JP4026845B2 - 平面基板の印刷方法及び印刷装置 - Google Patents

平面基板の印刷方法及び印刷装置 Download PDF

Info

Publication number
JP4026845B2
JP4026845B2 JP2004208518A JP2004208518A JP4026845B2 JP 4026845 B2 JP4026845 B2 JP 4026845B2 JP 2004208518 A JP2004208518 A JP 2004208518A JP 2004208518 A JP2004208518 A JP 2004208518A JP 4026845 B2 JP4026845 B2 JP 4026845B2
Authority
JP
Japan
Prior art keywords
printing
substrate
screen
squeegee
screen plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004208518A
Other languages
English (en)
Other versions
JP2005088577A (ja
Inventor
恵史 布村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2004208518A priority Critical patent/JP4026845B2/ja
Priority to KR1020040059732A priority patent/KR100666893B1/ko
Publication of JP2005088577A publication Critical patent/JP2005088577A/ja
Application granted granted Critical
Publication of JP4026845B2 publication Critical patent/JP4026845B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/40Inking units
    • B41F15/42Inking units comprising squeegees or doctors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F17/00Printing apparatus or machines of special types or for particular purposes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F21/00Devices for conveying sheets through printing apparatus or machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Screen Printers (AREA)
  • Optical Filters (AREA)
  • Printing Methods (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、平面基板の印刷方法、特に大型平面型マトリクス表示基板の高精細パタンの電極などを形成することができる印刷方法、この平面基板の印刷方法を使用するプラズマディスプレイパネルの製造方法及び液晶表示装置の製造方法、並びに平面基板の印刷装置に関する。
平面ディスプレイ装置の例として、AC面放電型カラープラズマディスプレイの代表的なパネル構造例を示す。図14は、AC面放電型カラープラズマディスプレイを示す斜視図である。図14に示すように、プラズマディスプレイパネル(以下、PDP(Plasma Display Panel)ともいう)100は背面基板102と前面基板101とからなり、背面基板102は透明ガラス基板104上にデータ電極105、白色誘電体層106、隔壁107、蛍光体層(RGB)108などが形成されており、また前面基板101には透明ガラス基板103上に走査電極110、維持電極120、透明誘電体層131、表面保護膜132が形成されている。走査電極はバス電極111と透明電極112から、維持電極120もバス電極121と透明電極122から形成されている。また、鮮明な表示を実現するために前面基板101にはブラックマスクやカラーフィルター層(RGB)(図示せず)が設けられることもある。
これらの構成物のうちデータ電極105、隔壁107、蛍光体層108、透明電極112及び122、バス電極111及び121、ブラックマスク、カラーフィルター層は微細なパタン状に形成される。例えば50型ワイドXGA表示のプラズマディスプレイパネルの場合では、0.81mmピッチの画素が縦方向に768行、横方向に1365列配列されている。また、各画素は0.27mm×0.81mmの赤、緑、青を各々発光する長方形の単位セルから構成されている。従って、単位セルが横方向に0.27mmの狭ピッチで4095列配列されている。これらの画素が配列している表示部のサイズは622mm×1100mmにもなる。また、データ電極やバス電極では端子部も必要であり、表示部外に数10mm程度の長さに亘って引き出し部や端子部が形成される。例えば背面基板に形成されるデータ電極を例にすると、約80μm幅、長さ約650mmの細長い金属電極が0.27mmピッチで約5000本も並ぶことになる。また前面基板に形成されるバス電極の場合では、走査電極及び共通電極からなる768対のペアラインが0.81mmピッチで形成される。引き出し部及び端子部を加えるとバス電極がパタン形成される面積は620mm×1150mm以上の大面積となる。電極以外では端子部は不必要ではあるが表示部全体の大面積に亘って高精細パタン形状であることは同様である。
このような大面積高精細パタンの形成にはホトリソグラフィ技術を使用することが一般的となっている。データ電極及びバス電極としては、(Cr/Al)2層膜又は(Cr/Cu/Cr)3層膜等の金属薄膜をスパッタリングにより成膜し、その上にレジスト層を形成し、露光、現像、エッチング、剥離を行う薄膜のホトリソグラフィ技術によりパターニングしたり、又はデュポン社製等の感光性銀ペーストを塗布し、乾燥、露光、現像、焼成を行って作製する厚膜のホトリソグラフィ技術によりパターニングしたりしている。黒色の無機微粒子ペーストを利用するブラックマスクの形成にも、厚膜ホトリソグラフィ技術が利用されている。100μm前後の高さが必要である隔壁は、ホトリソグラフィ技術とサンドブラストとを組み合わせた工法により形成されている。蛍光体層はホトリソグラフィ技術でも作製することができるが、隔壁を土手として利用できるために、要求される精度がややゆるくなり、スクリーン印刷又はノズルからペーストを吐出させるディスペンサー方式によって製造されている。
ホトリソグラフィ技術は、精度が高いホトマスクを使用することができるために、大面積基板のパタン化においても、ライン幅の精度のみならず、ピッチずれも生じにくく優れたパタン化技術ではある。しかし、工程が極めて長くなること、高価な露光機を使用する必要があること、材料の利用効率が極めて悪いこと、感光性材料が高価であること、等の理由から、生産性が低く高コストになるという問題がある。
これに対して、各種の印刷技術は基板上に直接印刷パタンを形成することができるため、生産性が高い技術として期待されている。これらの直接描画技術のなかでもスクリーン印刷は従来から良く知られた技術であり、プラズマディスプレイパネルの製造においても、銀ペーストのスクリーン印刷で電極が形成される場合もある。但し、現状ではスクリーン印刷法により電極が印刷されるパネルは、小型パネル及び解像度が低いパネルに限定されている。
図15(a)及び(b)は、従来のスクリーン印刷法をその工程順に示す断面図である。スクリーン印刷は形成パタンに対応した開口部が形成されたスクリーン版を用い、印刷ペーストを開口部から押し出して基板上に印刷する方法である。具体的には、図15(a)に示すように、堅牢な平面ステージ302上に被印刷物の平面基板303が載せられ、その上に版枠305に一定のテンションで張られたスクリーン版301が基板303との間に適度な隙間を設けて設置される。そして、スキージ307に印圧をかけスクリーン版301の裏面を基板303の表面に押し当て、スキージ307の前面に置かれたペースト306を押し出しながらスキージ307を移動させる。これにより、図15(b)に示すように、平面基板303上にペースト層が印刷される。なお、図15(a)及び(b)に示すように、このようなスクリーン印刷ではスクリーン版301をスキージ307により弾性変形させながら印刷するために、印刷パタン又はスキージ長さに対して余裕のある大きなスクリーン版を用いる必要がある。例えば、50型プラズマディスプレイパネル基板に比較的印刷精度がゆるい蛍光体層を印刷する場合でも、2.0m×1.5m程度の極めて大きなスクリーン版が使用される。
しかしながら、この従来のスクリーン印刷法には、以下のような問題点がある。即ち、このような大きなスクリーン版は高価であると共に、印刷装置及び版洗浄装置も大型になり、取り扱いも難しくなる。また、大面積高精細スクリーン印刷のさらに大きな課題はトータルピッチズレにある。50型ワイドXGAのデータ電極の例で見ると、横方向へのズレ量はパネル全面に亘って50μm程度以下を確保する必要がある。スクリーン版枠の歪み、スクリーン版を張架する際の残留応力若しくはテンションの不均一、取り扱い若しくは熱応力による変形、又は版を変形させながらの繰り返し印刷若しくは版洗浄処理等により、スクリーン全体の僅かな伸び縮み又は部分的な微細な変形が生じ、トータルピッチズレが生じる。そして、ズレ量が大きい場合は書き込み不良及び隣接セルへの誤書き込みが発生し、正しい表示を行うことができなくなる。従って、表示部である622mm×1100mmもの広い領域に亘って、ズレ量が50μm以下程度の高精度印刷が要求される。
一方、近時、カラーLCDも大画面化が急激に進展しており、40型程度の大画面液晶テレビ及び業務用ディスプレイも製品化されてきている。大画面テレビ用途では低コストで製造することが特に重要になる。大画面テレビ用のカラーLCDの場合は、パーソナルコンピュータのモニター用のカラーLCDと比較して必要な精細度は低いこともあり、カラーフィルター及びブラックマスクを高コストプロセスであるホトリソグラフィ技術ではなく、低コストプロセスであるインクジェット印刷方式又はオフセット印刷方式等の印刷技術により基板上に直接形成することが検討されている。これらの印刷方式と比較しても、顔料又は染料を含んだペースト用いてスクリーン印刷で形成することができれば、更に大きなコスト低減を実現することができる。テレビ用途のカラーLCDパネルではカラーフィルターのパタン幅は0.2mm前後であり、最近のスクリーン印刷技術では十分形成可能な線幅であるが、スクリーン印刷ではトータルピッチズレの問題が障害になっている。
このようなスクリーンの伸び縮み及び部分的な変形に起因するトータルピッチズレを解消する方法として、基板を湾曲させた状態で印刷を行う方法が開発されている(例えば、特許文献1参照。)。図16はこのような従来の基板を湾曲させるスクリーン印刷方法を示す断面図である。図16に示すように、この印刷方法においては、円弧状の印刷台401にセラミックグリーンシートのような被印刷物402を固定し、印刷マスク403と被印刷物402との接線位置とスキージ404の先端位置を一致させる。そして、スキージ404の移動方向の前方にペースト405を配置し、印刷台401を回転駆動することにより、スキージ404に対して被印刷物402を相対的に移動させ、この移動と同期して印刷マスク403を直線移動させることにより、印刷する。この方法ではスクリーン版が下側に伸びることは生じ得ず、印刷マスク403と印刷台401との全面的な密着に伴うペーストの印刷ずれ及び形状精度の劣化が生じることはなく、印刷ずれ及び形状精度の劣化を有効に防止できる効果があるとされている。
特開平8−112891号公報
しかしながら、上述の従来の技術には、以下に示すような問題点がある。良好なスクリーン印刷を行うためには版離れが重要である。図15(a)に示すように、版離れはスキージ307で押さえつけられた部分においてスクリーン版301と基板303とのなす版離れ角αと、スクリーン版301のテンションとが重要であり、版離れ角αが大きくスクリーン版のテンションが大きい方が、版離れ性は良くなる。適切なスクリーン印刷が可能となる版離れ角及びスクリーン版のテンションは、印刷ペーストの粘度、印刷パタン、印刷面積、スクリーン版サイズ、印刷速度等によって変わるが、現在利用できる大型スクリーンで銀電極などを印刷する場合は、経験的に版離れ角αは0.3°以上が必要であり、より好ましくは0.7°以上である。
図15(a)及び(b)からわかるように、版離れ角を大きくするためには、従来のスクリーン印刷ではスキージをスクリーン版に押し当てないときのスクリーン版と基板との間の距離であるクリアランスを大きくする必要がある。しかし、クリアランスを大きくすることはスクリーン版の変形が大きくなることでもあり、またスクリーン版のテンションを強くすることと相反することになるため、妥協された条件を選んで印刷することになる。50型プラズマディスプレイパネルのデータ電極を印刷する場合の一般的な条件としては、5〜10mm程度のクリアランスが適用されている。なお、クリアランスが一定の場合は、図15(a)及び(b)からわかるように、印刷開始側での版離れ角、即ちスキージの印刷開始側のスクリーン版と湾曲させられた平面基板とのなす角度は大きいが、印刷終端側での版離れ角は小さくなる。このように、基板のサイズが大きくなると、スクリーン版の変形を抑制しつつ、一定の大きさの版離れ角度を確保することが困難である。このため、トータルピッチズレを抑制する効果が不十分である。
近年、スクリーン印刷用のペースト及びスクリーン版の性能の向上も著しく、50μm程度の細線印刷も可能になってきており、カラープラズマディスプレイパネルの電極印刷などに要求される細線パタン印刷への適用も期待される。また、大画面カラーLCD用のカラーフィルターをスクリーン印刷で形成することも期待できるレベルにある。しかしながら、大面積高解像度パネルの印刷では、パタンの線幅の微細化と共に重要課題であるトータルピッチズレの低減に関しては十分な進歩は無く、スクリーン版の大型化に頼っている状態にある。
また、図16に示す円柱状のステージを使用する技術においては、版離れ角を大きくするためにはステージ表面の曲率半径を小さくする必要がある。このため、大型の表示パネルのガラス基板に対して適用することは困難である。
本発明はかかる問題点に鑑みてなされたものであって、大型基板に対して印刷することができ、トータルピッチズレが少ない平面基板の印刷方法及び平面基板の印刷装置を提供することを目的とする。
本発明に係る平面基板の印刷方法は、平面基板の印刷面上にスクリーン印刷マスクを配置し、前記平面基板と共に前記スクリーン印刷マスクを挟圧するように一方向に延びるスキージを配置し、このスキージのこのスキージが延びる方向に交差する印刷方向前方に印刷ペーストを配置して、前記スキージを前記印刷方向に前記平面基板に対して相対的に移動させることにより前記平面基板の印刷面に印刷する平面基板の印刷方法において、前記平面基板を一方向に湾曲させて印刷面を凸状とする工程と、この湾曲した基板の印刷面に平面状の前記スクリーン印刷マスクの第1の面を接触させる工程と、前記スキージを前記スクリーン印刷マスクの第2の面における前記基板との接触部分から前記印刷方向後方に離隔した部分に押し当ててこの部分を前記基板と共に挟圧する工程と、前記スクリーン印刷マスクの第2の面上における前記スキージの前記印刷方向前方に印刷ペーストを配置する工程と、前記基板と前記スクリーン印刷マスクとの接触部分を前記印刷方向に移動させつつ、前記スキージを前記印刷方向に前記基板に対して相対的に移動させることにより前記基板の印刷面に印刷する工程と、を有することを特徴とする。
本発明においては、スキージをスクリーン印刷マスクと前記基板との接触部分から印刷方向後方に離隔した部分に押し当ててこの部分を前記基板と共に挟圧することにより、スクリーン印刷マスクの変形量を極めて小さく抑えたまま、印刷後端での版離れ角を大きくすることができる。これにより、平面基板のサイズを大きくした場合でも、トータルピッチズレを小さく抑制することができ、高精度が印刷を行うことができる。
また、本発明の平面基板の印刷方法において、前記スクリーン印刷マスクにおける前記スキージが押し当てられた部分から前記印刷方向前方に15.7mm以上延びた領域が、前記基板の表面に圧力を受けて密着していることが好ましい。
更に、本発明において、例えば、前記基板がガラス基板である。
更にまた、本発明において、湾曲させた前記基板の印刷面は円柱側面の一部をなしており、その曲率半径は乃至40mであることが好ましい。
更にまた、前記スキージの移動に伴って、前記印刷方向における前記基板と前記スクリーン印刷マスクとの接触部分の長さを変化させることにより前記スクリーン印刷マスクの版離れ角を制御することが好ましい。
更にまた、前記スキージの移動に伴って、前記印刷方向における前記基板と前記スクリーン印刷マスクとの接触部分の長さを変化させるように構成することができる。
本発明に係る平面基板の印刷装置は、弾性を有する平板状の被印刷物を第1の方向に強制的に湾曲させ印刷面を凸状とした状態で固定する固定手段と、前記印刷面において前記第1の方向と交わる第2の方向に延伸する直線を接線として前記印刷面に接触するように配置されるスクリーン印刷マスクと、前記接線の位置を前記印刷面に沿って移動させる第1の移動手段と、前記接線から印刷開始側に所定の距離だけ離れた位置で前記スクリーン印刷マスクの第2の面に押し当てられ、前記スクリーン印刷マスクと前記印刷面とを相互に接触させるスキージと、前記接線の位置の移動に同期して前記スキージと前記スクリーン印刷マスクとを相対的に移動させる第2の移動手段と、を有することを特徴とする。例えば、前記スクリーン印刷マスクがメタルスクリーン印刷マスクである。
本発明によれば、プラズマディスプレイパネル及びカラーLCD等の表示装置において使用される平面ガラス基板が弾性を有していること及び形成されるパタン形状の特徴に注目し、上述の如く印刷方法を工夫することにより、トータルピッチズレが少ないスクリーン印刷を実現することができる。また、版離れ角を確保し、良好なスクリーン印刷を実現することができる。これにより、大画面薄型テレビとして期待されるプラズマ表示装置及びカラーLCD等の大画面平面表示装置の低価格化に寄与することができる。
以下、本発明の実施形態について添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施形態について説明する。図1(a)乃至(f)は本実施形態に係る平面基板の印刷方法をその工程順に示す断面図である。本実施形態は、平面基板の印刷方法の実施形態である。また、図2は、本実施形態に係る平面基板の印刷方法を示す斜視図であり、図3はその断面図である。なお、図1(a)乃至(f)において、図示の横方向を第1の方向とし、紙面に垂直な方向を第2の方向とする。また、図2に示すX方向が第1の方向であり、Y方向が第2の方向である。本明細書では特に断らない限り第2の方向は断面図における紙面に垂直な方向とする。
先ず、図1(a)及び(b)に示すように、第2の方向に直交する第1の方向に一様に湾曲する湾曲表面7を有する湾曲面ステージ2において、まず平面ガラス基板1に圧力をかけ、湾曲面ステージ2の湾曲表面7に沿って固定する。このとき、真空吸着により平面ガラス基板1を湾曲面ステージ2の湾曲表面7に密着させる。即ち弾性を有する平面ガラス基板1を弾性限界内で第1の方向に印刷面が凸状になるように一様に湾曲させる。湾曲面ステージ2の湾曲表面7は半径5mの円筒の一部を切り出した形状とする。
次に、図1(c)に示すように、この湾曲表ステージ2をスクリーン印刷マスクである版枠4に固定された平面状のスクリーン版3の下に配置し、被印刷物である平面ガラス基板1の印刷動作開始側の部位を、ステージ2の印刷開始側を持ち上げることによりスクリーン版3の裏面と接触させる。このとき、平面ガラス基板1はスクリーン版3と第2の方向に延伸する直線を接線として線状に接触している。そして、第2の方向に延びるライン状のスキージを、この接線Cより印刷開始側に所定の距離だけずらした位置Pにおいてスクリーン版表面に適切な印圧で押し当て、スクリーン版3を湾曲させられた平面ガラス基板1に帯状の領域で接触させる。スキージ5の前面、即ち印刷終端側には印刷ペースト6がおかれる。なお、スキージ5には、例えは、硬度が70のウレタンからなる平型スキージを使用する。
次に、図1(d)及び(e)に示すように、印刷開始側の湾曲面ステージ2と印刷終端側の湾曲面ステージ2が相対的に逆方向に上下運動することによりスクリーン版3と湾曲された平面ガラス基板1の接触位置を連続的に変えながら帯状の接触部が印刷開始側から印刷終端側に、即ち図中の右方向に移動する。この接触部の移動と同期してスキージ5が、接線Cから所定の距離を保った位置Pにおいてスクリーン版3を湾曲させられた平面ガラス基板1に接触させたまま、スクリーン版3の上を右方向に移動する。印刷終端までこのように移動させることにより湾曲させた平面ガラス基板1の全面に印刷パタン14を印刷する。次に、図1(f)に示すように、湾曲面ステージ2から平面ガラス基板1が取り外され平面ガラス基板1上への印刷が完了する。
このように、弾性を有する平面基板を第1の方向に一様に湾曲させ、湾曲した基板の印刷面上の第2の方向に延伸する直線を接線として基板に接するように平面状の印刷マスクを配置し、この接線の位置を第1の方向に移動させるのに同期してスキージと印刷マスクを相対的に移動させることにより、基板の印刷面の印刷を行うことができる。即ち、接線の移動に同期してスキージ5とスクリーン版3とが接する位置も移動する。なお、本実施形態においては、平面ガラス基板を円弧状に湾曲させた。円弧状の湾曲は最も単純であり実用化しやすいが、原理的には、弾性限界内で一様に湾曲させるのであれば、放物線状又は楕円状等、断面は円弧状でなくても良く、湾曲形状に応じた制御を行うことにより本発明の印刷を行うことができる。
本実施形態は50型プラズマディスプレイパネルの背面基板に形成されるデータ電極として銀ペーストを印刷した例であるが、図2に示すように、データ電極がライン状に伸びる方向に印刷を行っている。
本実施形態においては、平面基板を湾曲させスキージ位置を適切に配置することにより良好なスクリーン印刷を行うことができる版離れ角を確保することができる。これについて図3で説明する。図3に示すように、平面基板1が点Oを中心とする半径Rの円弧状に湾曲されている。平面状のスクリーン版3の裏面に湾曲された基板1の表面を接近させることにより線状に接することになる。断面におけるこの接触点をCとする。即ち、図3において接触点Cを通る紙面に垂直な直線を接線としてスクリーン版3と湾曲された平面基板1は接する。そして、スキージ5を点Cから印刷開始側に長さLだけ離れたスクリーン版3上の位置Pに配置し、スキージ5をスクリーン版3の面に垂直に押し当てることによりスクリーン版3を湾曲された基板1に押し付けると、スクリーン版3と基板1は帯状に接することになる。図3の断面図において、湾曲された基板1の表面の接触点Cと点Oを結ぶ直線とスキージ5によりスクリーン版3が押し付けられた湾曲された基板1の表面の点Pとのなす角度をγとする。また、この2点の高さ方向の距離をHとする。高さHだけスキージによりスクリーン版を押し下げたことによるスクリーン版の傾斜する角度をβとする。印刷開始後における基板1の表面とスクリーン版3の裏面とのなす角度が版離れ角であり、これをαとする。これらの間には以下に示す関係がある。
H=R(1−cosγ)
L=Rsinγ
α=β+γ
Rを5mとし、Lを61mmとすることにより、γは0.7°、Hは0.37mmとなる。βはスクリーン版のサイズ及び印刷位置によって異なるが、通常のスクリーン印刷のクリアランスに相当するHが0.37mmと小さいために、版枠と印刷位置との間の距離を1mとすると、βは0.02°しかない。従って、本実施形態においては、版離れ角αはほぼγで決定されることになる。このように、本実施形態によれば、スクリーン版の変形を極めて小さくすることができる。例えば、図15(a)及び(b)に示す従来の方法において、スクリーン版の印刷方向の長さが1500mmである場合には、0.7°の版離れ角度を中央部で確保するためには、クリアランスは9.2mmとする必要があり、この場合スクリーン版は75ppm程度伸びることになる。これに対して、本実施形態では、同じ0.7°の版離れ角を実現しながらもスクリーン版の伸びは僅か1ppmしかない。また、印刷方向に直交する方向(第2の方向)のスクリーン版の伸びも極めて小さい。印刷方向に直交する方向のスクリーン版の長さを2000mmとし、スキージの長さを1200mmとすると、従来のスクリーン印刷では9.2mmのクリアランス分をスキージで押し込んでいるので、106ppmの伸びとなるのに対して、本実施形態ではスキージでスクリーン版を押し込んでいるのは0.37mmしかなく、印刷方向と直交する方向のスクリーン版の伸びは0.1ppmと極めて小さい。なお、本実施形態においては、スクリーン版3と平面ガラス基板1との接触領域の印刷方向における長さは2mm以上とすることが好ましい。また、版離れ角αは0.2°以上とすることが好ましい。
湾曲された平面基板の曲率半径を小さくするほど、同じ版離れ角を実現するHとLの値は小さくなり、印刷時のスクリーン版の伸びも小さくすることができる。但し、平面ガラスの厚さが厚い場合は、曲率半径を過度に小さくすると、平面ガラス基板が割れてしまうため、あまり曲率半径を小さくすることができない。また、平面基板を湾曲させることにより印刷表面の長さが変化することも考慮する必要がある。カラーLCD用のガラス基板には、厚さが0.7mm程度の極めて薄いものが使用されており、この場合は半径1m程度のかなり小さな曲率とすることができる。これに対してカラープラズマディスプレイパネル用のガラス基板はこれよりも厚いために、曲率半径を8m以上とすることが実用的である。しかし、カラープラズマディスプレイパネル用のガラス基板も薄くする方向にあり、近い将来には1〜2mm程度のガラス厚さが主流になると判断される。この場合は、3m程度の曲率半径とすることも可能となる。
逆に、曲率半径が大きい場合は、大きな版離れ角を得にくくなること、版の変形が大きくなること、スクリーン版サイズを大きくする必要が生じるなどの問題が生じる。勿論、それでも従来のスクリーン印刷とに比較すると、これらの点では優位性が逆転するものではなく、100mの大きな曲率半径としても、利点はある。しかしながら、本発明を実現するためには精度が高い湾曲面ステージ及び複雑な印刷機構が必要であり、従来の印刷装置に比べて高コストなものになるために、本発明のメリットが小さい場合には工業的に用いる価値が減ぜられる。このため、従来のスクリーン印刷とは10倍程度の大きな効果を得ることができる40m以下の曲率半径とすることが望ましい。
なお、上述の図3に示した例では、スキージでスクリーン版を押し込む前の状態としては湾曲させた基板表面とスクリーン版裏面が丁度接する状態としたが、湾曲させた基板をスクリーン版裏面との接触する高さから更に持ち上げる方法もある。以下、本実施形態の変形例について説明する。図4は本変形例に係る平面基板の印刷方法を示す断面図である。前述の本実施形態においては、版離れ角αは、元々クリアランスによる角度(β)の影響は少なく、湾曲により得られる角度(γ)が殆んどである。このため、図4に示すように、図3に示す角度βが0になるようにすれば、スキージでスクリーン版を押し込むことなく適切な版離れ角を実現できる。図4に示す本変形例においては、図3の方法に比べスキージの印圧を小さくすることができる。なお、図4の場合とは逆にスクリーン版と湾曲させた基板表面との間に従来のスクリーン印刷と同様大きなクリアランスを設け、スキージでスクリーン版を押し込んで印刷することもできる。この場合は版離れ角を更に大きくすることができるが、スクリーン版の変形も当然大きくなってしまうために、本発明の利点を減ずることになるため適切な方策ではない。
上述のように、本実施形態及びその変形例に係る印刷方法では、スクリーン版の変形を小さくしながら良好な版離れを実現することができるが、本実施形態の方法によるもうひとつの利点は、印刷の際にスキージの前方側でスクリーン版裏面と被印刷基板の表面が帯状に密着していることから得られる。スクリーン印刷では、トータルピッチズレ及び局所的な変形等をなくして印刷パタン精度を確保すること以前に、当然ながら印刷パタン全体がかすれることなく且つ滲むことなくパタン印刷できることが基本的な要件である。断線及び線の細りとなるかすれとパタンの滲みとはトレードオフの関係になるため、印刷ペーストの粘弾性の調整及び印刷条件の調整を行って、適切な条件に合わせ込む必要がある。しかし、表示装置の高精細化及び大面積化に伴い、良好なパタン印刷を行うことができるペーストの特性及び印刷条件の適正範囲が狭くなり、工業的に安定な印刷を行うことが難しくなる。
スクリーン印刷はスキージを移動させることにより、スキージの前面にあるペーストに圧力を加えスクリーン版の開口部に充填し基板表面に転写することにより印刷されるものである。前述の如く、従来のスクリーン印刷方法では、印刷基板表面から隙間をあけてスクリーン版を設置し、スクリーン版をスキージで押し下げることにより、スキージのエッジ部でスクリーン版裏面のエマルジョン面を基板表面に密着させている。従って、その前方ではスクリーン版裏面と基板表面とは隙間が空いている状態にある。従って、ペーストの粘度が低過ぎる場合、及びスキージの設定によってペーストを押し出す力が強過ぎる場合には、スキージの前方部位でのスクリーン版の開口部から押し出されたペーストがスクリーン版裏面のエマルジョン面と基板表面の隙間にしみ出し、滲みとなってしまう。
これに対して、本実施形態においては、スクリーン版が湾曲された基板表面に押し付けられて、スキージの前方で帯状に密着している。このためスキージの前方においてスクリーン版の開口部からペーストがはみ出し難く、印刷の滲みが生じにくい。また、前述の印刷面全面に亘って適切な版離れ状態を保持できる効果も、滲みが無い印刷の実現に寄与する。このため、本実施形態のスクリーン印刷を用いることにより、大面積の基板の表面全面に亘って、均一にかすれ及び滲みが無いパタン印刷を行うことができる。このことは、印刷ペーストの粘弾性、スキージの角度及びエッジの状態等の調整幅にマージンを持つことができることにもなる。なお、一般的な印刷ペーストを使用する場合では、スキージ前面でスクリーン版と基板表面が密着している長さが少しでも増えれば滲み防止の効果があるが、実用的には2mm程度を確保することにより、工業的に再現性がある効果が得られる。また、滲みはスキージのエッジ近傍で発生する現象であり、密着部をあまり長くしても滲み防止効果は飽和するため、20mm以下で良い。本発明では図3及び図4に示したLの値が密着長さであり、必要な版離れ角を得るためにLの値を数ミリ以上に設定することになるため、滲み防止に主眼を置いてLの値を長くするように設定にする必要はない。
なお、スクリーン印刷及びメタル版印刷ではコンタクト方式が知られている。この方法は平面基板表面上に開口部を有する印刷版を直接置き、スキージで印刷するものである。この方式では、印刷版はただ基板表面に置かれているだけであり、印刷版裏面と基板表面が圧力を受けて密着している状態には無い。従って、印刷ペーストの開口部からの滲み出しに対する防止効果は殆ど無い。本実施形態の方法では、強いテンションで張られたスクリーン版を彎曲された基板とスキージエッジで挟み込むように圧力がかけられている為、スクリーン版はスキージエッジの前方で基板表面の帯状領域に押し付けられており、コンタクト印刷とは明確に異なり滲み防止効果を有する。
このように、本実施形態においては、十分な版離れ角度を実現しながら印刷時のスクリーン版の変形を極めて小さくできる。このため、スクリーン版のサイズを従来のスクリーン印刷に必要とされるサイズより小さくすることができる。また、スクリーン版のテンションを大きくすることも可能となる。この場合、良好な印刷に必要となる版離れ角自体も小さくすることができる。上述の実施形態では、従来のスクリーン版と同じ2000mm×1500mmのスクリーン版を想定して変形量等を比較したが、本発明では1400mm×1000mmの一回り以上小さなスクリーン版を使用し、0.5°の版離れ角で印刷しても、版の伸びは極めて小さく良好な高精度印刷を行うことができる。この場合でも印刷時のスクリーン版の印刷方向の伸びは2ppm以下であり、また印刷方向と直交する方向のスクリーン版の伸びは0.3ppm以下である。即ち、小さなスクリーン版を使用するにも拘わらずスクリーン版の変形は極めて小さい。なお、良好な印刷に必要となる版離れ角は種々の状況により変わるが、本発明の場合では上述のように通常の印刷より小さくすることが可能であり、また、湾曲効果によりスキージから遠ざかる従って急速にスクリーン版と湾曲された基板表面の距離が大きくなる効果もあり、スキージ位置での版離れ角度は0.2°程度でも、多くの場合良好な印刷が可能となる。
なお、図3及び図4を従来のスクリーン印刷の状態を示した図15と比較すれば容易に理解できるが、本発明では版離れ角の殆んどは基板表面の湾曲形状並びにとH及びLの設定で決定されるために、印刷位置に依らず一定の版離れ角とすることができ、大きな基板でも全面に亘って均一に印刷することができる。この特徴はパタン印刷のみならず、ベタ印刷に本発明を適用しても印刷厚さの均一性を改善するなどの効果を得ることができる。なお、印刷パタン形状の粗密が面内で大きく異なるなど、最適な版離れ角度が印刷位置により異なる場合では、Lの長さを印刷中にダイナミックに変化させることにより、容易に版離れ角を変えながら最適な印刷を行うことができる。
小さなスクリーン版サイズを使用できることは、スクリーン版の取り扱いが容易になり、印刷装置及びスクリーン版洗浄装置を小型にすることができるという利点があるばかりではなく、高精細印刷に適した線径が細いリジタイズメッシュ、カレンダーロールメッシュ及び高張度液晶繊維を使用したVスクリーン(商標)等の原反幅が狭いメッシュを高テンションで使用することができるようになる。このため、高精度印刷をより可能にする相乗効果も得られ、本発明の効果を高めることになる。
本実施形態においては、印刷時のスキージによるスクリーン版の押し込み量が極めて小さいので、スキージの印圧も通常のスクリーン印刷と比較して低くすることができる。従って、スキージとスクリーン版との間の摩擦も少なく、多数回の繰り返し印刷により生じるスクリーン版のパタンの変形も生じにくい。このため、印刷精度が格段に改善され、細線狭ピッチパタンの大面積印刷が可能となり、大画面プラズマディスプレイパネルのデータ電極印刷にも採用することができる。
同様に、本実施形態に係る印刷方法は、データ電極以外にも、銀を使用して前面ガラス基板に形成されるバス電極にも適用することができる。バス電極は表示特性を良くするために黒色化された黒色層と抵抗が低い低抵抗層との2層構成とすることが好ましいが、本実施形態においては、トータルピッチズレが少ないため、黒色層を印刷し、乾燥した後に、低抵抗層を位置ズレなく印刷することができる。
なお、本印刷では硬度70のウレタン系の平型スキージを使用したが、印刷状況に応じて適当なものを使用すればよい。また、スキージの設置角度、スキージの形状及び硬度、ペースト粘度、スクリーン版のテンション、印刷速度等の一般的印刷条件は、印刷状態を判断しながら従来のスクリーン印刷と同様のやり方で調整すればよい。
次に、本実施形態に係る平面基板の印刷方法において、適切な印刷方向について説明する。プラズマディスプレイパネル等の平面ディスプレイパネルの電極及び他の構成物の製造に際しては、一般に、高い印刷精度が要求される方向と印刷精度がゆるい方向とが存在する。図5(a)はプラズマディスプレイパネルのデータ電極パタンを示す平面図であり、(b)はバス電極パタンを示す平面図である。図5(a)に示すデータ電極の例では、表示画素が配列される部分では長いラインが同じ配列ピッチで配列され、ガラス基板の端部においてはラインの配列ピッチが変化して、基板端部に形成される端子部に接続される形状となっているのが一般的である。このとき、データ電極15が延びる方向(ライン方向)に要求される長さ精度は厳しくはない。これに対して、ライン方向と直交するピッチ方向にはデータ電極が狭ピッチで配列されるため、要求される精度が厳しい。このデータ電極の配列ピッチと後で形成される隔壁及び蛍光体層のピッチとは一致している必要があり、表示部で部分的にでもズレを生じると不良品になる。図5(b)に示すバス電極の場合は、バス電極16の形状はデータ電極15が延びる方向に直交する方向に延びるライン形状であり、そのライン方向には必要精度は低いが、ピッチ方向には、透明電極及びブラックマスク等との位置関係を厳密に制御する必要があるため、高い精度が要求される。
本実施形態においては、強度が高い版枠及びサイズが小さいスクリーン版を使用し、且つスクリーン版を殆んど変形させずに印刷を行うことができるために、高いパタン形成精度を実現することができる。しかしながら、印刷をしながら湾曲面ステージなどを移動させる必要があり、印刷方向の印刷パタン精度は印刷装置の機械的精度に影響を受けることになる。勿論印刷装置の高精度化、高制御化により高い移動精度を実現することは原理的には可能ではあるが、要求精度が高いピッチ方向を印刷方向と直交する方向(図2に示すY方向)と一致させることにより、印刷装置のコストを増大させることなく、高いトータルピッチ精度を容易に実現することができる。
即ち、平面ガラス基板1の印刷面に、図1の紙面に垂直な方向である第1の方向とは直交する方向に実質的に平行なライン状のパタンを印刷することにより、さらに印刷方向を実質的に第1とは直交する方向とすることにより、高いトータルピッチ精度が容易に実現される。
本実施形態に係るプラズマディスプレイにおいて、データ電極及びバス電極以外のブラックマスク、カラーフィルター、蛍光体及びパタン化された誘電体層においても、要求されるトータルピッチ精度は一般に方向によって異なり、要求精度が相対的に厳しい方向と相対的にゆるい方向とがある。例えばコントラスト向上のために単位セルの周囲を黒色化するブラックマスクの場合でも、列方向には0.27mmピッチであり、行方向では0.81mmピッチであり、且つ行方向の長さも短いため、行方向のトータルピッチズレの許容度は列方向に比較して厳しくない。これは、プラズマディスプレイ以外でも、カラー液晶用のブラックマトリクス及びカラーフィルター並びに電子放射ディスプレイの電極パタン等でも同様である。
本実施形態では、この特徴を積極的に利用し、平面ガラス基板を要求トータルピッチ精度がゆるいライン方向で湾曲させ、この方向を印刷方向とし、トータルピッチの要求が厳しい方向を印刷方向と直交する方向とする。これにより、印刷方向と直交する方向には平面ガラス基板の湾曲による長さの変化が無く、印刷動作に伴うスクリーン版の伸びも少ないため、トータルピッチのズレを極めて小さくすることができる。勿論、印刷に際してはライン方向と印刷方向とを完全に一致させる必要は無く、スキージの微細な傷の影響等を配慮して、印刷精度に影響しない範囲で僅かなバイアス角を持たせても良い。
以上述べたように、本実施形態においては、従来のスクリーン印刷とは異なり、スクリーン版の弾性変形を抑制しつつ、容易に適切な版離れ角を得ることができる。この特徴を生かしてスクリーン版サイズを従来よりも小さくすることができ、スクリーン版のテンションも高くすることができる。また、トータルピッチズレが厳しい方向とゆるい方向とがあることを利用することにより、より一層精度が高いパタン印刷が可能となる。
次に、本発明の第2の実施形態について説明する。図6(a)乃至(c)は本実施形態に係る平面基板の印刷装置の動作をその工程順に示す断面図である。本実施形態は、本発明に係る平面基板の印刷装置の実施形態である。
本実施形態の印刷方法においては、湾曲面ステージ上に固定され湾曲されたガラス基板を、スクリーン版との間でズレを生じることなく、スクリーン版の裏面を転がるように接触位置を連続的に変えながら移動させることが望ましい。この様な運動を実現する方法としては回転中心に軸受けを設けて、湾曲面ステージを回転させることが一般的な方法となる。この場合、面積が小さく極めて薄く容易に変形するグリーンシートへの印刷に際しては、数10センチ程度の半径の回転ステージで十分であり印刷装置の製造も容易である。しかし、本発明の主目的であるプラズマディスプレイパネル用のガラス基板への印刷では、一般にガラス基板が大型で、且つ大きく湾曲させることもできない。従って、回転中心に軸受を設けステージと直結させるような構造では、印刷装置が、回転半径が数メートルにもなる巨大な装置となり現実的ではなくなる。
図6(a)に示すように、本実施形態に係る平面基板の印刷装置においては、一方向に湾曲した湾曲面ステージ2が設けられており、この湾曲面ステージ2の凸面、即ち湾曲表面7が、平面ガラス基板1を湾曲した状態で搭載する基板搭載面となっている。また、複数のコロ8が、回転可能に設けられている。そして、これらのコロ8は、コロ8の中心軸を結ぶ面が、湾曲表面7と同心面を形成するように、等間隔に配置されている。これにより、湾曲面ステージ2の凹面、即ち、湾曲表面7の反対面がコロ8に転接している。また、コロ8は駆動モータ(図示せず)に連結されており、コロ8が回転することにより湾曲面ステージ2が移動し、平面ガラス基板1が移動するようになっている。
一方、湾曲面ステージ2の上方には、湾曲された平面ガラス基板1の一部に接触するように、スクリーン版3が設けられている。また、湾曲面ステージ2の移動と同期して、スクリーン版3を移動させる駆動装置(図示せず)が設けられており、スクリーン版3に連結されている。この駆動装置は、平面ガラス基板1とスクリーン版3との接触面において両者が相互にずれないように、湾曲面ステージ2の移動と同期してスクリーン版3を移動させるものである。
前述の第1の実施形態において示した印刷動作を行わせるには、図6(a)乃至(c)に示すように、湾曲面ステージの内面に湾曲表面7と同心円となる円弧の内面ガイドを設け、この内面ガイドを複数のコロ8で受け、歯車等で湾曲面ステージ2を摺動させることにより、湾曲面ステージ2を回転運動させる方法を採用することができる。つまりコロ8をガイドとして湾曲面ステージ2を回転運動させるとともに、湾曲面ステージ2の摺動に同期して、スクリーン版を平行移動させることにより印刷することができる。これにより、湾曲面ステージ2をその湾曲表面7の断面がなす円弧の中心を軸として回転運動させると共に、印刷マスクであるスクリーン版3をスクリーン版3の平面に平行に移動させることにより、湾曲面ステージ2とスクリーン版3を相対的に動かすことができる。このように印刷マスクは平行運動、湾曲面ステージは回転運動と動きをそれぞれ単純化できるため構成が単純になり、また、前述のステージの回転中心に軸を設ける方法と比較して、装置を小型化することができる。
また、湾曲面ステージをその湾曲表面の断面の成す円弧の曲率半径の中心を軸として回転運動させると同時に、湾曲面ステージをスクリーン版の平面に平行に移動させることにより、湾曲面ステージとスクリーン版を相対的に動かすこともできる。即ち、湾曲面ステージの湾曲表面と同心円を形成する円弧状のガイドを具備し、湾曲面ステージをガイドに沿って移動させることにより上述の回転運動をさせ、かつ前記ガイドを平行運動させることができる。このようにするとスクリーン版を移動させない分、装置をより一層小型化することができるというメリットがある。
次に、本発明の第3の実施形態について説明する。図7(a)乃至(c)は本実施形態に係る平面基板の印刷装置の動作をその工程順に示す断面図である。上述の第2の実施形態に示したような湾曲表面の曲率に合わせた摺動動作を行わせることは、等速移動を行いやすく、ステージ及びスキージの動きも単純であるという利点を有するが、回転摺動運動を精度良く行うためには高精度の曲率面加工が必要であり、大きな印刷装置では装置の価格が高くなる問題がある。
従って大型装置では、図7(a)乃至(c)に示すように、あおり的な動作でステージを動かす方法を採用することが好ましい。この例では湾曲面ステージの印刷方向に並んだ2箇所に回転軸部10を設け、この部分を水平方向及び垂直方向等の2方向に同期させながら制御して移動させる方法を用いている。即ち、図7(a)乃至(c)に示すように、印刷開始側の回転軸部10を下方及び印刷方向に移動させると共に、印刷終了側の回転軸部10を上方及び印刷方向に移動させる。これにより、湾曲面ステージ2がスクリーン版3に対して相対的に回転しながら平行移動する。この結果、前述の第2の実施形態と同様な効果を得ることができる。
次に、本実施形態の変形例について説明する。図8(a)乃至(c)は本変形例に係る平面基板の印刷装置の動作をその工程順に示す断面図である。図8(a)乃至(c)に示すように、本変形例においては、前述の第3の実施形態よりも単純な構成として、ステージの中央部にステージを支える固定回転軸部11を設け、これを中心にステージを回転運動させる。回転運動はステージに取り付けられた可動回転軸部12をシリンダー等により上下に動かすと共に、固定回転軸部11を上下に動かすことにより、容易に実現できる。固定回転軸部11の取り付け位置は中央に限定されるものではない。例えば、ステージの端に固定回転軸部を具備し、反対側にシリンダー等と連結された回転軸部を具備させた装置構成としても良い。これにより、ステージ全体の上下方向動作が単純になる。
上述の第3の実施形態及びその変形例に示した方法以外にも各種の方法及び配置があり得るが、図7及び図8に示したような湾曲面ステージのあおり動作を実現するためには、ステージに印刷方向に並んだ少なくとも2箇所以上の回転軸部を設け、これらの回転軸部のうち少なくとも1個の回転軸部を移動させる機構を有していれば良い。このようなあおり運動では印刷位置が上下に動くことになり、これを補償するために、湾曲面ステージのあおり動作に合わせて、ステージ全体又はスクリーン版及びスキージ等を前記あおり動作に同期させて相対的に移動させる機構も具備する必要がある。また、これらの印刷中の移動動作は等速移動ではない複雑な移動が必要になる場合もあるが、電子的に制御されたメカトロニクス機構を利用することにより移動動作を制御すればよい。つまり、湾曲面ステージは少なくとも印刷方向に配列された2箇所の回転軸部を備え、そのうち少なくとも1箇所の回転軸部を移動させる軸移動機構を備えることにより、湾曲面ステージとスクリーン版とを相対的に動かすことができる。
何れの装置にしろ、適切な版離れ角を得るためには、スキージを線状接触部の中央から適切な距離だけ印刷開始端側にオフセットされた状態で印刷動作を行わせる必要があるが、この機構の実現にそれほど特殊なものは必要ではなく容易に実現することができる。
なお、前述の各実施形態では、スクリーン版は印刷の間常に水平に保たれている場合を示したが、例えば印刷終了側を常に持ち上げた斜め印刷としても良い。また、上述の機構をスクリーン版枠及びスキージの移動の機構を固定する構造物に具備させ、湾曲ステージを固定したままスクリーン版の傾きを印刷の進行に合わせて順次変えることにより、基板表面にならうように移動させながら印刷することも可能である。また、図7及び図8に示すように、2方向以上の移動を制御することによってステージを動かす場合は、湾曲面ステージの湾曲表面の湾曲は必ずしも円弧である必要は無い。適当な湾曲形状に合わせてステージ並びにスクリーン版及びスキージを動かすことにより同様の印刷を実現することもできる。
次に、本発明の第4の実施形態について説明する。本実施形態は、上述の第1及び第2の実施形態において、平面ガラス基板の固定方法を改良した実施形態である。図9(a)乃至(d)は本実施形態における平面ガラス基板の固定方法を示す断面図である。通常の平面ステージのスクリーン印刷装置とは異なり、本発明では平面ガラス基板を高い精度で湾曲した状態にする必要がある。このためには本発明の印刷装置では高い精度で湾曲表面が形成された湾曲面ステージを利用する。湾曲面ステージの湾曲面としては曲率半径が1乃至40m程度の円柱形状の一部分を切り出した形状とすることが望ましい。湾曲面ステージ上に平面ガラス基板の自重で湾曲面ステージ表面に面接触させるか、平面ガラス基板を機械的な力で強制的にステージに押し付ける。図9(a)乃至(c)に示すように、平面ガラス基板の両端を押さえヘッド9で押し付けることにより、平面ガラス基板を湾曲させ湾曲面ステージ上に接触させることができる。
次に、本第4の実施形態の変形例について説明する。図10(a)乃至(d)は本変形例における他の平面ガラス基板の固定方法を示す断面図である。図10(a)乃至(d)に示すように、平面ガラス基板1の一端を先に固定ヘッド17により固定し、反対側の端部を押さえヘッド9により平面ガラス基板を押し付けることにより、湾曲面ステージに密着させることもできる。図10(a)乃至(d)に示す方法は、湾曲面ステージ2側に位置決めを兼ねた固定ヘッド17が設けられている例である。この後、湾曲面ステージ2に作り込まれている真空吸着機構又は静電吸着機構(図示せず)により、湾曲面ステージ2の表面に平面ガラス基板1を密着固定する。
次に、本実施形態の他の変形例について説明する。図11は平面ガラス基板1を湾曲面ステージに固定する治具を示す断面図である。平面ガラス基板を強制的に湾曲させてステージに真空吸着させた場合は平面ステージへの吸着とは異なり、何かの原因で真空吸着や静電吸着が破れた場合にはガラス基板が急激に跳ね上がりスクリーン版を破るなどの不都合を生じることになる。これを防ぐためには、平面ガラス基板の周辺部やガラス基板の面取り部を利用して、平面ガラス基板を押さえ固定させることが有効である。即ち、被印刷物を湾曲表面に真空吸着や静電吸着により面全体で固定させる第1の固定機構と、真空吸着が破れたときに被印刷物が跳ね上がるのを防止する第2の固定機構とを具備することが有効である。
具体的には、図11に示すように微小な出張部分13aを有する面取り部固定ヘッド13によりガラス面取り部の形状を利用して固定することができる。即ち、被印刷物の面取り部に力を加えることにより湾曲面ステージに被印刷物を固定することができる。この面取り部固定ヘッドはガラス基板表面から飛び出ない形状にするか、飛び出ても実質的に安定な印刷に影響しない程度にしておくことにより、湾曲させたガラス基板を機械的に固定しながら印刷することができる。図9及び図10の押さえヘッドにより湾曲面ステージに押し付けた後、真空吸着に加えてこの面取り部固定ヘッド13を動作させればよい。勿論、図10に示す固定ヘッド17としてこの面取り部固定ヘッド13をそのまま使用することができる。また、押し付けヘッドとしても、ステージ内に収納できる移動ストロークの長い面取り部固定ヘッド13を採用することにより実現することができる。
次に、印刷方向の長さの補正について説明する。上述の第1の実施形態に係る印刷方法では、平面ガラス基板を湾曲させるために印刷されるガラス基板表面が伸びることになる。例えば、将来厚さが1.8mmの平面ガラス基板を用いて、プラズマディスプレイパネルのバス電極を印刷する場合、曲率半径が3メートルの曲率ステージを用いると、印刷されるガラス基板の表面は約300ppm伸びる。湾曲させたガラス基板表面にパタンを印刷した後、平面に戻すと湾曲方向と直交するY方向の長さは変化しないが、湾曲方向であるX方向のパタンの長さは300ppmだけ縮むことになる。ラインパタンが単純な均一幅パタンの場合はこの程度の伸びは許容される場合もあるが、より精密に所定の長さのパタンやライン方向にも精度を要求されるパタンの場合は問題となる。これを防ぐためには、予めスクリーン版の開口パタンを印刷方向(X方向)に300ppm伸ばした形状にすることにより、印刷後の平面基板表面に正常なパタンを形成することができる。
上述の補正はスクリーン版裏面を湾曲させてガラス基板表面が全く相互にズレを生じることなく面と面が添うように移動した場合に有効な補正量である。しかし、本発明の方法では、この平面ガラス基板の湾曲による伸びの問題以外に、機械精度及び制御の不完全性から湾曲ステージとスクリーン版との間に相対的に微少なズレが生じる場合にも、印刷方向(X方向)に印刷パタンの伸縮が発生することになる。これに対しては、印刷装置自体が固有のズレを持っている場合は、一度印刷を行い、その印刷方向のズレ量を測定し、印刷方向の開口パタンを補正したスクリーン版を用いればよい。上述の如く、本発明の印刷装置で使用されるスクリーン版の開口パタンは、印刷方向と直交する方向では実現すべきパタンと同じ長さとし、印刷方向ではガラス基板の湾曲変形や印刷装置で発生するズレを補正した長さのパタンすることが好ましい。
なお、逆に湾曲面ステージとスクリーン版の相対的な移動を高度に制御する機構を設けて、印刷中にズレを制御して発生させることにより、印刷方向の長さを調整することができる。スクリーン版にはズレによる応力がかかることになるが微小でありスクリーン版等に悪影響を与えることはない。この機構を有した装置では、ガラス基板の厚さが異なる場合にも調整量を変えることにより同じスクリーン版を用いることも可能になる。
次に、本発明の第5の実施形態について説明する。本実施形態は、スクリーン版のバイアス角度を改良した例である。図12(a)及び(b)はスクリーン版と平面ガラス基板との位置関係を示す平面図であり、(a)は従来の印刷法を示し、(b)は本実施形態の印刷法を示す。本実施形態に係るバイアス角度以外の構成は、前述のいずれかの実施形態と同様である。スクリーン印刷用のスクリーン版は、ステンレス等の金属細線又は引っ張り強度が強い高分子細線を用いて、縦糸と横糸を織り込んだメッシュが使用されている。高精細開口パタンとメッシュとの間の干渉を防止し、線切れが無い良好な印刷を実現するためには、印刷のラインパタンとメッシュの織り方向に適当なバイアス角を設けることが必要であり、一般的には10乃至30°程度のバイアス角度が採用されている。
図12(a)に示す従来の印刷方法においては、メッシュの原反を縦糸方向と横糸方向から均一にテンションをかけた状態で角度をつけて版枠をメッシュ上に置き、接着後切り出すことにより、図12(a)に示すように、版枠と所定のバイアス角度をなすスクリーン版が製作される。このため、メッシュ原反幅より相当程度幅の狭いスクリーン版にならざるを得ないことに加えて、バイアス角度をつけることによりスクリーン版の変形が生じやすい。特にひし形状の変形が生じやすくなり、トータルピッチズレを起こしやすい。また、テンションの不均一も生じやすくパタンのゆがみを生じやすい。
これに対して、図12(b)に示す本実施形態の印刷方法においては、スクリーン版のメッシュと版枠とはバイアス角度を設けることなく製作されている。但し、スクリーン版のパタンはバイアス角をつけて形成されており、スキージを印刷パタンのバイアス角度に合わせて移動させる。なお、バイアス角は従来と同様10°以上を確保することが望ましい。本実施形態によれば、強度が高い版枠を用い、メッシュをバイアス角度をつけることなく均一テンションで固定することができるために、ひし形変形及び局部的な変形を大幅に低減することができる。このような方法が可能になる理由は、スクリーン版をスキージで大きなクリアランス分だけ押し込んで印刷する従来法とは異なり、本発明のスクリーン印刷方式ではスクリーン版を殆んど変形させることなく印刷できるため、スキージの端部と版枠との距離がスキージの移動に従い印刷の間に変化しても、印刷に支障をきたすことが無いことと、版離れ角もスキージとスクリーン版との間の距離に殆んど影響を受けないことである。本方法ではスクリーン版を斜めに使用することになるため、スクリーン版にメッシュ原反幅を有効に利用できる。また、印刷パタンサイズに対してスクリーン版サイズをそれほど大きくする必要が無いため、従来のスクリーン印刷よりスクリーン版を小型化することができる。
また、前述の各実施形態においては、スクリーン版にはメッシュを用いたものを使用する例を説明したが、スクリーン版としてメタルスクリーン版を使用してもよい。この場合においても、メッシュスクリーン版を使用する場合と同様に、本発明は有効である。メタルスクリーンは、例えば、ステンレス等からなる金属薄板にエッチング又はレーザー加工により開口パタンを形成して作製されたものである。又は、例えば、電気鋳造法により作製されたニッケルからなる薄板に開口パタンを形成して作製されたものである。一方、メッシュスクリーン版は、メッシュにエマルジョン層を形成して作製されたものである。メタルスクリーン版は、メッシュスクリーン版と比較して、パタン精度が高く、変形しにくく、耐刷性が優れているといった特長がある。このため、一般にメタルスクリーン版は、半田印刷及び微細電極パタンの形成等に利用されている。しかし、メタルスクリーン版は金属薄板により形成されており、版の伸びが殆どないため、通常のメッシュスクリーン版のように、版を弾性変形させて一定の版離れ角を得ながら印刷する方法には適用できない。このため、従来、メタルスクリーン版は大型基板の印刷には使用されていない。
しかしながら、前述の各実施形態に係るスクリーン印刷方法によれば、スクリーン版を僅かに弾性変形させるだけで、所定の版離れ角を得て、高品質な印刷を行うことができる。即ち、スクリーン版の延びが殆ど無い状態で版離れさせることが可能である。このため、前述の各実施形態においては、メタルスクリーン版を使用しても大面積の領域に印刷を行うことができる。
また、メタルスクリーン版を使用して電極等の細長いライン状のパタンを印刷する場合には、特殊なメタルスクリーン版が必要となり、これは極めて高価であるが、ドット状のパタンを印刷する場合は、一般的な低コストなメタルスクリーン版を使用することができる。
一方、近時、PDPにおいて、発光効率を向上させるために、セル構造を、単純な帯状の隔壁により区画されるストライプ構造ではなく、井桁構造、ワッフル構造、又はデルタ構造等の閉セル構造とすることがある。この場合は、ドット状の開口パタンが形成されたスクリーン版を使用し、スキージでペーストを開口孔から押し込むようにして蛍光体層を印刷する。そして、この技術においては、帯状の隔壁によって区画された溝の内面に蛍光体ペーストを印刷する方法とは異なり、隔壁で完全に囲まれた窪みに各々の開口孔から蛍光体を押し込むことにより、全ての窪みに均一に蛍光体を塗布する必要がある。しかし、メッシュスクリーン版においては、パタンの開口部にもメッシュがあるために、開口孔の実質的な開口率が低いものになる。そして、メッシュと孔との位置関係によって実質的な開口率が異なり、実質的な開口率が特に低い部分において欠陥が生じやすい。また、メッシュ部分にペースト又は異物が残ったりする場合もあり、固定欠陥が生じやすい。そして、メッシュスクリーン版は、パネルの精細度が上がると欠陥数が急激に増大し、生産に使用することができなくなる。
これに対して、メタルスクリーン版は、ドット状のパタンの印刷を低コストで行うことができるため、このような蛍光体層の印刷に適している。そして、メタルスクリーン版においては、開口部は完全な孔であり、開口孔の実質的な開口率がメッシュスクリーン版よりも高い。従って、ペーストの押し込みがメッシュで妨害されることはない。また、版の変形が極めて小さいため、ドット状の開口パタンを精度良く形成することができる。このため、メタルスクリーン版では、メッシュスクリーン版と比較して、実質的にペーストが押し込まれる孔の開口面積を容易に2倍以上にもすることができる。また、メッシュとの干渉がないため、全ての開口孔の実質的な開口面積を同一にすることも容易である。このように、前述の各実施形態においてメタルスクリーン版を使用することにより、蛍光体層に塗布欠陥が無いプラズマディスプレイパネルを製造することができる。そして、メタルスクリーン版は、パタン精度が高く、変形しにくく、耐刷性が優れているため、従来困難であった大型で高精細なパネルに対しても、製造コストが低い蛍光体印刷を施すことが可能となる。
なお、上述のメタルスクリーン版については、ペーストの切れの防止、裏拭き作業の省略、又はペーストの隔壁上部への滲み出しの防止等の付加的な効果を得るために、必要に応じて、裏面又は孔内壁にフッ素樹脂コーティングを施したり、粘弾性を有する樹脂層をコーティングしたりしてもよい。また、ライン状の開口部を形成し、この開口部に微細なブリッジを設けたメタルスクリーン版を使用することにより、蛍光体ペーストのドット印刷以外にライン状の銀電極ペーストなどの印刷を行うことも当然可能である。
次に、本発明の第6の実施形態について説明する。本実施形態は、前述の第1の実施形態に係る平面基板の印刷方法及び第2の実施形態に係る平面基板の印刷装置を利用して、プラズマディスプレイパネルを製造する方法の実施形態である。本実施形態の製造方法により製造されるプラズマディスプレイパネルの構成は、図14に示す従来のプラズマディスプレイパネルと同様である。即ち、図14に示すように、プラズマディスプレイパネル100は、前面板101と背面板102とから構成されている。
前面板101は、透明ガラス基板と、透明ガラス基板上に相互に平行に配置された走査電極及び維持電極と、走査電極及び維持電極を覆って透明ガラス基板上に形成された誘電体層と、誘電体層を覆う保護層と、から構成されている。
背面板102は、透明ガラス基板と、透明ガラス基板上に形成され、走査電極及び維持電極と直交する方向に延びるデータ電極と、データ電極を覆って透明ガラス基板上に形成された白色誘電体層と、白色誘電体層上に形成され、表示セルを区画する隔壁と、から構成されている。
背面板102に形成されている隔壁の側面及び誘電体層の表面上には、放電ガスの放電により発生する紫外線を可視光に変換する蛍光体層が形成されている。蛍光体層は、表示セル毎に、例えば、光の3原色である赤(R)、緑(G)及び青(B)に塗り分けられている。
前面板101及び背面板102は100μm程度のギャップを隔てて対向した状態で固定されており、その周辺部は封着材で気密封止されている。
前面板101及び背面板102の間に形成される空間は放電ガス空間を規定しており、この放電ガス空間内に、ヘリウム、ネオンもしくはキセノン又はこれらの混合ガスからなる放電ガスが充填されている。
背面板102を構成するガラス基板には適当な箇所に通気孔が形成されており、ガラス基板の外側表面には、図14では省略されているが、通気孔に位置合わせした状態で、通気管が密封状態の下に取り付けられている。
背面板102に取り付けられている端部とは反対側の通気管の端部は、当初の状態においては開口されており、この開口端部を介して通気管が排気・ガス充填装置に接続される。まず、排気・ガス充填装置によって、放電ガス空間が真空に排気された後、放電ガス空間に放電ガスが充填される。放電ガスの充填が終了した後、通気管は過熱によりチップオンされ、開口端部が閉塞される。このようにして、放電ガス空間には放電ガスが充填され、プラズマディスプレイパネル100が完成する。
次いで、本実施形態に係るプラズマディスプレイパネルの製造方法を以下に説明する。
先ず、前面板101を通常知られた方法で製造する。ただし、バス電極は上述した本発明のスクリーン印刷方法を使って形成する。同様に、背面板102を通常知られた方法で製造する。ただし、データ電極は上述した本発明のスクリーン印刷方法を使って形成する。前面板101、背面板102の何れか一方又は双方の周辺部に融着用部材を塗布し、クリップを用いて前面板101及び背面板102を相互に対向した状態で固定する。
次いで、背面板102のガラス透明基板に形成された通気孔の周囲に接着用部材を塗布し、通気管を固定し、前面板101及び背面板102相互間の封止と、通気管の背面板102への固着とを同時に行う。次いで、通気管及び通気孔を介して、プラズマディスプレイパネルの内部を排気した後、放電ガスを充填する。このようにしてプラズマディスプレイパネルが完成される。
図13は、このようにして形成されたプラズマディスプレイパネルを含むプラズマ表示装置60の構造を示すブロック図である。図13に示すように、本プラズマ表示装置60は、モジュール構造を有するものとして設計されており、具体的には、アナログインターフェース20とプラズマディスプレイパネルモジュール30と構成されている。
アナログインターフェース20は、クロマ・デコーダを備えるY/C分離回路21と、A/D変換回路22と、PLL回路を備える同期信号制御回路23と、画像フォーマット変換回路24と、逆γ(ガンマ)変換回路25と、システム・コントロール回路26と、PLE制御回路27と、から構成されている。
概略的には、アナログインターフェース20は、受信したアナログ映像信号をディジタル映像信号に変換した後、そのディジタル映像信号をプラズマディスプレイパネルモジュール30に供給する。
例えば、テレビチューナーから発信されたアナログ映像信号はY/C分離回路21においてRGBの各色の輝度信号に分解された後、A/D変換回路22においてディジタル信号に変換される。
その後、プラズマディスプレイパネルモジュール30の画素構成と映像信号の画素構成が異なる場合には、画像フォーマット変換回路24において必要な画像フォーマットの変換が行われる。
プラズマディスプレイパネルの入力信号に対する表示輝度の特性は線形的に比例するが、通常の映像信号はCRTの特性に合わせて、予め補正(γ変換)されている。このため、A/D変換回路22において映像信号のA/D変換を行った後、逆γ変換回路25において、映像信号に対して逆γ変換を施し、線形特性に復元されたディジタル映像信号を生成する。このディジタル映像信号はRGB映像信号としてプラズマディスプレイパネルモジュール30に出力される。
アナログ映像信号には、A/D変換用のサンプリングクロック及びデータクロック信号が含まれていないため、同期信号制御回路23に内蔵されているPLL回路が、アナログ映像信号と同時に供給される水平同期信号を基準として、サンプリングクロック及びデータクロック信号を生成し、プラズマディスプレイパネルモジュール30に出力する。
アナログインターフェース20のPLE制御回路27は輝度制御を行う。具体的には、平均輝度レベルが所定値以下である場合には表示輝度を上昇させ、平均輝度レベルが所定値を超える場合には表示輝度を低下させる。
システム・コントロール回路26は、各種制御信号をプラズマディスプレイパネルモジュール30に対して出力する。
一方、プラズマディスプレイパネルモジュール30は、ディジタル信号処理・制御回路31と、パネル部32と、DC/DCコンバータを内蔵するモジュール内電源回路33と、から構成されている。
ディジタル信号処理・制御回路31は、入力インターフェース信号処理回路34と、フレームメモリ35と、メモリ制御回路36と、ドライバ制御回路37と、から構成されている。
例えば、入力インターフェース信号処理回路34に入力された映像信号の平均輝度レベルは入力インターフェース信号処理回路34内の入力信号平均輝度レベル演算回路(図示せず)により計算され、例えば、5ビットデータとして出力される。また、PLE制御回路27は、平均輝度レベルに応じてPLE制御データを設定し、入力インターフェース信号処理回路34内の輝度レベル制御回路(図示せず)に入力する。
ディジタル信号処理・制御回路31は、入力インターフェース信号処理回路34において、これらの各種信号を処理した後、制御信号をパネル部32に送信する。同時に、メモリ制御回路36及びドライバ制御回路37はメモリ制御信号及びドライバ制御信号をパネル部32に送信する。
パネル部32は、上述の実施形態に係るプラズマディスプレイパネルの製造方法により製造されたプラズマディスプレイパネル50と、走査電極を駆動する走査ドライバ38と、データ電極を駆動するデータドライバ39と、プラズマディスプレイパネル50及び走査ドライバ38にパルス電圧を供給する高圧パルス回路40と、高圧パルス回路40からの余剰電力を回収する電力回収回路41と、から構成されている。
プラズマディスプレイパネル50は1365個×768個に配列された画素を有するものとして構成されている。プラズマディスプレイパネル50においては、走査ドライバ38が走査電極を制御し、データドライバ39がデータ電極を制御することにより、所定の画素の点灯又は非点灯が制御され、所望の表示が行われる。なお、ロジック用電源がディジタル信号処理・制御回路31及びパネル部32にロジック用電力を供給している。さらに、モジュール内電源回路33は、表示用電源から直流電力を供給され、この直流電力の電圧を所定の電圧に変換した後、パネル部32に供給している。
以下、プラズマ表示装置60の製造方法を概略的に説明する。先ず、上述の実施形態に係るプラズマディスプレイパネルの製造方法により製造したプラズマディスプレイパネル50と、走査ドライバ38と、データドライバ39と、高圧パルス回路40と、電力回収回路41とを一基板上に配置し、パネル部32を形成する。さらに、パネル部32とは別個にディジタル信号処理・制御回路31を形成する。
このようにして形成されたパネル部32及びディジタル信号処理・制御回路31とモジュール内電源回路33とを一つのモジュールとして組み立て、プラズマディスプレイパネルモジュール30を形成する。
さらに、プラズマディスプレイパネルモジュール30とは別個にアナログインターフェース20を形成する。
このように、プラズマディスプレイパネルモジュール30とアナログインターフェース20とをそれぞれ別個に形成した後、双方を電気的に接続することにより、図13に示したプラズマディスプレイパネル60が完成する。
このように、プラズマディスプレイパネル60をモジュール化することにより、プラズマ表示装置を構成する他の構成部品とは別個独立にプラズマディスプレイパネル60を製造することが可能になり、例えば、プラズマ表示装置において、プラズマディスプレイパネル60が故障した場合には、プラズマディスプレイパネルモジュール30毎交換することにより、補修の簡素化及び短時間化を図ることができる。
また、本発明の液晶表示装置の製造方法も、上述のプラズマディスプレイパネルの製造方法と同様である。即ち、上述の第1及び第2の実施形態に示す方法により、ガラス基板上に電極等を形成し、液晶パネルを製造する。次に、この液晶パネル及びこの液晶パネルを駆動する回路によりモジュールを製造する。そして、画像信号のフォーマット変換を行い、前記モジュールに送信するインターフェースを製造する。その後、前記モジュールと前記インターフェースとを相互に電気的に接続する。これにより、液晶表示装置を製造することができる。
なお、上述の各実施形態においては、銀ペーストを材料としてプラズマディスプレイパネルのデータ電極及びバス電極を形成する例を中心に述べたが、これらの構成物以外に、各種のペーストを用いて各種のパタン化された構造物を形成することができる。プラズマディスプレイのブラックマトリクス及びブラックストライプは無機の黒色フィラーを含んだペーストを使用することにより形成することができる。また、酸化鉄又はコバルトブルー等の微粉末着色顔料を含んだペーストを使用して印刷することにより、カラーフィルターを形成することができる。更に、低融点ガラス微粉末を含んだペーストを印刷することによりパタン化された誘電体層を形成することができる。更にまた、蛍光体粉末を含んだペーストを印刷することにより、蛍光体層を形成することができる。勿論、本発明は大面積高精度パタン形成に特に有効であるが、誘電体層等を形成する際のベタ印刷に対しても、本発明によれば要求される大きめの版離れ角を印刷部位に依らず均一に実現することが可能であり印刷厚さの均一性の向上が得られるため、本発明はベタパタン印刷に利用できることは言うまでもない。上述の如く、カラープラズマディスプレイパネルを構成する各種の構成物を本発明の製造方法で実現することができ、カラープラズマディスプレイ装置の低コスト化に大きく寄与することができる。
カラープラズマディスプレイ以外に、カラーLCDも大型化が進展しており、コスト低減が更に重要になっている。本発明の製造方法を用いて、有機顔料又は染料を含んだペーストを印刷することにより、カラーLCD用のブラックマスクやカラーフィルターを形成することができ、大幅にコストを低減したカラーLCD装置を実現することができる。
なお、前述の各実施形態では1面取りの場合を図示しているが、プラズマディスプレイパネル用及びカラーLCD用等で一般的に行われている多面取りの場合も、同様に本発明を適用することができる。多面取りの場合はより印刷パタンサイズが大きくなり、トータルピッチズレを確保することがより困難であり、本発明の印刷方法はより重要になる。
大画面の薄型テレビは魅力的な商品ではあるが製造コストが高いために高価格であり普及が妨げられていた。平面型ディスプレイパネルの製造に際しては、大面積に亘って極めて精度が高いパタン形成が必要であり、コストが高いホトリゾグラフィ技術を多用せざるを得なかったことも高コストの要因となっていた。本発明により印刷方式で各種のパタン化された構成物を高精度に形成することができ、生産性の向上、工程の短縮化、使用材料の低減等大幅に低コスト化が実現できる。また、本発明で使用されるスクリーン版はサイズも従来のスクリーン印刷方式で使用されるものより小サイズで良く、それに伴い印刷装置のフットプリントを小さくできる。これらの要因により、低価格が実現され、カラープラズマ表示装置やカラー液晶表示装置の普及に貢献する。なお、現時点ではカラープラズマディスプレイパネル及びカラーLCDの大画面化が先行しており、本発明はこれらに対して有効であるが、有機ELディスプレイ及びFED(フィールド・エミッション・ディスプレイ)等に於いても、電極やカラーフィルター、ブラックマスク、高分子ELペースト、蛍光体などの印刷形成に本発明はそのまま適用できるものである。
本発明は、プラズマディスプレイパネル(PDP)、液晶表示パネル(LCD)、有機ELディスプレイ及びフィールド・エミッション・ディスプレイ(FED)等の大型表示パネルの製造に、好適に利用することができる。
(a)乃至(f)は本実施形態に係る平面基板の印刷方法をその工程順に示す断面図である。 本発明の第1の実施形態に係る平面基板の印刷方法を示す斜視図である。 本実施形態に係る平面基板の印刷方法を示す断面図である。 第1の実施形態の変形例に係る平面基板の印刷方法を示す断面図である。 (a)はプラズマディスプレイパネルのデータ電極パタンを示す平面図であり、(b)はバス電極パタンを示す平面図である。 (a)乃至(c)は本発明の第2の実施形態に係る平面基板の印刷装置の動作をその工程順に示す断面図である。 (a)乃至(c)は本発明の第3の実施形態に係る平面基板の印刷装置の動作をその工程順に示す断面図である。 (a)乃至(c)は第3の実施形態の変形例に係る平面基板の印刷装置の動作をその工程順に示す断面図である。 (a)乃至(d)は本発明の第4の実施形態における平面ガラス基板の固定方法を示す断面図である。 (a)乃至(d)は本実施形態の変形例における他の平面ガラス基板の固定方法を示す断面図である。 平面ガラス基板1を湾曲面ステージに固定する治具を示す断面図である。 (a)及び(b)はスクリーン版と平面ガラス基板との位置関係を示す平面図であり、(a)は従来の印刷法を示し、(b)は第5の実施形態の印刷法を示す。 プラズマ表示装置の構造を示すブロック図である。 AC面放電型カラープラズマディスプレイを示す斜視図である。 (a)及び(b)は、従来のスクリーン印刷法をその工程順に示す断面図である 従来の基板を湾曲させるスクリーン印刷方法を示す断面図である。
符号の説明
1;平面ガラス基板
2;湾曲面ステージ
3;スクリーン版
4;スクリーン版枠
5;スキージ
6;ペースト
7;湾曲表面
8;コロ
9;押さえヘッド
10;回転軸部
11;固定回転軸部
12;可動回転軸部
13;面取り部固定ヘッド
13a;出張部分
14;印刷パタン
15;データ電極
16;バス電極
20;アナログインターフェース
21;Y/C分離回路
22;A/D変換回路
23;同期信号制御回路
24;画像フォーマット変換回路
25;逆γ(ガンマ)変換回路
26;システム・コントロール回路
27;PLE制御回路
30;プラズマディスプレイパネルモジュール
31;ディジタル信号処理・制御回路
32;パネル部
33;モジュール内電源回路
34;入力インターフェース信号処理回路
35;フレームメモリ
36;メモリ制御回路
37;ドライバ制御回路
38;走査ドライバ
39;データドライバ
40;高圧パルス回路
41;電力回収回路
50;プラズマディスプレイパネル
60;プラズマ表示装置
100;プラズマディスプレイパネル
101;前面基板
102;背面基板
103;透明ガラス基板
104;透明ガラス基板
105;データ電極
106;白色誘電体層
107;隔壁
108;蛍光体層(RGB)
110;走査電極
111;バス電極
112;透明電極
120;維持電極
121;バス電極
122;透明電極
131;透明誘電体層
132;表面保護膜
301;スクリーン版
302;平面ステージ
303;平面基板
305;版枠
306;ペースト
307;スキージ
401;印刷台
402;被印刷物
403;印刷マスク
404;スキージ
405;ペースト

Claims (6)

  1. 平面基板の印刷面上にスクリーン印刷マスクを配置し、前記平面基板と共に前記スクリーン印刷マスクを挟圧するように一方向に延びるスキージを配置し、このスキージのこのスキージが延びる方向に交差する印刷方向前方に印刷ペーストを配置して、前記スキージを前記印刷方向に前記平面基板に対して相対的に移動させることにより前記平面基板の印刷面に印刷する平面基板の印刷方法において、前記平面基板を一方向に湾曲させて印刷面を凸状とする工程と、この湾曲した基板の印刷面に平面状の前記スクリーン印刷マスクの第1の面を接触させる工程と、前記スキージを前記スクリーン印刷マスクの第2の面における前記基板との接触部分から前記印刷方向後方に離隔した部分に押し当ててこの部分を前記基板と共に挟圧する工程と、前記スクリーン印刷マスクの第2の面上における前記スキージの前記印刷方向前方に印刷ペーストを配置する工程と、前記基板と前記スクリーン印刷マスクとの接触部分を前記印刷方向に移動させつつ、前記スキージを前記印刷方向に前記基板に対して相対的に移動させることにより前記基板の印刷面に印刷する工程と、を有することを特徴とする平面基板の印刷方法。
  2. 前記基板がガラス基板であることを特徴とする請求項1に記載の平面基板の印刷方法。
  3. 湾曲させた前記基板の印刷面は円柱側面の一部をなしており、その曲率半径は3乃至40mであることを特徴とする請求項1又は2に記載の平面基板の印刷方法。
  4. 前記スキージの移動に伴って、前記印刷方向における前記基板と前記スクリーン印刷マスクとの接触部分の長さを変化させることにより前記スクリーン印刷マスクの版離れ角を制御することを特徴とする請求項1乃至3のいずれか1項に記載の平面基板の印刷方法。
  5. 弾性を有する平板状の被印刷物を第1の方向に強制的に湾曲させ印刷面を凸状とした状態で固定する固定手段と、前記印刷面において前記第1の方向と交わる第2の方向に延伸する直線を接線として前記印刷面に接触するように配置されるスクリーン印刷マスクと、前記接線の位置を前記印刷面に沿って移動させる第1の移動手段と、前記接線から印刷開始側に所定の距離だけ離れた位置で前記スクリーン印刷マスクの第2の面に押し当てられ、前記スクリーン印刷マスクと前記印刷面とを相互に接触させるスキージと、前記接線の位置の移動に同期して前記スキージと前記スクリーン印刷マスクとを相対的に移動させる第2の移動手段と、を有することを特徴とする平面基板の印刷装置。
  6. 前記スクリーン印刷マスクがメタルスクリーン印刷マスクであることを特徴とする請求項5に記載の平面基板の印刷装置。
JP2004208518A 2003-08-08 2004-07-15 平面基板の印刷方法及び印刷装置 Expired - Fee Related JP4026845B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004208518A JP4026845B2 (ja) 2003-08-08 2004-07-15 平面基板の印刷方法及び印刷装置
KR1020040059732A KR100666893B1 (ko) 2003-08-08 2004-07-29 평면 기판의 인쇄 방법 및 인쇄 장치, 플라즈마디스플레이 패널의 제조 방법 및 액정 표시 장치의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003289807 2003-08-08
JP2004208518A JP4026845B2 (ja) 2003-08-08 2004-07-15 平面基板の印刷方法及び印刷装置

Publications (2)

Publication Number Publication Date
JP2005088577A JP2005088577A (ja) 2005-04-07
JP4026845B2 true JP4026845B2 (ja) 2007-12-26

Family

ID=34466760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208518A Expired - Fee Related JP4026845B2 (ja) 2003-08-08 2004-07-15 平面基板の印刷方法及び印刷装置

Country Status (2)

Country Link
JP (1) JP4026845B2 (ja)
KR (1) KR100666893B1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712469B2 (ja) * 2005-07-27 2011-06-29 株式会社日立ハイテクインスツルメンツ スクリーン印刷機
KR20120104051A (ko) * 2011-03-11 2012-09-20 엘지이노텍 주식회사 패턴 롤 및 이를 이용한 패턴 형성 방법
KR101423043B1 (ko) * 2014-01-13 2014-07-25 (주)육일씨엔에쓰 곡률 형상 유리판의 인쇄 장치 및 방법
JP6856029B2 (ja) * 2015-11-18 2021-04-07 Agc株式会社 曲面スクリーン印刷装置
JP6790675B2 (ja) * 2015-11-18 2020-11-25 Agc株式会社 スクリーン印刷方法及びスクリーン印刷装置、並びに印刷層付き基材の製造方法及び基材
JP6741449B2 (ja) * 2016-03-22 2020-08-19 株式会社ミノグループ 印刷機
JP6547794B2 (ja) * 2016-06-28 2019-07-24 Agc株式会社 印刷層付き屈曲板の製造方法
JP6767181B2 (ja) * 2016-06-30 2020-10-14 株式会社セリアエンジニアリング スクリーン印刷機
JP6971579B2 (ja) * 2017-01-27 2021-11-24 株式会社村田製作所 コンタクト印刷用コンビネーションスクリーン版
CN106956529B (zh) * 2017-02-15 2019-08-20 深圳市恒久瑞电子科技有限公司 一种3d曲面钢化玻璃的钢网丝印加工方法
CN108859460B (zh) * 2017-05-09 2020-12-04 蓝思科技(长沙)有限公司 用作电子设备面板的3d曲面玻璃的丝印方法、3d曲面玻璃及3d曲面玻璃制品
JP6955723B2 (ja) * 2017-08-10 2021-10-27 マイクロ・テック株式会社 スクリーン印刷装置及びスクリーン印刷方法
JP7054131B2 (ja) 2017-08-10 2022-04-13 マイクロ・テック株式会社 スクリーン印刷装置及びスクリーン印刷方法
JP6955716B2 (ja) 2017-08-10 2021-10-27 マイクロ・テック株式会社 スクリーン印刷装置及びスクリーン印刷方法
JP6959636B2 (ja) * 2017-08-22 2021-11-02 マイクロ・テック株式会社 スクリーン印刷装置及びスクリーン印刷方法
JP7456390B2 (ja) * 2019-02-07 2024-03-27 Agc株式会社 曲面スクリーン印刷装置、および、曲面スクリーン印刷方法
CN110794601B (zh) * 2019-11-19 2022-08-30 深圳市铁幕电子竞技科技有限公司 一种大曲率曲面液晶显示器制作方法、设备及显示器
CN111559185A (zh) * 2020-05-20 2020-08-21 宜宾轩驰智能科技有限公司 曲面丝网印刷方法
CN111591019B (zh) * 2020-06-03 2021-06-25 黑龙江天有为电子有限责任公司 一种丝网印刷方法
CN113334909A (zh) * 2021-06-22 2021-09-03 东莞市宏波光电科技有限公司 一种凸面曲面玻璃印刷系统
CN114516219A (zh) * 2022-04-18 2022-05-20 天津文洲机械有限公司 玻璃丝网印刷随动机构及玻璃丝网印刷机
CN114801434A (zh) * 2022-05-09 2022-07-29 深圳市华星光电半导体显示技术有限公司 一种用于显示面板的印刷装置及其使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950011139U (ko) * 1993-10-20 1995-05-15 스크린프린터의 스테이지 구동장치
JPH08112891A (ja) * 1994-10-17 1996-05-07 Murata Mfg Co Ltd 印刷装置及び該印刷装置を用いた印刷方法
JPH08114257A (ja) * 1994-10-18 1996-05-07 Murata Mfg Co Ltd 円弧運動機構
KR19990021622U (ko) * 1997-11-29 1999-06-25 김영남 기판 인쇄장치의 스퀴이지

Also Published As

Publication number Publication date
KR20050018602A (ko) 2005-02-23
KR100666893B1 (ko) 2007-01-10
JP2005088577A (ja) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4026845B2 (ja) 平面基板の印刷方法及び印刷装置
KR100437799B1 (ko) 디스플레이 패널 제작을 위한 잉크젯 얼라인 장치
JP3264027B2 (ja) 放電セル及びその製造方法
US7277151B2 (en) Flat panel display with photosensitive glass spacer
US6860781B2 (en) Display panel and manufacturing method for the same including improved bonding agent application method
JP2008080773A (ja) 印刷装置
JP2010208129A (ja) スクリーン印刷装置およびスクリーン版
KR100229246B1 (ko) 플라스마어드레스 액정표시장치
JP2010115856A (ja) スクリーン印刷装置およびプラズマディスプレイパネル
US6002382A (en) Plasma addressed display
JP3244483B2 (ja) ディスプレイパネルの放電室に蛍光体インクを塗布する方法およびその装置
KR100320224B1 (ko) 피디피 격벽 제조용 롤 및 그 제조방법.
JP2000071418A (ja) スクリーン印刷方法およびその装置
KR100323708B1 (ko) 플라즈마 디스플레이 패널의 전극형성방법 및 제조장비
KR100808178B1 (ko) 라미네이션 장치, 이를 이용하여 제조된 플라즈마디스플레이 패널의 상부 기판 및 그 형성방법
JP4857562B2 (ja) フラットディスプレイパネル
JP2000168043A (ja) スクリーン印刷機および方法ならびに画像形成装置の製造方法
JPH1158680A (ja) スクリーン印刷機および画像形成装置の製造方法
JP2009255317A (ja) 印刷スクリーン、印刷方法および印刷装置
JPH09295467A (ja) オフセット印刷版及びこれを用いた画像形成装置
JP2000135773A (ja) オフセット印刷装置およびこれを用いた画像形成装置の製造方法
KR100235478B1 (ko) 평판소자의 적층 인쇄용 스크린
JPH09300586A (ja) オフセット印刷装置、それに用いるブランケット、それらを用いたオフセット印刷方法及びそれらを用いた画像形成装置の製造方法
JPH11334030A (ja) スクリーン印刷機及び画像形成装置
JP2000156150A (ja) 平板型画像表示装置の製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees