JP4053674B2 - 画像形成装置および画像形成方法 - Google Patents

画像形成装置および画像形成方法 Download PDF

Info

Publication number
JP4053674B2
JP4053674B2 JP36278698A JP36278698A JP4053674B2 JP 4053674 B2 JP4053674 B2 JP 4053674B2 JP 36278698 A JP36278698 A JP 36278698A JP 36278698 A JP36278698 A JP 36278698A JP 4053674 B2 JP4053674 B2 JP 4053674B2
Authority
JP
Japan
Prior art keywords
signal
pixel
image
output
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36278698A
Other languages
English (en)
Other versions
JP2000188684A (ja
Inventor
岳 ▲高▼野
浩樹 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba TEC Corp
Original Assignee
Toshiba Corp
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba TEC Corp filed Critical Toshiba Corp
Priority to JP36278698A priority Critical patent/JP4053674B2/ja
Priority to US09/467,976 priority patent/US6643031B1/en
Publication of JP2000188684A publication Critical patent/JP2000188684A/ja
Application granted granted Critical
Publication of JP4053674B2 publication Critical patent/JP4053674B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40025Circuits exciting or modulating particular heads for reproducing continuous tone value scales
    • H04N1/40037Circuits exciting or modulating particular heads for reproducing continuous tone value scales the reproducing element being a laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4055Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a clustered dots or a size modulated halftone pattern
    • H04N1/4056Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a clustered dots or a size modulated halftone pattern the pattern varying in one dimension only, e.g. dash length, pulse width modulation [PWM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color, Gradation (AREA)
  • Image Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば、光ビームを走査して感光体上に潜像を形成し、当該潜像をトナーにより現像し画像形成を行う電子写真方式の画像形成装置および画像形成方法に関する。
【0002】
【従来の技術】
従来の、特にモノクロDPPC(デジタル複写機)の場合、階調特性は高濃度部において飽和させていた。このため、高濃度部での環境変動に対する安定性は特に画質上の重要な問題とはならなかった。
【0003】
また、低濃度部での安定再現性向上のために低濃度部における中間調処理方式を切り換える階調処理方式も提案されていたが高濃度部の安定再現性向上に着目した発明はなかった。
【0004】
【発明が解決しようとする課題】
カラーDPPC等のカラー画像記録装置の場合、その階調特性は線形であることが望まれ、また、階調の不安定さが色相の変動につながるため、高濃度おいても環境変動につよい安定な再現性が要求される。レーザビームを走査して感光媒体上に潜像を形成し、その潜像をトナー現像し、画像形成を行う電子写真記録方式の場合、高濃度部の再現性向上のためには、画像部と非画像部の境界に存在するトナーが現像したりしなかったりする不安定な中間遷移領域を減少させる必要がある。ここでいう非画像部とはレーザによる露光が行われないまたは不十分な領域で、トナー像が形成されない領域を示す。パルス幅変調方式のレーザ駆動では1画素内にパルスがOFFの状態があり、この部分が非画像部となる。
【0005】
本発明では、高濃度部を検知し、高濃度部の場合、非画像部の空間周波数分布が長周期となる階調処理方式に切り替え、中間遷移領域の面積を減少させることにより、高濃度部における画素構造の再現性・安定性を向上させる。
【0006】
【課題を解決するための手段】
この発明に係る画像形成方法は、画素単位の画像信号を読取り、この読取った各画素の画像信号に基づく1画素内の画像部と非画像部に対応する第1の駆動信号を生成し、上記読取った各画素の画像信号と周辺画素の画像信号に基づいて複数の画素の非画像部を集中させる第2の駆動信号を生成し、この第2の駆動信号を生成する際、上記読取った画像信号の画素位置に基づく、主走査方向の座標情報と、副走査方向の座標情報とを生成し、この生成された主走査方向の座標情報、副走査方向の座標情報から画素内での基準位置信号を生成し、上記読取った画素ごとの画像信号を予め定めてある閾値に従い量子化し画像濃度信号として出力し、上記生成された主走査方向の座標情報、副走査方向の座標情報と上記量子化された画像濃度信号とから、画素値シフト後の処理画素の画像濃度信号を出力し、上記生成された画素内での基準位置信号と上記出力された画素値シフト後の処理画素の画像濃度信号から記録デバイス駆動信号を生成して第2の駆動信号として出力し、上記読取った各画素の画像信号が所定濃度以上であるか否かを検知し、この検知した画素の画像信号が所定濃度以上である際に、上記生成される第1の駆動信号を選択して出力し、上記検知した画素の画像信号が所定濃度以下である際に、上記生成される第2の駆動信号を選択して出力し、上記選択して出力される第1の駆動信号あるいは第2の駆動信号に基づいて、レーザビームを出力し、このレーザビームにより感光体上に潜像を形成し、この形成された潜像をトナーにより現像し画像形成を行うことを特徴としている。
【0007】
この発明に係る画像形成装置は、画素単位の画像信号を読取る読取手段と、この読取手段により読取った各画素の画像信号に基づく1画素内の画像部と非画像部に対応する第1の駆動信号を生成する第1の生成手段と、上記読取手段により読取った各画素の画像信号と周辺画素の画像信号に基づいて複数の画素の非画像部を集中させる第2の駆動信号を生成する第2の生成手段であって、上記読取手段により読取った画像信号の画素位置に基づく、主走査方向の座標情報と、副走査方向の座標情報とを生成する第3の生成手段と、この第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報から画素内での基準位置信号を生成する第4の生成手段と、上記読取手段により読取った画素ごとの画像信号を予め定めてある閾値に従い量子化し画像濃度信号として出力する第3の出力手段と、上記第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報と上記第3の出力手段により量子化された画像濃度信号とから、画素値シフト後の処理画素の画像濃度信号を出力する第4の出力手段と、上記第4の生成手段により生成された画素内での基準位置信号と上記第4の出力手段から出力された画素値シフト後の処理画素の画像濃度信号から記録デバイス駆動信号を生成して第2の駆動信号として出力する第5の出力手段と、を有している第2の生成手段と、上記読取手段により読取った各画素の画像信号が所定濃度以上であるか否かを検知する検知手段と、この検知手段により検知した画素の画像信号が所定濃度以上である際に、上記第1の生成手段により生成される第1の駆動信号を選択して出力し、上記検知手段により検知した画素の画像信号が所定濃度以下である際に、上記第2の生成手段により生成される第2の駆動信号を選択して出力する第1の出力手段と、この第1の出力手段により選択して出力される第1の駆動信号あるいは第2の駆動信号に基づいて、レーザビームを出力する第2の出力手段と、この第2の出力手段により出力されるレーザビームにより感光体上に潜像を形成する形成手段と、この形成手段により形成された潜像をトナーにより現像し画像形成を行う現像手段と、を具備したことを特徴としている。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0009】
図1は、この発明に係る原稿上のカラー画像やモノクロ画像を読取ってその複製画像を形成するデジタル式のカラー/モノクロ複写機などの画像処理装置の電気的接続および制御のための信号の流れを概略的に表わすブロック図を示している。この画像処理装置は、大別して、原稿上のカラー画像を読取って入力する画像入力手段としてのカラースキャナ部1と、入力されたカラー画像の複製画像を形成する画像出力手段としてのカラープリンタ部2とから構成されている。
【0010】
図1において、制御系は、主制御部30内のメインCPU(セントラル・プロセッシング・ユニット)91、カラースキャナ部1のスキャナCPU100、および、カラープリンタ部2のプリンタCPU110の3つのCPUで構成される。
【0011】
メインCPU91は、プリンタCPU110と共有RAM(ランダム・アクセス・メモリ)35を介して双方向通信を行なうものであり、メインCPU91は動作指示をだし、プリンタCPU110は状態ステータスを返すようになっている。プリンタCPU110とスキャナCPU100はシリアル通信を行ない、プリンタCPU110は動作指示をだし、スキャナCPU100は状態ステータスを返すようになっている。
【0012】
操作パネル40は、液晶表示部42、各種操作キー43、および、これらが接続されたパネルCPU41を有し、メインCPU91に接続されている。
【0013】
主制御部30は、メインCPU91、ROM(リード・オンリ・メモリ)32、RAM33、NVRAM34、共有RAM35、画像処理部36、ページメモリ制御部37、ページメモリ38、プリンタコントローラ39、および、プリンタフォントROM121によって構成されている。
【0014】
メインCPU91は、全体的な制御を司るものである。ROM32は、制御プログラムなどが記憶されている。RAM33は、一時的にデータを記憶するものである。
【0015】
NVRAM(持久ランダム・アクセス・メモリ:nonvolatile RAM)34は、バッテリ(図示しない)にバックアップされた不揮発性のメモリであり、電源を遮断しても記憶データを保持するようになっている。
【0016】
共有RAM35は、メインCPU91とプリンタCPU110との間で、双方向通信を行なうために用いるものである。
【0017】
ページメモリ制御部37は、ページメモリ38に対して画像情報を記憶したり、読出したりするものである。ページメモリ38は、複数ページ分の画像情報を記憶できる領域を有し、カラースキャナ部1からの画像情報を圧縮したデータを1ページ分ごとに記憶可能に形成されている。
【0018】
プリンタフォントROM121には、プリントデータに対応するフォントデータが記憶されている。プリンタコントローラ39は、パーソナルコンピュータなどの外部機器122からのプリントデータを、そのプリントデータに付与されている解像度を示すデータに応じた解像度でプリンタフォントROM121に記憶されているフォントデータを用いて画像データに展開するものである。
【0019】
カラースキャナ部1は、全体の制御を司るスキャナCPU100、制御プログラムなどが記憶されているROM101、データ記憶用のRAM102、カラーイメージセンサ(図示しない)を駆動するCCDドライバ103、第1キャリッジ(図示しない)などを移動する走査モータの回転を制御する走査モータドライバ104、および、画像補正部105などによって構成されている。
【0020】
画像補正部105は、カラーイメージセンサ(図示しない)から出力されるR,G,Bのアナログ信号をそれぞれデジタル信号に変換するA/D変換回路、カラーイメージセンサのばらつき、あるいは、周囲の温度変化などに起因するカラーイメージセンサからの出力信号に対するスレッショルドレベルの変動を補正するためのシェーディング補正回路、および、シェーディング補正回路からのシェーディング補正されたデジタル信号を一旦記憶するラインメモリなどから構成されている。
【0021】
カラープリンタ部2は、全体の制御を司るプリンタCPU110、制御プログラムなどが記憶されているROM111、データ記憶用のRAM112、半導体レーザ発振器(図示しない)を駆動するレーザドライバ113、露光装置(図示しない)のポリゴンモータ(図示しない)を駆動するポリゴンモータドライバ114、搬送機構(図示しない)による用紙Pの搬送を制御する搬送制御部115、帯電装置、現像ローラ、および、転写装置を用いて帯電、現像、転写を行なうプロセスを制御するプロセス制御部116、定着装置(図示しない)を制御する定着制御部117、および、オプションを制御するオプション制御部118などによって構成されている。
【0022】
なお、画像処理部36、ページメモリ38、プリンタコントローラ39、画像補正部105、および、レーザドライバ113は、画像データバス120によって接続されている。
【0023】
画像処理部36は、色変換、変倍、空間フィルタ、γ変換、中間調処理を行なうことにより、C,M,Yの画像データに変換するもので、たとえば、図2に示すように、色変換部131、変倍部132、空間フィルタ部133、γ変換部134、および、中間調処理部135によって構成されている。
【0024】
すなわち、カラースキャナ部1から出力される画像データR,G,Bは、それぞれ色変換部131に送られ、ここでC,M,Yの画像データに変換される。色変換部131から出力される画像データは、変倍部132で変倍処理が行なわれ、その後、空間フィルタ部133で空間フィルタ処理が行なわれ、その後、γ変換部134でγ変換処理が行なわれ、その後、中間調処理部135で中間調処理つまり高濃度部の安定な再現階調処理が行なわれ、その後、カラープリンタ部2に送られる。
【0025】
γ補正部134ではプリンタのγ特性の補正を行う。この補正の際には、CMYK毎に設定されているγテーブルを参照して行う。この補正の際には、CMYK毎に設定されているγテーブルを参照して行うようになっている。
【0026】
中間調処理部135は画像信号に対して階調処理を行い、記録デバイス駆動信号に変換するものである。記録デバイスの要求する入力信号に画像濃度信号の階調性を損なわないように量子化、または記録デバイスの特性に合わせた画像濃度変換を行う。
【0027】
記録デバイス駆動信号とは、パルス幅変調方式のプリンタの場合、レーザ駆動パルス信号であり、プリンタレーザ変調部を駆動する駆動パルスの長さと基準位置の情報を含んでいる。基準位置とは画素内の左端を駆動するか、右端を駆動するか、真ん中を駆動するかを示すものである。
【0028】
パワー変調方式のプリンタの場合の記録デバイス駆動信号もレーザ駆動パルス信号であるが、この場合パルス幅は常に一定で、パルスのエネルギー強度が濃度階調を形成する。
【0029】
プリンタ部2では記録デバイス駆動信号に従い、記録画像を形成する。プリンタ部2がパルス幅変調方式の場合、記録デバイス駆動信号は駆動パルス信号であり、駆動パルスに応じてレーザのON/OFFが行われることになる。
【0030】
図3はこの発明の中心をなす中間調処理部135の第1の実施形態の構成の概略を示すものである。この中間調処理部135は、高濃度検知手段4002、中間調処理手段4003、非画像部長周期型中間調処理手段4004、中間調処理選択手段4006により構成される。
【0031】
高濃度検知手段4002は予め定めてある濃度値Th1とγ変換部134からの入力画像信号IMG4001を比較するものであり、この比較の結果、出力される中間調処理選択信号S1は以下のように決定する。
【0032】
S1=0 IMG<Th1
S1=2 IMG≧Th1
図4は非画像部長周期型中間調処理手段4004の構成を示すものである。すなわち、非画像部長周期型中間調処理手段4004は、画素位置計算部4102、基準位置信号発生部4104、量子化手段(変換手段)4101、画素値シフト部4103、記録デバイス駆動信号生成部4105とから構成されている。
【0033】
画素位置計算部4102は、図示しないクロック生成部から供給されるレジスタ設定値xreg4108,yreg4109、主走査方向のクロック信号xclock4106、副走査方向のクロック信号yclock4107により、現在処理中の信号の画素位置を計算し、主走査方向の座標情報x4110、副走査方向の座標情報y4111を生成する。
【0034】
基準位置信号発生部4104は、画素位置計算部4102から供給される主走査方向の座標情報x4110、副走査方向の座標y4111から基準位置信号4113を生成する。
【0035】
量子化手段4101は、γ補正部219から入力される画像データIMG4001を予め定めてある閾値に従い量子化し画像濃度信号4112として出力する。
【0036】
画素値シフト部4103は、画素位置計算部4102から供給される主走査方向の座標情報x4110、副走査方向の座標情報y4111、及び量子化手段4101から供給される画像濃度信号4112とから、画素値シフト後の処理画素の画像濃度信号4114を出力する。
【0037】
記録デバイス駆動信号生成部4105は、基準位置信号発生部4104から供給される基準位置信号4113及び画素値シフト部4103から供給される処理画素の画像濃度信号4114から記録デバイス駆動信号4115を出力する。記録デバイス駆動信号4115は、パルス幅変調方式のレーザ記録電子写真方式ではレーザ駆動パルス信号であり、パルスが出力されている間レーザは駆動することになる。本実施例では、以降、特に明示しない限り記録デバイス駆動信号4115はレーザ駆動パルス信号として説明する。
【0038】
図5(a)(b)は、記録デバイス駆動信号生成部4105における基準位置信号4113、処理画素の出力値である画像濃度信号4114と記録デバイス駆動信号4115との関係を示すものである。図5(a)は基準位置信号が左基準の場合、図5(b)は基準位置信号が右基準の場合である。
【0039】
図6は、画素位置計算部4102の構成を示すものである。画素位置計算部4102は、x画素位置カウンタ4301、y画素位置カウンタ4302、比較器4303、比較器4304から構成されている。
【0040】
x画素位置カウンタ4301は、クロック信号xclock4106でカウントアップし、その値を主走査方向の座標x4110として出力する同期リセットカウンタである。レジスタ設定信号xreg4108と主走査方向x座標4110とが比較器4303で一致したと判定された場合にreset信号4305が発生し、カウンタ4301がリセットされる。つまりx画素位置カウンタ4301は「0」からレジスタ設定値xreg4108の値までをカウントアップするカウンタである。
【0041】
y画素位置カウンタ4302は、クロック信号yclock4107でカウントアップし、その値を副走査方向の座標y4111として出力する同期リセットカウンタである。レジスタ設定信号yreg4109と副走査方向y座標4111とが比較器4304で一致したと判定された場合にreset信号4306が発生し、カウンタ4302がリセットされる。つまりy画素位置カウンタ4302は0からレジスタ設定値yreg4109の値までをカウントアップするカウンタである。
【0042】
基準位置信号発生部4104は、ここでは図示しないルックアップテーブルLUT4307からなり、主走査方向の座標x4110と副走査方向の座標y4111を入力し、基準位置信号(画素内での基準として、左基準、右基準、真中基準)を発生する。
【0043】
図7は、画素値シフト部4103の構成を示すものである。画素値シフト部4103は、画素値シフト値計算部4401、周辺画素値バッファ部4402、画素シフト値バッファ部4403から構成されている。
【0044】
量子化手段4101より出力された量子化済みの画像濃度信号4112は、画素値シフト部4103に送られると画素値シフト部4103内の周辺画素値バッファ部4402に入力される。周辺画素値バッファ部4402は画像濃度信号4112を保持した後、周辺画素濃度データ4404として出力する。
【0045】
画素シフト値計算部4401は、周辺画素値バッファ部4402からの周辺画像濃度データ4404と量子化手段4101により出力された画像濃度信号4112、画素シフト値バッファ部4403に保持されている処理画素に対応する読み込み用のR画素シフト値4405を入力とし、記録デバイス駆動信号生成部4105へ出力する画像濃度信号4114および画素シフト値バッファ部4403へ出力する書き込み用のW画素シフト値4406を決定し出力する。さらに、画素シフト値計算部4401は、画素シフト値バッファ4403からデータを読み書きするためのメモリアドレス4407、読み書き制御用のRW制御信号4408を画素シフト値バッファ4403へ出力する。
【0046】
周辺画素値バッファ部4402は、順次送られてくる処理画素の量子化済みの画像濃度信号4112をM個のフリップフロップでバッファし、それぞれのフリップフロップでバッファした値を周辺画素濃度データ4404として出力する。
【0047】
画素シフト値バッファ部4403は、ここでは図示しないメモリ部とメモリ読み出し用データバス、メモリ書込み用データバス、アドレス指定器、メモリRW(読み書き)制御部により構成される。
【0048】
メモリRW制御部に入力されるRW制御信号4408がメモリライトの場合、アドレス指定器はアドレス値メモリアドレス4407のメモリ部とメモリ書込み用データバスを接続する。続いてメモリRW制御部はメモリ書込み用データバスを経由して画素シフト値計算部4401から出力されるW画素シフト値4406をメモリ部に画素シフト値として格納する。
【0049】
メモリRW制御部に入力されるRW制御信号4408がメモリリードの場合、アドレス指定器はアドレス値メモリアドレス4407のメモリ部とメモリ読み出し用データバスを接続する。続いてメモリRW制御部はメモリ読み出し用データバスを経由してメモリ部に格納されている画素シフト値をR画素シフト値4405として画素シフト値計算部4401に出力する。
【0050】
図8は、画素値シフト値計算部4401の構成を示すものである。画素シフト値計算部4401は、ルックアップテーブルLUT4501、デコーダ4502、複数のシフト量演算部4503、及びセレクタ4504から構成されている。
【0051】
ルックアップテーブルLUT4501は、画素位置計算部4102からの主走査方向座標x4110と副走査方向座標y4111を入力として、シフト量演算モード信号4505、画素シフト値バッファ部4403のメモリアドレス4407とメモリの読み書き制御信号であるRW制御信号4408を出力する。
【0052】
デコーダ4502は、ルックアップテーブルLUT4501からのシフト量演算モード信号4505をデコードし、シフト量演算セレクタ信号4506をセレクタ4504へ出力する。
【0053】
セレクタ4504は、デコーダ4502からのシフト量演算セレクタ信号4506により、複数あるシフト量演算部4503からの出力である画像濃度信号4114とW画素シフト値4406を切り換え出力する。後述するシフト量演算部4503からの出力を適宜切り換えることにより、非画像部が長周期となる画像濃度信号4114を得る。
【0054】
複数のシフト量演算部4503は、周辺画素値バッファ部4402からの周辺画素濃度データ4404、量子化手段4101より出力される画像濃度信号4112、さらに画素シフト値バッファ部4403に記憶されている処理画素に対応した画素シフト値(R画素シフト値4405)から、処理画素の画像濃度信号4114と画素シフト値(W画素シフト値4406)をセレクタ4504に出力する(シフト処理)。
【0055】
セレクタ4504は、デコーダ4502からのシフト量演算セレクタ信号4506に応じてシフト処理後の画像濃度信号4114を選択して出力するとともに、シフト処理の対象画素のシフト値を記憶している画素シフト値バッファ部4403の書込み用データバスにW画素シフト値4406を出力する。
【0056】
シフト量演算部4503の例として、以下の5つの演算を示す。
1) THRU
2) TAKEF
3) GIVEB
4) GIVEF
5) TAKEB
THRUは、画像濃度信号4112をそのまま出力する演算である。
【0057】
TAKEFの演算を図9(a)(b)を参照し説明する。図9(a)において対象となる処理画素の濃度データをPa、処理画素の右隣の画素の濃度データをPbとする。
【0058】
TAKEFのシフト演算は、Pbの値をPaの値に加えるシフト演算である。図9(a)に示すように、Pa+Pbが濃度100%以下の場合、シフト演算後に出力される対象画素の画像濃度信号4114は画像濃度信号4114=Pa+Pbとなる。さらに右隣画素に対応するW画素シフト値4406として0%を画素シフト値バッファ部4403に出力する。画素シフト値バッファ部4403では対象画素の右隣の画素に対応するメモリ部分にW画素シフト値4406を画素シフト値として記憶する。
【0059】
図9(b)のようにPa+Pbが濃度100%を超える場合、シフト演算後に出力される対象画素の画像濃度信号4114は飽和すなわち100%となる。また、右隣画素に対応するW画素シフト値4406としてW画素シフト値4406=Pa+Pb−100%を画素シフト値バッファ部4403に出力する。
【0060】
GIVEBの演算を同様に図9(a)(b)を参照し説明する。GIVEBはTAKEFのシフト演算を行った右隣の画素で行われ、シフト演算の対象となっている画素の画像濃度信号を左隣りの画素値に加える演算である。対象となる処理画素の濃度データをPb、処理画素の左隣の画素の濃度データをPaとする。
【0061】
図9(a)に示すように、Pa+Pbが濃度100%以下の場合、シフト演算後に出力される対象画素の画像濃度信号4114は0%となる。図9(b)のようにPa+Pbが濃度100%を超える場合、出力される対象画素の画像濃度信号4114=Pa+Pb−100%となる。これは、左隣りの画素でTAKEFの演算を行った際に画素シフト値バッファ部4403に記憶されているので、これをR画素シフト値4405として読み出してくる。
【0062】
GIVEFの演算を図10(a)(b)を参照し説明する。図10(a)(b)において対象となる処理画素の濃度データをPa、処理画素の右隣の画素の濃度データをPbとする。
【0063】
GIVEFのシフト演算は、Paの値をPbの値に加えるシフト演算である。図10(a)に示すように、Pa+Pbが濃度100%以下の場合、シフト演算後に出力される対象画素の画像濃度信号4114は0%となる。さらに右隣画素に対応するW画素シフト値4406としてPaを画素シフト値バッファ部4403に出力する。画素シフト値バッファ部4403では対象画素の右隣の画素に対応するメモリ部分にW画素シフト値4406を画素シフト値として記憶する。
【0064】
図10(b)のように、Pa+Pbが濃度100%を超える場合、シフト演算後に出力される対象画素の画像濃度信号4114は画像濃度信号4114=Pa+Pb−100%となる。また、右隣画素に対応するW画素シフト値4406としてW画素シフト値4406=100%−Pbを画素シフト値バッファ部4403に出力する。
【0065】
TAKEBの演算を同様に図10(a)(b)を参照し説明する。TAKEBはGIVEFのシフト演算を行った右隣の画素で行われ、シフト演算の対象となっている画素の画像濃度信号に左隣りの画素値に加える演算である。対象となる処理画素の濃度データをPb、処理画素の左隣の画素の濃度データをPaとする。
【0066】
図10(a)に示すように、Pa+Pbが濃度100%以下の場合、シフト演算後に出力される対象画素の画像濃度信号4114はPa+Pbとなる。左隣りの画素でGIVEFの演算を行った際に画素シフト値バッファ部4403には、Paが記憶されているのでこれをR画素シフト値4405として読み出し、Pbに加算し画像濃度信号4114を求める。図10(b)のようにPa+Pbが濃度100%を超える場合、シフト演算後に出力される対象画素の画像濃度信号4114は100%となる。左隣りの画素でGIVEFの演算を行った際に画素シフト値バッファ部4403には、100%−Pbが記憶されているのでこれをR画素シフト値4405として読み出し、Pbに加算し画像濃度信号4114を求める。いずれの場合も左隣の画素に対応する画素シフト値を読み出し、これをPbに加算することにより実現される。
【0067】
図11(a)(b)は非画像部長周期型中間調処理手段4004における画素シフト部4103および基準位置信号発生部4104の動作の一例を、画素の2次元的位置(x,y)、シフト演算、基準位置の対応で示したものである。画素の2次元的位置とは画素位置計算部4102より出力される主走査方向の座標x4110,副走査方向の座標y4111のことである。x%3は、処理画素の主走査方向の座標x4110を3で割った余りを示し、今後同様の表記法を用いる。
【0068】
図11(a)(b)に示す動作を行った場合の非画像部長周期型中間調処理手段4004の出力パターン(記録デバイス駆動信号4115)を図12に示す。非画像部が主走査方向に集められ主走査方向3画素周期以上で出現するいわゆる3画素縦万線構造となる。
【0069】
非画像部長周期型中間調処理手段4004における画素シフト部4103および基準位置信号発生部4104の動作の一例を図13(a)(b)に示す。この際の画像部長周期型中間調処理手段4004の出力パターン(記録デバイス駆動信号4115)を図14に示す。この場合、非画像部の主走査方向の周期は一定で走査毎に初期位相が変化することとなり、主走査方向の非画像部が63度のスクリーン角度を形成し、3画素×sin63°周期以上で出現するいわゆる3画素変調斜め万線構造となる。
【0070】
このように、図4の非画像部長周期型中間調処理手段4004は様々な非画像部長周期構造を形成することができる。以下では説明を簡略化するため、3画素縦万線構造の場合を例として説明する。
【0071】
図15は中間調処理手段4003の構成を示すものである。すなわち、中間調処理手段4003は、量子化手段4901、画素位置計算部4902、基準位置信号発生部4904、記録デバイス駆動信号生成部4905から構成されている。
【0072】
画素位置計算部4902は、図示しないクロック生成部から供給されるレジスタ設定値xreg4108,yreg4109、主走査方向のクロック信号xclock4106、副走査方向のクロック信号yclock4107により、現在処理中の信号の画素位置を計算し、主走査方向の座標情報x4910、副走査方向の座標情報y4911を生成する。その構成は非画像部長周期型中間調処理手段4004の画素位置計算部4102の構成図、図6と同様であるので説明を省略する。
【0073】
基準位置信号発生部4904は、画素位置計算部4902から供給される主走査方向の座標情報x4910、副走査方向の座標y4911により基準位置信号4913を生成する。基準位置信号4913および基準位置信号発生部4904は非画像部長周期型中間調処理手段4004の場合と同様であるので説明を省略する。
【0074】
量子化手段4901は、γ変換部134から入力される画像データIMG4001を予め定めてある閾値に従い量子化し画像濃度信号4912として出力する。
【0075】
記録デバイス駆動信号生成部4905は、基準位置信号発生部4904からの基準位置信号4913及び量子化手段4901からの処理画素の画像濃度信号4912から記録デバイス駆動信号4915を出力する。記録デバイス駆動信号4915は、パルス幅変調方式のレーザ記録電子写真方式ではレーザ駆動パルス信号であり、パルスがON状態のときレーザは発光することになる。
【0076】
図16は非画像部長周期型中間調処理手段4004に基準位置信号発生部4904の動作の一例を、画素の2次元的位置(x,y)、基準位置の対応で示したものである。図16に示す動作を行った場合の中間調処理手段4003の出力パターン(記録デバイス駆動信号4915)を図17に示す。この出力パターンはいわゆる1画素縦万線構造となる。
【0077】
中間調処理選択手段4006は高濃度検知手段4002の出力する中間調処理選択信号(S1)4005により動作するセレクタである。中間調処理選択信号S1=0であれば中間調処理手段4003の出力する記録デバイス駆動信号4915を記録デバイス駆動信号4007としてプリンタ部2に出力し、中間調処理選択信号S1=2であれば非画像部長周期型中間調処理手段4915の出力する記録デバイス駆動信号4115を記録デバイス駆動信号4007としてプリンタ部2に出力する。
【0078】
すなわち中間調処理部135は、入力画像信号IMG4001が閾値Th1より小ならば中間調処理手段4003により中間調処理し、閾値Th1以上であれば非画像部長周期型中間調処理手段4004により中間調処理する適応階調処理手段である。
【0079】
図18(a)(b)、図19(a)(b)は、入力画像信号IMG4001が中、高濃度の場合の非画像部長周期型中間調処理手段4004、中間調処理手段4003の出力する記録デバイス駆動信号(レーザ駆動パルス信号)によりレーザ駆動が行われた際の露光分布の主走査方向断面図である。
【0080】
入力画像信号が高濃度における中間調処理手段4003の露光分布は、隣接するON状態のパルスの影響でトナー付着が不安定な露光レベルの中間遷移領域が多く発生している。図18(a)(b)、図19(a)(b)の場合、中間遷移領域が安定に現像される領域と連続に連結しており、本来の非画像部がつぶれベタとなる状態もあり得、安定再現の障害となる。一方、非画像部長周期型中間調処理手段4004の露光分布の場合、非画像部に対応するパルスのOFF状態が長周期となり連続するため、中間遷移領域が少ない。このため、高濃度部が環境等の変動に対し安定に再現される。
【0081】
入力画像信号が中濃度における中間調処理手段4003の露光分布は高濃度の場合と比べ中間遷移領域が少ないため、環境変動による再現の変動は無視できる程度となる。また、非画像部長周期型中間調処理手段4004とくらべ画素構成が高周期・高解像であるため、視覚ノイズとなりにくい。
【0082】
すなわち、この発明の中間調処理部135は予め定めた閾値以上の高濃度の画像信号に対しては、非画像部の画素構成を長周期化することにより中間遷移領域を減少させて安定再現を実現し、閾値より低い濃度の画像濃度信号に対しては、より解像性の高い中間調処理を用い高画質化を図るものである。
【0083】
また、上記の第1の実施形態では、中間調処理手段4003と非画像部長周期型中間調処理手段4004で量子化手段4101、4901を用いたが、プリンタ部2の特性に応じてこれを画像濃度変換手段に置き換えた、発明も可能である。
【0084】
この第1の実施形態では、中間調処理部135を複写機に適用した場合を述べているが、いわゆるプリンタ機器の階調処理手段にも用いることも可能である。
【0085】
図20は、この発明の中心をなす中間調処理部135の第2の実施形態の構成の概略を示すものである。中間調処理部135は、濃度検知手段5002、画像部長周期型中間調処理手段5008、中間調処理手段5003、非画像部長周期型中間調処理手段5004、中間調処理選択手段5006により構成される。
【0086】
非画像部長周期型中間調処理手段5004、中間調処理手段5003、中間調処理選択手段5006のそれぞれの構成は図4の非画像部長周期型中間調処理手段4004、中間調処理手段4003、中間調処理選択手段4006と同様であるので説明を省略する。
【0087】
濃度検知手段5002は、予めさだめてある濃度値Th1、Th2とγ変換部134からの入力画像信号IMG4001を比較し、中間調処理選択信号(S1)5005を以下のように決定する。
【0088】
S1=0 IMG<Th1
S1=1 Th1≦IMG<Th2
S1=2 IMG≧Th2
画像部長周期型中間調処理手段5008の構成は図4の非画像部長周期型中間調処理手段4004と同様であるので、詳細な説明は省略する。
【0089】
図21(a)(b)は画像部長周期型中間調処理手段5008における画素値シフト部4103および基準位置信号発生部4104の動作の一例を、画素の2次元的位置(x,y)、シフト演算、基準位置の対応で示したものである。
【0090】
図21(a)(b)に示す動作を行った場合の画像部長周期型中間調処理手段5008の出力パターン(記録デバイス駆動信号5011)を図22に示す。画像部が主走査方向に集められ主走査方向2画素周期以上で出現するいわゆる2画素縦万線構造となる。
【0091】
画像部長周期型中間調処理手段5008の露光分布の場合、画像部に対応するパルスのON状態が長周期となって連続するため、低濃度においては中間遷移領域を少なくすることができる。このため、解像性が劣化するものの、低濃度部は環境等の変動に対し安定に再現される。
【0092】
中間調処理選択手段5006は濃度検知手段5002の出力する中間調処理選択信号(S1)5005により動作するセレクタである。中間調処理選択信号S1=0であれば画像部長周期型中間調処理手段5008の出力する記録デバイス駆動信号5011を記録デバイス駆動信号5007としてプリンタ部2に出力し、中間調処理選択信号S1=1であれば中間調処理手段5002の出力する記録デバイス駆動信号5009を記録デバイス駆動信号5007としてプリンタ部2に出力し、中間調処理選択信号S1=2であれば非画像部長周期型中間調処理手段5004の出力する記録デバイス駆動信号5010を記録デバイス駆動信号5007としてプリンタ部2に出力する。
【0093】
すなわち、中間調処理部135は入力画像信号IMG4001が閾値Th1より小ならば画像部長周期型中間調処理手段5008により中間調処理し、入力画像信号IMG4001が閾値Th1以上閾値Th2より小ならば中間調処理手段5003により中間調処理し、閾値Th2以上であれば非画像部長周期型中間調処理手段5004により中間調処理する適応階調処理手段である。
【0094】
この発明の高濃度部安定再現階調処理150は予め定めた閾値Th2以上の高濃度の画像信号に対しては、非画像部の画素構成を長周期化することにより中間遷移領域を減少させて安定再現を実現し、予め定めた閾値Th1より低濃度の画像信号に対しては、画像部の画素構成を長周期化することにより中間遷移領域を減少させて安定再現を実現し、閾値Th1以上Th2より低い中濃度の画像濃度信号に対しては、より解像性の高い中間調処理を用い高画質化を図るものである。
【0095】
また、上記の実施形態では中間調処理手段5003、非画像部長周期型中間調処理手段5004、画像部長周期型中間調処理手段5008で量子化手段を用いたが、プリンタ部2の特性に応じてこれを画像濃度変換手段に置き換えた発明も可能である。
【0096】
図23はこの発明の中心をなす中間調処理部135の第3の実施形態の構成の概略を示すものである。中間調処理部135は、濃度検知手段6002、高量子化数誤差拡散手段6003、低量子化数誤差拡散処理手段6004、中間調処理選択手段6006により構成される。
【0097】
濃度検知手段6002は図20の濃度検知手段5002と同様なので説明を省略する。
【0098】
高量子化数誤差拡散手段6003と低量子化数誤差拡散手段6004の構成は図4の非画像部長周期中間調処理手段4004の構成図における量子化手段4101を図24に構成を示した誤差拡散量子化手段6101に置き換えたものである。説明を簡略化するために、誤差拡散量子化手段6101についての説明を行い、その他に関しては省略する。
【0099】
図24は、誤差拡散量子化手段6101の構成を概略的に示すものである。誤差拡散量子化手段6101は、誤差補正手段6102、量子化手段6103、誤差算出手段6104、補正量算出手段6105により構成されている。
【0100】
補正量算出手段6105は、誤差拡散フィルタリング手段6106、誤差記憶手段6107により構成されている。
【0101】
誤差拡散量子化手段6101の外部より量子化の対象となる入力画像信号IMG(n1,n2)が入力される。ここでIMG(n1,n2)は主走査x座標n1,副走査y座標n2の画像信号を現わす。他も同様の表記法を用いることとする。補正量算出手段6105により予め計算されてある補正量をa(n1,n2)とIMG(n1,n2)は誤差補正手段6102で加算され、量子化手段6103に出力される。量子化手段6103では予め定まった閾値に従いこの値を量子化し、量子化レベルをy(n1,n2)を出力する。この閾値をいくつ設けるかにより量子化数は決定される。
【0102】
y(n1,n2)
=Quantization(IMG(n1,n2)+a(n1,n2))
誤差算出手段6104により誤差e(n1,n2)は以下のように計算される。
【0103】
e(n1,n2)
=y(n1,n2)−(IMG(n1,n2)+a(n1,n2))
誤差拡散フィルタリング手段6106と誤差記憶手段6107により誤差記憶手段6107のm(i,j)(−Ni≦i≦Ni,0≦j≦Nj)へ補正量が以下のように計算される。Ni,Njはフィルタの大きさを決定する定数である。
【0104】
m(i,j)=g(i,j)×e(n1,n2)
例えば誤差拡散フィルタリング手段6106がjarvisのフィルタ係数の場合Ni=1,Nj=1で
g(−1,0)=0,g(0,0)=0,g(1,0)=7/16
g(−1,1)=3/16,g(0,1)=5/16
g(1,1)=1/16
である。1画素処理するごと発生する上記の補正量を各m(i,j)ごとに加算手段6108で総和補正量M(i,j)に加算していく。
【0105】
M(i,j)=M(i,j)+m(i,j)
このとき補正量aは次のように決定される。
【0106】
a(n1+i,n2+j)=M(i,j)
−Ni≦i≦Ni,0≦j≦Nj
以上の動作により誤差拡散処理が行われ、量子化がなされる。
【0107】
高量子化数量子化数誤差拡散手段6003と低量子化数誤差拡散手段6004は量子化手段6103の量子化数のみが異なる。例えば高量子化数が4値で、低量子化数が2値の場合両者の閾値の設定値を図25に示す。ここでは入出力が8bitである場合を仮定し、16進表現する。
【0108】
図26(a)(b)に高濃度部(反射率約83パーセント)における高量子化数誤差拡散手段6003(4値誤差拡散)、低量子化誤差拡散手段6004(2値誤差拡散)の出力パターン(記録デバイス駆動信号)を示す。ただし、基準位置信号はすべて左基準とし、シフト演算処理はすべてTHRUとした。
【0109】
高量子化数誤差拡散手段6003の場合、量子化数が多いため細かい非画像部が表れ、非画像部の分布が短周期的になっている。このため、中間遷移領域が多く高濃度部の再現が不安定となる。
【0110】
低量子化数誤差拡散手段6003の場合、量子化数が少ないため非画像部の最小領域は1画素相当であり、非画像部の分布が高量子化数の場合に比べ長周期になっている。このため、中間遷移領域が少なく高濃度部の再現が安定となる。
【0111】
また、高量子化数誤差拡散手段6003の出力する最小画素構造はサブピクセル以下のパルスであり、低量子化数誤差拡散手段6003の出力する最小画素構造は1ピクセル以上のパルスであることから、低濃度においては低量子化誤差拡散手段6003のほうが安定な再現が可能である。
【0112】
中間調処理選択手段6006は濃度検知手段6002の出力する中間調処理選択信号(S1)6005により動作するセレクタである。中間調処理選択信号S1=0であれば低量子化数誤差拡散手段6004の出力する記録デバイス駆動信号6009を記録デバイス駆動信号6007としてプリンタ部2に出力し、中間調処理選択信号S1=1であれば高量子化数誤差拡散手段6003の出力する記録デバイス駆動信号6008を記録デバイス駆動信号6007としてプリンタ部2に出力し、中間調処理選択信号S1=2であれば低量子化数誤差拡散手段6004の出力する記録デバイス駆動信号6009を記録デバイス駆動信号6007としてプリンタ部2に出力する。
【0113】
すなわち、中間調処理部135は入力画像信号IMG4001が閾値Th1より小ならば低量子化数誤差拡散手段6004により中間調処理し、入力画像信号IMG4001が閾値Th1以上閾値Th2より小ならば高量子化数誤差拡散手段6003により中間調処理し、閾値Th2以上であれば低量子化数誤差拡散手段6004により中間調処理する適応階調処理手段である。
【0114】
この第3の実施形態の中間調処理部135は、予め定めた閾値Th2以上の高濃度の画像信号に対しては、低量子化数誤差拡散手段6004により非画像部の画素構成を長周期化することにより中間遷移領域を減少させて安定再現し、予め定めた閾値Th1より低濃度の画像信号に対しては、低量子化数誤差拡散手段6004により画像部の画素構成を長周期化することにより中間遷移領域を減少させて安定再現し、閾値Th1以上Th2より低い中濃度の画像濃度信号に対しては、より解像性の高い高量子化数誤差拡散手段6003を用いて高画質化を図るものである。
【0115】
また、上記第3の実施形態の基準位置信号発生部4104等において、図13のように主走査方向、副走査方向に周期的に変化する基準位置信号を発生することによりさらに中間遷移状態を減少させ安定再現を図る発明も可能である。基準位置信号の変化を主走査、副走査方向周期に一定とした場合、フリップフロップと簡単な順序回路でこれを実現しうる。
【0116】
また、上記図23に示す第3の実施形態は基準位置信号発生部を取り除くことにより、パワー変調方式のレーザ記録電子写真方式にも適用可能な発明となる。
【0117】
図27はこの発明の中心をなす中間調処理部135の第4の実施形態の構成の概略を示すものである。中間調処理部135は、高濃度検知手段7001、閾値処理手段7002、閾値発生手段7003、画像部集中型基本ディザ情報記憶手段7004、非画像部集中型基本ディザ情報記憶手段7005により構成される。
【0118】
高濃度検知手段7001は図3の高濃度検知手段4002と同様であるので説明を省略する。
【0119】
図28は閾値処理手段7002の構成を示すものである。閾値処理手段7002は、量子化手段7101、画素位置計算部7102、画素値シフト部7103、基準位置信号発生部7104、記録デバイス駆動信号生成部7105により構成されている。
【0120】
これは図4の非画像部長周期型中間調処理手段4004の量子化手段4101だけを量子化手段7101に変更したものである。この場合、画素位置計算部7102は主走査方向の座標情報x7110、副走査方向の座標情報y7111を出力し、量子化手段7101は画像濃度信号7112を出力し、画素値シフト部7103は画像濃度信号7114を出力し、、基準位置信号発生部7104は基準位置信号7113を出力し、記録デバイス駆動信号生成部7105は記録デバイス駆動信号7115を出力する。
【0121】
量子化手段7101は閾値信号7011を閾値発生手段7003から受け、これをもとに量子化する。基準位置発生手段を取り除くことにより、パワー変調方式のレーザ記録電子写真方式へ適用できる。この実施例ではこの場合について述べる。
【0122】
画像部集中型基本ディザ情報記憶手段7004、非画像部集中型基本ディザ情報記憶手段7005に記憶されている画像部集中型ディザマトリックスと非画像部集中型ディザマトリックスの例を図29(a)(b)に示す。
【0123】
ここでは簡単に組織ディザ処理手段の構成について述べる。基本ディザ情報である画像部集中型ディザマトリックスと非画像部集中型ディザマトリックスはそれぞれ記憶手段7004、7005の2次元配列上のDRAMにデイザマトリックスD(i,j) i,j=0,1,....,Nd−1として記憶されている。
【0124】
閾値発生手段7003では高濃度検知手段7001より出力される中間調処理選択信号S1 7008を元に処理画素が高濃度であるならば非画像部集中型ディザ間マトリックス(信号7009)を用い、高濃度でない場合は画像部集中型ディザマトリックス(信号7010)を用いて、主走査副走査位置が(I,J)のときの閾値Thk(k=1,…,N−1)を下記の式のように決定する。ただし、N値に量子化するとする。求まった閾値Thk(k=1,…,N−1)を閾値信号7011として閾値処理手段7002に出力する。
【0125】
Thk=(255/N−1)×(k−1)
+[255/{(N−1)×(Nd2−1)}]×D(I mod Nd,J mod Nd)
この閾値信号7011をもとに閾値処理手段7002は量子化を行うのだが、例として示した非画像部集中型デイザマトリックスを用いた場合、高濃度になるにつれてマトリックスの周囲から画像部となってゆき、非画像部は中心に集まる網点となる。
【0126】
すなわち、この第4の実施形態は低・中濃度では画像部集中型ディザマトリックスを用いて、画像部を網点上にすることにより安定再現を行い、高濃度では非画像部集中型ディザマトリックスを用いることにより非画像部が網点とする、つまり非画像部の分布を長周期とすることにより安定再現を図る階調処理装置である。
【0127】
図30はこの発明の中心をなす中間調処理部135の第5の実施形態の構成の概略を示すものである。中間調処理部135は、LUTによる複数の量子化手段8001と、量子化手段8001に対応する基準位置信号発生部8002と、量子化手段8001と基準位置信号発生部8002に対応する記録デバイス駆動信号生成部8003と、中間調処理選択手段8004とにより構成される。
【0128】
LUT8001は内部のルックアップテーブル情報に従い、入力画像信号IMG4001を記録デバイスの画像濃度信号8006に量子化し出力する。
【0129】
LUT8001の内一つのLUTは図31に示すような飽和する入出力特性を有しており、別のLUT8001は図32に示すような飽和しない入出力特性を有している。LUT8001は入力画像信号IMG4001をLUT8001に応じて量子化し、画像濃度信号8006として記録デバイス駆動信号生成部8003に出力する。
【0130】
基準位置信号発生部8002は外部より入力される主走査方向のクロック信号xclock4106、副走査方向のクロック信号yclock4107より周期的に基準位置信号8005を発生する。
【0131】
記録デバイス駆動信号生成部8003は、画像濃度信号8006と基準位置信号8005をもとに記録デバイス駆動信号8007を中間調処理選択手段8004に出力する。
【0132】
中間調処理選択手段8004は、主走査クロック信号xclock4106をカウントするカウンタと副走査クロック信号yclock4107をカウントするカウンタを有し、これらのカウンタのカウンタ値が示す2次元座標(x,y)に基づき、周期的に記録デバイス駆動信号8007を選択し、記録デバイス駆動信号8008として外部に出力する。
【0133】
一例として、x%2=0のとき図31のLUT8001を選択、x2%=1のとき図33のLUT8001を選択した場合を示す。基準位置信号は左基準で一定とする。
【0134】
このとき低・中濃度での出力パターン(記録デバイス駆動信号8008)は図33となり、高濃度では図34となる。
【0135】
図31から図34によりわかるようにTh1以下の低・中濃度では1画素縦万線構造であるが、Th1以上の高濃度となると非画像部が2画素毎に集められ、長周期化されて出力される。高濃度部では非画像部が長周期化されるため、中間遷移領域が減少し、高濃度部の安定再現が可能となる。
【0136】
また、上記の第5の実施形態の発明ではLUT8001による量子化手段を用いたが、プリンタ部2の特性に応じてこれをLUT8001による画像濃度変換手段に置き換えた発明も可能である。
【0137】
また、上記の第5の実施形態は基準位置信号発生部を取り除くことにより、パワー変調方式のレーザ記録電子写真方式にも適用可能な発明となる。
【0138】
また、上記の第5の実施形態の発明では中間調処理を主走査方向に周期的に選択していたが、この選択周期の初期位相を走査毎に変化させることによりスクリーン角を持つ出力パターンを形成する発明とすることも可能である。
【0139】
別の実施例として非画像部を網点状に長周期化する場合を示す。図31、図35、図36に示すLUTを持つ量子化手段を用い、中間調処理選択手段において図37に示す周期で外部に出力する記録デバイス駆動信号を切り換える。基準位置信号は左基準で一定とする。
【0140】
このときの出力パターンは正規化画像濃度Th1以下のときは図33、正規化画像濃度Th1以上7/9以下のときは図38、正規化画像濃度9/7以上のときは図39となる。
【0141】
図35、図36、図38、図39からわかるようにTh1以下の低・中濃度では1画素縦万線構造であるが、Th1以上の高濃度になると最大2x2pelの網点状の孔が形成され、正規化画像濃度が1になるにつれて主走査方向に網点が小さくなって行く。
【0142】
図30のLUT8001に低濃度部に相当する入力画素を0または画像形成されない範囲の画像濃度信号に量子化する性質と低濃度部に相当する入力画素を画像形成される範囲の画像濃度信号に量子化する性質を与えることにより、別の発明となる。
【0143】
一例として、x%2=0のとき図40のLUT8001を選択、x2%=1のとき図41のLUT8001を選択した場合を示す。基準位置信号は左基準で一定とする。図40のLUT8001は低濃度部で画像形成される範囲に量子化を行い、高濃度部(正規化画像濃度Th1以上)では飽和する範囲に量子化を行う。
【0144】
図41のLUT8001は低濃度部(正規化画像濃度Th2以下)では画像形成は行わず。また、高濃度部では図に示すように飽和しない範囲に量子化を行う。
【0145】
このときの出力パターンは低濃度部(正規化画像濃度Th2以下)で図42、中濃度部で図33、高濃度部(正規化画像濃度Th1以上)で図34となる。
【0146】
図42からわかるように低濃度部では2画素縦万線構造になり、画像部が長周期化され安定再現が可能となる。
【0147】
図34からわかるように高濃度部では2画素縦万線構造になり、非画像部が長周期化され安定再現が可能となる。
【0148】
すなわち、この発明は低濃度部では画像部を長周期化し、高濃度部では非画像部を長周期化して安定再現を図りつつ、中間濃度では、解像性を重視した1画素縦万線構造を用いる適応的な階調処理である。
【0149】
また、上記第5の実施形態の発明ではLUTによる量子化手段を用いたが、プリンタ部の特性に応じてこれをLUTによる画像濃度変換手段に置き換えた発明も可能である。
【0150】
また、上記第5の実施形態の発明は基準位置信号発生部を取り除くことにより、パワー変調方式のレーザ記録電子写真方式にも適用可能な発明となる。
【0151】
また、上記第5の実施形態の発明では中間調処理を主走査方向に周期的に選択していたが、この選択周期の初期位相を走査毎に変化させることによりスクリーン角を持つ出力パターンを形成する発明とすることも可能である。
【0152】
【発明の効果】
以上詳述したようにこの発明によれば、高濃度部において非画像部の空間周波数分布を長周期化する階調処理方式を用いることにより、不安定な中間遷移領域の面積を減少させ、高濃度部における画素構造の再現性・安定性を向上することができる。
【図面の簡単な説明】
【図1】この発明の画像処理装置の概略構成を示すブロック図。
【図2】画像処理部の概略構成を示す図。
【図3】中間調処理部の第1の実施形態の概略構成を示すブロック図。
【図4】非画像部長周期型階調処理手段の概略構成を示すブロック図。
【図5】記録デバイス駆動信号を模式的に現わした図。
【図6】画素位置計算部の構成を示すブロック図。
【図7】画素値シフト部の構成を示すブロック図。
【図8】画素シフト値計算部の構成を示すブロック図。
【図9】シフト演算処理の説明図。
【図10】シフト演算処理の説明図。
【図11】3画素縦万線構造の場合のシフト演算と基準位置の対応を示す図。
【図12】3画素縦万線構造を説明するための図
【図13】3画素斜め万線構造(スクリーン角度63°)の場合のシフト演算と基準位置の対応を示す図。
【図14】3画素斜め万線構造を説明するための図。
【図15】中間調処理手段の構成を示すブロック図。
【図16】1画素縦万線構造の場合の基準位置の対応を示す図。
【図17】1画素縦万線構造を説明するための図。
【図18】非画像部長周期型中間調処理手段により階調処理を行った場合の主走査方向の露光分布を示す図。
【図19】中間調処理手段により階調処理を行った場合の主走査方向の露光分布を示す図。
【図20】中間調処理部の第2の実施形態の概略構成を示すブロック図。
【図21】2画素縦万線構造の場合のシフト演算と基準位置の対応を示す図。
【図22】2画素縦万線構造を説明するための図。
【図23】中間調処理部の第3の実施形態の概略構成を示すブロック図。
【図24】誤差拡散量子化手段の構成を示すブロック図。
【図25】量子化数と量子化出力を説明するための図。
【図26】高量子化数誤差拡散手段と低量子化数誤差拡散手段の出力パターンを説明するための図。
【図27】中間調処理部の第4の実施形態の概略構成を示すブロック図。
【図28】閾値処理手段を説明するためのブロック図。
【図29】画像部集中型ディザマトリックス、非画像部集中型ディザマトリックスを説明するための図。
【図30】中間調処理部の第5の実施形態の概略構成を示すブロック図。
【図31】飽和するLUTを説明するための図。
【図32】飽和しないLUTを説明するための図。
【図33】低・中濃度での出力パターンを説明するための図。
【図34】高濃度での出力パターンを説明するための図。
【図35】飽和するLUTを説明するための図。
【図36】飽和しないLUTを説明するための図。
【図37】LUTの周期的な選択を説明するための図。
【図38】高濃度での出力パターンを説明するための図。
【図39】高濃度での出力パターンを説明するための図。
【図40】低濃度で画像形成し、高濃度で飽和するLUTを説明するための図。
【図41】低濃度で画像形成せず、高濃度で飽和しないLUTを説明するための図。
【図42】低濃度での出力パターンを説明するための図。
【符号の説明】
1…カラースキャナ部
2…カラープリンタ部
135…中間調処理部
4001…画像信号
4002…高濃度検知手段
4003…中間調処理手段
4004…非画像部長周期型中間調処理手段
4005…中間調処理選択信号
4006…中間調処理選択手段
4007…記録デバイス駆動信号

Claims (8)

  1. 画素単位の画像信号を読取り、
    この読取った各画素の画像信号に基づく1画素内の画像部と非画像部に対応する第1の駆動信号を生成し、
    上記読取った各画素の画像信号と周辺画素の画像信号に基づいて複数の画素の非画像部を集中させる第2の駆動信号を生成し、この第2の駆動信号を生成する際、上記読取った画像信号の画素位置に基づく、主走査方向の座標情報と、副走査方向の座標情報とを生成し、この生成された主走査方向の座標情報、副走査方向の座標情報から画素内での基準位置信号を生成し、上記読取った画素ごとの画像信号を予め定めてある閾値に従い量子化し画像濃度信号として出力し、上記生成された主走査方向の座標情報、副走査方向の座標情報と上記量子化された画像濃度信号とから、画素値シフト後の処理画素の画像濃度信号を出力し、上記生成された画素内での基準位置信号と上記出力された画素値シフト後の処理画素の画像濃度信号から記録デバイス駆動信号を生成して第2の駆動信号として出力し、
    上記読取った各画素の画像信号が所定濃度以上であるか否かを検知し、
    この検知した画素の画像信号が所定濃度以上である際に、上記生成される第1の駆動信号を選択して出力し、
    上記検知した画素の画像信号が所定濃度以下である際に、上記生成される第2の駆動信号を選択して出力し、
    上記選択して出力される第1の駆動信号あるいは第2の駆動信号に基づいて、レーザビームを出力し、
    このレーザビームにより感光体上に潜像を形成し、
    この形成された潜像をトナーにより現像し画像形成を行う
    ことを特徴とする画像形成方法。
  2. 請求項1において、上記生成された主走査方向の座標情報、副走査方向の座標情報と上記量子化された画像濃度信号とから、画素値シフト後の処理画素の画像濃度信号を出力する際、順次送られてくる処理画素の量子化済みの画像濃度信号をバッファし、それぞれのバッファした値を周辺画素濃度データとして出力し、
    この出力される周辺画素濃度データと上記量子化された画像濃度信号と上記生成された主走査方向の座標情報、副走査方向の座標情報とから、シフト処理後の画像濃度信号を出力することを特徴とする画像形成方法。
  3. 請求項2において、周辺画素濃度データと量子化された画像濃度信号と主走査方向の座標情報、副走査方向の座標情報とから、シフト処理後の画像濃度信号を出力する際、
    周辺画素濃度データと量子化された画像濃度信号と主走査方向の座標情報、副走査方向の座標情報とから画素シフト値を算出し、
    この算出した画素シフト値を記憶し、
    この記憶した画素シフト値と周辺画素濃度データと量子化された画像濃度信号と主走査方向の座標情報、副走査方向の座標情報とからシフト処理後の画像濃度信号を出力することを特徴とする画像形成方法。
  4. 請求項4において、記憶した画素シフト値と周辺画素濃度データと量子化された画像濃度信号と主走査方向の座標情報、副走査方向の座標情報とからシフト処理後の画像濃度信号を出力する際、
    主走査方向の座標情報、副走査方向の座標情報に基づいてシフト量演算モード信号を出力し、
    周辺画素濃度データ、画像濃度信号、処理画素に対応した画素シフト値から、種々の画像濃度信号と画素シフト値を出力し、
    シフト量演算モード信号をデコードし、シフト量演算セレクタ信号を出力し、
    この出力されるシフト量演算セレクタ信号により、複数ある画像濃度信号と画素シフト値を切り換え出力することにより、複数の画素の非画像部を集中させる画像濃度信号を出力することを特徴とする画像形成方法。
  5. 画素単位の画像信号を読取る読取手段と、
    この読取手段により読取った各画素の画像信号に基づく1画素内の画像部と非画像部に対応する第1の駆動信号を生成する第1の生成手段と、
    上記読取手段により読取った各画素の画像信号と周辺画素の画像信号に基づいて複数の画素の非画像部を集中させる第2の駆動信号を生成する第2の生成手段であって、上記読取手段により読取った画像信号の画素位置に基づく、主走査方向の座標情報と、副走査方向の座標情報とを生成する第3の生成手段と、この第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報から画素内での基準位置信号を生成する第4の生成手段と、上記読取手段により読取った画素ごとの画像信号を予め定めてある閾値に従い量子化し画像濃度信号として出力する第3の出力手段と、上記第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報と上記第3の出力手段により量子化された画像濃度信号とから、画素値シフト後の処理画素の画像濃度信号を出力する第4の出力手段と、上記第4の生成手段により生成された画素内での基準位置信号と上記第4の出力手段から出力された画素値シフト後の処理画素の画像濃度信号から記録デバイス駆動信号を生成して第2の駆動信号として出力する第5の出力手段と、を有している第2の生成手段と、
    上記読取手段により読取った各画素の画像信号が所定濃度以上であるか否かを検知する検知手段と、
    この検知手段により検知した画素の画像信号が所定濃度以上である際に、上記第1の生成手段により生成される第1の駆動信号を選択して出力し、上記検知手段により検知した画素の画像信号が所定濃度以下である際に、上記第2の生成手段により生成される第2の駆動信号を選択して出力する第1の出力手段と、
    この第1の出力手段により選択して出力される第1の駆動信号あるいは第2の駆動信号に基づいて、レーザビームを出力する第2の出力手段と、
    この第2の出力手段により出力されるレーザビームにより感光体上に潜像を形成する形成手段と、
    この形成手段により形成された潜像をトナーにより現像し画像形成を行う現像手段と、
    を具備したことを特徴とする画像形成装置。
  6. 請求項5において、上記第4の出力手段が、
    順次送られてくる処理画素の量子化済みの画像濃度信号をバッファし、それぞれのバッファした値を周辺画素濃度データとして出力する第6の出力手段と、
    この第6の出力手段により出力される周辺画素濃度データと上記第3の出力手段により量子化された画像濃度信号と上記第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報とから、シフト処理後の画像濃度信号を出力する第7の出力手段と、を有していることを特徴とする画像形成装置。
  7. 請求項6において、上記第7の出力手段が、
    上記第6の出力手段により出力される周辺画素濃度データと、上記第3の出力手段により量子化された画像濃度信号と、上記第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報とから、画素シフト値を算出する算出手段と、
    この算出手段により算出した画素シフト値を記憶する記憶手段と、
    この記憶手段により記憶した画素シフト値と、上記第6の出力手段により出力される周辺画素濃度データと、上記第3の出力手段により量子化された画像濃度信号と、上記第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報とから、シフト処理後の画像濃度信号を出力する第8の出力手段と、を有していることを特徴とする画 像形成装置。
  8. 請求項7において、上記第8の出力手段が、
    上記第3の生成手段により生成された主走査方向の座標情報、副走査方向の座標情報に基づいてシフト量演算モード信号を出力する第9の出力手段と、
    上記第6の出力手段により出力される周辺画素濃度データと、上記第3の出力手段により量子化された画像濃度信号と、上記記憶手段により記憶されている処理画素に対応した画素シフト値とから、種々の画像濃度信号と画素シフト値を出力する第10の出力手段と、
    上記第9の出力手段からのシフト量演算モード信号をデコードし、シフト量演算セレクタ信号を出力する第11の出力手段と、
    この第11の出力手段により出力されるシフト量演算セレクタ信号により、第10の出力手段により出力される複数ある画像濃度信号と画素シフト値を切り換え出力することにより、複数の画素の非画像部を集中させる画像濃度信号を出力する第12の出力手段と、を有していることを特徴とする画像形成装置。
JP36278698A 1998-12-21 1998-12-21 画像形成装置および画像形成方法 Expired - Fee Related JP4053674B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP36278698A JP4053674B2 (ja) 1998-12-21 1998-12-21 画像形成装置および画像形成方法
US09/467,976 US6643031B1 (en) 1998-12-21 1999-12-21 Image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36278698A JP4053674B2 (ja) 1998-12-21 1998-12-21 画像形成装置および画像形成方法

Publications (2)

Publication Number Publication Date
JP2000188684A JP2000188684A (ja) 2000-07-04
JP4053674B2 true JP4053674B2 (ja) 2008-02-27

Family

ID=18477726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36278698A Expired - Fee Related JP4053674B2 (ja) 1998-12-21 1998-12-21 画像形成装置および画像形成方法

Country Status (2)

Country Link
US (1) US6643031B1 (ja)
JP (1) JP4053674B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888968B1 (en) * 2000-09-21 2005-05-03 Kabushiki Kaisha Toshiba Image processing apparatus and image processing method
JP3927388B2 (ja) * 2000-09-27 2007-06-06 株式会社リコー 画像処理装置、画像処理方法及び記録媒体
EP1416708A1 (en) * 2002-10-28 2004-05-06 Fuji Photo Film Co., Ltd. Method and apparatus for image readout
JP4095423B2 (ja) * 2002-12-06 2008-06-04 キヤノン株式会社 画像処理装置、画像データ処理方法、記憶媒体、プログラム
US6851783B1 (en) * 2003-03-31 2005-02-08 Ricoh Co., Ltd. Replacement halftoning
US20070177213A1 (en) * 2006-02-02 2007-08-02 Stephen Herron System and method for controlling clustered halftone dot gain
US8254002B2 (en) 2008-02-08 2012-08-28 Kabushiki Kaisha Toshiba Screen generating apparatus, screen generating method, and image processing apparatus
US20100066770A1 (en) * 2008-09-18 2010-03-18 Eastman Kodak Company Pulse Width Modulation Display Pixels with Spatial Manipulation
US8294934B2 (en) * 2009-06-09 2012-10-23 Xerox Corporation Consumable serial number tracking in a managed services hosted environment
JP5717361B2 (ja) * 2010-06-09 2015-05-13 キヤノン株式会社 画像形成装置
JP5611121B2 (ja) * 2011-05-23 2014-10-22 京セラドキュメントソリューションズ株式会社 画像形成装置
JP6171547B2 (ja) * 2013-05-10 2017-08-02 株式会社リコー 画像形成装置、画像形成方法および印刷物の製造方法
JP6292782B2 (ja) * 2013-07-17 2018-03-14 キヤノン株式会社 記録装置及び記録方法
JP6201557B2 (ja) * 2013-09-17 2017-09-27 コニカミノルタ株式会社 画像形成装置
JP6249719B2 (ja) * 2013-10-31 2017-12-20 キヤノン株式会社 画像形成装置
EP3368972B1 (en) * 2015-10-30 2021-04-14 Hewlett-Packard Development Company, L.P. Halftoning of object data for a three-dimensional object
JP6973098B2 (ja) * 2018-01-16 2021-11-24 セイコーエプソン株式会社 画像処理装置、画像処理装置の制御方法、及び印刷装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586227A (en) * 1991-03-28 1996-12-17 Canon Kabushiki Kaisha Image processing apparatus
US5696853A (en) * 1992-02-28 1997-12-09 Canon Kabushiki Kaisha Image processing system having variably controllable pixel density patterns
JPH0787317A (ja) * 1993-09-16 1995-03-31 Riso Kagaku Corp 画像処理方法及びその装置
JPH07254986A (ja) 1994-01-28 1995-10-03 Fuji Xerox Co Ltd 画像形成装置
JPH08125863A (ja) 1994-10-27 1996-05-17 Fuji Xerox Co Ltd 画像形成装置
US5815287A (en) 1994-11-10 1998-09-29 Minolta Co., Ltd. Image forming processor having first and second image processing sections
US5543935A (en) 1994-11-18 1996-08-06 Xerox Corporation Halftoning method using space filling curves
US5694224A (en) 1994-12-08 1997-12-02 Eastman Kodak Company Method and apparatus for tone adjustment correction on rendering gray level image data
JPH08160682A (ja) 1994-12-12 1996-06-21 Fuji Xerox Co Ltd 画像形成装置
JPH08307669A (ja) 1995-05-12 1996-11-22 Seiko Epson Corp 画像処理装置及び方法
US5754309A (en) 1995-06-06 1998-05-19 Apple Computer, Inc. Tone correction for multi-level halftoned images
JPH09224164A (ja) 1996-02-19 1997-08-26 Fuji Xerox Co Ltd カラー画像形成装置
JPH10145598A (ja) 1996-11-14 1998-05-29 Fuji Xerox Co Ltd 画像形成装置

Also Published As

Publication number Publication date
JP2000188684A (ja) 2000-07-04
US6643031B1 (en) 2003-11-04

Similar Documents

Publication Publication Date Title
JP4053674B2 (ja) 画像形成装置および画像形成方法
US5729663A (en) Method and apparatus for gray screening
JP5247492B2 (ja) 画像形成装置及び制御方法及びプログラム
EP0817466B1 (en) Edge enhanced error diffusion
JP4248654B2 (ja) 出力装置へ出力する文書イメージを準備する処理装置
JPH0879516A (ja) 画像処理装置
JP4097114B2 (ja) 画像処理装置、画像処理方法及び記録媒体
JP3862769B2 (ja) 画像記録装置
JP4753253B2 (ja) 画像処理装置
US6924910B2 (en) Image forming apparatus and image forming method
JP2001352448A (ja) 画像形成方法、画像処理装置及び記憶媒体
JP3791240B2 (ja) 電子写真装置および電子写真の画像処理方法、並びに記録媒体
JP3883031B2 (ja) 画像処理装置、画像処理方法及び記憶媒体
JP3113659B2 (ja) 像形成装置
JP2004282344A (ja) 画像処理方法
JP2774508B2 (ja) 画像処理装置
JP2701310B2 (ja) 中間調画像生成方法および装置
JP3039662B2 (ja) 記録装置
JP3789126B2 (ja) 画像記録装置
JP4748985B2 (ja) ドットの孤立を低減するハーフトーン画像形成方法および装置
JP3391809B2 (ja) 画像処理方法及び装置
JP2683020B2 (ja) 画像処理装置
JPH0561971A (ja) 画像処理装置
JPH0730746A (ja) 画像処理装置
JP2003060864A (ja) 印刷制御装置及びそれを有する印刷装置及び制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees