JP4001960B2 - 窒化酸化物誘電体層を有する半導体素子の製造方法 - Google Patents
窒化酸化物誘電体層を有する半導体素子の製造方法 Download PDFInfo
- Publication number
- JP4001960B2 JP4001960B2 JP29822096A JP29822096A JP4001960B2 JP 4001960 B2 JP4001960 B2 JP 4001960B2 JP 29822096 A JP29822096 A JP 29822096A JP 29822096 A JP29822096 A JP 29822096A JP 4001960 B2 JP4001960 B2 JP 4001960B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- silicon dioxide
- oxidizing
- semiconductor substrate
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0411—Manufacture or treatment of FETs having insulated gates [IGFET] of FETs having floating gates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28185—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/0214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02233—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
- H01L21/02236—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
- H01L21/02238—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02255—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02321—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
- H01L21/02329—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
- H01L21/02332—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28202—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/685—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/693—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Formation Of Insulating Films (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US55245195A | 1995-11-03 | 1995-11-03 | |
| US552451 | 1995-11-03 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JPH09139437A JPH09139437A (ja) | 1997-05-27 |
| JPH09139437A5 JPH09139437A5 (enExample) | 2004-10-14 |
| JP4001960B2 true JP4001960B2 (ja) | 2007-10-31 |
Family
ID=24205400
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP29822096A Expired - Fee Related JP4001960B2 (ja) | 1995-11-03 | 1996-10-21 | 窒化酸化物誘電体層を有する半導体素子の製造方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US5885870A (enExample) |
| JP (1) | JP4001960B2 (enExample) |
| KR (1) | KR970030859A (enExample) |
Families Citing this family (77)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100230429B1 (ko) * | 1997-06-27 | 1999-11-15 | 윤종용 | 반도체장치의 실리콘 옥시나이트라이드막 형성방법 |
| US6399445B1 (en) | 1997-12-18 | 2002-06-04 | Texas Instruments Incorporated | Fabrication technique for controlled incorporation of nitrogen in gate dielectric |
| US6303942B1 (en) * | 1998-03-17 | 2001-10-16 | Farmer, Ii Kenneth Rudolph | Multi-layer charge injection barrier and uses thereof |
| JP3472482B2 (ja) * | 1998-06-30 | 2003-12-02 | 富士通株式会社 | 半導体装置の製造方法と製造装置 |
| US6972436B2 (en) * | 1998-08-28 | 2005-12-06 | Cree, Inc. | High voltage, high temperature capacitor and interconnection structures |
| KR20000018524A (ko) * | 1998-09-02 | 2000-04-06 | 김영환 | 비휘발성 메모리 소자 및 그의 제조방법 |
| US6323114B1 (en) * | 1998-11-24 | 2001-11-27 | Texas Instruments Incorporated | Stacked/composite gate dielectric which incorporates nitrogen at an interface |
| US6541394B1 (en) * | 1999-01-12 | 2003-04-01 | Agere Systems Guardian Corp. | Method of making a graded grown, high quality oxide layer for a semiconductor device |
| US6261976B1 (en) * | 1999-03-18 | 2001-07-17 | Chartered Semiconductor Manufacturing Ltd. | Method of forming low pressure silicon oxynitride dielectrics having high reliability |
| US6492712B1 (en) | 1999-06-24 | 2002-12-10 | Agere Systems Guardian Corp. | High quality oxide for use in integrated circuits |
| US6395610B1 (en) | 1999-06-24 | 2002-05-28 | Lucent Technologies Inc. | Method of making bipolar transistor semiconductor device including graded, grown, high quality oxide layer |
| US6670242B1 (en) | 1999-06-24 | 2003-12-30 | Agere Systems Inc. | Method for making an integrated circuit device including a graded, grown, high quality gate oxide layer and a nitride layer |
| US6509230B1 (en) | 1999-06-24 | 2003-01-21 | Lucent Technologies Inc. | Non-volatile memory semiconductor device including a graded, grown, high quality oxide layer and associated methods |
| US6521496B1 (en) | 1999-06-24 | 2003-02-18 | Lucent Technologies Inc. | Non-volatile memory semiconductor device including a graded, grown, high quality control gate oxide layer and associated methods |
| US6551946B1 (en) | 1999-06-24 | 2003-04-22 | Agere Systems Inc. | Two-step oxidation process for oxidizing a silicon substrate wherein the first step is carried out at a temperature below the viscoelastic temperature of silicon dioxide and the second step is carried out at a temperature above the viscoelastic temperature |
| KR100682190B1 (ko) * | 1999-09-07 | 2007-02-12 | 동경 엘렉트론 주식회사 | 실리콘 산질화물을 포함하는 절연막의 형성 방법 및 장치 |
| US6284602B1 (en) * | 1999-09-20 | 2001-09-04 | Advanced Micro Devices, Inc. | Process to reduce post cycling program VT dispersion for NAND flash memory devices |
| US6380033B1 (en) | 1999-09-20 | 2002-04-30 | Advanced Micro Devices, Inc. | Process to improve read disturb for NAND flash memory devices |
| JP3558565B2 (ja) | 1999-11-08 | 2004-08-25 | Necエレクトロニクス株式会社 | 不揮発性半導体装置の製造方法 |
| US20030235957A1 (en) * | 2002-06-25 | 2003-12-25 | Samir Chaudhry | Method and structure for graded gate oxides on vertical and non-planar surfaces |
| US6597047B2 (en) * | 2000-03-22 | 2003-07-22 | Matsushita Electric Industrial Co., Ltd. | Method for fabricating a nonvolatile semiconductor device |
| JP2002009282A (ja) * | 2000-04-19 | 2002-01-11 | Seiko Instruments Inc | 半導体装置の製造方法 |
| DE10029658C2 (de) * | 2000-06-16 | 2003-01-09 | Infineon Technologies Ag | Verfahren zur Herstellung einer Barrierenschicht auf einem Siliziumsubstrat |
| US6956238B2 (en) | 2000-10-03 | 2005-10-18 | Cree, Inc. | Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel |
| US6610366B2 (en) | 2000-10-03 | 2003-08-26 | Cree, Inc. | Method of N2O annealing an oxide layer on a silicon carbide layer |
| US6767843B2 (en) * | 2000-10-03 | 2004-07-27 | Cree, Inc. | Method of N2O growth of an oxide layer on a silicon carbide layer |
| US7067176B2 (en) | 2000-10-03 | 2006-06-27 | Cree, Inc. | Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment |
| US6850446B1 (en) | 2001-12-06 | 2005-02-01 | Virage Logic Corporation | Memory cell sensing with low noise generation |
| US6788574B1 (en) | 2001-12-06 | 2004-09-07 | Virage Logic Corporation | Electrically-alterable non-volatile memory cell |
| US7130213B1 (en) * | 2001-12-06 | 2006-10-31 | Virage Logic Corporation | Methods and apparatuses for a dual-polarity non-volatile memory cell |
| US6842375B1 (en) | 2001-12-06 | 2005-01-11 | Virage Logic Corporation | Methods and apparatuses for maintaining information stored in a non-volatile memory cell |
| US6992938B1 (en) | 2001-12-06 | 2006-01-31 | Virage Logic Corporation | Methods and apparatuses for test circuitry for a dual-polarity non-volatile memory cell |
| US7517751B2 (en) * | 2001-12-18 | 2009-04-14 | Tokyo Electron Limited | Substrate treating method |
| JP4048048B2 (ja) * | 2001-12-18 | 2008-02-13 | 東京エレクトロン株式会社 | 基板処理方法 |
| KR100451768B1 (ko) * | 2001-12-28 | 2004-10-08 | 주식회사 하이닉스반도체 | 반도체 소자의 게이트 절연막 형성 방법 |
| KR100548550B1 (ko) * | 2002-07-12 | 2006-02-02 | 주식회사 하이닉스반도체 | 반도체 소자의 옥사이드와 나이트라이드의 인시튜 형성방법 |
| US7022378B2 (en) * | 2002-08-30 | 2006-04-04 | Cree, Inc. | Nitrogen passivation of interface states in SiO2/SiC structures |
| US7221010B2 (en) * | 2002-12-20 | 2007-05-22 | Cree, Inc. | Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors |
| US6979863B2 (en) * | 2003-04-24 | 2005-12-27 | Cree, Inc. | Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same |
| US7074643B2 (en) * | 2003-04-24 | 2006-07-11 | Cree, Inc. | Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same |
| US7709403B2 (en) * | 2003-10-09 | 2010-05-04 | Panasonic Corporation | Silicon carbide-oxide layered structure, production method thereof, and semiconductor device |
| US7183143B2 (en) * | 2003-10-27 | 2007-02-27 | Macronix International Co., Ltd. | Method for forming nitrided tunnel oxide layer |
| US7135361B2 (en) * | 2003-12-11 | 2006-11-14 | Texas Instruments Incorporated | Method for fabricating transistor gate structures and gate dielectrics thereof |
| KR100602322B1 (ko) * | 2004-04-20 | 2006-07-14 | 에스티마이크로일렉트로닉스 엔.브이. | 플래시 메모리 소자의 제조방법 및 이를 통해 제조된플래시 메모리 소자 |
| US7405125B2 (en) * | 2004-06-01 | 2008-07-29 | Macronix International Co., Ltd. | Tunnel oxynitride in flash memories |
| US7060594B2 (en) * | 2004-10-19 | 2006-06-13 | Macronix International Co., Ltd. | Memory device and method of manufacturing including deuterated oxynitride charge trapping structure |
| KR100673205B1 (ko) * | 2004-11-24 | 2007-01-22 | 주식회사 하이닉스반도체 | 플래쉬 메모리소자의 제조방법 |
| US7212457B2 (en) * | 2005-05-18 | 2007-05-01 | Macronix International Co., Ltd. | Method and apparatus for implementing high speed memory |
| US7727904B2 (en) * | 2005-09-16 | 2010-06-01 | Cree, Inc. | Methods of forming SiC MOSFETs with high inversion layer mobility |
| US7381620B1 (en) * | 2006-03-09 | 2008-06-03 | Spansion Llc | Oxygen elimination for device processing |
| US8432012B2 (en) | 2006-08-01 | 2013-04-30 | Cree, Inc. | Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same |
| US7728402B2 (en) * | 2006-08-01 | 2010-06-01 | Cree, Inc. | Semiconductor devices including schottky diodes with controlled breakdown |
| EP2631951B1 (en) | 2006-08-17 | 2017-10-11 | Cree, Inc. | High power insulated gate bipolar transistors |
| US8835987B2 (en) * | 2007-02-27 | 2014-09-16 | Cree, Inc. | Insulated gate bipolar transistors including current suppressing layers |
| KR100942343B1 (ko) * | 2008-01-31 | 2010-02-12 | 광주과학기술원 | 저온 고압 열처리를 이용한 비휘발성 메모리 제조방법 |
| US8232558B2 (en) | 2008-05-21 | 2012-07-31 | Cree, Inc. | Junction barrier Schottky diodes with current surge capability |
| US8288220B2 (en) | 2009-03-27 | 2012-10-16 | Cree, Inc. | Methods of forming semiconductor devices including epitaxial layers and related structures |
| US8294507B2 (en) | 2009-05-08 | 2012-10-23 | Cree, Inc. | Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits |
| US8629509B2 (en) * | 2009-06-02 | 2014-01-14 | Cree, Inc. | High voltage insulated gate bipolar transistors with minority carrier diverter |
| US8193848B2 (en) | 2009-06-02 | 2012-06-05 | Cree, Inc. | Power switching devices having controllable surge current capabilities |
| US8541787B2 (en) * | 2009-07-15 | 2013-09-24 | Cree, Inc. | High breakdown voltage wide band-gap MOS-gated bipolar junction transistors with avalanche capability |
| US8354690B2 (en) | 2009-08-31 | 2013-01-15 | Cree, Inc. | Solid-state pinch off thyristor circuits |
| US9117739B2 (en) | 2010-03-08 | 2015-08-25 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
| US8415671B2 (en) | 2010-04-16 | 2013-04-09 | Cree, Inc. | Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices |
| US9142662B2 (en) | 2011-05-06 | 2015-09-22 | Cree, Inc. | Field effect transistor devices with low source resistance |
| US9029945B2 (en) | 2011-05-06 | 2015-05-12 | Cree, Inc. | Field effect transistor devices with low source resistance |
| US9984894B2 (en) | 2011-08-03 | 2018-05-29 | Cree, Inc. | Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions |
| US9640617B2 (en) | 2011-09-11 | 2017-05-02 | Cree, Inc. | High performance power module |
| US8618582B2 (en) | 2011-09-11 | 2013-12-31 | Cree, Inc. | Edge termination structure employing recesses for edge termination elements |
| WO2013036370A1 (en) | 2011-09-11 | 2013-03-14 | Cree, Inc. | High current density power module comprising transistors with improved layout |
| US8664665B2 (en) | 2011-09-11 | 2014-03-04 | Cree, Inc. | Schottky diode employing recesses for elements of junction barrier array |
| US8680587B2 (en) | 2011-09-11 | 2014-03-25 | Cree, Inc. | Schottky diode |
| US9373617B2 (en) | 2011-09-11 | 2016-06-21 | Cree, Inc. | High current, low switching loss SiC power module |
| US9378821B1 (en) | 2013-01-18 | 2016-06-28 | Cypress Semiconductor Corporation | Endurance of silicon-oxide-nitride-oxide-silicon (SONOS) memory cells |
| JP5788448B2 (ja) * | 2013-09-09 | 2015-09-30 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置及びプログラム |
| CN116741712A (zh) * | 2022-03-03 | 2023-09-12 | 长鑫存储技术有限公司 | 半导体结构的形成方法及半导体结构 |
| US12341073B2 (en) | 2022-03-03 | 2025-06-24 | Changxin Memory Technologies, Inc. | Forming method of semiconductor structure and semiconductor structure |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4584205A (en) * | 1984-07-02 | 1986-04-22 | Signetics Corporation | Method for growing an oxide layer on a silicon surface |
| KR920007450B1 (ko) * | 1987-07-31 | 1992-09-01 | 마쯔시다덴기산교 가부시기가이샤 | 반도체장치 및 그 제조방법 |
| US4894353A (en) * | 1988-04-29 | 1990-01-16 | Advanced Micro Devices, Inc. | Method of fabricating passivated tunnel oxide |
| DD298329A5 (de) * | 1988-12-14 | 1992-02-13 | Halbleiterwerk-Gmbh Frankfurt (Oder),De | Verfahren zur herstellung von sio tief 2-schichten mit guten durchbruchseigenschaften |
| US5254506A (en) * | 1988-12-20 | 1993-10-19 | Matsushita Electric Industrial Co., Ltd. | Method for the production of silicon oxynitride film where the nitrogen concentration at the wafer-oxynitride interface is 8 atomic precent or less |
| JPH0325728A (ja) * | 1989-06-23 | 1991-02-04 | Daicel Chem Ind Ltd | 光ディスクトラック位置制御装置 |
| US5198392A (en) * | 1989-11-20 | 1993-03-30 | Oki Electric Industry Co., Ltd. | Method of forming a nitrided silicon dioxide (SiOx Ny) film |
| US5057463A (en) * | 1990-02-28 | 1991-10-15 | Sgs-Thomson Microelectronics, Inc. | Thin oxide structure and method |
| US5219773A (en) * | 1990-06-26 | 1993-06-15 | Massachusetts Institute Of Technology | Method of making reoxidized nitrided oxide MOSFETs |
| JP3041065B2 (ja) * | 1991-03-15 | 2000-05-15 | 沖電気工業株式会社 | 絶縁膜形成方法 |
| US5244843A (en) * | 1991-12-17 | 1993-09-14 | Intel Corporation | Process for forming a thin oxide layer |
| US5393683A (en) * | 1992-05-26 | 1995-02-28 | Micron Technology, Inc. | Method of making semiconductor devices having two-layer gate structure |
| JP3214092B2 (ja) * | 1992-09-18 | 2001-10-02 | ソニー株式会社 | 半導体装置の製法及び半導体製造装置 |
| KR100275712B1 (ko) * | 1992-10-12 | 2000-12-15 | 윤종용 | 반도체 소자의 게이트 산화막 형성방법 |
| US5360769A (en) * | 1992-12-17 | 1994-11-01 | Micron Semiconductor, Inc. | Method for fabricating hybrid oxides for thinner gate devices |
| US5376593A (en) * | 1992-12-31 | 1994-12-27 | Micron Semiconductor, Inc. | Method for fabricating stacked layer Si3 N4 for low leakage high capacitance films using rapid thermal nitridation |
| DE69405438T2 (de) * | 1993-03-24 | 1998-04-02 | At & T Corp | Verfahren zur Bildung dielektrischer Oxynitridschichten bei der Herstellung integrierter Schaltungen |
| US5407807A (en) * | 1993-04-23 | 1995-04-18 | Daymark Medical Industries, Inc. | Method and apparatus for detecting sepsis causation in a catheter |
| US5397720A (en) * | 1994-01-07 | 1995-03-14 | The Regents Of The University Of Texas System | Method of making MOS transistor having improved oxynitride dielectric |
| TW236710B (enExample) * | 1994-04-08 | 1994-12-21 | ||
| US5478765A (en) * | 1994-05-04 | 1995-12-26 | Regents Of The University Of Texas System | Method of making an ultra thin dielectric for electronic devices |
-
1996
- 1996-10-21 JP JP29822096A patent/JP4001960B2/ja not_active Expired - Fee Related
- 1996-11-04 KR KR1019960051723A patent/KR970030859A/ko not_active Withdrawn
-
1997
- 1997-07-02 US US08/886,927 patent/US5885870A/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| US5885870A (en) | 1999-03-23 |
| JPH09139437A (ja) | 1997-05-27 |
| KR970030859A (ko) | 1997-06-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4001960B2 (ja) | 窒化酸化物誘電体層を有する半導体素子の製造方法 | |
| US6319775B1 (en) | Nitridation process for fabricating an ONO floating-gate electrode in a two-bit EEPROM device | |
| JP4617574B2 (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
| US6653683B2 (en) | Method and structure for an oxide layer overlying an oxidation-resistant layer | |
| JPH1174485A (ja) | 半導体装置およびその製造方法 | |
| JPH10163348A (ja) | 不揮発性半導体記憶装置の製造方法 | |
| JP3558565B2 (ja) | 不揮発性半導体装置の製造方法 | |
| US6984562B2 (en) | Method for forming dielectric layer between gates in flash memory device | |
| US20020168869A1 (en) | Method for fabricating an ONO layer | |
| US6962728B2 (en) | Method for forming ONO top oxide in NROM structure | |
| JPH03257828A (ja) | 半導体装置の製造方法 | |
| KR20020002266A (ko) | 반도체 장치 및 반도체 장치의 제조 방법 | |
| JP3548563B2 (ja) | 半導体装置の製造方法 | |
| KR100543209B1 (ko) | Sonos 구조를 갖는 트랜지스터 제조 방법 | |
| JPH07297182A (ja) | SiN系絶縁膜の形成方法 | |
| US6620705B1 (en) | Nitriding pretreatment of ONO nitride for oxide deposition | |
| JPH09153492A (ja) | 絶縁膜の形成方法 | |
| US7358198B2 (en) | Semiconductor device and method for fabricating same | |
| JPH11261065A (ja) | シリコンゲートfetの製造方法 | |
| KR100799057B1 (ko) | 플래시 메모리 소자의 제조 방법 | |
| JPH08213611A (ja) | 半導体装置の製造方法及び半導体装置 | |
| KR100268124B1 (ko) | 반도체 소자의 전하저장전극 제조방법 | |
| US6858496B1 (en) | Oxidizing pretreatment of ONO layer for flash memory | |
| KR100223676B1 (ko) | 불휘발성 반도체 메모리 장치에 사용되는 메모리 셀의 층간절연막의 제조방법 | |
| JPH0334469A (ja) | 不揮発生メモリの製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20041217 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050325 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050518 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070409 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070628 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070724 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070816 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 3 |
|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130824 Year of fee payment: 6 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |