JP3904579B2 - 電源装置およびそれを用いた発光装置、電子機器 - Google Patents

電源装置およびそれを用いた発光装置、電子機器 Download PDF

Info

Publication number
JP3904579B2
JP3904579B2 JP2005143522A JP2005143522A JP3904579B2 JP 3904579 B2 JP3904579 B2 JP 3904579B2 JP 2005143522 A JP2005143522 A JP 2005143522A JP 2005143522 A JP2005143522 A JP 2005143522A JP 3904579 B2 JP3904579 B2 JP 3904579B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
constant current
current
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005143522A
Other languages
English (en)
Other versions
JP2006187187A (ja
Inventor
勲 山本
智将 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005143522A priority Critical patent/JP3904579B2/ja
Priority to US11/792,267 priority patent/US7521912B2/en
Priority to KR1020077012089A priority patent/KR20070085518A/ko
Priority to PCT/JP2005/021241 priority patent/WO2006059500A1/ja
Publication of JP2006187187A publication Critical patent/JP2006187187A/ja
Application granted granted Critical
Publication of JP3904579B2 publication Critical patent/JP3904579B2/ja
Priority to US12/402,229 priority patent/US7948299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Led Devices (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、電源装置に関する。
近年の携帯電話、PDA(Personal Digital Assistance)等の小型情報端末においては、例えば液晶のバックライトに用いられる発光ダイオード(Light Emitting Diode、以下LEDともいう)などのように電池の出力電圧よりも高い電圧を必要とするデバイスが存在する。これらの小型情報端末では、Liイオン電池が多く用いられ、その出力電圧は通常3.5V程度であり、満充電時においても4.2V程度であるが、LEDはその駆動電圧として電池電圧よりも高い電圧を必要とする。このように、電池電圧よりも高い電圧が必要とされる場合には、チャージポンプ回路などを用いた昇圧型の電源装置を用いて電池電圧を昇圧し、LEDなどの負荷回路を駆動するために必要な電圧を得ている。
このような電源装置により、LEDを駆動する際には、LEDの駆動経路上に定電流回路を接続して、LEDに流れる電流を一定に保つことによってその発光輝度の制御の安定化を図っている(特許文献1参照)。
LEDのカソード端子に接続された定電流回路を安定に動作させるためには、定電流回路を構成するトランジスタが定電流領域で動作する必要がある。ここでトランジスタの定電流領域とは、バイポーラトランジスタでは活性領域を、電界効果トランジスタ(以下、FETという)では飽和領域をいう。定電流回路を構成するトランジスタは、LEDのカソード端子と接地端子間に直列に設けられており、このトランジスタが定電流領域で動作するためには、LEDのカソード端子が一定電圧以上に保たれている必要がある。以下、定電流回路が安定動作可能な電圧を単に安定動作電圧という。
ここでLEDを駆動する電源装置において、昇圧率が切り替え可能なチャージポンプ回路を用いる場合を考える(特許文献2参照)。チャージポンプ回路に入力される電池電圧が低下してくると、チャージポンプ回路の出力電圧、すなわちLEDのアノード端子の電圧も降下する。それに伴い、LEDのアノード端子の電圧から順方向電圧Vfだけ降下したLEDのカソード端子の電圧も低下するため、定電流回路を安定に動作させるとができなくなる。したがって、この場合には、LEDのカソード端子の電圧をモニタし、所定の安定動作電圧より低くならないように、チャージポンプ回路の昇圧率を切り替えることによって、定電流回路を安定に動作させることができる。
特開2004−22929号公報 特開平6−78527号公報
上述のように、LEDのカソード端子の電圧をモニタしてチャージポンプ回路の昇圧率を切り替える場合、定電流回路の安定動作電圧に対応したしきい値電圧を設定し、カソード端子の電圧が、このしきい値電圧よりも高くなるように制御する必要がある。
ところが、定電流回路を構成するトランジスタや抵抗は半導体製造プロセスのばらつきや温度によって素子の特性が変動するため、定電流回路の安定動作電圧もそれに伴い変動する。そのため、プロセスばらつきや温度特性を考慮して、しきい値電圧を高く設定しておく必要がある。たとえば、定電流回路の安定動作電圧が、設計値の0.3Vを中心として最大で±0.1Vの範囲で変動する場合には、マージンを確保し、0.4V以上の電圧をしきい値電圧として設定することになる。
ここで、しきい値電圧を0.4Vに設定しておいた場合に、定電流回路の安定動作電圧がプロセスばらつきによって0.2Vとなった場合には、本来0.2V以上で安定化すればよいはずのカソード端子の電圧を0.4V以上に安定化することになる。つまり、カソード端子の電圧が0.2V以下となったときに昇圧率を上げればよいところ、0.4V以下になった時点で昇圧率を上げる必要がある。
チャージポンプ回路の効率は、昇圧率が高いほど悪化するため、上述のように、定電流回路を安定に動作させるためのしきい値電圧にマージンを設定すると、回路全体の効率が悪化することになる。
本発明はこうした課題に鑑みてなされたものであり、その目的は、負荷回路の駆動電圧を適切に設定し、より高効率動作が可能な電源装置の提供にある。
本発明のある態様は電源装置に関する。この電源装置は、負荷回路を定電流駆動するための電源装置であって、負荷回路の駆動経路上に設けられた定電流回路と、負荷回路に駆動電圧を出力する電圧生成回路と、定電流回路の両端の電圧を監視する監視回路と、電圧生成回路から出力される駆動電圧を制御する制御部と、を備える。監視回路は、定電流回路が安定に動作可能な電圧の変動に追従したしきい値電圧を生成するしきい値電圧源を含み、定電流回路の両端の電圧と、しきい値電圧源により生成されるしきい値電圧を比較した結果を制御部へと出力し、制御部は、監視回路の出力にもとづき電圧生成回路を制御する。
この態様によれば、定電流回路を構成するトランジスタ、抵抗の素子特性が半導体製造プロセスのばらつきや温度変動によって変動し、それにともない定電流回路の安定動作電圧が変動した場合に、その変動に追従したしきい値電圧にもとづいて電圧生成回路を制御することにより、適切な駆動電圧を出力することができる。
定電流回路は、駆動対象の負荷回路が接続される電流出力端子と、所定の基準電圧が第1の入力端子に印加された演算増幅器と、演算増幅器の出力電圧が制御端子に印加され、一端が前記電流出力端子に接続された第1トランジスタと、第1トランジスタの他端に接続され、一端に所定の固定電圧が印加された第1抵抗と、第1トランジスタと第1抵抗の接続点の電位を演算増幅器の第2の入力端子に帰還する帰還経路と、を含み、しきい値電圧源は、所定の定電流を出力する定電流源と、定電流源から出力される定電流の経路上に直列に設けられた第2トランジスタと、一端に固定電圧が印加され、他端に第2トランジスタが接続された第2抵抗と、を含み、第2トランジスタと定電流源の接続点の電圧をしきい値電圧として出力してもよい。
しきい値電圧を生成するしきい値電圧源と、定電流回路の主要部を同様の構成とすることによって、定電流回路の第1抵抗、第1トランジスタの特性の変動すると、しきい値電圧源から出力されるしきい値電圧も、この変動に合わせて変化するため、電圧生成回路を適切に制御することができる。
半導体集積回路上において、第2トランジスタと第1トランジスタ、および第2抵抗と第1抵抗はそれぞれペアリングして形成してもよい。
しきい値電圧を生成する電圧源と定電流回路とで、互いに対応する素子同士をペアリングして形成することにより、対応する素子の特性変動をそろえることができ、より適切なしきい値電圧の生成を行うことができる。
定電流源から出力される定電流は、第2トランジスタが定電流領域で動作する範囲に設定されてもよい。
監視回路は、定電流回路の両端の電圧と、電圧源により生成されるしきい値電圧とを比較する電圧比較器と、電圧比較器のオフセット電圧を調節するオフセット電圧調節回路と、を含んでもよい。この場合、電圧比較器のオフセット電圧を調節することにより、定電流回路の安定動作電圧と、しきい値電圧との誤差電圧をキャンセルすることができる。
定電流回路は、定電流源から出力される定電流に応じた基準電流の経路上に設けられ、一端に固定電圧が印加された基準抵抗をさらに含み、当該基準抵抗の他端に現れる電圧を基準電圧として演算増幅器の第1の入力端子に印加してもよい。この場合、定電流源から出力される定電流が変動すると、定電流回路により生成される電流と、しきい値電圧とが同時に変動するため、誤差をキャンセルすることができる。
オフセット電圧調節回路は、電圧比較器の差動電流を調節してもよい。電圧比較器の差動電流を増減させることにより、オフセット電圧を正方向、負方向の両方にシフトさせることができるため、より正確にしきい値電圧を調節することができる。
また、オフセット電圧調節回路は、電圧比較器の差動対に供給すべきテール電流を生成する主電流源と、第1可変電流を生成し、差動対により生成される一方の差動電流を変化させる第1可変電流源と、第2可変電流を生成し、差動対により生成される他方の差動電流を変化させる第2可変電流源と、を含んでもよい。
オフセット電圧調節回路の主電流源、第1、第2可変電流源は、第2の定電流源と、この定電流源により生成される定電流を複製するミラー比が調節可能なカレントミラー回路と、を含んで一体に構成され、カレントミラーにより複製された電流を、テール電流、第1可変電流、第2可変電流として電圧比較器に出力してもよい。
この場合、配線やヒューズのトリミングにより、カレントミラー回路のミラー比を調節することにより、テール電流に対する第1、第2可変電流の比率を変化させることができ、電圧比較器のオフセット電圧を好適に調節することができる。さらに、3つの電流は、ひとつの定電流にもとづき生成されるため、相対的なばらつきを小さく抑えることができる。
オフセット電圧調節回路は、電圧比較器の差動対を構成するトランジスタと並列に設けられた複数の調節用トランジスタと、調節用トランジスタそれぞれの電流経路上に設けられたトリミング可能なヒューズと、を含んでもよい。また、オフセット電圧調節回路は、電圧比較器の差動対に接続されるカレントミラー負荷を構成するトランジスタと並列に設けられた複数の調節用トランジスタと、調節用トランジスタそれぞれの電流経路上に設けられたトリミング可能なヒューズと、を含んでもよい。
調節用トランジスタを用いて、差動対やカレントミラー負荷のトランジスタサイズを微調節することにより、電圧比較器のオフセット電圧を調節することができる。
電圧生成回路は複数の昇圧率が切り替え可能なチャージポンプ回路であって、制御部は、監視回路の電圧比較結果にもとづいてチャージポンプ回路の昇圧率を切り替えてもよい。また、電圧生成回路はスイッチングレギュレータ回路であって、制御部は、監視回路において定電流回路の両端の電圧と、しきい値電圧が等しくなるようにスイッチングレギュレータ回路のスイッチング動作を制御してもよい。
負荷回路は発光ダイオードであって、定電流回路は、発光ダイオードのカソード端子に接続され、監視回路は、発光ダイオードのカソード端子の電圧を監視してもよい。この場合、効率よく発光ダイオードを定電流駆動することができる。
本発明の別の態様は、発光装置である。この発光装置は、発光ダイオードと、発光ダイオードを定電流駆動するための上述の電源装置と、を備える。この態様によれば、発光ダイオードを高効率に定電流駆動することができ、電池の寿命を延ばすことができる。
なお、以上の構成要素の任意の組合せや本発明の構成要素や表現を方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
本発明に係る電源装置によれば、負荷回路の駆動電圧を適切に設定することができる。
図1は、本発明の実施の形態に係る発光装置1000を示す。以降の図において、同一の構成要素には同一の符号を付し、適宜重複した説明を省略するものとする。発光装置1000は、たとえば携帯電話端末やPDAなどの電子機器に搭載され、液晶のバックライトとして機能する。図1には、発光装置1000とともに、液晶パネル510が図示される。発光ダイオード300は、液晶パネル510の背面に設置され、バックライトとして機能する。
この発光装置1000は、発光素子である発光ダイオード300と、その発光ダイオード300を駆動するための電源装置100を含む。発光装置1000は、電池500により駆動される情報端末に搭載され、電源装置100は、電池500から出力される電池電圧Vbatを昇圧して発光ダイオードを駆動するために必要な駆動電圧Voutを生成する。
電源装置100は、入出力端子として、電池電圧Vbatが入力される入力端子102、発光ダイオード300のアノード端子に接続され、電池電圧Vbatを昇圧した出力電圧Voutを出力する出力端子104、発光ダイオード300のカソード端子に接続されるLED端子106を含む。
電源装置100は、チャージポンプ回路10およびその駆動回路20を含む。チャージポンプ回路10は、入力端子102から入力された電池電圧Vbatを所定の昇圧率で昇圧し、出力端子104から出力電圧Voutを生成する。このチャージポンプ回路10は、複数の昇圧率が切り替え可能に構成されている。本実施の形態において、昇圧率は1倍、1.5倍、2倍の3通りで切り替えられるものとする。
図2は、チャージポンプ回路10の構成例を示す回路図である。チャージポンプ回路10は、第1コンデンサC1、第2コンデンサC2、およびこれらのコンデンサの接続状態を制御するための第1スイッチSW1から第9スイッチSW9を含む。以下、これらのスイッチを特に区別する必要のないときはスイッチSWと総称する。第1コンデンサC1および第2コンデンサC2は容量値が等しく設定され、集積回路の外部に外付けされている。
第1スイッチSW1から第9スイッチSW9は、N型またはP型の電界効果トランジスタFETによって構成することができ、ゲートに印加する電圧によってドレインソース間の導通状態を制御し、スイッチング素子として動作させることができる。このチャージポンプ回路10においては、第1スイッチSW1から第9スイッチSW9のオンオフの状態が、駆動回路20から出力される制御信号Vcntによって切り替えられる。なお、制御信号Vcntは、図2には図示していないが、第1スイッチSW1から第9スイッチSW9それぞれへ入力されているものとする。
チャージポンプ回路10は、上述のように複数の昇圧率が切り替えられるように構成されている。ここで、チャージポンプ回路10の昇圧率に応じた動作について説明する。
昇圧率が1倍に設定されるときには、駆動回路20から出力される駆動信号Vcntによって、第1スイッチSW1、第3スイッチSW3、第7スイッチSW7、第8スイッチSW8が定常的にオンされ、その他のスイッチはすべてオフされる。その結果、入力端子102と出力端子104がオンしたスイッチによって導通状態となるため、入力端子102に印加された電池電圧Vbatが出力端子104から出力され、昇圧率が1倍に設定されることになる。
したがって、昇圧率が1倍に設定されるときに駆動回路20から出力される制御信号Vcntは、時間的にオンオフを繰り返すスイッチング信号ではなく、一定電圧となる。
次に、昇圧率が1.5倍に設定されるときの動作について説明する。昇圧率が1より大きいとき、すなわち昇圧動作を行う場合には、チャージポンプ回路10は、スイッチの接続状態の異なる第1期間、第2期間を繰り返す。
第1期間においては、第1スイッチSW1、第5スイッチSW5、第6スイッチSW6をオンし、その他のスイッチをすべてオフすることにより、第1コンデンサC1および第2コンデンサC2を直列に接続し、電池電圧Vbatで充電する。第1コンデンサC1および第2コンデンサC2の容量値は等しいため、2つのコンデンサは、それぞれ電池電圧の1/2となるVbat/2で充電される。
第2期間では、第2スイッチSW2と第7スイッチSW7、第4スイッチSW4と第8スイッチSW8をオンし、その他のスイッチをすべてオフする。このとき、入力端子102と出力端子104間には、第1コンデンサC1、第2コンデンサC2が並列に接続される。その結果、出力端子104からは、入力端子102に印加された電池電圧Vbatと、コンデンサの充電電圧の和が出力されることになる。第1期間において、第1コンデンサC1、第2コンデンサC2は電圧Vbat/2で充電されているため、結局、出力端子104からは、Vbat+Vbat/2=1.5×Vbatの電圧が出力される。
このように、チャージポンプ回路10は、第1期間と第2期間を繰り返すことにより電池電圧Vbatを1.5倍して出力する。
次に、昇圧率が2倍に設定されるときの動作について説明する。
第1期間においては、第1スイッチSW1と第9スイッチSW9、第3スイッチSW3と第6スイッチSW6をオンし、その他のスイッチをすべてオフする。第1コンデンサC1および第2コンデンサC2は、入力端子102と接地端子GND間に並列に接続されることになり、それぞれは、電池電圧Vbatで充電される。
第2期間においては、第2スイッチSW2と第7スイッチSW7、第4スイッチSW4と第8スイッチSW8がオンし、他のスイッチはすべてオフされる。その結果、入力端子102と出力端子104間には、第1コンデンサC1、第2コンデンサC2が並列に接続される。出力端子104からは、入力端子102に印加された電池電圧Vbatと、コンデンサの充電電圧の和が出力されることになる。第1期間において、第1コンデンサC1、第2コンデンサC2はそれぞれ電池電圧Vbatで充電されているため、出力端子104からは、Vbat+Vbat=2×Vbatの電圧が出力される。
このようにチャージポンプ回路10は、第1期間と第2期間を繰り返すことにより、電池電圧Vbatを2倍して出力する。
図1に戻る。駆動回路20は、チャージポンプ回路10の昇圧率を設定し、昇圧動作、すなわちチャージポンプ回路10のスイッチSWの接続状態を制御する。この駆動回路20は、定電流回路22、制御部24、第1発振器26、第2発振器28、監視回路30を含む。
定電流回路22は、LED端子106を介して発光ダイオード300のカソード端子と接続されている。発光ダイオード300の発光輝度は、発光ダイオード300に流れる電流Iledによって決まるため、定電流回路22は、発光ダイオード300の発光輝度が所望の値となるように、電流Iledを制御する。
監視回路30は、チャージポンプ回路10の昇圧率を切り替えるために、定電流回路22の両端の電圧を監視する。監視回路30は、定電流回路22の両端の電圧と、所定のしきい値電圧を比較し、比較結果を制御部24に出力する。本実施の形態においては、定電流回路22の両端の電圧は、接地端子とLED端子106間の電圧に相当する。詳細は後述するが、制御部24は、監視回路30からの出力Vsにもとづきチャージポンプ回路10の昇圧率を切り替える。
図3は、定電流回路22および監視回路30の構成を示す回路図である。
定電流回路22は、第1トランジスタM1、第1抵抗R1、演算増幅器40を含む。第1トランジスタM1は、N型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。
演算増幅器40の非反転入力端子には、所定の基準電圧Veが印加されている。この基準電圧Veは、発光ダイオード300の発光輝度を制御するための電圧である。第1トランジスタM1は、制御端子であるゲートに演算増幅器40の出力電圧が印加され、ドレインがLED端子106に接続される。第1抵抗R1は、一端が第1トランジスタM1のソースに接続され、他端に所定の接地電圧が印加される。第1トランジスタM1と第1抵抗R1の接続点の電位Vr1は、演算増幅器40の反転入力端子に帰還される。
演算増幅器40の反転入力端子には、第1抵抗R1に印加される電圧Vr1が帰還されており、反転入力端子と非反転入力端子の電圧が等しくなるように帰還がかかるため、第1抵抗R1に印加される電圧は基準電圧Veに近づくことになる。第1抵抗R1に印加される電圧Vr1が基準電圧Veと等しいとき、第1抵抗R1には、電流Idrv=Ve/R1が流れることになる。この電流Idrvは、第1トランジスタM1およびLED端子106を介して発光ダイオード300に流れる電流Iledに他ならない。
このようにして、定電流回路22は、基準電圧Veにもとづく定電流Iled=Ve/R1を生成し、発光ダイオード300に流れる電流Iledを制御する。
ここで、この定電流回路22が安定に電流を生成するためには、第1トランジスタM1を定電流領域で動作させる必要がある。定電流領域とは、トランジスタが電界効果トランジスタFETのときには飽和領域を意味し、バイポーラトランジスタのときには活性領域を意味する。
LED端子106の電圧Vledが低下すると、第1トランジスタM1の両端間の電位差、すなわちドレインソース間電圧が小さくなり、非飽和領域で動作するようになる。非飽和領域においては、ドレインソース間に流れる電流がドレインソース間電圧に依存してしまうため、定電流回路22が定電流回路として動作しなくなってしまい、発光ダイオード300の発光輝度を安定させることができなくなる。
そこで、図3に示すように、監視回路30は、LED端子106の電圧Vledが所定のしきい値電圧Vthを下回らないように監視する。このしきい値電圧Vthは、第1トランジスタM1が定電流領域(飽和領域)で動作する範囲に、すなわち、定電流回路22が所定の定電流を生成できる範囲に設定されている。
監視回路30は、電圧比較器50、しきい値電圧Vthを出力するしきい値電圧源52を含む。電圧比較器50には、LED端子106の電圧Vledと、しきい値電圧Vthが入力されており、Vled>Vthのときハイレベルを、Vled<Vthのときローレベルを出力する。この電圧比較器50の出力Vsは、制御部24へと入力されている。
制御部24は、監視回路30から出力される電圧Vsがローレベルになった状態、すなわちVled<Vthとなる状態が所定の時間持続すると、チャージポンプ回路10の昇圧率を1段階上昇させる。すなわち、昇圧率が1倍で動作していたときに、監視回路30から出力される電圧Vsがローレベルとなると、昇圧率を1.5倍に設定する。同様に、1.5倍で動作していたときに監視回路30から出力される電圧Vsがローレベルとなると、昇圧率を2倍に設定する。
その結果、電池500の放電により電池電圧Vbatが低下し、それにともなって、発光ダイオード300のカソード端子の電圧Vledが低下した場合にも、昇圧率を適切に切り替えることができる。昇圧率が高く設定されると、出力端子104から出力される出力電圧Voutが上昇することになるため、LED端子106の電圧Vledをしきい値電圧Vthよりも高くすることができ、定電流回路22を安定に動作させることができる。
しきい値電圧源52から出力されるしきい値電圧Vthは、定電流回路22の安定動作電圧、すなわち、第1トランジスタM1が定電流領域(飽和領域)で動作する範囲に設定される。たとえば、このしきい値電圧Vthは0.3Vに設定される。
ここで、定電流回路22を構成する第1トランジスタM1、第1抵抗R1、演算増幅器40の素子特性、回路特性は、半導体製造プロセスのばらつきや温度によって変動する。図4は、第1トランジスタM1であるFETの電流電圧特性(IV特性)を示す図であり、縦軸はドレインソース電流Ids、横軸がドレインソース電圧Vdsを示す。
図中、平均的な電流電圧特性IVm1では、ドレインソース電圧が電圧Vx1より高いとき飽和領域であり、電圧Vx1より低いとき非飽和領域となる。いま、半導体製造プロセスのばらつきや温度変化によって、電流電圧特性が、電流電圧特性IVm2に変化したとすると、これにともなって、飽和領域と非飽和領域の境界電圧もVx2にシフトすることになる。
定電流回路22の両端の電圧は、第1抵抗R1における電圧降下Vr1と、第1トランジスタM1のドレインソース間電圧の和となる。したがって、第1トランジスタM1の電流電圧特性の変動にともなって、定電流回路22の安定動作電圧も変化することになる。同様に、第1抵抗R1の抵抗値のばらつきによってもこの安定動作電圧は変化することになる。
第1トランジスタM1の電流電圧特性が、半導体製造プロセスのばらつきや温度変化によって、図4のIVm1とIVm2の間で変動するとするとき、定電流回路22を安定に動作させるための電圧は、Vth1=Ic×R1+Vx1からVth2=Ic×R1+Vx2の範囲で変動することになる。
監視回路30のしきい値電圧源52により生成されるしきい値電圧Vthを一定値とする場合、第1トランジスタM1の電流電圧特性が変動するすべての範囲において定電流回路22を安定に動作させるためには、マージンを考慮してしきい値電圧Vthを、Vth1=Ic×R1+Vx1に設定しておく必要がある。
ここで、チャージポンプ回路10の効率について検討する。図5は、チャージポンプ回路10の入力電圧となる電池電圧Vbatと、効率ηの関係を示す図である。
ここで、しきい値電圧源52により生成されるしきい値電圧Vthを、ある電圧Vth1に固定した場合を考える。昇圧率が1倍のとき、電池電圧VbatとLED端子106の電圧Vledの関係は、発光ダイオード300の順方向電圧Vfを用いてVbat=Vled+Vfと表される。いま、電池電圧Vbatの低下にともない、Vbat<Vbat1(=Vth1+Vf)となると、LED端子106の電圧Vledは<Vth1となるため、昇圧率が1倍から1.5倍へと切り替えられることになる。
このように、しきい値電圧Vthをある電圧Vth1に固定すると、もし第1トランジスタM1の特性がばらつき、定電流回路22の安定動作電圧がある電圧Vth1より低くなった場合にも、Vbat<Vbat1となった状態で昇圧率が1.5倍に切り替えられることになり、効率の面で改善の余地がある。
そこでチャージポンプ回路10の効率を改善するために、本実施の形態に係る監視回路30のしきい値電圧源52は、第1トランジスタM1および第1抵抗R1の特性変動に追従したしきい値電圧Vthを生成するように構成されている。
図3に戻る。しきい値電圧源52は、第2トランジスタM2、第2抵抗R2、電流源54を含む。
第2トランジスタM2、第2抵抗R2、電流源54は直列に接続されており、第2トランジスタM2および第2抵抗R2には、電流源54により生成される定電圧Icが流されている。第2トランジスタM2のゲートには電源電圧Vddが印加される。
このしきい値電圧源52は、第2トランジスタM2と電流源54の接続点の電圧をしきい値電圧Vthとして出力する。第2トランジスタM2のドレインソース間電圧Vds2は、定電流Icによって決定され、第2抵抗R2に現れる電圧Vr2は、Vr2=Ic×R2で与えられる。その結果、しきい値電圧Vthは、Vth=Ic×R2+Vds2と表すことができる。
このように、しきい値電圧源52は、しきい値電圧Vthを生成するための主要部の構成が、定電流回路22とほぼ同一となっている。半導体集積回路上において、好ましくは、第1抵抗R1と第2抵抗R2は互いに近接して、ペアリングをとって形成することが望ましい。同様に、第1トランジスタM1と第2トランジスタM2も互いに近接して形成し、ペアリングをとることが望ましい。
このように定電流回路22としきい値電圧源52の主要な構成を同一とし、回路を構成する抵抗、トランジスタをペアリングして形成することによって、対応する素子特性の変動量をほぼ等しくすることができる。
その結果、第1トランジスタM1の電流電圧特性が変動し、飽和領域と非飽和領域の境界電圧Vxが変動した場合、第2トランジスタM2の飽和領域と非飽和領域の境界電圧Vxも変動するため、しきい値電圧Vthを、第1トランジスタM1の特性変動に追従して変化させることができる。
同様に、第1抵抗R1の抵抗値が半導体製造プロセスのばらつきや温度変化によって変動した場合、第2抵抗R2の抵抗値も同様に変動するため、しきい値電圧Vthは、第2抵抗R2の特性変動にも追従することになる。
以上のように監視回路30を構成することにより、プロセスばらつきや温度変化による素子特性の変動によって定電流回路22の安定動作電圧が変動した場合にも、その変動に応じてしきい値電圧Vthを生成するため、制御部24において、最適な昇圧率の設定を行うことができる。
この結果、図5に示すように、昇圧率を切り替える電圧をVbat1からVbat2の範囲で適切に設定できることを意味するため、チャージポンプ回路10の効率を改善することができる。同様に、1.5倍から2倍への昇圧率の切り替えも、最適な電圧で行われるため、効率を改善することができる。
次に、監視回路30を用い、さらに最適な昇圧率の設定を行うための技術について説明する。図6は、監視回路30および定電流回路22の構成を示す回路図である。図6の監視回路30は、オフセット電圧調節回路56を備えている。
電圧比較器50は、定電流回路22の両端の電圧であるLED端子106の電圧Vledと、しきい値電圧源52により生成されるしきい値電圧Vthとを比較する。オフセット電圧調節回路56は、電圧比較器50のオフセット電圧ΔVを調節する。
図6の定電流源58、トランジスタM3、トランジスタM5は、図3の電流源54に相当する。定電流源58は、基準電流Irefを生成する。トランジスタM3、M5はカレントミラー回路を構成しており、基準電流Irefに比例した定電流Icがしきい値電圧源52へと出力される。また、トランジスタM3、M4、M5はカレントミラー回路を構成しているため、定電流回路22に入力される基準電流Iref’は、しきい値電圧源52に出力される定電流Icに応じた電流となっている。定電流回路22において、演算増幅器40の非反転入力端子に印加される基準電圧Veは、基準電流Iref’を基準抵抗Rrefに流すことにより生成される。すなわち、基準電圧Veは、Ve=Iref’×Rrefで与えられ、駆動電流Idrvは、Idrv=Iref’×Rref/R1となり、基準電流Iref’に比例する。基準抵抗Rrefも、第1抵抗R1および第2抵抗R2とペアリングして形成するのが望ましい。
基準電流Iref’の値がプロセスばらつきや温度変化にともなって変動し、駆動電流Idrvの値が変動すると、第1トランジスタM1のドレインソース間の飽和電圧、すなわち定電流回路22の安定動作電圧が変動する。図6の監視回路30において、しきい値電圧源52により生成されるしきい値電圧Vthと、定電流回路22により生成される駆動電流Idrvは、いずれも、定電流源58により生成される基準電流Irefにもとづいて設定される。したがって、基準電流Irefが変動し、定電流回路22の安定動作電圧が変動した場合には、しきい値電圧Vthもこれにともなって変動する。このとき、電圧比較器50への入力電圧は、同方向にシフトするため、プロセスばらつきをキャンセルすることができる。
図7は、電圧比較器50、オフセット電圧調節回路56の構成を示す回路図である。電圧比較器50は、トランジスタM30〜M36、定電流源80、90、92、増幅段86を含む。トランジスタM30、M31は入力差動対を構成しており、各ゲート82、84は、電圧比較器50の2つの入力端子に対応している。トランジスタM30、M31のドレインは、定電流負荷として設けられたトランジスタM33、M34を含むカレントミラー負荷と接続されている。トランジスタM33、M34は、トランジスタM32とゲートおよびソースが共通に接続されたカレントミラー回路であって、各トランジスタには定電流源80により生成される定電流が流れている。
トランジスタM33、M34のドレインは、それぞれトランジスタM35、M36のソースと接続されている。トランジスタM35、M36はゲートが共通に接続されており、トランジスタM35のゲート、ドレインは接続されている。トランジスタM35、M36のドレインには、それぞれ定電流源90、92が接続される。トランジスタM36のドレインは、増幅段86に接続される。トランジスタM36のドレイン電流は、トランジスタM30、M31のゲート電圧が差動増幅された差動電流となる。増幅段86は、定電流源92により生成される電流とトランジスタM36のドレイン電流の差を増幅し、電圧比較器50の出力端子44から出力する。なお、図7に示した電圧比較器50の構成は一例であって、その他のさまざまな回路形式の電圧比較器を用いることができる。
オフセット電圧調節回路56は、電圧比較器50の差動電流を調節することにより、オフセット電圧ΔVを調節する。オフセット電圧調節回路56は、トランジスタM20〜M25、ヒューズRf1〜Rf4、定電流源94を含む。
トランジスタM21は、電圧比較器50の入力差動対(トランジスタM30、M31)に供給すべきテール電流Issを生成する主電流源として機能する。また、トランジスタM22、M23、ヒューズRf1、Rf2は、第1可変電流Iv1を生成し、差動対(M30、M31)により生成される一方の差動電流Id1を増加させる第1可変電流源として機能する。また、トランジスタM24、M25、ヒューズRf3、Rf4は、第2可変電流Iv2を生成し、差動対(M30、M31)により生成される一方の差動電流Id2を増加させる第2可変電流源として機能する。
定電流源94は、定電流Ic1を生成する。トランジスタM20〜M25は、ゲートおよびソースが共通に接続されたカレントミラー回路を構成しており、各トランジスタのサイズ比に応じたミラー比に従って、定電流Ic1を複製し、テール電流Iss、第1可変電流Iv1、第2可変電流Iv2を生成する。第1可変電流Iv1の電流値は、ヒューズRf1、Rf2の切断状態によって可変となる。第2可変電流Iv2の電流値も、ヒューズRf3、Rf4の切断状態に応じて同様に変化する。たとえば、トランジスタM21、M22、M23のサイズ比を100:2:1に設定した場合、第1可変電流Iv1は、テール電流Issに対して、3%、2%、1%、0%の範囲で調節することができる。トランジスタM24、M25についても同様である。
第1可変電流Iv1は、電圧比較器50の入力差動対の一方のトランジスタM30側に供給され、第2可変電流Iv2は、差動対の他方のトランジスタM31側に供給される。図7のオフセット電圧調節回路56によれば、ヒューズRf1〜Rf4の切断状態によって、電圧比較器50の差動電流を調節することができる。演算増幅器の差動電流を調節すると、入力差動対の電圧−電流特性がシフトするため、オフセット電圧ΔVを調節することができる。
図6に戻る。一般に、半導体集積回路の抵抗値やトランジスタ特性は、半導体製造プロセスによってばらつき、このばらつきの大きさは、各素子のレイアウトや半導体製造プロセスの種類などによってさまざまである。したがって、カレントミラー回路を構成するトランジスタM4、M5のミラー比も、半導体製造プロセスに依存したばらつきを有することになる。
たとえば、基準電流Iref’と定電流Icの値が、±2%程度の範囲で相対的にばらつくとする。このばらつきは、しきい値電圧源52により生成されるしきい値電圧Vthと、定電流回路22の安定動作電圧の誤差となる。しきい値電圧Vthが最適値から逸脱すると、上述のように電源装置100の効率悪化を招くことになるため望ましくない。
そこで、図6および図7に示したオフセット電圧調節回路56において、ヒューズRf1〜Rf4をトリミングすることにより、トランジスタM4、M5のミラー比のばらつきをキャンセルする方向に電圧比較器50のオフセット電圧ΔVを、シフトさせる。上述のように、第1可変電流Iv1、第2可変電流Iv2は、それぞれ、差動対のテール電流Issに対して0%、1%、2%、3%の範囲で調節することができる。また、ヒューズRf1、Rf2をトリミングした場合と、ヒューズRf3、Rf4をトリミングした場合とでは、オフセット電圧ΔVの正負は逆向きになる。
電圧比較器50のオフセット電圧ΔVを変化させることにより、プロセスばらつきによる定電流回路22の安定動作電圧の変動を相殺することができ、電源装置100の効率の悪化を抑えることができる。
すなわち、オフセット電圧調節回路56において、テール電流Iss、第1可変電流Iv1、第2可変電流Iv2を生成するトランジスタM21〜M25のサイズ比は、しきい値電圧Vthと、定電流回路22の安定動作に必要な電圧との誤差を十分に低減できるように設計すればよい。
図8は、図7の電圧比較器50およびオフセット電圧調節回路56の変形例を示す回路図である。
図7では、第1可変電流Iv1は、差動対の一方のトランジスタM30側に供給され、第2可変電流Iv2は、差動対の他方のトランジスタM31側に供給されている。一方、図8においては、第1可変電流Iv1は、差動対(M30、M31)に接続されるカレントミラー負荷(M35、M36)の一方のトランジスタM35側に供給され、第2可変電流Iv2は、カレントミラー負荷の他方のトランジスタM36側に供給される。このようにして差動電流を調節した場合においても、電圧比較器50のオフセット電圧ΔVを調節することができ、図7と同様の効果を得ることができる。第1可変電流Iv1、第2可変電流Iv2を、差動電流を調節可能なその他の位置に供給した場合も同様である。
電圧比較器50のオフセット電圧ΔVは、図9に示す回路によっても調節することができる。図9は、オフセット電圧が調節可能な電圧比較器50の構成を示す回路図である。この電圧比較器50は、オフセット電圧調節回路56と一体に構成される。本実施の形態において、オフセット電圧調節回路は、調節用トランジスタM40〜M43、ヒューズRf1〜Rf4を含む。
調節用トランジスタM40〜M43は、電圧比較器50の差動対を構成するトランジスタM30、M31と並列に設けられる。調節用トランジスタのトランジスタM40〜M43の電流経路上には、トリミング可能なヒューズRf1〜Rf4が設けられる。
図9の電圧比較器50によれば、ヒューズRf1〜Rf4のトリミング状態によって、実質的に電圧比較器50の差動対を構成するトランジスタのサイズを変更することができる。その結果、差動電流が調節されて、オフセット電圧ΔVをシフトすることができる。
また、図9では、差動対のトランジスタのサイズを調節したが、変形例としてカレントミラー負荷を構成するトランジスタM33、M34のサイズを調節してもよい。すなわち、トランジスタM33、M34と並列に複数の調節用トランジスタを設け、この調節用トランジスタの各トランジスタの電流経路上にトリミング可能なヒューズを設ける。調節用トランジスタとヒューズによりオフセット電圧調節回路56を構成し、ヒューズのトリミングを行うことにより、差動電流を調節し、オフセット電圧ΔVを調節することができる。
同様に、トランジスタM33、M34に代えて、トランジスタM35、M36のサイズを調節してもよい。
図1に戻る。制御部24は、チャージポンプ回路10の昇圧率を設定し、設定した昇圧率に応じた制御信号Vcntを生成する。この制御部24は、監視回路30の出力信号Vsをモニタしており、出力信号Vsがローレベルとなった状態が所定の時間持続すると昇圧率を上昇させる。本実施の形態においては、制御部24は、監視回路30の出力信号Vsが2msの間、ローレベルとなったときに、チャージポンプ回路10の昇圧率を1段階上昇させる。
制御部24が、制御信号Vcntを生成し、時間の計測を行うために必要な周期信号は、第1発振器26、第2発振器28から出力される。第1発振器26および第2発振器28はそれぞれ図示しないイネーブル端子を備えており、動作を停止することができるよう構成されている。
制御部24は、チャージポンプ回路10により昇圧動作を行うとき、すなわち昇圧率を1.5倍、または2倍に設定したときの制御信号Vcntは、第1スイッチSW1から第9スイッチSW9をオンオフさせるスイッチング信号となる。第1発振器26は、このスイッチング信号に必要とされる周波数を有する第1周期信号Vosc1を生成する。たとえば、この第1周期信号Vosc1の周波数は1MHzに設定される。
また、制御部24は、監視回路30の出力信号Vsをモニタする際に時間2msを計測するために必要とされる周波数を有する第2周期信号Vosc2を生成する。2ms程度の時間は、数十kHz程度の周波数で測定することができるため、本実施の形態では、この第2周期信号Vosc2の周波数は64kHzに設定されているものとする。
駆動回路20は、チャージポンプ回路10の昇圧率に応じて、第1発振器26および第2発振器28のいずれかを切り替えて使用する。そのため、制御部24は、チャージポンプ回路10の昇圧率に応じて第1発振器26、第2発振器28のイネーブル端子に対してオンオフを制御するイネーブル信号を出力する。
以下、駆動回路20において、チャージポンプ回路10の昇圧率を切り替える際の動作について説明する。
電池500から出力される電池電圧Vbatが十分高いときには、昇圧率は1倍に設定されている。いま、電力消費により電池電圧Vbatが低下してくると、LED端子106の電圧Vledも低下する。監視回路30においては、しきい値電圧源52から出力されるしきい値電圧Vthと、LED端子106の電圧Vledを比較し、Vled<Vthとなると出力信号Vsとしてローレベルを出力する。
チャージポンプ回路10の昇圧率が1倍に設定されるとき、チャージポンプ回路10において、第1スイッチSW1、第3スイッチSW3、第7スイッチSW7、第8スイッチSW8を定常的にオンすればよいため、周波数1MHzの第1周期信号Vosc1は必要とされない。このため、昇圧率が1倍のとき、制御部24は、第1発振器26をオフしておき、第2発振器28のみを動作させ、第2周期信号Vosc2を利用して時間測定を行う。
監視回路30の出力信号Vsが2msローレベルとなると、制御部24は、昇圧率を1.5倍に切り替える。昇圧率が1倍より高いとき、上述のようにチャージポンプ回路10へ出力すべき制御信号Vcntとしてオンオフを繰り返すスイッチング信号を生成する必要がある。このとき、制御部24は第1周期信号Vosc1を必要とするため、第1発振器26をオンする。昇圧率が1.5倍のとき、制御部24は、監視回路30の出力信号Vsの状態のモニタのための時間測定を、第1周期信号Vosc1を用いて行う。このとき、第2周期信号Vosc2は必要とされないため、制御部24は第2発振器28をオフする。
さらに、電池電圧Vbatが低下し、昇圧率が2倍に設定されるときにも、制御部24は第1発振器26のみをオンしておき、第1周期信号Vosc1にもとづいて、制御信号Vcntの生成および2msの時間測定を行う。
発振器の消費電流は、周波数に依存し、周波数が高いほど消費電流は増加する。すなわち、第1発振器26の消費電流は第2発振器28の消費電流よりも大きい。そのため、本実施の形態に係る駆動回路20によれば、昇圧動作を行う場合には、1MHzで発振する第1発振器26をオンしておき、制御信号Vcntを生成するとともに、昇圧率を設定するための時間測定を行う。一方、昇圧率が1倍のとき、制御信号Vcntとして周波数の高い信号を生成する必要がないため、消費電流の小さい第2発振器28に切り替えることにより回路の消費電流を低減し、高効率化を図ることができる。
以上、本実施の形態に係る電源装置100の構成および動作について説明した。
本実施の形態に係る電源装置100によれば、プロセスばらつきや温度変化による素子特性の変動によって定電流回路22の安定動作電圧が変動した場合にも、その変動に応じてしきい値電圧Vthを生成するため、制御部24において、最適な昇圧率の設定を行い、適切な出力電圧Voutを生成することができる。
上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
図10は、電源装置100の変形例を示す図である。図10の電源装置100は、電圧生成回路として、チャージポンプ回路10ではなく、スイッチングレギュレータ70が用いられている。このスイッチングレギュレータ70は、スイッチング素子のオンオフにより、インダクタとコンデンサ間でエネルギ変換を行い、入力電圧を昇圧する電圧生成回路である。
制御部24からは、パルス幅変調(以下PWMという)されたスイッチング信号Vpwmが出力され、このスイッチング信号によってスイッチングレギュレータ70のスイッチング素子のオンオフが制御され、出力電圧Voutが所望の電圧値に安定化される。
図11は、図10の駆動回路20の構成の一部を示す回路図である。定電流回路22、しきい値電圧源52の構成は図3と同様である。図11の駆動回路20においては、LED端子106の電圧Vledと、しきい値電圧源52から出力されるしきい値電圧Vthが、誤差増幅器60に入力されている。誤差増幅器60は、電圧Vledとしきい値Vthの誤差を増幅し、誤差電圧Verrとして制御部24へ出力する。
制御部24は、この誤差電圧Verrにもとづいてスイッチング信号Vpwmを生成する。制御部24は、電圧比較器62、ドライバ64、発振器66を含む。発振器66は、三角波状の周期信号Vsawを出力し、電圧比較器62は、この周期信号Vsawと誤差電圧Verrを比較することにより、パルス幅変調された信号を生成する。ドライバ64は、電圧比較器62の出力にもとづき、スイッチングレギュレータ70を駆動するためのスイッチング信号を生成する。
その結果、スイッチングレギュレータ70の出力電圧Voutは、LED端子106の電圧Vledがしきい値電圧Vthに近づくように調節されるため、定電流回路22を安定に動作させつつ、必要以上に高い出力電圧Voutを生成することがなくなるため、高効率な動作を実現することができる。
図12は、定電流回路22の変形例を示す図である。図12の定電流回路22では、電源電圧Vddを固定電圧として駆動電流Idrvが生成される。図12の定電流回路22は、トランジスタM1、第1抵抗R1、基準抵抗Rref、演算増幅器40を含む。LED端子106には、駆動対象のLED300が接続される。基準抵抗Rrefは、一端に所定の固定電圧Vddが印加され、基準電流Irefの経路上に設けられる。演算増幅器40は、基準抵抗Rrefの他端に現れる電圧Veが非反転入力端子に印加される。トランジスタM1は、演算増幅器40の出力電圧がゲートに印加され、ソースがLED端子106に接続される。第1抵抗R1は、トランジスタM1のソースに接続され、一端に固定電圧Vddが印加される。トランジスタM1と第1抵抗R1の接続点の電位は、演算増幅器40の反転入力端子に帰還される。定電流回路22をこのように構成した場合においても、Idrv=Iref×Rref/R1で与えられる駆動電流Idrvを生成することができる。
本実施の形態において、電源装置100、発光装置1000を構成する素子はすべて一体集積化されていてもよいし、あるいはその一部がディスクリート部品で構成されていてもよく、複数の部品がひとつのパッケージにモジュール化されていてもよい。どの部分を集積化するかは、コストや占有面積などによって決めればよい。
実施の形態では、電源装置100によりLEDを駆動する場合について説明したが、負荷回路はこれには限定されず、有機ELなどのその他の発光素子を駆動してもよいし、さらに、発光素子以外の電流駆動デバイスを駆動することも可能である。
本実施の形態においては、使用するトランジスタはFETとしたがバイポーラトランジスタ等の別のタイプのトランジスタを用いてもよく、これらの選択は、電源装置に要求される設計仕様、使用する半導体製造プロセスなどによって決めればよい。
実施の形態に係る電源装置および発光装置全体の構成を示す図である。 図1のチャージポンプ回路の構成を示す回路図である。 図1の定電流回路および監視回路の構成を示す回路図である。 第1トランジスタであるFETの電流電圧特性を示す図である。 チャージポンプ回路の入力電圧となる電池電圧と、効率ηの関係を示す図である。 監視回路および定電流回路の構成を示す回路図である。 電圧比較器、オフセット電圧調節回路の構成を示す回路図である。 図7の電圧比較器およびオフセット電圧調節回路の変形例を示す回路図である。 オフセット電圧が調節可能な電圧比較器の構成を示す回路図である。 図1の電源装置の変形例を示す図である。 図10の駆動回路の構成の一部を示す回路図である。 図3の定電流回路の変形例を示す図である。
符号の説明
C1 第1コンデンサ、 M1 第1トランジスタ、 R1 第1抵抗、 C2 第2コンデンサ、 M2 第2トランジスタ、 R2 第2抵抗、 Rref 基準抵抗、 10 チャージポンプ回路、 20 駆動回路、 22 定電流回路、 24 制御部、 26 第1発振器、 28 第2発振器、 30 監視回路、 40 演算増幅器、 52 しきい値電圧源、 100 電源装置、 102 入力端子、 104 出力端子、 106 LED端子、 300 発光ダイオード、 1000 発光装置。

Claims (13)

  1. 負荷回路を定電流駆動するための電源装置であって、
    前記負荷回路の駆動経路上に設けられた定電流回路と、
    前記負荷回路に駆動電圧を出力する電圧生成回路と、
    前記定電流回路が安定に動作可能な電圧に対応付けられた所定のしきい値電圧を生成するしきい値電圧源を含み、前記定電流回路の両端の電圧が、前記定電流回路が安定に動作可能な電圧を下回らないように監視し、前記定電流回路の両端の電圧と、前記所定のしきい値電圧との比較結果を出力する監視回路と、
    前記監視回路から出力される比較結果にもとづき、前記電圧生成回路から出力される駆動電圧を制御する制御部と、を備え
    前記定電流回路は、
    駆動対象の負荷回路が接続される電流出力端子と、
    所定の基準電圧が第1の入力端子に印加された演算増幅器と、
    前記演算増幅器の出力電圧が制御端子に印加され、一端が前記電流出力端子に接続された第1トランジスタと、
    前記第1トランジスタの他端に接続され、一端に所定の固定電圧が印加された第1抵抗と、
    前記第1トランジスタと前記第1抵抗の接続点の電位を前記演算増幅器の第2の入力端子に帰還する帰還経路と、を含み、
    前記しきい値電圧源は、
    所定の定電流を出力する定電流源と、
    前記定電流源から出力される定電流の経路上に直列に設けられた第2トランジスタと、
    一端に前記固定電圧が印加され、他端に前記第2トランジスタが接続された第2抵抗と、を含み、前記第2トランジスタと前記定電流源の接続点の電圧を前記しきい値電圧として出力し、
    半導体集積回路上において、前記第2トランジスタと前記第1トランジスタ、および前記第2抵抗と前記第1抵抗はそれぞれペアリングして形成されることを特徴とする電源装置。
  2. 前記定電流源から出力される前記定電流は、前記第2トランジスタが定電流領域で動作する範囲に設定されることを特徴とする請求項に記載の電源装置。
  3. 前記監視回路は、
    前記定電流回路の両端の電圧と、前記しきい値電圧源により生成される前記しきい値電圧とを比較する電圧比較器と、
    前記電圧比較器のオフセット電圧を調節するオフセット電圧調節回路と、を含むことを特徴とする請求項に記載の電源装置。
  4. 前記定電流回路は、
    前記定電流源から出力される定電流に応じた基準電流の経路上に設けられ、一端に前記固定電圧が印加された基準抵抗をさらに含み、当該基準抵抗の他端に現れる電圧を前記基準電圧として前記演算増幅器の第1の入力端子に印加することを特徴とする請求項に記載の電源装置。
  5. 半導体集積回路上において、前記基準抵抗は、前記第1、第2抵抗とペアリングして形成されることを特徴とする請求項に記載の電源装置。
  6. 前記オフセット電圧調節回路は、前記電圧比較器の差動電流を調節することを特徴とする請求項に記載の電源装置。
  7. 前記オフセット電圧調節回路は、
    前記電圧比較器の差動対に供給すべきテール電流を生成する主電流源と、
    第1可変電流を生成し、前記差動対により生成される一方の差動電流を変化させる第1可変電流源と、
    第2可変電流を生成し、前記差動対により生成される他方の差動電流を変化させる第2可変電流源と、
    を含むことを特徴とする請求項に記載の電源装置。
  8. 前記電圧生成回路は複数の昇圧率が切り替え可能なチャージポンプ回路であって、前記制御部は、前記監視回路の電圧比較結果にもとづいて前記チャージポンプ回路の昇圧率を切り替えることを特徴とする請求項1に記載の電源装置。
  9. 前記電圧生成回路はスイッチングレギュレータ回路であって、
    前記制御部は、前記監視回路において前記定電流回路の両端の電圧と、前記しきい値電圧が等しくなるように前記スイッチングレギュレータ回路のスイッチング動作を制御することを特徴とする請求項1に記載の電源装置。
  10. 前記定電流回路と、前記監視回路と、前記制御部とは、ひとつの半導体基板上に一体集積化されることを特徴とする請求項1に記載の電源装置。
  11. 前記負荷回路は発光ダイオードであって、
    前記定電流回路は、前記発光ダイオードのカソード端子に接続され、前記監視回路は、前記発光ダイオードのカソード端子の電圧を監視することを特徴とする請求項1から10のいずれかに記載の電源装置。
  12. 発光ダイオードと、
    前記発光ダイオードを定電流駆動するための請求項1から10のいずれかに記載の電源装置と、
    を備えることを特徴とする発光装置。
  13. 液晶パネルと、
    前記液晶パネルのバックライトとして設けられる請求項12に記載の発光装置と、
    を備えること特徴とする電子機器。
JP2005143522A 2004-12-03 2005-05-17 電源装置およびそれを用いた発光装置、電子機器 Expired - Fee Related JP3904579B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005143522A JP3904579B2 (ja) 2004-12-03 2005-05-17 電源装置およびそれを用いた発光装置、電子機器
US11/792,267 US7521912B2 (en) 2004-12-03 2005-11-18 Power supply apparatus
KR1020077012089A KR20070085518A (ko) 2004-12-03 2005-11-18 전원 장치 및 그것을 이용한 발광 장치, 전자 기기
PCT/JP2005/021241 WO2006059500A1 (ja) 2004-12-03 2005-11-18 電源装置およびそれを用いた発光装置、電子機器
US12/402,229 US7948299B2 (en) 2004-12-03 2009-03-11 Power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004350871 2004-12-03
JP2005143522A JP3904579B2 (ja) 2004-12-03 2005-05-17 電源装置およびそれを用いた発光装置、電子機器

Publications (2)

Publication Number Publication Date
JP2006187187A JP2006187187A (ja) 2006-07-13
JP3904579B2 true JP3904579B2 (ja) 2007-04-11

Family

ID=36564935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143522A Expired - Fee Related JP3904579B2 (ja) 2004-12-03 2005-05-17 電源装置およびそれを用いた発光装置、電子機器

Country Status (4)

Country Link
US (2) US7521912B2 (ja)
JP (1) JP3904579B2 (ja)
KR (1) KR20070085518A (ja)
WO (1) WO2006059500A1 (ja)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127559B2 (ja) * 2006-05-15 2008-07-30 シャープ株式会社 電源回路装置及びこの電源回路装置を備えた電子機器
JP2008067464A (ja) * 2006-09-06 2008-03-21 Rohm Co Ltd 半導体集積回路、負荷駆動システムおよび電子機器
US20080084239A1 (en) * 2006-09-08 2008-04-10 Matsushita Electric Industrial Co., Ltd. Regulated charge pump circuit
JP4974653B2 (ja) * 2006-11-21 2012-07-11 ローム株式会社 昇圧型スイッチングレギュレータの制御回路、それを用いた昇圧型スイッチングレギュレータ、およびそれらを用いた電子機器
JP5233136B2 (ja) * 2007-03-14 2013-07-10 株式会社リコー 定電流回路及び定電流回路を使用した発光ダイオード駆動装置
JP5032893B2 (ja) * 2007-06-07 2012-09-26 新日本無線株式会社 昇圧回路
JP5738589B2 (ja) * 2007-06-19 2015-06-24 シリコン・ライン・ゲー・エム・ベー・ハー 発光部品を制御する回路装置及び方法
JP5004700B2 (ja) * 2007-07-11 2012-08-22 新日本無線株式会社 発光素子駆動装置
US8866410B2 (en) * 2007-11-28 2014-10-21 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US8138742B2 (en) * 2008-02-06 2012-03-20 Mediatek Inc. Semiconductor circuits capable of mitigating unwanted effects caused by input signal variations
JP5097628B2 (ja) 2008-07-03 2012-12-12 パナソニック株式会社 半導体光源駆動装置および半導体光源駆動方法
JP2010021435A (ja) * 2008-07-11 2010-01-28 Panasonic Corp Mosトランジスタ抵抗器、フィルタおよび集積回路
JP2010109168A (ja) * 2008-10-30 2010-05-13 Fuji Electric Systems Co Ltd Led駆動装置、led駆動方法および照明装置
TWI399128B (zh) * 2008-10-31 2013-06-11 Advanced Analog Technology Inc 控制發光二極體之電荷泵驅動電路之方法及電路
US9164523B2 (en) * 2009-01-16 2015-10-20 Mediatek Inc. Voltage regulator having a plurality of capacitors configured to obtain a feedback voltage from a division voltage
JP2010225891A (ja) * 2009-03-24 2010-10-07 Rohm Co Ltd 半導体装置およびそれを備えた電子機器
EP2448013A4 (en) * 2009-06-26 2014-03-12 Panasonic Corp LIGHT EMITTING ELEMENT ATTACHING DEVICE, FLAT LIGHTING DEVICE, AND LIQUID CRYSTAL DISPLAY
KR101658209B1 (ko) * 2009-06-26 2016-09-21 페어차일드코리아반도체 주식회사 Led 발광 장치 및 그 구동 방법
US8081199B2 (en) 2009-06-26 2011-12-20 Panasonic Corporation Light emitting element drive apparatus, planar illumination apparatus, and liquid crystal display apparatus
CN102026438B (zh) * 2009-09-18 2014-04-16 立锜科技股份有限公司 发光元件控制电路与控制方法、及用于其中的集成电路
US8384311B2 (en) * 2009-10-14 2013-02-26 Richard Landry Gray Light emitting diode selection circuit
US9497805B2 (en) * 2010-06-18 2016-11-15 Konica Minolta Holdings, Inc. Organic EL element driving device and organic EL lighting apparatus
EP2410819A1 (en) * 2010-07-23 2012-01-25 ST-Ericsson SA Circuit for retro-lighting a display
CN102387629B (zh) 2010-09-06 2015-07-29 奥斯兰姆有限公司 发光单元驱动电路和发光装置
JP5749465B2 (ja) * 2010-09-07 2015-07-15 ローム株式会社 発光素子の駆動回路、それを用いた発光装置および電子機器
EP2493060A1 (en) * 2011-02-22 2012-08-29 ST-Ericsson SA Low ripple step-up/step-down converter
DE102011107089B4 (de) * 2011-07-11 2013-06-06 Austriamicrosystems Ag Spannungsversorgungsanordnung und Verfahren zur Spannungsversorgung einer elektrischen Last
CN102958233B (zh) * 2011-08-30 2015-01-07 宏齐科技股份有限公司 发光二极管光源的电源驱动电路与光源装置
ES2971060T3 (es) 2011-11-04 2024-06-03 Nevro Corp Conjuntos de carga y comunicación para dispositivos médicos para el uso con generadores de señal implantables
CN102595736B (zh) * 2012-03-01 2014-09-17 杭州乐图光电科技有限公司 一种兼容电子镇流器的led驱动电源
TWI462640B (zh) * 2012-12-25 2014-11-21 Unity Opto Technology Co Ltd Adaptive LED dimming drive circuit
JP6023595B2 (ja) * 2013-01-22 2016-11-09 ローム株式会社 フラッシュ用発光素子の駆動回路およびそのコントローラ、それを用いたフラッシュ装置、電子機器
JP6198442B2 (ja) * 2013-04-24 2017-09-20 新日本無線株式会社 定電流保護回路
EP2991723A4 (en) 2013-05-03 2017-02-01 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
CN103442494A (zh) * 2013-09-05 2013-12-11 天津理工大学 Led光源亮度连续可调电路
CN104853467A (zh) * 2014-02-13 2015-08-19 冠捷投资有限公司 发光二极管驱动装置
CN104883765A (zh) * 2014-02-27 2015-09-02 睿腾光电科技股份有限公司 具发光二极管模块的光源装置
CN104244506A (zh) * 2014-03-12 2014-12-24 厦门兴恒隆照明科技有限公司 一种具有智能网络监控的多功能照明灯具及其监控方法
EP3145582B1 (en) 2014-05-20 2020-10-21 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems
AU2015336218B2 (en) 2014-10-22 2020-07-23 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
CN104486870A (zh) * 2014-11-25 2015-04-01 深圳市润杰明成照明科技有限公司 一种无频闪led灯具的驱动电路及驱动装置
JP5982510B2 (ja) * 2015-02-09 2016-08-31 力晶科技股▲ふん▼有限公司 電圧発生回路、レギュレータ回路、半導体記憶装置及び半導体装置
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
EP4079369A1 (en) * 2015-12-31 2022-10-26 Nevro Corporation Controller for nerve stimulation circuit and associated systems and methods
JP6859022B2 (ja) * 2016-02-03 2021-04-14 アール・ビー・コントロールズ株式会社 Led照明用調光装置
JP6695176B2 (ja) * 2016-03-16 2020-05-20 エイブリック株式会社 スイッチングレギュレータ
JP6812679B2 (ja) * 2016-06-30 2021-01-13 カシオ計算機株式会社 電流制御装置、照明装置及び電流制御方法
US11271476B2 (en) * 2017-05-09 2022-03-08 Sony Semiconductor Solutions Corporation Power supply circuit comprising a charge pump circuit and a feedback circuit for the charge pump circuit
JP6983628B2 (ja) * 2017-11-17 2021-12-17 シャープ株式会社 発光素子駆動回路、および携帯型電子機器
WO2019152553A1 (en) 2018-01-30 2019-08-08 Jon Parker Efficient use of an implantable pulse generator battery, and associated systems and methods
WO2019188217A1 (ja) * 2018-03-28 2019-10-03 株式会社小糸製作所 点灯回路および車両用灯具
US10933238B2 (en) 2019-01-31 2021-03-02 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods
JP6970136B2 (ja) * 2019-04-04 2021-11-24 矢崎総業株式会社 電池制御ユニット及び電池システム
KR102206648B1 (ko) * 2019-07-31 2021-01-22 주식회사 웰랑 전류 제어 전류원 및 이를 포함하는 부하 전류 구동기
JP7100002B2 (ja) * 2019-09-10 2022-07-12 矢崎総業株式会社 電池制御ユニットおよび電池システム
JP7051776B2 (ja) * 2019-09-30 2022-04-11 矢崎総業株式会社 電池制御ユニットおよび電池システム
KR20220148518A (ko) * 2021-04-29 2022-11-07 에스케이하이닉스 주식회사 트랜지스터들의 성능을 모니터하는 모니터링 회로

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678527A (ja) 1992-08-26 1994-03-18 Nec Kansai Ltd 駆動電圧供給装置とその集積回路
JPH07193442A (ja) * 1993-12-27 1995-07-28 Hitachi Ltd 演算増幅器およびそれを用いたda変換装置と電圧比較器
JP3316468B2 (ja) 1999-03-11 2002-08-19 セイコーエプソン株式会社 昇圧回路、昇圧方法および電子機器
JP2001215913A (ja) 2000-02-04 2001-08-10 Toko Inc 点灯回路
JP2004022929A (ja) 2002-06-19 2004-01-22 Matsushita Electric Ind Co Ltd Dc−dc昇圧方法
JP2004166342A (ja) 2002-11-11 2004-06-10 Arueido Kk 電源制御装置および電源制御方法
JP2004206633A (ja) * 2002-12-26 2004-07-22 Renesas Technology Corp 半導体集積回路及び電子回路
JP2004310444A (ja) 2003-04-07 2004-11-04 Nippon Telegr & Teleph Corp <Ntt> 電圧発生回路
DE602004008840T2 (de) * 2003-07-07 2008-06-19 Rohm Co., Ltd., Kyoto Lasttreibervorrichtung und tragbare Vorrichtung, die solche Lasttreibervorrichtung verwendet
US7271642B2 (en) * 2005-12-27 2007-09-18 Aimtron Technology Corp. Charge pump drive circuit for a light emitting diode

Also Published As

Publication number Publication date
US7521912B2 (en) 2009-04-21
US20080129225A1 (en) 2008-06-05
US7948299B2 (en) 2011-05-24
US20090200962A1 (en) 2009-08-13
KR20070085518A (ko) 2007-08-27
WO2006059500A1 (ja) 2006-06-08
JP2006187187A (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
JP3904579B2 (ja) 電源装置およびそれを用いた発光装置、電子機器
JP4315981B2 (ja) チャージポンプ回路の駆動回路および電源装置ならびに発光装置
US7679351B2 (en) Power supply apparatus
JP4658623B2 (ja) 定電流回路、それを用いた電源装置および発光装置
JP4823765B2 (ja) 電流出力型デジタルアナログ変換器ならびにそれを用いた負荷駆動装置および電子機器
KR101480201B1 (ko) 발광 소자의 구동 회로 및 전자 기기
JP4628176B2 (ja) 電源装置および電子機器
JP4675151B2 (ja) 定電流駆動回路、それを用いた発光装置、電子機器
US7205750B2 (en) Power supply for positive and negative output voltages
US20070069712A1 (en) Driving circuit and electronic device using the same
US20090179584A1 (en) Dc/dc converter
JP2008060492A (ja) 発光素子駆動装置
JP6224365B2 (ja) 電源装置及び半導体装置
JP2006211747A (ja) 電源装置および電子装置
JP3739768B2 (ja) 負荷駆動装置及び携帯機器
JP2008131764A (ja) スイッチング電源の制御回路、それを用いたスイッチングレギュレータ、およびそれらを用いた電子機器、ならびに電流検出回路
JP4467395B2 (ja) 電源装置
JP2009118698A (ja) Led駆動用電源回路及びその駆動方法
JP4739901B2 (ja) スイッチング電源装置およびその制御回路、ならびにそれを用いた電子機器
JP4899112B2 (ja) Led駆動装置
JP2006067714A (ja) 昇圧型スイッチングレギュレータ回路
JP4692011B2 (ja) 駆動回路及び駆動方法
JP2022095295A (ja) 制御回路及びdc/dcコンバータ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees