JP3921852B2 - コバルト被着型リチウムマンガン複合酸化物及びその製造方法 - Google Patents

コバルト被着型リチウムマンガン複合酸化物及びその製造方法 Download PDF

Info

Publication number
JP3921852B2
JP3921852B2 JP35102198A JP35102198A JP3921852B2 JP 3921852 B2 JP3921852 B2 JP 3921852B2 JP 35102198 A JP35102198 A JP 35102198A JP 35102198 A JP35102198 A JP 35102198A JP 3921852 B2 JP3921852 B2 JP 3921852B2
Authority
JP
Japan
Prior art keywords
cobalt
manganese composite
composite oxide
lithium manganese
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35102198A
Other languages
English (en)
Other versions
JP2000169152A (ja
Inventor
典幹 杉山
昌市 藤野
光昭 畑谷
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP35102198A priority Critical patent/JP3921852B2/ja
Priority to US09/422,859 priority patent/US6428766B1/en
Priority to CA002287655A priority patent/CA2287655A1/en
Priority to KR1019990046711A priority patent/KR20000029333A/ko
Priority to EP99120873A priority patent/EP0997956A1/en
Publication of JP2000169152A publication Critical patent/JP2000169152A/ja
Priority to US10/086,730 priority patent/US20020177002A1/en
Priority to US10/166,409 priority patent/US6551571B2/en
Application granted granted Critical
Publication of JP3921852B2 publication Critical patent/JP3921852B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コバルト被着型リチウムマンガン複合酸化物及びその製造方法に関し、更に詳しくは、非水電解液二次電池用の正極活物質として、特に放電容量が高く、二次電池のサイクル特性の改良に有用な、リチウムマンガン複合酸化物の表面がコバルト酸化物で被着されているリチウムマンガン複合酸化物及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような中で、リチウムイオン二次電池は、とりわけ充放電電圧が高く、充放電容量も大きいという特徴を有するために注目されている。
【0003】
従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極材料としては、スピネル型構造のLiMn2O4 、岩塩型構造のLiMnO2、LiCoO2、LiCo1-X NiX O2、LiNiO2等が一般的に知られている。なかでもLiCoO2は高電圧と高容量を有する点で有利であるが、コバルト原料の供給量が少ないことによる製造コスト高の問題や廃棄電池の環境安全上の問題を含んでいる。そこで、供給量が多く低コストで環境適性の良いマンガンを原料として作られるスピネル構造型のリチウムマンガン複合酸化物(LiMn2O4)の研究が盛んに行われている。
【0004】
しかしながら、リチウムイオン二次電池の正極材料としてLiMn2O4 系を用いた場合、高電圧、高エネルギー密度を有するものの、充放電サイクル特性が劣るという問題がある。この原因としては、充放電の繰り返しに伴う結晶構造中のリチウムイオンの脱離・挿入挙動によって結晶格子が伸縮し、結晶の体積変化によって生じる格子破壊や、電解液中へのマンガンの溶解が直接的な要因であると考えられている。
【0005】
この充放電の繰り返しによる充放電容量の劣化を抑制し、充放電サイクル特性を向上させるための従来の材料開発の手段としては、主に下記の3つのタイプが挙げられる。
(a)リチウムマンガン複合酸化物におけるリチウム/マンガンの組成均質化
このタイプに属するものとしては、例えば、特開平9-86933 、特開平9-306493、特開平9-129233、特開平9-259863、特開平10-3194 、特開平8-217451、特開平9-147859、特開平9-124321、特開平10-21914、特開平9-180723、特開平9-306490、特開平9-50811 、特開平10-83816、特開平10-172568 、特開平10-162826 、特開平10-172569 、特開平10-501369 、特開平7-101727、特開平8-315823、特開平4-198028、特開平7-97216 、特開平8-217452、特開平6-295724、特開平10-81520、特開平10-81521、特開平9-147867、特開平10-130024 、特開平10-130025 、特開平9-147859、特開平10-162826 、特開平10-265224 等が挙げられる。
【0006】
(b)添加元素による母体の骨格構造の安定化
このタイプに属するものとしては、例えば、特開平9-147867、特開平9-134723、特開平9-270259、特開平9-213333、特開平10-40911、特開平10-3918 、特開平10-21910、特開平10-172568 、特開平8-217451、特開平8-217452、特開平2-60056 、特開平10-241682 、特開平10-241685 、特開平10-241686 、特開平10-241687 、特許2584123 、特許2584246 、特許2627314 、A. D. Robertson et. al.,J. Electrochem. Soc., 144(1997)3500 、A. D. Robertson et. al., J. Electrochem. Soc., 144(1997)3505、J. M. Tarasconet. al., J. Electrochem. Soc., 138(1991)2859、特開平9-259863、特開平9-265984、特開平10-116603 、特開平10-188953 、特開平5-283077、特開平10-177860 等が挙げられる。
【0007】
(c)表面改質によるマンガン溶解抑制
このタイプに属するものとしては、例えば、特開平10-3194 、特開平10-116615 、特開平10-199528 、WO97/23918、G. G. Amatucci et. al.,Solid State Ionics,104(1997)13 、等である。
【0008】
上記タイプ(a)の場合、特開平9-86933 、特開平4-198028、特開平7-97216 等では、前駆体の種類・形状・サイズを調整したり、特開平6-295724では均質混合という観点から機械的な粉砕・分級することによりリチウムとの反応性を高める試みが報告されている。また、特開平9-147859では、ゾル・ゲル法や噴霧乾燥といった技法を用いたLiMn2O4 の作製が行われているが、いづれも技術的な限界があったり、工業的な問題があり充分満足し得るものではない。
一方、上記タイプ(b)の場合においては、価数が3価以下の元素がサイクル特性の改善に対して効果的であるが、二次電池の特性として重要な特性である電池容量を決定するMn3+量が減少するために電池容量の大きな低下を招くことが避けられず、本質的な改善策とは言い難い。
更に、上記タイプ(c)の場合においては、例えばWO97/23918が挙げられるが、リチウムマンガン複合酸化物の前駆体であるマンガン化合物またはリチウムマンガン複合酸化物を非マンガン金属元素で被覆してからリチウム塩と混合し、その後焼成反応を行っているために、上記非マンガン金属元素がリチウムマンガン複合酸化物の表面を充分に被覆しているとは考えにくく、また表面の非マンガン金属元素もリチウム化合物となっているために充放電の際に電気化学的特性の異なる物質が生成する可能性があり、その結果、電池特性が劣化する虞れがある。
【0009】
【発明が解決しようとする課題】
本発明の目的は、特定量のコバルト量となるようにコバルト酸化物をリチウムマンガン複合酸化物の表面にエピタキシャル成長させることによって、充放電容量とサイクル特性の高バランス化を実現させた、非水電解液二次電池用の正極活物質として有用なコバルト被着型リチウムマンガン複合酸化物を提供することにある。
【0010】
【課題を解決するための手段】
すなわち、上記課題を達成するための本発明の第1は、コバルト被着量(Zwt%)がリチウムマンガン複合酸化物のBET比表面積(Sm2/g)に対して、下記式(1)の範囲内であることを特徴とするコバルト被着型リチウムマンガン複合酸化物
0.05×S≦Z≦1.50×S (1)
を内容とする(請求項1)。
好ましい態様としては、コバルトがスピネル型構造を有するコバルト酸化物である(請求項2)。
また好ましい態様としては、コバルト酸化物の格子定数が8.10±0.05Åである(請求項3)。
また好ましい態様としては、リチウムマンガン複合酸化物の格子定数が8.15〜8.24Åである(請求項4)。
【0011】
上記コバルト被着型リチウムマンガン複合酸化物を製造するための本発明の第2は、アルカリ水溶液中に分散させたリチウムマンガン複合酸化物粒子粉末とコバルト化合物とを20〜100℃で酸化反応させて前記リチウムマンガン複合酸化物上にコバルト酸化物をエピタキシャル成長させた後、濾別、水洗、乾燥することを特徴とするコバルト被着型リチウムマンガン複合酸化物の製造方法を内容とする(請求項5)。
【0012】
【発明の実施の形態】
リチウムマンガン複合酸化物の最大の問題点は、充放電容量のサイクル劣化であるが、この原因としては大別して下記の2種類が考えられる。
一つは、リチウムマンガン複合酸化物結晶の中の八面体構造の充放電に伴う伸縮の繰り返しによる結晶の乱れであると考えられており、この八面体の伸縮を抑制する方法として、(Li)8a[Li x Mn3+ 1-3xMn4+ 1+2x]16dO4におけるx を大きくすることによりヤーンテラー(Jahn-Teller)イオンである3価のマンガンイオン数を低減させることが提案されているが、マンガン酸化物とリチウム塩との反応においてマンガン酸化物の反応性が必ずしも均一に制御されていないため、リチウムイオンの組成に不均質性を生じ部分的にリチウムの少ない結晶が残り、その部分のサイクル特性が非常に悪くなる。そのため、総合的なサイクル特性を重視した場合には、16dポジションへのリチウムイオンの導量を増やす必要があり、大幅な容量低下を引き起こしてしまう。この解決法として、前駆体であるマンガン酸化物を合成する際に、カルシウム塩やマグネシウム塩の少なくとも1種をマンガンのモル数に対して0.01〜2.50モル%共存させ、粒度分布に優れた前駆体を合成することにより、リチウムとマンガンの局所的な分布を改良する方法がある(本発明者らが特願平10-305321 として既に提案済みである。)。
もう一つは、活物質からのマンガンの溶解によるものと考えられており、M-O 結合エネルギーを強めるために、Cr, Co, NiなどによるMnの置換が研究されているが、電池容量の低下が著しいため本質的な改良とは言い難い。
【0013】
本発明者らは、このサイクル特性の改良について鋭意検討した結果、化学的に安定で、リチウムマンガン複合酸化物に近い格子定数を持つ物質であるコバルト酸化物によってリチウムマンガン複合酸化物を被着することにより、電池容量の大幅な低下を引き起こすことなく、サイクル特性を大幅に改良できることを見出し、本発明はかかる知見に基づくものである。
【0014】
このサイクル特性が改良される理由については未だ明かではないが、次のように考えられる。まず、八面体構造の伸縮に対しては、充電前の結晶であるLi1+x Mn2-x O4の格子定数、充電後の結晶であるλMnO2の格子定数に着目した。前者の格子構造は8.15〜8.24Å、後者の格子構造は約8.0Åであり、被着した結晶であるコバルト酸化物の格子定数は組成や合成条件に依存するが、8.10±0.05Åであり、母結晶であるリチウムマンガン複合酸化物と充電終了時のλMnO2の丁度中間的な格子定数に相当する。したがって、充放電繰り返しによる八面体構造の結晶の伸縮の際にコバルト酸化物がスプリング的な役割(以下、スプリング効果と記す)を果たすことより、結晶の乱れを緩和する。
【0015】
この場合、被着した結晶が母結晶と同じスピネル型構造を持つ結晶である場合は連続的な結晶成長が可能であるため、スピネル型構造を有するコバルト酸化物を内部の母結晶であるリチウムマンガン複合酸化物に均一に被着することが好ましい。更に、スピネル型構造の中でコバルトイオンは8a及び16dポジションを占有しており、酸素イオンは32eポジションを占有しているため、リチウムイオンの経路である16cポジションは空格子となっており、リチウムイオンの脱挿入経路であるスピネル型構造の16cポジションを有するという点からも、コバルト酸化物がスピネル型構造であることが好ましい。また、コバルト酸化物は、化学的な安定性という点からも好ましい。
【0016】
尚、コバルト酸化物結晶がリチウムマンガン複合酸化物粒子粉末の表面に成長していることは、H. Sadamura, K. Yamashita, N. Nagai, J. Appl. Phys. 73(1993)6731を参考にして確認することができる。すなわち、スピネル型構造を有する物質上に、同じスピネル型構造を有し、格子定数の異なる(組成の異なる)物質を化学的に被着した(結晶的な連続性がある)場合、生成物の格子定数は2種類の物質の格子定数のほぼ体積相加平均となる。もし、単に混合した場合は各々の格子定数に対応するX線回折結果が得られる。本発明のコバルト被着型リチウムマンガン複合酸化物はいずれも前者の条件を満足しており、母結晶であるリチウムマンガン複合酸化物粒子の表面にコバルト酸化物が結晶的な連続性を持った状態で被覆されているものと考えられる。
【0017】
以下、本発明を詳しく説明する。
本発明のコバルト被着型リチウムマンガン複合酸化物は、コバルト被着量(Zwt%)がリチウムマンガン複合酸化物のBET比表面積(Sm2/g)に対して、下記式(1)の範囲内であることを特徴とする。
0.05×S≦Z≦1.50×S (1)
【0018】
コバルトの被着量が1.50×Swt%より大きい場合は、リチウムマンガン複合酸化物粒子表面に成長する、充放電容量に寄与しないコバルト酸化物結晶層の割合が大きくなりすぎるため、全体としての容量が低下する。また、逆に0.05×Swt%より小さい場合は、コバルト酸化物結晶層が薄すぎたり、被着されていない部分が残存したりするため充分な効果を得ることができない。
【0019】
本発明の被着型リチウムマンガン複合酸化物は、例えば、アルカリ水溶液中に分散させたリチウムマンガン複合酸化物粒子粉末とコバルト化合物とを20〜100℃で酸化反応させて前記リチウムマンガン複合酸化物上にコバルト酸化物をエピタキシャル成長させた後、濾別、水洗、乾燥することにより製造することができる。
具体的には、リチウムマンガン複合酸化物粒子粉末をアルカリ性溶液中で充分に分散した後、コバルト化合物を添加してから20〜100℃で酸化反応させることによってコバルト酸化物をエピタキシャル成長させ、その後、濾別・精製・乾燥することによって得ることができる。
【0020】
本発明に用いられるリチウムマンガン複合酸化物としては、格子定数が8.15〜8.24Åであることが好ましい。格子定数が8.15Å未満では、16dポジションのリチウムを大幅に増量することになり、このことはMn3+の大幅な低減につながり、電池容量の低下を招くため好ましくない。また、格子定数が8.24Å以上では、被着されたコバルト酸化物結晶との格子定数の違いが大きくなることにより、表面のコバルト酸化物結晶のスプリング効果が小さくなるため好ましくない。また、必要に応じて、リチウムマンガン複合酸化物に、Ca, Mg , Al, Fe, Ni 等から選ばれる1種もしくは2種以上の元素が含まれていてもかまわない。
【0021】
本発明に用いられるコバルト化合物については特に制限されないが、水溶性のものが好ましく、例えば、酢酸コバルト、硫酸コバルト、塩化コバルト等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。また、これらの塩は粉末のままでも添加可能であるが、水溶液で添加するのが好ましい。尚、水溶液の濃度は特に制限されない。
コバルト化合物の使用量は、コバルトの被着量として、上記した如く、リチウムマンガン複合酸化物のBET比表面積(Sm2/g)に依存し、0.05×S〜1.50×Swt%に相当する範囲である。
【0022】
アルカリ水溶液の濃度は、コバルト塩を中和する量に加えて過剰のアルカリイオン濃度として0.01〜10mol/リットルの範囲が好ましく、工業的な生産面まで考慮すると0.5〜5.0mol/リットルの範囲がより好ましい。アルカリの種類は特に制限されず、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化リチウム、炭酸リチウム等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
【0023】
反応温度については、20℃未満では冷却等の付加設備を必要としコストの上昇につながり、また100℃より高い温度ではオートクレーブ等の装置を用いる必要がありコストの上昇を招くため、20〜100℃の範囲が好ましい。
【0024】
上記の如くして、コバルトの含有量が0.05×S〜1.50×Swt%であるコバルト酸化物が被着されたスピネル型リチウムマンガン複合酸化物が得られる。
【0025】
本発明のリチウムマンガン複合酸化物を非水電解液二次電池用の正極活物質として使用する場合、負極活物質は特に制限されないが、例えば、リチウム金属、リチウム合金、リチウムを吸蔵放出可能な物質を用いることができる。具体的には、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等が挙げられる。
【0026】
また、電解質も特に限定されないが、例えば、炭酸プロピレン、炭酸ジエチル、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類の有機溶媒中に、過塩素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム等のリチウム塩の少なくとも1種を溶解したものを用いることができる。
【0027】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
尚、反応生成物粉末の同定および結晶構造は、X線回折(RIGAKU Cu-Kα 40kV 40mA)により調べた。また、BET比表面積は窒素吸着法により測定した。更に、コバルト被着量はICP(誘導結合プラズマ)分析により決定した。
【0028】
実施例1
前駆体として55m2/gの酸化マンガン(前駆体a)を用いて、Li/Mn 比として0.525となるように炭酸リチウムを混合し、700℃で10時間、空気中で焼成を行った。この生成物はスピネル型構造単相を示し、格子定数8.239Å,BET比表面積11m2/gのリチウムマンガン複合酸化物であった。
これを母結晶Aとして、次のようにコバルト被着反応を行った。まず、水酸化リチウム水溶液として1.5mol/リットルの溶液705mlを分取して、このアルカリ性水溶液にリチウムマンガン複合酸化物100gを投入して窒素ガスを吹き込みながら充分に分散させた。窒素ガスの吹き込みは空気に切り替えるまで継続した。次に、充分に攪拌しながら、1.3mol/リットルの硫酸コバルト水溶液を22mlと蒸留水273mlを添加してから、90℃まで昇温し、昇温完了後に窒素ガスを止めて、空気を1リットル/minの速度で吹き込みながら90℃で3時間維持した。これを冷却後、濾別・水洗・乾燥させることにより、コバルト被着型リチウムマンガン複合酸化物を作製した。
得られたコバルト被着型リチウムマンガン複合酸化物は、図1のX線回折パターンに示されるようにスピネル型結晶構造に帰属され、格子定数は8.235Åであった。また、コバルト被着量は1.65wt%(Z=0.15×Sに相当)であった。
【0029】
(電池セルの構成)
上記のようにして得られたコバルト被着型リチウムマンガン複合酸化物を80mg、導電剤であるアセチレンブラック15mg、および結着材であるポリテトラフルオロエチレン5mgを乳鉢で混合し、正極合剤を作製した。負極にはリチウム箔を用い、電解液には過塩素酸リチウムを、プロピレンカルボネートとジメトキシエタンを体積比で1:1に混合した溶媒中に1Mの濃度で溶解させたものを用いた。
【0030】
(評価)
この電池セルを用いて、0.5mA/cm2 の一定電流で、電池電圧が3.0Vから4.5Vの間で充放電を繰り返した。
【0031】
図2に、20サイクルまでの放電容量の変化を示したが、1サイクルの放電容量は130mAn/g、20サイクル目の放電容量は129mAh/gで、1サイクル目の放電容量の99%を維持していた。
尚、以下に示す実施例および比較例の充放電評価については、全て同じ構成の電池セルにより同条件下で測定した。
【0032】
実施例2
Li/Mn 比を0.550とした以外は実施例1と同様にしてリチウムマンガン複合酸化物(母結晶B)を得た。この複合酸化物の格子定数8.229Å,BET比表面積10.5m2/gであり、単相のリチウムマンガン複合酸化物であった。これを用いた以外は、実施例1と同様にしてコバルト被着型リチウムマンガン複合酸化物(コバルト被着量は1.6wt%で、Z=0.15×Sに相当)を作製した。
【0033】
実施例3
Li/Mn 比を0.600とした以外は実施例1と同様にしてリチウムマンガン複合酸化物(母結晶C)を得た。この複合酸化物の格子定数は8.213Å,BET比表面積は9.8m2/gであり、単相のリチウムマンガン複合酸化物であった。これを用いた以外は、実施例1と同様にしてコバルト被着型リチウムマンガン複合酸化物(コバルト被着量は1.7wt%で、Z=0.17×Sに相当)を作製した。
【0034】
実施例4
前駆体として7m2/gの酸化マンガン(前駆体b)を用いて、Li/Mn 比として0.575となるように炭酸リチウムを混合し、700℃で10時間、空気中で焼成を行った。この試料はスピネル型構造単相を示し、格子定数8.230Å,BET比表面積3.5m2/gのスピネル型構造単相のリチウムマンガン複合酸化物であった。これを母結晶Dとして用いた以外は実施例1と同様にしてコバルト被着型リチウムマンガン複合酸化物(コバルト被着量は1.6wt%で、Z=0.46×Sに相当)を作製した。
【0035】
実施例5
実施例1で作製した母結晶Aを用いて、次のようにコバルト被着反応を行った。まず、水酸化リチウム水溶液として1.5mol/リットルの溶液780mlを分取して、このアルカリ性水溶液にリチウムマンガン複合酸化物100gを投入して窒素ガスを吹き込みながら十分に分散させた。窒素ガスの吹き込みは空気に切り替えるまで継続した。次に、充分に攪拌しながら、1.3mol/リットルの硫酸コバルト水溶液を65mlと蒸留水155mlを添加してから、90℃まで昇温し、昇温完了後に窒素ガスを止めて、空気を1リットル/minの速度で吹き込みながら90℃で3時間維持した。これを冷却後、濾別・水洗・乾燥させることによりコバルト被着型リチウムマンガン複合酸化物(コバルト被着量は4.9wt%で、Z=0.45×Sに相当)を作製した。
【0036】
実施例6
実施例4で作製した母結晶Dを用いた以外は実施例5と同様にして、コバルト被着型リチウムマンガン複合酸化物(コバルト被着量は4.9wt%で、Z=1.40×Sに相当)を作製した。
【0037】
比較例1〜4
実施例1〜4で作製した母結晶A〜Dをそれぞれ比較例1〜4として、その電池特性を評価した。
【0038】
比較例5
前駆体として5wt%のコバルトを含む15m2/gのコバルト含有酸化マンガン(前駆体c)を用いて、Li/(Mn+Co)比が0.525となるように炭酸リチウムを混合し、700℃で10時間、空気中で焼成を行った。この試料はスピネル型構造単相を示し、格子定数8.213Å,BET比表面積7.5m2/gのコバルト含有リチウムマンガン複合酸化物であった。
【0039】
比較例6
前駆体aに対して、リチウムマンガン酸化物にコバルト被着する方法と同様にして、コバルト被着量が5wt%となるように被着処理を行った前駆体dを用いて、Li/(Mn+Co)が0.525となるように炭酸リチウムを混合し、700℃で10時間、空気中で焼成を行った。この試料はスピネル型構造単相を示し、格子定数8.215Å,BET比表面積11.0m2/gのコバルト含有リチウムマンガン複合酸化物であった。
【0040】
上記実施例1〜6及び比較例1〜6で作製したリチウムマンガン複合酸化物の作製条件及び特性を表1に示す。
【0041】
【表1】
Figure 0003921852
【0042】
表1から明らかなように、実施例1〜6では、放電容量が高く、且つサイクル安定性に優れていることが判る。
【0043】
一方、比較例1〜4は、それぞれ実施例1〜4の母結晶であるが、初期の容量は高いが、サイクル安定性において劣ることが判る。
【0044】
更に、コバルト処理を行う際に、前駆体結晶中にコバルトを含有させたもの(比較例5)、前駆体表面にコバルトを被着処理したもの(比較例6)は、いずれも実施例と同等量のコバルトを含んでいるにも拘らず、容量、サイクル安定性のいずれにおいても充分な特性が得られないことが判る。
【0045】
以上の結果から、コバルトを含むリチウムマンガン複合酸化物は、コバルトが含まれる形態が極めて重要であることが理解される。すなわち、単にコバルトを含むだけでは不充分で、そのコバルトがリチウムマンガン複合酸化物粒子表面に存在する場合に、初めてサイクル安定性を改良できることを示している。この理由としては、前記した如く、表面のコバルト酸化物がリチウムマンガン複合酸化物の充放電時の結晶の伸縮を緩和するとともに、表面のコバルト酸化物がマンガンの溶出を抑制していることに因るものと考えられる。
【0046】
【発明の効果】
叙上のとおり、本発明により、結晶の伸縮及びマンガン溶出が改善された、耐久性及び化学的安定性に優れたリチウムマンガン複合酸化物が提供される。また、このリチウムマンガン複合酸化物を用いることにより、充放電容量とサイクル特性の高バランス化を実現させた非水電解液二次電池が提供される。
【図面の簡単な説明】
【図1】実施例1で作製したコバルト被着型リチウムマンガン複合酸化物のX線回折パターンを示す図である。
【図2】実施例1で作製したコバルト被着型リチウムマンガン複合酸化物のサイクル回数に対する放電容量の変化を示す図である。
【図3】実施例1で使用した母結晶Aのリチウムマンガン複合酸化物のサイクル回数に対する放電容量の変化を示す図である。

Claims (5)

  1. コバルト被着量(Zwt%)がリチウムマンガン複合酸化物のBET比表面積(Sm2/g)に対して、下記式(1)の範囲内であることを特徴とするコバルト被着型リチウムマンガン複合酸化物:
    0.05×S≦Z≦1.50×S (1)
  2. コバルトがスピネル型構造を有するコバルト酸化物である請求項1記載のコバルト被着型リチウムマンガン複合酸化物。
  3. コバルト酸化物の格子定数が8.10±0.05Åである請求項2記載のコバルト被着型リチウムマンガン複合酸化物。
  4. リチウムマンガン複合酸化物の格子定数が8.15〜8.24Åである請求項1〜3のいずれか1項に記載のコバルト被着型リチウムマンガン複合酸化物。
  5. アルカリ水溶液中に分散させたリチウムマンガン複合酸化物粒子粉末とコバルト化合物とを20〜100℃で酸化反応させて前記リチウムマンガン複合酸化物上にコバルト酸化物をエピタキシャル成長させた後、濾別、水洗、乾燥することを特徴とするコバルト被着型リチウムマンガン複合酸化物の製造方法。
JP35102198A 1998-10-27 1998-12-10 コバルト被着型リチウムマンガン複合酸化物及びその製造方法 Expired - Fee Related JP3921852B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP35102198A JP3921852B2 (ja) 1998-12-10 1998-12-10 コバルト被着型リチウムマンガン複合酸化物及びその製造方法
US09/422,859 US6428766B1 (en) 1998-10-27 1999-10-25 Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide, and preparation processes thereof
KR1019990046711A KR20000029333A (ko) 1998-10-27 1999-10-26 산화망간, 리튬망간 착산화물과 코발트로 코팅된 리튬망간착산화물, 그리고 그것들의 제조방법
CA002287655A CA2287655A1 (en) 1998-10-27 1999-10-26 Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide, and preparation processes thereof
EP99120873A EP0997956A1 (en) 1998-10-27 1999-10-27 Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide; and preparation processes thereof
US10/086,730 US20020177002A1 (en) 1998-10-27 2002-03-04 Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide, and preparation processes thereof
US10/166,409 US6551571B2 (en) 1998-10-27 2002-06-11 Cobalt-coated lithium manganese complex oxide and preparation process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35102198A JP3921852B2 (ja) 1998-12-10 1998-12-10 コバルト被着型リチウムマンガン複合酸化物及びその製造方法

Publications (2)

Publication Number Publication Date
JP2000169152A JP2000169152A (ja) 2000-06-20
JP3921852B2 true JP3921852B2 (ja) 2007-05-30

Family

ID=18414509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35102198A Expired - Fee Related JP3921852B2 (ja) 1998-10-27 1998-12-10 コバルト被着型リチウムマンガン複合酸化物及びその製造方法

Country Status (1)

Country Link
JP (1) JP3921852B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171064B2 (ja) 2020-02-27 2022-11-15 株式会社三宅デザイン事務所 構造材、構造材を含む構造体、及び、構造材の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083476A (ko) * 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
JP2006092820A (ja) * 2004-09-22 2006-04-06 Sanyo Electric Co Ltd 非水電解液二次電池用正極活物質及び正極並びに非水電解液二次電池
CN1855587B (zh) 2005-04-28 2010-05-05 比亚迪股份有限公司 一种电池正极的制备方法和采用该正极的锂离子电池的制备方法
WO2021065338A1 (ja) * 2019-09-30 2021-04-08 株式会社村田製作所 二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171064B2 (ja) 2020-02-27 2022-11-15 株式会社三宅デザイン事務所 構造材、構造材を含む構造体、及び、構造材の製造方法

Also Published As

Publication number Publication date
JP2000169152A (ja) 2000-06-20

Similar Documents

Publication Publication Date Title
JP6665060B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5418664B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
KR101989760B1 (ko) 정극 활성 물질 전구체 입자 분말 및 정극 활성 물질 입자 분말, 및 비수전해질 이차 전지
EP2104163B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
US6428766B1 (en) Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide, and preparation processes thereof
JP5803539B2 (ja) リチウム含有複合酸化物粉末の製造方法
JP5440614B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
US20160248089A1 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP5552685B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP5987401B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法および二次電池
KR20120108031A (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및, 리튬 이온 전지
JPWO2012176471A1 (ja) リチウム含有複合酸化物粉末およびその製造方法
JP5674055B2 (ja) 複合酸化物の製造方法、二次電池用正極活物質および二次電池
JP5733571B2 (ja) リチウム含有複合酸化物の製造方法、正極活物質および二次電池
JP6910697B2 (ja) 正極活物質の製造方法
JP2006147499A (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
JP4114314B2 (ja) リチウムマンガン複合酸化物、リチウム二次電池用正極材料、正極、及びリチウム二次電池、並びにリチウムマンガン複合酸化物の製造方法
JP2006147500A (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
JP2013173632A (ja) リチウムマンガン系複合酸化物、二次電池用正極活物質および二次電池
JP5641132B2 (ja) リチウム含有複合酸化物の製造方法、正極活物質および二次電池
JP5447452B2 (ja) リチウムイオン二次電池用正極活物質、その正極活物質を用いたリチウムイオン二次電池及びリチウムマンガン銀複合酸化物の製造方法
JP3921852B2 (ja) コバルト被着型リチウムマンガン複合酸化物及びその製造方法
JP5828282B2 (ja) 非水電解質二次電池用活物質の製造方法およびそれを用いた二次電池
JP4055269B2 (ja) マンガン酸化物及びその製造方法、並びにマンガン酸化物を用いたリチウムマンガン複合酸化物及びその製造方法
JP5831234B2 (ja) 非水電解質二次電池用活物質の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees