同樣配置於光束路徑114中以使入射於第一光學組件2004a上之雷射能量光束之偏振平面旋轉,從而確保雷射能量光束之偏振平面平行或垂直於(或至少實質上平行於或垂直於)第一光學組件2004a之繞射軸(例如,取決於雷射能量光束之波長及形成第一光學組件2004a之材料,如上文所論述)。在一個實例具體實例中,第一光學組件2004a及第二光學組件2004b由諸如結晶鍺之AO單元材料形成,且入射於第一光學組件2004a及第二光學組件2004b上之雷射能量光束之特徵為具有在9 µm(或上下)至11 µm(或上下)範圍內之波長及在20W(或上下)至20kW(或上下)範圍內之平均功率。在此類實例具體實例中,鏡面3006a及3006b中之一者可提供為反射相位延遲器(例如,經配置以賦予180度相移),或鏡面3006a及3006b兩者可提供為反射相位延遲器(例如,經配置以賦予90度相移)。然而,將瞭解,第一光學組件2004a及第二光學組件2004b可由任何其他適合AO單元材料形成,且入射於第一光學組件2004a及第二光學組件2004b上之雷射能量光束之特徵可為具有足以加工工件(例如,如上文所論述)之任何其他適合波長(例如,在電磁光譜之UV或可見範圍內)及功率特性(例如,就平均功率、峰值功率等而言)。 iii.  關於雷射感測器系統之具體實例
視情況,設備100進一步包括一或多個雷射感測器系統,諸如雷射感測器系統3014a及3014b。在此具體實例中,鏡面3010a及3010b提供為經配置以反射入射雷射能量光束中之大部分光且透射少量光(例如,2%或上下)之部分透射鏡面,且雷射感測器系統經佈置以接收由對應部分透射鏡面透射之光。舉例而言,雷射感測器系統3014a經佈置以接收由鏡面3010a透射之光,且雷射感測器系統3014b經佈置以接收由鏡面3010b透射之光。
大體而言,每一雷射感測器系統3014a及3014b包括光偵測器,該光偵測器經配置以感測或量測透射至其中之雷射能量或功率,且基於感測或量測而產生感測器資料。感測器資料可藉由任何適合手段輸出至控制器122,其中該感測器資料此後可經處理以支援設備100之各種功能,諸如即時脈衝能量控制(例如,用以補償雷射功率之改變)、系統校準(例如,用以補償第一定位器106之AOD系統相對於RF功率及頻率等之透射率改變)或其類似者或其任何組合。
因為雷射感測器系統3014a及3014b位於第一光學組件2004a及第二光學組件2004b之光學下游,所以第一定位器106之AOD、由光偵測器採用之讀數可各自取決於入射至該光偵測器中之能量光束之位置或角度而變化。因此,入射雷射能量光束在光偵測器上方之移動可引起讀數誤差,其可導致錯誤功率控制、系統校準等。為了減小或消除與光偵測器相關聯之空間及方向敏感度,雷射感測器系統中之每一者可包括光束擴展器及/或擴散器,該光束擴展器及/或擴散器經佈置以便在雷射能量光束照在光偵測器上之前擴展及/或擴散雷射能量光束。
在另一具體實例中,每一雷射感測器系統3014a及3014b可具備積分球3016,該積分球配置於光偵測器之光學上游以減少與光偵測器相關聯之空間及方向敏感度。積分球3016可提供為光束擴展器/擴散器之前述使用的替代方案或補充。大體而言,且如此項技術中已知,積分球3016為包括中空球形(或至少實質上球形)空腔之光學組件,該空腔之內表面塗佈有擴散反射塗層。積分球3016包括收集埠(已說明,但未標註)及偵測埠。積分球3016經佈置以使得自部分地透射鏡面(亦即,自鏡面3010a或3010b)傳播之光可經由收集埠進入至對應積分球3016之空腔中。入射於空腔之內表面上之任何點處的光經散射,且最終在偵測埠處射出積分球3016,以便入射於光偵測器上(針對此具體實例,在3018處標識)。 H.  關於AOD驅動技術之具體實例 i.    關於光束分支之具體實例
如上文所提及,圖4一般說明入射於多軸AOD系統400上之光束路徑114在主要角範圍116內的偏轉。為了實施上文關於圖3所論述之偏轉方案,第一AOD 402可由具有屬於複數個第一頻率範圍中之一者內之驅動頻率的所施加第一RF驅動信號操作或驅動,且第二AOD 404可由具有屬於複數個第二頻率範圍中之一對應範圍內之驅動頻率的所施加第二RF驅動信號操作或驅動。舉例而言,且參看圖1、圖4及圖31,為了使入射於多軸AOD系統400上之光束路徑114在第一主要角範圍116a內偏轉(至第二定位器108a),施加至第一AOD 402之第一RF驅動信號可具有屬於第一頻率範圍3102a內之第一驅動頻率f1,且施加至第二AOD 404之第二RF驅動信號可具有屬於對應第二頻率範圍3104a內之第二驅動頻率f2。為了使入射於多軸AOD系統400上之光束路徑114在第二主要角範圍116b內偏轉(至第二定位器108b),施加至第一AOD 402之第一RF驅動信號可具有屬於第一頻率範圍3102b內之第一驅動頻率f1,且施加至第二AOD 404之第二RF驅動信號可具有屬於對應第二頻率範圍3104b內之第二驅動頻率f2。
大體而言,第一頻率範圍3102a不與第一頻率範圍3102b重疊,且不與其鄰接。同樣,第二頻率範圍3104a不與第二頻率範圍3104b重疊,且不與其鄰接。因此,「間隙(gap)」存在於第一頻率範圍3102a與第一頻率範圍3102b之間,以及第二頻率範圍3104a與第二頻率範圍3104b之間。大體而言,第一頻率範圍3102a與第一頻率範圍3102b之間的間隙(亦即,「第一頻率範圍間隙(first frequency range gap)」)可大於、小於或等於第二頻率範圍3104a與第二頻率範圍3104b之間的間隙(亦即,「第二頻率範圍間隙(second frequency range gap)」)。第一頻率範圍間隙及第二頻率範圍間隙中之任一者可具有0.3 MHz、0.5 MHz、0.7 MHz、0.9 MHz、1 MHz、2 MHz、5 MHz、10 MHz等或介於此等值中之任一者之間的寬度。
大體而言,第一頻率範圍3102a、第一頻率範圍3102b、第二頻率範圍3104a及第二頻率範圍3104b橫跨一系列頻率。舉例而言,由第一頻率範圍3102a、第一頻率範圍3102b、第二頻率範圍3104a及第二頻率範圍3104b中之任一者跨越的頻率範圍可等於3 MHz、5 MHz、7 MHz、9 MHz、10 MHz、12 MHz、15 MHz、20 MHz等或介於此等值中之任一者之間。第一頻率範圍3102a可大於、小於或等於第一頻率範圍3102b。同樣,第二頻率範圍3104a可大於、小於或等於第二頻率範圍3104b。第一頻率範圍3102a可大於、小於或等於第二頻率範圍3104a。同樣,第一頻率範圍3102b可大於、小於或等於第一頻率範圍3104b。
如圖31中所展示,回應於所施加第一RF驅動信號具有在第一頻率範圍3102a內之第一驅動頻率f1,第一AOD 402將使入射雷射能量光束圍繞第一旋轉軸旋轉,從而使光束路徑114在第一AOD角範圍406a內偏轉一角度。類似地,回應於所施加第一RF驅動信號具有在第一頻率範圍3102b內之第一驅動頻率f1,第一AOD 402將使入射雷射能量光束圍繞第一旋轉軸旋轉,從而使光束路徑114在第一AOD角範圍406b內偏轉另一角度。如將瞭解,第一AOD角範圍406a及406b中之每一者表示前述「第一AOD角範圍406(first AOD angular range 406)」之特定具體實例,且因此可一般被稱作「第一AOD角範圍406(first AOD angular range 406)」。
同樣,回應於所施加第二RF驅動信號具有在第二頻率範圍3104a內之第二驅動頻率f2,第二AOD 404將使入射雷射能量光束圍繞第二旋轉軸旋轉,從而使光束路徑114'在第二AOD角範圍408a內偏轉一角度。類似地,回應於所施加第二RF驅動信號具有在第二頻率範圍3104b內之第二驅動頻率f2,第二AOD 404將使入射雷射能量光束圍繞第二旋轉軸旋轉,從而使光束路徑114'在第二AOD角範圍408b內偏轉另一角度。如將瞭解,第二AOD角範圍408a及408b中之每一者表示前述「第二AOD角範圍408(second AOD angular range 408)」之特定具體實例,且因此可一般被稱作「第二AOD角範圍408(second AOD angular range 408)」。
在如上文所論述而驅動第一AOD 402(亦即,藉由將屬於第一頻率範圍3102a或第一頻率範圍3102b內之第一驅動頻率施加至第一AOD 402)及驅動第二AOD 404(亦即,藉由將屬於第二頻率範圍3104a或第二頻率範圍3104b內之第二驅動頻率施加至第二AOD 404)後,多軸AOD系統400之所得掃描場有效地劃分成複數個子掃描場(亦即,第一子掃描場3106a及第二子掃描場3106b)。 a.   關於偏轉及色散之額外論述
如上文所論述,AOD為能夠使最終遞送至工件102之製程光點失真(例如,拉長)的光譜色散元件。製程光點失真之程度之特徵可至少部分地為與雷射能量光束之光譜線寬及由AOD產生之偏轉(或由多個AOD產生之總組合偏轉)成正比。由例如第一AOD 402及第二AOD 404之總組合偏轉造成的光譜色散與
Figure 02_image005
成正比,其中f 1 為第一驅動頻率,且f 2 為第二驅動頻率。
雖然諸如稜鏡之色散補償器2600可補償如上文所論述之光譜色散,但結合給定光束尺寸之給定稜鏡可僅補償固定量之光譜色散。因此,驅動AOD使雷射能量光束偏轉之動作仍可能產生工件102處之製程光點之一定失真。賦予至工件102處之製程光點的失真之量可藉由以下操作來保持足夠低(例如,以免不利地影響工件102之加工):在定向第一色散補償器2600a(例如,相對於第一鏡面2908a3)以便最佳地補償由第一子掃描場3106a之中心處或附近之偏轉產生的光譜色散且定向第二色散補償器2600b(例如,相對於第一鏡面2908b3)以便最佳地補償由第二子掃描場3106b之中心處或附近之偏轉產生的光譜色散時,使第一子掃描場3106a及第二子掃描場3106b之尺寸與雷射能量光束之光譜線寬平衡。
在一個具體實例中,界定第一子掃描場3106a及第二子掃描場3106b之中心的驅動頻率(亦即,就f1 及f2 而言)可經選擇以使得第一子掃描場3106a之
Figure 02_image007
等於(或至少實質上等於)第二子掃描場3106b之
Figure 02_image009
。舉例而言,第一子掃描場3106a之f1 可等於(或至少實質上等於)第二子掃描場3106b之f2 。同樣,第一子掃描場3106a之f2 可等於(或至少實質上等於)第二子掃描場3106b之f1 。當第一子掃描場3106a之
Figure 02_image011
等於(或至少實質上等於)第二子掃描場3106b之時,賦予至在第一子掃描場3106a內偏轉之雷射能量光束之光譜色散的量值等於(或至少實質上等於)賦予至在第二子掃描場3106b內偏轉之雷射能量光束之光譜色散的量值,但光譜色散之定向不同。因此,第一色散補償器2600a可具有與第二色散補償器2600b相同的組態,但第一色散補償器2600a之定向(例如,相對於第一鏡面2908a3)不同於第二色散補償器2600b之定向(例如,相對於第一鏡面2908b3)。亦即,第一色散補償器2600a之定向(例如,相對於第一鏡面2908a3)可對應於賦予至在第一子掃描場3106a之中心處或附近偏轉的雷射能量光束之光譜色散之定向,且第二色散補償器2600b之定向(例如,相對於第一鏡面2908b3)可對應於賦予至在第二子掃描場3106b之中心處或附近偏轉的雷射能量光束之光譜色散之定向。 b.   關於子掃描場之額外論述
在圖31中所說明之具體實例中,第一頻率範圍3102a及3102b與第二頻率範圍3104a及3104b協調地選擇以產生在第一方向上(例如,以對應於第一頻率範圍間隙之角度)且在第二方向上(例如,以對應於第二頻率範圍間隙之角度)彼此空間偏移的一對方形子掃描場3106a及3106b。若第一頻率範圍間隙等於第二頻率範圍間隙,則子掃描場3106a與3106b之間的最近點(亦即,第一子掃描場3106a之右下角與第二子掃描場3106b之左下角,如圖31中所說明)比第一頻率範圍間隙或第二頻率範圍間隙大41%。另外,子掃描場3106a與3106b之間的最近點實際上為點而非線。因此,若存在歸因於檢拾器鏡面(例如,鏡面3008a)上之光束削波而發生的光束失真,則此類失真之發生頻率將遠低於此類失真僅在子掃描場之一個角中而非沿子掃描場之整個邊緣發生的情況,該檢拾器鏡面用以選擇性地相對於在第二子掃描場3106b內(亦即,在第二主要角範圍116b內)偏轉之雷射能量光束反射在第一子掃描場3106a內(亦即,在第一主要角範圍116a內)偏轉之雷射能量光束。然而,將瞭解,取決於對此類失真之工件加工之敏感度(或不敏感度),可視需要獨立地或以協調方式增大或減小第一頻率範圍間隙及第二頻率範圍間隙中之一或兩者之尺寸。
儘管上文已關於由在第一方向上(例如,以對應於第一頻率範圍間隙之角度)且在第二方向上(例如,以對應於第二頻率範圍間隙之角度)彼此空間偏移的一對相等尺寸之方形子掃描場3106a及3106b組成之子掃描場之配置進行論述,如圖31中所展示,但將瞭解,亦涵蓋其他具體實例。
舉例而言,子掃描場3106a及3106b之配置可不同於圖31中所展示之配置(例如,如圖32中所展示)。在其他實例中,驅動AOD之頻率範圍可經選擇以產生多於兩個方形子掃描場,以產生具有除正方形以外之形狀(例如,矩形、圓形、卵形、三角形、六角形等)的一或多個子掃描場,以產生具有不同尺寸之子掃描場,或其類似者或其任何組合。
在另一實例中,且參看圖33,第一AOD 402可由具有屬於第一頻率範圍3300內之驅動頻率的所施加第一RF驅動信號驅動,且第二AOD 404可由具有屬於前述複數個第二頻率範圍3104a及3104b中之一對應範圍內之驅動頻率的所施加第二RF驅動信號驅動。因此,為了使入射於多軸AOD系統400上之光束路徑114在第一主要角範圍116a內偏轉(至第二定位器108a),施加至第一AOD 402之第一RF驅動信號可具有屬於第一頻率範圍3300內之第一驅動頻率f1,且施加至第二AOD 404之第二RF驅動信號可具有屬於第二頻率範圍3104a內之第二驅動頻率f2。為了使入射於多軸AOD系統400上之光束路徑114在第二主要角範圍116b內偏轉(至第二定位器108b),施加至第一AOD 402之第一RF驅動信號可具有屬於第一頻率範圍3300內之第一驅動頻率f1,且施加至第二AOD 404之第二RF驅動信號可具有屬於第二頻率範圍3104b內之第二驅動頻率f2。在如上文所論述而驅動第一AOD 402(亦即,藉由將屬於第一頻率範圍3300內之第一驅動頻率施加至第一AOD 402)及驅動第二AOD 404(亦即,藉由將屬於第二頻率範圍3104a或第二頻率範圍3104b內之第二驅動頻率施加至第二AOD 404)後,多軸AOD系統400之所得掃描場有效地劃分成複數個子掃描場(亦即,第一子掃描場3302a及第二子掃描場3302b)。亦將瞭解,多軸AOD系統400之AOD可類似地由屬於圖34中例示性地說明之範圍內的所施加驅動頻率驅動。
根據圖33或圖34中所展示之驅動頻率範圍驅動多軸AOD系統400之AOD可用於例如在第二定位器108包括電流計鏡面系統時校正或以其他方式至少部分地補償所注意之遠心性誤差。在此應用中,第一頻率範圍3300之一或多個子範圍內(例如,第一子範圍3304a內、第二子範圍3304b內或其類似者或其任何組合)之頻率可應用於第一AOD 402(例如,如圖33中所展示)以校正沿一個軸(例如,X軸)存在之遠心性誤差,或可應用於第二AOD 404(例如,如圖34中所展示)以校正沿另一軸(例如,Y軸)存在之遠心性誤差。 ii.   關於脈衝分段之具體實例
如上文所論述,第一定位器106可經操作以實現脈衝分段,亦即,將共同雷射脈衝(在本文中亦被稱作「母雷射脈衝」)在時間上劃分成至少兩個雷射脈衝。共同母雷射脈衝之在時間上經劃分之部分在本文中亦被稱作「脈衝片斷(pulse slice」)。圖35中例示性地說明脈衝分段之一個具體實例,其中母雷射脈衝3500在時間上劃分成兩個脈衝片斷。具體言之,在第一片斷時段p1期間,母雷射脈衝3500被劃分成第一脈衝片斷3500a,且在第二片斷時段p2期間,母雷射脈衝3500被劃分成第二脈衝片斷3500b。如將瞭解,脈衝片斷之脈衝持續時間大體上對應於自母雷射脈衝在時間上劃分之片斷時段的持續時間。因此,舉例而言,第一脈衝片斷3500a之特徵可為具有等於第一片斷時段p1之脈衝持續時間,且第二脈衝片斷3500b之特徵可為具有等於第二片斷時段p2之脈衝持續時間。
連續片斷時段可連續地發生(亦即,其中一個片斷時段緊接在前一片斷時段之後開始),可間歇地發生(亦即,其中一個片斷時段在緊接在前一片斷時段之後的延遲之後開始),或其組合。在連續片斷時段間歇地發生之情況下,將瞭解,延遲之持續時間之特徵可為第一定位器106之定位時段之整數倍(其中整數可為任何整數,諸如1、2、3、4、5、10、20、50、100等,或介於此等值中之任一者之間)。圖35中所展示之具體實例為連續片斷時段p1及p2間歇地發生之實例。初始片斷時段開始與待應用於共同母雷射脈衝之最末片斷時段結束之間的時間之總量小於或等於母雷射脈衝之脈衝持續時間(亦即,基於脈衝之光學功率對時間的半高全寬(full-width at half-maximum;FWHM))。因此,母雷射脈衝之特徵可大體上為具有大於第一定位器106之定位時段的脈衝持續時間。在一些具體實例中,母雷射脈衝之脈衝持續時間大於、等於或小於1 μs、2 μs、5 μs、10 μs、15 μs、20 μs、25 μs、30 μs、40 μs、50 μs、100 μs、300 μs、500 μs、900 μs、1 ms、2 ms、5 ms、10 ms、20 ms、50 ms、100 ms、300 ms、500 ms、900 ms、1 s等或介於此等值中之任一者之間。
在一個具體實例中,每一片斷時段之持續時間(且因此,每一脈衝片斷之脈衝持續時間)為第一定位器106之定位時段的整數倍(例如,其中整數為1、2、3、5、10、20、50、100、150、200、300等,或介於此等值中之任一者之間等)。在一些具體實例中,每一片斷時段之持續時間大於、等於或小於200 μs、125 μs、100 μs、50 μs、33 μs、25 μs、20 μs、13.3 μs、12.5 μs、10 μs、4 μs、2 μs、1.3 μs、1 μs、0.2 μs、0.1 μs、0.05 μs、0.025 μs、0.02 μs、0.013 μs、0.01 μs、0.008 μs、0.0067 μs、0.0057 μs、0.0044 μs、0.004 μs等,或介於此等值中之任一者之間。大體而言,母雷射脈衝之一或多個片斷時段之持續時間可等於或不同於同一雷射脈衝之一或多個其他片斷時段之持續時間。舉例而言,儘管圖35將第一片斷時段p1說明為等於第二片斷時段p2,但第一片斷時段p1之持續時間可大於或小於第二片斷時段p2之持續時間。
在片斷時段之外,第一定位器106可以此項技術中已知之任何方式操作以使入射雷射能量光束衰減,使得沿光束路徑114傳播之雷射能量光束(如最終由第一定位器106偏轉)不具有足以加工工件102之能量。另外或替代地,在片斷時段之外,第一定位器106可經操作以便使光束路徑114偏轉至光束捕集器、光束截止器系統或其類似者或其任何組合,如本文中所論述或此項技術中以其他方式已知。在第一定位器106提供為本文中所論述之任何AOD系統之具體實例中,在片斷時段之外,可視情況驅動(或不驅動,視具體情況)AOD系統中之AOD中之一或多者以將雷射能量光束透射至零階光束路徑(例如,零階光束路徑200或300)、一或多個高階光束路徑(例如,二階光束路徑、三階光束路徑等)中、透射至光束捕集器、透射至光束截止器系統(例如,整合式光束截止器系統700或1000等),或其類似者或其任何組合。
如上文所提及,脈衝分段可結合光束分支來實施,或可與光束分支分開地實施。因此,第一定位器106之操作可經控制以使不同脈衝片斷偏轉至同一主要角範圍116內之不同角度(例如,以便使不同脈衝片斷偏轉至同一第二定位器108),使不同脈衝片斷偏轉至不同各別主要角範圍116內之角度(例如,以便使不同脈衝片斷偏轉至第二定位器108中之不同各別者),或其任何組合。舉例而言,第一定位器106之操作可經控制以使第一脈衝片斷3500a及第二脈衝片斷3500b偏轉至第一主要角範圍116a內之不同角度(例如,以便使第一脈衝片斷3500a及第二脈衝片斷3500b偏轉至第二定位器108a)。在另一實例中,第一定位器106之操作可經控制以使第一脈衝片斷3500a在第一主要角範圍116a內偏轉一角度(例如,以便使第一脈衝片斷3500a偏轉至第二定位器108a),且接著使第二脈衝片斷3500b在第二主要角範圍116b內偏轉一角度(例如,以便使第二脈衝片斷3500b偏轉至第二定位器108b)。因此,具有圖35A中所展示之光學功率剖面的脈衝片斷3500a可傳播至第二定位器108a,且具有圖35B中所展示之光學功率剖面的脈衝片斷3500b可傳播至第二定位器108b。當任何脈衝片斷在任何主要角範圍116內偏轉時,第一定位器106之操作可經控制以使光束路徑114偏轉(及因此,沿該光束路徑傳播之脈衝片斷)至任何經選擇主要角範圍116內以用於任何適合或所要方式(例如,以補償對應於經選擇主要角範圍116之第二定位器的定位誤差,以在工件102之加工期間賦予製程光點與工件102a之間沿製程軌跡之相對移動,或其類似者或其任何組合)。
儘管圖35說明了將雷射脈衝3500在時間上劃分成僅兩個脈衝片斷(亦即,第一脈衝片斷3500a及第二脈衝片斷3500b),但將瞭解,雷射脈衝3500可在時間上劃分成多於兩個脈衝片斷(例如,劃分成3個脈衝片斷、5個脈衝片斷、8個脈衝片斷、10個脈衝片斷、25個脈衝片斷、30個脈衝片斷、50個脈衝片斷等,或其類似者或介於此等值中之任一者之間等)。舉例而言,且參看圖36,雷射脈衝3500可在時間上劃分成四個脈衝片斷3600a、3600b、3600c及3600d。在一個具體實例中,第一定位器106之操作經控制以使得連續劃分之脈衝片斷在不同主要角範圍116內偏轉。舉例而言,脈衝片斷3600a可偏轉至第一主要角範圍116a,且接著脈衝片斷3600b可偏轉至第二主要角範圍116b,脈衝脈衝片斷3600c可偏轉至第一主要角範圍116a,且接著脈衝片斷3600d可偏轉至第二主要角範圍116b。然而,在其他具體實例中,第一定位器106之操作經控制以使得連續劃分之脈衝片斷在相同或不同的主要角範圍116內偏轉。舉例而言,脈衝片斷3600a可偏轉至第一主要角範圍116a,且接著脈衝片斷3600b及3600c可偏轉至第二主要角範圍116b,且接著脈衝片斷3600d可偏轉至第一主要角範圍116a。
儘管上文已關於單一母雷射脈衝(亦即,雷射脈衝3500)論述脈衝分段,但將瞭解,第一定位器106可經操作以實現關於連續傳播母雷射脈衝之序列的脈衝分段。在該序列中,連續母雷射脈衝可以任何所要方式在時間上經劃分,且兩個連續的母雷射脈衝可以相同方式或以不同方式在時間上經劃分。
在第一定位器106提供為多單元AOD系統之具體實例中,脈衝分段可藉由經協調操作或驅動多單元AOD系統內之至少兩個AOD來實現。舉例而言,且參看圖37,在多單元AOD系統提供為前述AOD系統400之具體實例中,第一AOD 402及第二AOD 404可在片斷時段之持續時間內操作(例如,如上文所論述)以使光束路徑114偏轉至主要角範圍116中之一或多者內。區塊3700之水平範圍指示第一AOD 402經操作以使入射於其中之雷射能量光束偏轉的持續時間,且區塊3702之水平範圍指示第二AOD 404經操作以使入射於其中之雷射能量光束偏轉的持續時間。在圖37中,區塊3700及3702之水平範圍等於片斷時段(例如,前述第一片斷時段p1、第二片斷時段p2等)。
然而,在其他具體實例中,第一AOD 402及第二AOD 404中之一或兩者可在長於片斷時段之持續時間內操作以使光束路徑114偏轉至主要角範圍116中之一或多者內,但經操作以使得驅動所述AOD之時段與等於片斷時段之持續時間重疊。參見例如圖38、圖39、圖40及圖41。iii. 關於繞射效率之論述
如本文中所使用,術語「繞射效率(diffraction efficiency)」係指入射於AOD上之雷射能量光束中之能量的比例,該雷射能量光束在AOD之AO單元內繞射成一階光束。繞射效率可因此表示為由AOD產生之一階光束中之光學功率與入射於AOD上之入射雷射能量光束之光學功率的比率。大體而言,所施加RF驅動信號之振幅可對AOD之繞射效率具有非線性影響,且AOD之繞射效率亦可隨經施加以驅動AOD之RF驅動信號之頻率而改變。鑒於上文,且在第一定位器106提供為前述AOD系統400之具體實例中,經施加以驅動第一AOD 402之第一RF驅動信號的特徵可為具有振幅(在本文中亦被稱作「第一振幅(first amplitude)」),且經施加以驅動第二AOD 404之第二RF驅動信號的特徵可為具有振幅(在本文中亦被稱作「第二振幅(second amplitude)」)。
大體而言,可基於一或多個因素而選擇或以其他方式設定第一振幅,該一或多個因素諸如第一RF驅動信號之第一驅動頻率,發現第一驅動頻率之第一頻率範圍、第一AOD 402待由第一RF驅動信號驅動之所要繞射效率、待在第一AOD 402待由第一RF驅動信號驅動時之時段期間偏轉之雷射能量光束的峰值光學功率、待在第一AOD 402待由第一RF驅動信號驅動時之時段期間偏轉之雷射能量光束的平均光學功率,或其類似者或其任何組合。同樣,可基於一或多個因素而選擇或以其他方式設定第二振幅,該一或多個因素諸如第二RF驅動信號之第二驅動頻率,發現第二驅動頻率之第二頻率範圍、第二AOD 404待由第二RF驅動信號驅動之所要繞射效率、待在第二AOD 404待由第二RF驅動信號驅動時之時段期間偏轉之雷射能量光束的峰值光學功率、待在第二AOD 404待由第二RF驅動信號驅動時之時段期間偏轉之雷射能量光束的平均光學功率,或其類似者或其任何組合。若AOD系統400待操作以實現脈衝分段(例如,如上文所論述),則可視情況基於待自雷射能量光束在時間上劃分之脈衝片斷的所要脈衝持續時間而選擇或以其他方式設定第一振幅、第二振幅或其組合。
在AOD系統400經驅動以實現光束分支(例如,如關於圖3、圖31、圖32、圖33或圖34中之任一者所論述)之具體實例中,當第一RF驅動信號具有第一頻率範圍3102a內之第一驅動頻率f1時,第一RF驅動信號之特徵可為具有第一振幅a1a。類似地,當第一RF驅動信號具有第一頻率範圍3102b內之第一驅動頻率f1時,第一RF驅動信號之特徵可為具有第一振幅a1b。在此情況下,第一振幅a1a可高於第一振幅a1b。替代地,第一振幅a1a可低於或等於第一振幅a1b。同樣,當第二RF驅動信號具有第二頻率範圍3104a內之第二驅動頻率f2時,第二RF驅動信號之特徵可為具有第二振幅a2a,且當第二RF驅動信號具有第二頻率範圍3104b內之第二驅動頻率f2時,第二RF驅動信號之特徵可為具有第二振幅a2b。在此情況下,第二振幅a2a低於第二振幅a2b。替代地,第二振幅a2a可大於或等於第二振幅a2b。
若AOD系統400待操作以實現光束分支(例如,如上文所論述),則第一RF驅動信號之第一振幅可經選擇以使得沿已在第一AOD角範圍406a內偏轉之一階光束路徑114'傳播的雷射能量光束中之光學功率大於、小於或至少實質上等於已在第一AOD角範圍406a內偏轉之一階光束路徑114'傳播的雷射能量光束中之光學功率。儘管一階光束路徑114'在第一AOD角範圍406a或406b中之任一者內偏轉,但第一RF驅動信號之第一振幅可變化或可以其他方式維持於恆定(或至少實質上恆定)層級。同樣,第二RF驅動信號之第二振幅可經選擇以使得沿已在第二AOD角範圍408a內偏轉之一階光束路徑114''傳播的雷射能量光束中之光學功率大於、小於或至少實質上等於沿已在第二AOD角範圍408b內偏轉之一階光束路徑114''傳播的雷射能量光束中之光學功率。儘管一階光束路徑114''在第二AOD角範圍408a或408b中之任一者內偏轉,但第二RF驅動信號之第二振幅可變化或可以其他方式維持於恆定(或至少實質上恆定)層級。IV. 結論
前文說明本發明之具體實例及實例,且不應解釋為對其之限制。雖然已參看圖式描述幾個特定具體實例及實例,但所屬技術領域中具有知識者將易於瞭解,對所揭示具體實例及實例以及其他具體實例的諸多修改在不顯著背離本發明之新穎教示及優點的情況下為可能的。相應地,所有此等修改意欲包括於如申請專利範圍中所界定的本發明之範圍內。舉例而言,所屬技術領域中具有知識者將瞭解,任何句子、段落、實例或具體實例之主題可與其他句子、段落、實例或具體實例中之一些或全部的主題組合,除非此等組合彼此互斥。本發明之範圍因此應由以下申請專利範圍判定,且所述技術方案之等效物包括於本發明之範圍中。
100:雷射加工設備 102a:工件 102b:工件 104:雷射源 106:第一定位器 108a:第二定位器 108b:第二定位器 110:第三定位器 112a:掃描透鏡 112b:掃描透鏡 114:光束路徑 114':光束路徑 114'':光束路徑 116a:第一主要角範圍 116b:第二主要角範圍 118a:第一次要角範圍 118b:第二次要角範圍 120a:掃描頭 120b:掃描頭 122:控制器 200:零階光束路徑 202:光束捕集器 300:零階光束路徑 400:多軸聲光偏轉器(AOD)系統 402:第一AOD 404:第二AOD 406:第一AOD角範圍 406a:第一AOD角範圍 406b:第一AOD角範圍 408:第二AOD角範圍 408a:第二AOD角範圍 408b:第二AOD角範圍 500:光束截止器系統 502:光束路徑 600:光束截止器系統 602:光束路徑 700:整合式光束截止器系統 702:框架 704:表面 706:表面 708:表面 710:表面 712:表面 714:表面 716:表面 718:光束捕集器 720:開口 722:開口 724:開口 726:第一板/內部區 728:第二板 730:板 800:光束路徑 900:光束路徑 1000:整合式光束截止器系統 1002:框架 1004:表面 1006:表面 1008:表面 1010:表面 1012:表面 1014:表面 1016:表面 1018:表面 1020:表面 1022:光束捕集器 1024:開口 1026:開口 1028:內部區 1030:第一板 1032:第二板 1034:塊 1100:光束路徑 1200:光束路徑 1300:光束路徑 1400:光束路徑 1600:鏡面 1602:反射表面 1604:主體 1606:凹穴 1608:可變形區 1610:周邊區 1612:第一空腔 1614:第二空腔 1700:基座 1702:表面 1704:孔 1800:鏡面 1802:凹穴 1804:凹穴 1806:凹穴 1808:肋狀物 1810:肋狀物 1812:第一孔 1814:第二孔 1816:第三孔 1900:鏡面 1902:凹穴 1904:凹穴 1906:肋狀物 1908:第一孔 1910:第二孔 2000:光學中繼系統 2000a:第一光學中繼器 2000b:第二光學中繼器 2002:波前補償光學件 2004a:第一光學組件 2004b:第二光學組件 2100:波前補償光學件 2200:光學中繼系統 2200a:第一光學中繼器 2200b:第二光學中繼器 2202:第一透鏡 2204:第二透鏡 2206:第三透鏡 2300:光學中繼系統 2302:鏡面 2304:鏡面 2400:光學中繼系統 2402:透鏡 2500:座架 2502:安裝板 2504:耦接部分 2506:自鎖螺帽 2508:配件 2600:色散補償器 2600a:第一色散補償器 2600b:第二色散補償器 2602:AOD 2700:第一光束擴展器 2702:第二光束擴展器 2902:光學壁 2904:第一側 2906a:第一光學埠 2906b:第二光學埠 2908a1:鏡面 2908a2:鏡面 2908a3:鏡面 2908b1:鏡面 2908b2:鏡面 2908b3:鏡面 2910a:鏡面 2910b:鏡面 3000:第二側 3004a:鏡面 3004b:鏡面 3006a:鏡面 3006b:鏡面 3008a:鏡面 3008b:鏡面 3010a:鏡面 3010b:鏡面 3012a:鏡面 3012b:鏡面 3014a:雷射感測器系統 3014b:雷射感測器系統 3016:積分球 3102a:第一頻率範圍 3102b:第一頻率範圍 3104a:第二頻率範圍 3104b:第二頻率範圍 3106a:第一子掃描場 3106b:第一子掃描場 3300:第一頻率範圍 3302a:第一子掃描場 3302b:第一子掃描場 3304a:第二子範圍 3304b:第二子範圍 3500:母雷射脈衝 3500a:第一脈衝片斷 3500b:第二脈衝片斷 3600a:脈衝片斷 3600b:脈衝片斷 3600c:脈衝片斷 3600d:脈衝片斷 3700:區塊 3702:區塊 d:距離 f1:第一驅動頻率 f2:第二驅動頻率 p1:第一片斷時段 r1:第一半徑 r2:第二半徑 r3:第三半徑 t1:第一厚度 t2:第二厚度 t3:第三厚度
[圖1]示意性地說明根據一個具體實例之多頭雷射加工設備。 [圖2]及[圖3]示意性地說明根據一些具體實例之可使用第一定位器來實施的光束路徑偏轉方案。 [圖4]示意性地說明根據一個具體實例之可併入至第一定位器中的多軸AOD系統。 [圖5]及[圖6]根據一些具體實例示意性地說明光束截止器系統可如何併入至第一定位器中。 [圖7]為根據一個具體實例之示意性地說明整合式光束截止器系統的在任意u/v/w座標系中之透視圖。在圖7中,u軸、v軸及w軸彼此正交。 [圖8]及[圖9]為說明例示性光束路徑之透視圖,雷射能量可沿該光束路徑在圖7中所展示之整合式光束截止器系統內傳播,從而變得被捕獲。 [圖10]為根據另一具體實例之示意性地說明整合式光束截止器系統的在任意u/v/w座標系中之透視圖。在圖10中,u軸、v軸及w軸彼此正交。 [圖11]至[圖14]為說明例示性光束路徑之透視圖,雷射能量可沿該光束路徑在圖10中所展示之整合式光束截止器系統內傳播,從而變得被捕獲。 [圖15]說明展示條紋任尼克多項式項Z4 及Z9 項(及其比率)之係數對塊體透明材料之溫度的實驗判定相依性之圖表。 [圖16]示意性地說明根據一個具體實例之波前補償光學件的平面圖。 [圖16A]示意性地說明沿圖16之線XVIA-XVIA截取的圖16中所展示之波前補償光學件的橫截面圖。 [圖17]示意性地說明根據一個具體實例之耦接至基座之圖16中所展示之波前補償光學件的橫截面圖。 [圖18]及[圖19]示意性地說明根據其他具體實例之各自耦接至基座之波前補償光學件的橫截面圖。 [圖20]、[圖21]、[圖22]、[圖23]及[圖24]說明根據一些具體實例之光學中繼器系統。 [圖25]說明根據一個具體實例之光學座架。 [圖26]、[圖27]、[圖28]及[圖29]示意性地說明根據一些具體實例之併有色散補償器的光束路徑構件。 [圖30]示意性地說明根據一個具體實例之用於將光束路徑自雷射源導引至圖29中所展示之第一光學埠及第二光學埠的光束路徑構件。 [圖31]、[圖32]、[圖33]及[圖34]說明根據一些具體實例之展示驅動第一定位器之第一AOD及第二AOD可藉以之例示性頻率範圍的圖表。 [圖35]、[圖35A]、[圖35B]、[圖36]、[圖37]、[圖38]、[圖39]、[圖40]及[圖41]示意性地說明根據一些具體實例之用於實施脈衝分段的技術。
100:雷射加工設備
102a:工件
102b:工件
104:雷射源
106:第一定位器
108a:第二定位器
108b:第二定位器
110:第三定位器
112a:掃描透鏡
112b:掃描透鏡
114:光束路徑
116a:第一主要角範圍
116b:第二主要角範圍
118a:第一次要角範圍
118b:第二次要角範圍
120a:掃描頭
120b:掃描頭
122:控制器

Claims (54)

  1. 一種雷射加工設備,其包含: 雷射源,其可操作以產生雷射能量光束,其中該雷射能量光束可沿光束路徑傳播; 第一定位器,其配置於該光束路徑內,其中該第一定位器可操作以使該光束路徑偏轉;及 控制器,其耦接至該第一定位器, 其中該控制器經配置以控制該第一定位器之操作以使該光束路徑在第一主要角範圍內及在第二主要角範圍內偏轉,其中該第二主要角範圍不與該第一角範圍重疊且不與該第一主要角範圍鄰接,且 其中該控制器進一步經配置以控制該第一定位器之操作以使該光束路徑偏轉至該第一主要角範圍內之第一複數個角度及第二主要角範圍內之第二複數個角度。
  2. 如請求項1之設備,其中該雷射源可操作以產生具有在電磁光譜之紫外線(UV)範圍內之波長的雷射能量光束。
  3. 如請求項1之設備,其中該雷射源可操作以產生具有在電磁光譜之長波長紅外線(LWIR)範圍內之波長的雷射能量光束。
  4. 如請求項1之設備,其中該第一定位器包含: 第一聲光偏轉器(AOD);及 第二AOD,其光學耦接至該第一AOD之輸出, 其中該第一AOD及該第二AOD可操作以使該光束路徑沿同一軸偏轉。
  5. 如請求項1之設備,其進一步包含: 第一掃描頭,其包含掃描透鏡; 第二掃描頭,其包含掃描透鏡; 至少一個光學組件,其經配置以將在該第一角範圍內偏轉之該光束路徑導引至該第一掃描頭;及 至少一個光學組件,其經佈置以將在該第二角範圍內偏轉之該光束路徑導引至該第二掃描頭。
  6. 如請求項5之設備,其中從該第一掃描頭及該第二掃描頭所組成之群組中選擇的至少一者包括可操作以使該光束路徑偏轉之第二定位器。
  7. 如請求項6之設備,其中該第二定位器包括電流計鏡面系統。
  8. 一種整合式光束截止器系統,其包含: 框架; 檢拾器鏡面,其耦接至該框架且經配置以反射雷射能量光束;及 光束截止器,其耦接至該框架且經配置以吸收該雷射能量光束。
  9. 如請求項8之整合式光束截止器系統,其中該檢拾器鏡面經佈置以將雷射能量光束反射至該光束截止器。
  10. 如請求項8之整合式光束截止器系統,其進一步包含耦接至該框架的中繼器鏡面,其中該中繼器鏡面經佈置以接收由該檢拾器鏡面反射之該雷射能量光束且將所接收的該雷射能量光束反射至該光束截止器。
  11. 如請求項8之整合式光束截止器系統,其中該檢拾器鏡面包含形成於該框架上的塗層。
  12. 一種整合式光束截止器系統,其包含: 一框架,其具有一第一表面及至少一個第二表面, 其中該第一表面經配置以反射一雷射能量光束,且 其中該至少一個第二表面經配置以吸收該雷射能量光束。
  13. 如請求項12之整合式光束截止器系統,其中該第一表面經佈置以將雷射能量光束反射至該至少一個第二表面。
  14. 如請求項12之整合式光束截止器系統,其中該框架具有第三表面,其中該第三表面經配置反射該雷射能量光束、經佈置以接收由該第一表面反射之該雷射能量光束且將所接收的雷射能量光束反射至該至少一個第二表面。
  15. 如請求項12之整合式光束截止器系統,其進一步包含耦接至該框架之冷卻系統,其中該冷卻系統與該框架之具有該至少一個第二表面的部分熱接觸。
  16. 如請求項12之整合式光束截止器系統,其中該框架進一步包括: 光學輸入埠;及 光學輸出埠,其定位成鄰近於該第一表面, 其中該光學輸入埠及該光學輸出埠佈置於共同軸中,該雷射能量光束可沿該共同軸傳播。
  17. 一種波前校正光學件,其包含: 鏡面,其具有反射表面,其中該反射表面之形狀之特徵為條紋任尼克項Z4及Z9,且其中所述Z9對Z4之係數比率在-0.1至-0.3之範圍內。
  18. 如請求項17之波前校正光學件,其中所述Z9對Z4之該係數比率在-0.18至-0.23之範圍內。
  19. 如請求項17之波前校正光學件,其中該反射表面為可變形的。
  20. 一種波前校正光學件,其包含: 可變形鏡面,其包括: 反射表面; 主體;及 凹穴,其界定於該主體內, 其中該主體包括在該反射表面與該凹穴之間的可變形膜區,且 其中該膜區之中心部分具有第一厚度,且該膜區之周邊部分具有大於該第一厚度之第二厚度。
  21. 如請求項20之波前校正光學件,其進一步包含: 基座,其耦接至該可變形鏡面之該主體且具有延伸穿過其中之孔, 其中該孔與該凹穴流體連通。
  22. 一種波前校正光學件,其包含: 可變形鏡面,其包括: 反射表面; 主體,其包括至少一個肋狀物;及 複數個凹穴,其界定於該主體內, 其中該主體包括在該反射表面與該凹穴之間的可變形膜區,且 其中該至少一個肋狀物插入於該複數個凹穴之間。
  23. 如請求項22之波前校正光學件,其中該膜區之中心部分具有第一厚度,且該膜區之周邊部分具有大於該第一厚度之第二厚度。
  24. 如請求項22之波前校正光學件,其中該主體包括複數個肋狀物。
  25. 如請求項22之波前校正光學件,其進一步包含: 基座,其耦接至該可變形鏡面之該主體且具有延伸穿過其中之至少個孔, 其中該至少一個孔與該複數個凹穴中之至少一者流體連通。
  26. 一種波前校正光學件系統,其包含: 膜狀可變形鏡面,其具有可加壓凹穴; 基座,其耦接至該鏡面且具有延伸穿過其中之至少一個孔,其中該至少一個孔與該可加壓凹穴流體連通;及 安裝板,其耦接至該基座且耦接至光學安裝構件。
  27. 如請求項26之系統,其中 該基座插入至形成於該安裝板中之孔中,且 該至少一個孔延伸至形成於該安裝板中之該孔中。
  28. 如請求項27之系統,其進一步包含插入至該至少一個孔中之配件。
  29. 如請求項28之系統,其進一步包含耦接至該配件之末端的軟管。
  30. 一種系統,其包含: 第一光學組件,其可操作以透射雷射能量光束,其中該第一光學組件易受到熱致透鏡之影響; 波前補償光學件,其經配置以校正由該第一光學組件透射之該雷射能量光束中且可歸因於該熱致透鏡之波前像差;及 光學中繼器系統,其經佈置且經配置以將該第一光學組件之在第一平面處之影像中繼至第二平面, 其中該波前補償光學件佈置於該第二平面處,且 其中該第一光學中繼器系統經配置以使得該第一光學組件在該第二平面處之該影像的尺寸不同於該第一光學組件在該第一平面處之該影像的尺寸。
  31. 如請求項30之系統,其中該第一光學組件在該第二平面處之該影像的尺寸大於該第一光學組件在該第一平面處之該影像的尺寸。
  32. 如請求項30之系統,其中該第一光學組件在該第二平面處之該影像的尺寸小於該第一光學組件在該第一平面處之該影像的尺寸。
  33. 如請求項30之系統,其中該波前補償光學件經配置以透射該雷射能量光束。
  34. 如請求項30之系統,其中該波前補償光學件經配置以反射該雷射能量光束。
  35. 如請求項30之系統,其中該波前補償光學件包括靜態波前補償光學件。
  36. 如請求項30之系統,其中該波前補償光學件包括動態波前補償光學件。
  37. 如請求項30之系統,其進一步包含: 第二光學組件,其可操作以透射該雷射能量光束, 其中該光學中繼器系統經佈置且經配置以將該第一光學組件在該第二平面處之影像中繼至第三平面,且 其中該第二光學組件經佈置於該第三平面處。
  38. 如請求項37之系統,其中該光學中繼器系統經配置以使得該第一光學組件在該第二平面處之該影像的尺寸與該第一光學組件在該第三平面處之該影像的尺寸相同。
  39. 如請求項37之系統,其中 該波前補償光學件經配置以反射該雷射能量光束,且 該光學中繼器系統包括: 第一光學中繼器,其包括兩個透鏡,及 第二光學中繼器,其包括兩個透鏡。
  40. 如請求項39之系統,其中該第一光學中繼器及該第二光學中繼器共用一共同透鏡。
  41. 如請求項39之系統,其中該光學中繼器系統進一步包含配置於該第二光學中繼器之兩個透鏡之間的至少一個鏡面。
  42. 如請求項30之系統,其中該第一光學組件包括聲光(AO)單元。
  43. 如請求項37之系統,其中該第二光學組件包括聲光(AO)單元。
  44. 如請求項37之系統,其中該第一光學組件包括聲光(AO)單元,且其中該第二光學組件經佈置以使得該第一光學組件之該AO單元之零階光束路徑入射於該第二光學組件上。
  45. 如請求項44之系統,其中 該第一光學組件包括聲光(AO)單元,該AO單元可操作以沿一階光束路徑透射第一雷射能量光束且沿零階光束路徑透射第二雷射能量光束,且 該第二光學組件經佈置以使得該第一光學組件之該AO單元之該零階光束路徑入射於該第二光學組件上。
  46. 如請求項45之系統,其中該光學中繼器系統包括配置有該第一光學組件之該零階光束路徑的透鏡,且其中該透鏡並非該第一光學中繼器或該第二光學中繼器之部分。
  47. 一種系統,其包含: 聲光偏轉器(AOD); 色散補償器,其包括從稜鏡及光柵組成之群組中所選擇的至少一者; 第一光學組件,其在該色散補償器之光學上游的一位置處光學耦接至該色散補償器,該第一光學組件經配置以放大入射雷射能量光束;及 第二光學組件,其在光學性地在該色散補償器與該AOD之間的一位置處光學耦接至該色散補償器及該AOD,該第二光學組件經配置以縮小入射於其上之雷射能量光束。
  48. 一種系統,其包含: 聲光偏轉器(AOD),其可操作以使入射雷射能量光束繞射且沿光束路徑輸出該經繞射雷射能量光束,其中該AOD可操作以使該入射雷射能量光束可變地繞射,從而使該光束路徑在第一角範圍內及在第二角範圍內偏轉; 第一色散補償器,其包括從稜鏡及光柵組成之群組中所選擇的至少一者,該第一色散補償器光學耦接至該AOD之輸出且配置於在該第一角範圍內偏轉之該光束路徑中;及 第二色散補償器,其包括從稜鏡及光柵組成之群組中所選擇的至少一者,該第二色散補償器光學耦接至該AOD之該輸出且配置於在該第二角範圍內偏轉之該光束路徑中。
  49. 如請求項48之系統,其進一步包含光學耦接至該第一色散補償器之輸出的第一定位器,其中該第一定位器可操作以使該經繞射雷射能量光束偏轉。
  50. 如請求項49之系統,其進一步包含光學耦接至該第二色散補償器之輸出的第二定位器,其中該第二定位器可操作以使該經繞射雷射能量光束偏轉。
  51. 一種系統,其包含: 雷射源,其可操作以產生雷射能量光束,其中該雷射能量光束可沿光束路徑傳播; 定位器,其配置於該光束路徑內且可操作以使該光束路徑偏轉,其中該定位器包括第一聲光偏轉器(AOD)及光學耦接至該第一AOD之輸出的第二AOD;及 控制器,其耦接至該定位器,其中該控制器經配置以在至少一個片斷時段期間操作該第一AOD及該第二AOD,以將該雷射能量光束在時間上劃分成至少一個脈衝片斷。
  52. 如請求項51之系統,其中該控制器經配置以在複數個片斷時段期間操作該第一AOD及該第二AOD,以將該雷射能量光束在時間上劃分成複數個脈衝片斷,其中連續片斷時段間歇地發生。
  53. 如請求項51之系統,其中該控制器經配置以在不同時間段內操作該第一AOD及該第二AOD,以將該雷射能量光束在時間上劃分成一脈衝片斷。
  54. 如請求項51之系統,其中該控制器經配置以在長於一片斷時段之一時間段內操作從該第一AOD及該第二AOD組成之群組中所選擇的至少一者,以將該雷射能量光束在時間上劃分成一脈衝片斷。
TW108147621A 2019-01-31 2019-12-25 雷射加工設備、與設備一起使用的控制器及非暫時性電腦可讀取媒體 TWI843784B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962799218P 2019-01-31 2019-01-31
US62/799,218 2019-01-31
US201962832064P 2019-04-10 2019-04-10
US62/832,064 2019-04-10
US201962854579P 2019-05-30 2019-05-30
US62/854,579 2019-05-30

Publications (2)

Publication Number Publication Date
TW202042946A true TW202042946A (zh) 2020-12-01
TWI843784B TWI843784B (zh) 2024-06-01

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805522B (zh) * 2021-11-16 2023-06-11 台灣積體電路製造股份有限公司 雷射裝置及半導體結構的製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805522B (zh) * 2021-11-16 2023-06-11 台灣積體電路製造股份有限公司 雷射裝置及半導體結構的製造方法

Also Published As

Publication number Publication date
WO2020159666A1 (en) 2020-08-06
SG11202103563XA (en) 2021-05-28
KR20210111246A (ko) 2021-09-10
EP3917717A1 (en) 2021-12-08
CN112867578A (zh) 2021-05-28
JP2022518898A (ja) 2022-03-17
EP3917717A4 (en) 2022-11-30
US20220048135A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
US20220048135A1 (en) Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same
JP7437323B2 (ja) レーザ加工装置、これを動作させる方法、及びこれを用いてワークピースを加工する方法
JP4551086B2 (ja) レーザーによる部分加工
US6555781B2 (en) Ultrashort pulsed laser micromachining/submicromachining using an acoustooptic scanning device with dispersion compensation
KR20160107298A (ko) 표면을 레이저 가공하기 위한 가공 장치 및 방법
KR102401037B1 (ko) 레이저 가공 장치에서 광학계의 수명을 연장하는 방법 및 시스템
JP2003181668A (ja) ピコ秒レーザ微細加工装置、ビーム光強度制御装置、レーザフライス加工方法、ビーム光強度分布制御方法、マイクロフィルタ設計方法、反射角補正方法、ヒステリシス効果補正方法、及び走査ミラー操作方法
KR20170013291A (ko) 레이저 가공 장치 및 레이저 가공 방법
KR20150005939A (ko) 레이저 방사선을 이용한 공작물 가공 방법 및 장치
KR20180118143A (ko) 레이저 가공 시스템에서 이미지 평면의 위치
KR20120004426A (ko) 개선된 레이저 가공 방법 및 장치
US20230390866A1 (en) Optical relay system and methods of use and manufacture
EP4149715A1 (en) Laser processing apparatus facilitating directed inspection of laser-processed workpieces and methods of operating the same
TWI843784B (zh) 雷射加工設備、與設備一起使用的控制器及非暫時性電腦可讀取媒體
KR102050765B1 (ko) 3차원 고속 정밀 레이저 가공 장치
US20210387286A1 (en) Phase-modified quasi-non-diffracting laser beams for high angle laser processing of transparent workpieces
KR100766300B1 (ko) 레이저 가공슬릿 및 가공장치
KR100787236B1 (ko) 극초단 펄스 레이저 가공 장치 및 방법
WO2022164465A1 (en) Laser processing apparatus, methods of operating the same, and methods of processing workpieces using the same
WO2019005530A2 (en) LASER PROCESSING APPARATUS, METHODS OF USE AND ASSOCIATED ARRANGEMENTS
US20240017350A1 (en) Laser processing apparatus, methods of operating the same, and methods of processing workpieces using the same
Washio Basic and General Optics for Laser Processing