JP3891925B2 - 生物学的粒子の情報を得る装置 - Google Patents

生物学的粒子の情報を得る装置 Download PDF

Info

Publication number
JP3891925B2
JP3891925B2 JP2002351162A JP2002351162A JP3891925B2 JP 3891925 B2 JP3891925 B2 JP 3891925B2 JP 2002351162 A JP2002351162 A JP 2002351162A JP 2002351162 A JP2002351162 A JP 2002351162A JP 3891925 B2 JP3891925 B2 JP 3891925B2
Authority
JP
Japan
Prior art keywords
light
flow path
optical fiber
particles
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2002351162A
Other languages
English (en)
Other versions
JP2004184217A (ja
Inventor
昌彦 神田
Original Assignee
ベイバイオサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベイバイオサイエンス株式会社 filed Critical ベイバイオサイエンス株式会社
Priority to JP2002351162A priority Critical patent/JP3891925B2/ja
Publication of JP2004184217A publication Critical patent/JP2004184217A/ja
Application granted granted Critical
Publication of JP3891925B2 publication Critical patent/JP3891925B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • G01N2015/1472Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle with colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1477Multiparameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/149Sorting the particles

Description

【0001】
【発明の属する技術分野】
本発明は、生物学的粒子(例えば、細胞、染色体)の生物学的情報を得る装置に関する。特に、本発明は、蛍光色素などを用いて染色された細胞や染色体を層流状態で流し、その流れにレーザ光などの光を照射して得られる情報光(散乱光、蛍光)を検出し、検出された情報光に含まれる光学的情報を電気信号に変換して細胞や染色体の生物学的情報を取得し、さらに必要であればその生物学的情報をもとに特定の細胞や染色体の集団を採取するフローサイトメータまたはセルソータに関する。
【0002】
【従来の技術】
バイオテクノロジーの発展に伴い、医学や生物学などの分野では、細胞や染色体など(以下「細胞」という。)の自動分析および分別を行う流動式細胞分析装置(フローサイトメータ)が用いられている。この流動式細胞分析装置は、分析対象である細胞粒子を、細胞整列手段である流路内で一列にして流し、この流れてくる粒子にレーザ光を照射し、粒子より生じる情報光(前方散乱光、蛍光・側方散乱光)を検出して電気信号に変換し、これらの電気信号に基づいて細胞を分析するものであり、多数の細胞を高速で分析し、必要であれば特定の細胞の集団を採取できるものである。
【0003】
図12は一般的なフローサイトメータの構成と、その作動を説明するための模式図である。この図に示すフローサイトメータ200では、容器中にあって細胞を含む懸濁液201は、別の容器中にあるシース液202とともに、エアーポンプ203によって漏斗状のフローチャンバ(ノズル)204に導かれる。フローチャンバ204の内部では、シース液202が懸濁液201を円筒状に包み込む層流、すなわち細胞をフローセルの中心軸に沿って一つ一つ正確に流すシースフローが形成される。フローチャンバ204の下部ではシースフローの高速流が形成され、そこにレーザ光源205から出射されて集束レンズ206によって絞り込まれたレーザ光207が照射される。懸濁液201に含まれる細胞は、多くの場合、蛍光染料や蛍光ラブルモノクロナール抗体などの蛍光物質で蛍光標識されている。したがって、細胞がレーザ光207中を経過するとき、散乱光と蛍光が発生する。
【0004】
散乱光は、集光レンズ208とビームブロック209からなる集光光学系を経て、例えばフォトダイオードなどの検出器210で検出される。一方、蛍光については、赤色蛍光が集光レンズ211、ハーフミラー212、集光レンズ213、フィルタ214からなる集光光学系で集められ、光検出器215で検出され、また緑色蛍光はハーフミラー212から集光レンズ216、フィルタ217で集められ、光検出器218で検出される。通常、蛍光の検出器215、218には、微弱光の検出が可能な光電子増倍管が用いられる。散乱光を検出する検出器210、赤色蛍光を検出する光検出器215および緑色蛍光を検出する光検出器218からの信号は、それぞれ信号処理回路219に送られ、ここで散乱光と蛍光の強度を分析することにより細胞の同定が行われる。
【0005】
【発明が解決しようとする課題】
このように、従来の細胞分析装置は、集光レンズ211、ハーフミラー212、集光レンズ213、フィルタ214からなる集光光学系で集めた散乱光や蛍光を光検出器215、218で検出するように構成されている。また、集光レンズ211は、高速水流の中心を1個づつ流れる細胞から発する蛍光を対物レンズで集光している(例えば、特許文献1〜4参照)。しかし、フローチャンバ204のオリフィス部分で粒子の詰まりが発生したり、流れが乱れたり、また流れが傾いたりすることがある。この場合、フローチャンバ204を取り外して洗浄しなければならないわけけであるが、その度に光軸調整(レーザの照射位置・焦点距離、ノズルの位置・角度、対物レンズの位置・焦点距離等)を要し、しかもそれらの調整作業は相当煩雑であった。また、このようなレンズの構成は高開口率のレンズを使用しているため、光学系を小型化するのが非常に難しかった。
【0006】
このような問題を解決するため、光学検出をフローセル内の一定流路の中で行う試みが提案されており、そこでは蛍光を集光するためにフローセルに高開口率のレンズが融着されている。しかし、この小径レンズでは集光した蛍光をコリメートできない。また、多くの場合はさらに集光用のレンズを数枚結合させる必要があり、その場合、レンズ間に空気層を挟むために感度の向上が実現できない。そのため、光学系を小型化することは不可能である。
【0007】
【特許文献1】
特開昭59−643号公報
【特許文献2】
特開昭59−184862号公報
【特許文献3】
特開昭60−195436号公報
【特許文献4】
特表平3−503808号公報
【0008】
そこで、本発明は、容易に光軸調整ができるフローサイトメータを提供することを目的とする。また、本発明は、生物学的粒子の生物学的性質をより正確に検出できるフローサイトメータを提供することを目的とする。
【0009】
【課題を解決するための手段】
これらの目的を達成するために、本発明に係る生物学的粒子の生物学的情報を得る装置(1)は、染色処理された生物学的粒子を含む液体に光を当て、該生物学的粒子からの情報光を検出して、該生物学的粒子の生物学的情報を得るものであり、染色処理された生物学的試料を含む液体が流れる流路(3)を形成する流路形成部材(2)と、上記流路(3)を流れる粒子に光を当てる照明部(5)と、上記粒子に当てられた光から得られる第1の情報光を検出する第1の検出部(21)と、上記粒子に当てられた光から得られる第2の情報光を検出する第2の検出部(25)とを備えており、上記第1の検出部(21)、第2の検出部(25)の少なくともいずれか一方は、一つまたは複数の光ファイバ(26,27)を備えており、上記光ファイバ(26,27)の一端面(61,62)が上記情報光を集光できるように流路(2)の近傍に配置されており、おり、上記流路形成部材(2)は、上記光ファイバ(26,27)の一端面(61,62)とこの一端面(61,62)が対向する壁面(56)との間に仕切り壁(78)を有し、上記光ファイバ(26,27)は上記一端面(61,62)が上記仕切り壁(78)に接触させて又は透明の充填材(86)を介して接触させて配置されていることを特徴とする装置。
【0010】
本発明に係る生物学的粒子の生物学的情報を得る装置の他の形態は、染色処理された生物学的粒子を含む液体に光を当て、該生物学的粒子からの情報光を検出して、該生物学的粒子の生物学的情報を得る装置において、光を透過する材料からなり、染色処理された生物学的試料を含む液体が流れる流路(3)を形成する流路形成部材(2)と、上記流路(3)を流れる粒子に光を当てる照明部(5)と、上記粒子に当てられた光から得られる第1の情報光を検出する第1の検出部(21)と、上記粒子に当てられた光から得られる第2の情報光を検出する第2の検出部(25)とを有し、上記照明部(5)は上記流路(3)の中心軸方向に所定の間隔をあけた第1の位置(151)と第2の位置(152)にそれぞれ光を集光する第1の光学部(6,9,10,11)と第2の光学部(7,13,14,15,16)を有し、上記第1の検出部(21)、第2の検出部(25)の少なくともいずれか一方は第1の光ファイバ(26)と第2の光ファイバ(27)を備えており、
上記第1の光ファイバ(26)と第2の光ファイバ(27)の一端面(61,62)は上記第1の位置(151)と第2の位置(152)で光が当てられた粒子からの上記情報光をそれぞれ集光できるように流路(3)の近傍に配置されており、上記流路形成部材(2)は、少なくとも一つの平坦面(76)を有する第1の透光部材(75)と、一対の平行な平坦面を有し且つ一方の平坦面を上記第1の透光部材(75)と所定の間隔をあけて対向させた第2の透光部材(78)と、第1の透光部材(75)の平坦面とこれに対向する第2の透光部材(78)の平坦面との間に挟持されかつ所定の間隔をあけて対向し、上記第1の透光部材(75)と第2の透光部材(78)とともに四角形の流路(3)を形成する一対の第3の透光部材(77)とを備えており、上記光ファイバ(26,27)は上記一端面(61,62)が上記第2の透光部材(78)に接触させて又は透明の充填材(86)を介して接触させて配置されていることを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明に係るフローサイトメータを説明する。
【0012】
I.光学的要素:
図1は、フローサイトメータの光学的要素を示す。この図に示すように、フローサイトメータ1は、蛍光染料または蛍光抗体で染色された生物学的粒子(細胞または染色体)を含む液体(通常、細胞を含む懸濁液とシース液とからなる。)が流れる細い流路を形成する流路ブロック(流路形成部材)2を有する。流路ブロック2に形成されている流路3の中を流れるシースフロー(流れ)4に光を照射する照明部5は、2つの励起光源を備えている。これら2つの光源には、異なる波長のレーザ光を発生するレーザ発生器が好適に利用される。例えば、本実施の形態では、第1の光源として波長488nmの第1のレーザ光(アルゴンレーザ)を発生する第1のレーザ発生器6が使用され、第2の光源には波長635nmの第2のレーザ光(ヘリウムネオンレーザ)を発生する第2のレーザ発生器7が使用されている。しかし、2つの光源に、水銀ランプやキセノンランプなどのランプを使用することができる。
【0013】
照明部5はまた、第1のレーザ発生器6から出射された第1のレーザ光8をシースフロー4に集光するために、光ファイバ9、ビームエキスパンダ10、集光レンズ11を備えており、第1のレーザ発生器6で生成された第1のレーザ光8が光ファイバ9、ビームエキスパンダ10、集光レンズ11を通ってシースフロー4のほぼ中心に集光されるようにしてある。同様に、照明部5は、第2のレーザ発生器7から出射された第2のレーザ光12をシースフロー4に導くために、光ファイバ13、ビームエキスパンダ14、集光レンズ15、ミラー16を備えており、第2のレーザ発生器7で生成された第2のレーザ光12が光ファイバ13、ビームエキスパンダ14、集光レンズ15、ミラー16を通ってシースフロー4のほぼ中心に集光されるようにしてある。また、シースフロー4における第1と第2のレーザ光8,12の集光高さはδh(図5参照)だけ異なり、本実施の形態では第1のレーザ光8の集光位置が第2のレーザ光12の集光位置よりもδhだけ高く設定されている。
【0014】
ビームエキスパンダ10,14と集光レンズ11,15はそれぞれ集光位置調整装置16,17,18,19によって支持されており、シースフロー4の流れ方向と直交する面(通常は水平面)上でそれらの光軸と直交する二方向(X方向とY方向)に移動できるようにしてある。ミラー16もまた別の集光位置調整装置20によって支持されており、上述の二方向または垂直方向(X,Y方向と直交するZ方向)に移動できるようにしてある。
【0015】
流路ブロック2を挟むようにして入射レーザ光8,12の反対側には、流路ブロック2内の流路を流れる粒子に照射された光の前方散乱光を検出する第1の検出装置21が配置されている。この第1の検出装置21は、図12を参照して説明した従来のフローサイトメータと同様に、集光レンズ22、光検出器23を備えており、細胞からの前方散乱光を集光レンズ22で光検出器23に集光するようにしてある。また、光検出器23は信号処理装置24に接続されており、光検出器23で検出された情報が信号処理装置24に送信されて処理されるようにしてある。一方、細胞の蛍光・側方散乱光を検出する第2の検出装置25は、第1のレーザ光8に対する蛍光・側方散乱光を検出する第1の光ファイバ26と、第2のレーザ光12に対する蛍光・側方散乱光を検出する第2の光ファイバ27を備えており、これら第1と第2の光ファイバ26、27の一端が第1と第2のレーザ光8、12の集光高さに対応する位置にそれぞれ固定されている(図5参照)。第1と第2の光ファイバ26、27の他端は、ファイバコネクタ28,29を介して第1と第2の分光器30,31にそれぞれ光接続されている。各ファイバコネクタ28,29には、光ファイバの出力光をコリメートするセルフォックスレンズ32,33または他の光学レンズを内蔵するのが好ましい。
【0016】
第1の分光器30は、第1の光ファイバ26から出力された光を分光する複数の分光フィルタ(ハーフミラー)34aを備えている。これら複数の分光フィルタ34aは、予め決められたそれぞれの周波数領域の波長を反射・透過する性能を備えている。具体的に、本実施の形態では4つの分光フィルタを備えており、セルフォックスレンズ32側から、505nm未満の光を反射する(505nm以上の波長光を透過する)第1のフィルタ、550nm未満の光を反射する(550nm以上の波長光を透過する)第2のフィルタ、600nm未満の光を反射する(600nm以上の波長光を透過する)第3のフィルタ、及び730nm未満の光を反射する(730nm以上の波長光を透過する)第4のフィルタが配置されている。また、光の進行方向に関して分光フィルタ34aの下流側には、各分光フィルタで反射された光の中から特定の波長域の光だけを選択的に透過して取得するバンドパスフィルタ34bが配置されている。本実施の形態では、第1から第4の分光フィルタで反射された光と第4の分光フィルタを透過した光の中から特定の波長域の光だけを透過する5つのバンドパスフィルタが設けてあり、5つのバンドパスフィルタのそれぞれを透過する光の中心波長が488nm、530nm、570nm、680nm、波長幅が10nm、40nm、40nm、30nmとしてある。さらに、光の進行方向に関して複数のバンドパスフィルタ34bの下流側には各バンドパスフィルタを透過した情報光(側方散乱光と所定の蛍光色素に対応した蛍光)を検出するために複数の光検出器35(SSC,FL1,FL2,FL3,FL4が用意されている。
【0017】
一方、第2の分光器31は、第2の光ファイバ27から出力された光のうち730nm未満の光を反射すると共に730nm以上の光を透過する分光フィルタ36aと、この分光フィルタ36aで反射した光と透過した光の中から、中心波長が660nmで波長幅が30nmの光、中心波長が785nmで波長幅が50nmの光をそれぞれ選択的に透過するバンドパスフィルタ36bと、これらのバンドパスフィルタ37を透過した情報光(所定の蛍光色素に対応した蛍光)を検出するために2つの光検出器37(FL5,FL6)を備えている。これら光検出器35,37は、第1の検出装置21の光検出器23と同様に、信号処理装置24に接続されており、光検出器35,37で検出された情報が信号処理装置24に送信されて処理されるようにしてある。
【0018】
このように構成されたフローサイトメータ1によれば、第1のレーザ発生器6で生成された第1のレーザ光8は、光ファイバ9、ビームエキスパンダ10、集光レンズ11を介して、流路ブロック2の流路3内を流れるシースフロー4によって導光されて粒子に集光される。同様に、第2のレーザ発生器7で生成された第2のレーザ光12は、光ファイバ13、ビームエキスパンダ14、集光レンズ15を介して、流路ブロック2の流路3内を流れるシースフロー4によって搬送される粒子に集光されて照射される。このとき、第1と第2のレーザ光8,12が集光される焦点位置(高さ)は異なる。
【0019】
シースフロー4によって搬送される生物学的粒子は、予め決められた複数の蛍光色素または蛍光抗体によって染色されている。そして、入射光の前方に散乱した前方散乱光が第1の検出装置21の集光レンズ22によって集光されて光検出器23に入射され、この光検出器23によって前方散乱光に含まれる光情報が読み取られて対応する電気信号に変換される。第1のレーザ光8が照射された粒子から出た側方散乱光と蛍光は入射光の側方に配置された第2の検出装置25の第1の光ファイバ26によって受光される。また、第2のレーザ光12が照射された粒子から出た側方散乱光と蛍光は第2の検出装置25の第2の光ファイバ27によって受光される。そして、第1の光ファイバ26に受光された光はファイバコネクタ28を介して第1の分光器30に送られ、そこで複数の分光フィルタ34aによって複数の光に分解された後、バンドパスフィルタ34bを介して光検出器35によって検出される。このとき、各光検出器35(SSC,FL1,FL2,FL3,FL4)は、バンドパスフィルタ34bを通過した異なる波長域の光だけを検出する。同様に、第2の光ファイバ27に受光された光はファイバコネクタ29を介して第2の分光器31に送られ、そこで分光フィルタ36aによって2つの光に分解された後、分解された2つの光がバンドパスフィルタ36bを介して光検出器37で検出される。これら光検出器37で検出される光の波長域は異なる。以上のようにして光検出器に検出された光は、その光に含まれる情報に対応した電気信号に変換された後、信号処理装置24に送信されて処理され、処理後の信号が粒子の生物学的性質の同定や後に説明するソーティング処理に利用される。
【0020】
II.流体力学的要素:
フローサイトメータの流体力学的要素を説明する。まず、図2は、フローサイトメータ1の層流形成容器40と該容器40の下端部に連結された流路ブロック2を模式的に表した図である。この図に示すように、容器40は、概略、上部の大径筒部41と、下部の小径筒部42と、これらの大径筒部41と小径筒部42を連結するテーパ部43を同心的に備えており、内部に層流形成室44を形成している。容器40の上端部は、シース液供給部45にシース液供給管46を介して接続されている。容器40の天井部には容器40の中心軸に沿って伸びる鞘管47が固定されており、懸濁液供給部48に接続された懸濁液供給管49が鞘管47に挿入されている。鞘管47の内径と懸濁液供給管49の外径は、鞘管47に対して懸濁液供給管49が上下に移動できるとともに鞘管47に対して懸濁液供給管49が若干角度調整できるように決められている。そのため、鞘管47と懸濁液供給管49との間には隙間が存在するが、この隙間はゴム製のOリング等の適宜シール部材によってシールされている。
【0021】
懸濁液供給管49の懸濁液吐出口50の位置を調整するために、懸濁液供給管49の上部は角度調整装置51に連結されている。この角度調整装置51は、容器40または容器40を固定している基台(図示せず)に固定されている。角度調整装置51に採用する傾斜調整機構としては種々の技術が利用可能であるが、例えば図3に示すように、懸濁液供給管49を囲うように基台に設けた正方形枠52に容器中心軸を挟んで対向する複数のねじ孔53を設けるとともにこれらのねじ孔53にねじ54を取り付け、これらのねじ54を操作することによって懸濁液供給管49の角度を調整できる機構がある。このねじ式角度調整機構は、鞘管47と懸濁液供給管49との隙間に配置されるシール部材とともに、懸濁液供給管49の上下方向の位置決めとして機能する。
【0022】
容器40の下端部に連結された流路ブロック2は、光を透過できる材料、例えば水晶、ガラス、溶融シリカまたは透明プラスティックからなる群から選択された材料で作られており、容器中心軸と同軸上に細い流路3が形成されている。図4に示すように、流路3は長方形の断面を有し、長手方向の壁面55,56をX方向に向け、短手方向の壁面57,58をY方向に向け、一方の短手方向壁面57から第1と第2のレーザ光8,12が入射され、前方散乱光59が対向する他方の短手方向壁面58から出射するとともに一方の長手方向壁面56から蛍光・側方散乱光60が出射するように配置される。
【0023】
流路ブロック2はまた、図4と図5に拡大して示すように、蛍光・側方散乱光を検出する第1と第2の光ファイバ26,27を保持している。これらの光ファイバ26,27は、通常の光ファイバと同様に、光を導光するコアと、コアの周囲を被覆するクラッドからなる。これら第1と第2の光ファイバ26,27の一端面61,62は、それらの中心軸と直交する方向に加工されており、流路3の長手方向壁面56と所定の距離δgをあけて、容器中心軸と直交する水平方向(Y方向)に垂直に向けて配置されている。また、図5に示すように、第1と第2の光ファイバ26,27は容器中心軸方向に一列に整列して配置されており、上述のように第1と第2の光ファイバ27の中心高さが第1と第2のレーザ光12の入射位置(高さ)151,152に一致させてある。
【0024】
図4に示すように、流路3の大きさ(すなわち、寸法dx、dy)、第1と第2の光ファイバ26,27と流路3との距離(dg)は、光ファイバ26,27のコア径(df)及び開口率(NA)を考慮したうえで、流路3中で細胞の通過する可能性がある楕円形の領域63の外縁から出た光が光ファイバ26,27のコアに入射し得ること、また流路3の角部64〜67に当たった第1と第2のレーザ光8,12の散乱光がコアに入射しない条件に決められる。これら2つの条件が満足されることで、細胞から出た蛍光・側方散乱光が確実に光ファイバ26,27に入射されるとともに、角部の散乱光に起因するノイズが検出結果から除去される。例えば、これら2つの条件は、X、Y方向に関する領域63の寸法δx、δyをそれぞれ流路寸法dx、dyの約1/4〜1/10の範囲に設定することにより満足される。具体例として、流路3の大きさはdx=200μm、dy=100μmに設定される。
【0025】
流路ブロック2の製造及びこの流路ブロック2に光ファイバを固定する方法について説明する。図5に示すように、流路ブロック2は、容器下部の小径筒部42に連結された上部ブロック70と、この上部ブロック70の下部に連結された下部ブロック71と、下部ブロック71の下端に連結されたオリフィスプレート72から構成されている。これら3つの部材は、接着剤で接着してもよいし、熱を加えて熱融着してもよい。上部ブロック70には液体の流れる流路を小径筒部42の内空断面から流路3の断面まで狭くするためにテーパ流路73が形成されており、下部ブロック71に流路3が形成されている。また、オリフィスプレート72には、容器中心軸と同軸的に、検出流路3よりも狭い流路(オリフィス)74が形成されている。
【0026】
下部ブロック71は複数の部材を組み合わせて構成する。例えば、図6に示すように、まずプレート75を用意する。次に、プレート75の一方の平坦面76上に、検出流路3の長辺寸法dxに相当する間隔をあけて、同一の厚み(dy)を有する2つのスペースプレート77を配置し固定する。続いて、2つのスペースプレート77の上に、所定の厚み(dg)を有するカバープレート(仕切り壁)78を配置し固定する。最後に、カバープレート78の上にボルダブロック79を配置して固定する。
【0027】
ホルダブロック79には、カバープレート78に対向する面とこれに対向する反対側の面とを貫通する長方形の凹部80が形成されており、この凹部80にファイバホルダ81が挿入されて固定されている。ファイバホルダ81は、図7Aと図7Bに示すように、複数のファイバ82を並列に保持するための溝(ファイバ収容室)83が形成されたブラケット状の第1のブロック84と、溝83を覆うプレート状の第2のブロック85からなる。第1と第2のブロック84,85の大きさは、これらのブロック84,85を組み合わせたときの外形が丁度凹部80と一致するようにしてある。また、溝83の大きさは、出来るだけ隙間の無い状態で複数の光ファイバ(少なくとも、第1と第2の光ファイバ26,27を含む。)を並列に収容できる大きさとしてある。そして、溝83に光ファイバ82を収容したファイバホルダ81はホルダブロック79の凹部80に挿入されて固定される。このとき、光ファイバの端面はカバープレート78にほぼ接触させる。また、必要であれば、光ファイバ82は接着剤を用いてファイバホルダ81に固定する。
【0028】
高感度をもって蛍光を測定するために、光ファイバ26,27の端面とカバープレート78との間は、空気の無い状態に保つことが好ましい。そのため、両者の間には、透明の接着剤、オイル、ゲルなどの充填材86(図4参照)を充填することが好ましい。また、カバープレート78を光ファイバ26,27(特に、コア)とほぼ同一の屈折率を有する材料で形成するとともに、それらの間に充填する透明の接着剤、オイル、ゲルの屈折率はカバープレート78と光ファイバ26,27(特に、コア)の屈折率とほぼ同一であることが好ましい。この場合、蛍光と散乱光を効率良く光ファイバ26,27に集光できる。
【0029】
上述の実施例では、複数の光ファイバ82を長方形の溝83に収容して固定したが、図8Aと図8Bに示すように、一本の光ファイバとその周囲に配置された6本の光ファイバとからなるファイババンドル87を対応する大きさの円筒ファイバホルダ88に挿入して固定し、これら7本の光ファイバのうちの2本の光ファイバを第1と第2の光ファイバ26、27として使用してもよい。ただし、本実施例の場合、円筒ファイバホルダ88がホルダブロック79に対して回転しないようにするために、円筒ファイバホルダ88の外周面に突起89(または窪み)を形成するとともにホルダブロック79には対応する窪み(または突起)〔図示せず〕を形成して両者を係合させることが好ましい。
【0030】
図2に戻り、容器40の小径筒部42には、流路ブロック2の下端オリフィス74から吐出される液体をそれぞれが細胞を含む液滴に分離するために、小径筒部42の外周から容器中心に向かって液体に振動を与える振動装置90が固定されている。この振動装置90は、小径筒部42の周囲に対称に複数配置するのが好ましい。また、振動装置90には、ピエゾ素子(PZT)を用いるのが好ましい。
【0031】
図5に示すように、フローサイトメータ1はまた、流路ブロック2の下方に、特定の粒子集団を採取するソーティング装置91を備えている。このソーティング装置91は、電源回路91と、オリフィス74から噴射される液体に接触する電極93と、オリフィス74の下方に該オリフィス74から噴射される液体の両側に配置された一対の導電性電極板(偏向板)94a,95aを有する。なお、電極93の設置場所は限定的ではなく、流路ブロック2内の流路を流れる液体と接触することができればよい。また、電極板94a,95aは、これに水分が付着すると両者の間に形成される電界の分布に変化を生じる。そのため、これら電極板94a,95aは多孔性の金属板で構成され、それらの背面に吸引装置(真空装置)94b、95bが設けられ、電極板94a,95aの表面に付着した液体がそれらの背後に設けた吸引装置94b、95bで吸引されるようにしてある。したがって、正極性に帯電した水分粒子は、電極板94a、95aに付着すると、この電極板94a、95aに形成されている微小の孔を通ってその背面に移動する。その結果、電極板94a,95aの間に形成される電界は安定した状態を保つ。
【0032】
このような構成によれば、図2に示すように、シース液供給部45から供給されたシース液は容器40の内部を下方に向けて移動する。単位時間当たりのシース液の供給量は、容器40の内部をシース液が容器中心軸を中心として層流状態で移動するように決定する。一方、懸濁液供給部48から供給された懸濁液は、懸濁液供給管49を介して、層流状態で流れるシース液の中心に供給される。これにより、シース液が懸濁液の周囲を囲む円筒状の層流、すなわち粒子を容器40の中心軸に沿って一つ一つ正確に流すシースフローが形成される。次に、懸濁液とシース液は、容器40のテーパ部43で加速された後、小径筒部42に送られるた後、流路ブロック2に入ってテーパ流路3で再び加速されて流路3に入る。
【0033】
図4に示すように、流路3を通過する粒子は第1と第2のレーザ光8,12が照射されることにより、前方散乱光59と蛍光・側方散乱光60を生じる。前方散乱光59は、第1と第2のレーザ光12の延長上にある壁面58から流路ブロック2の外部に出て、第1の検出装置21で検出される。他方、第1と第2のレーザ光8,12による蛍光・側方散乱光60は第1と第2の光ファイバ26,27にそれぞれ集光され、第2の検出装置25で検出される。このとき、検出流路3の角部64〜67で散乱した光が第1と第2の光ファイバ27に集光されることがないので、蛍光・側方散乱光に含まれるノイズを最小限に抑えることができる。第1と第2の検出装置25で検出された粒子の生物学的性質は、電源回路92(図5参照)に送られる。
【0034】
流路3を通過したシース液は、オリフィス74からジェット噴射される。噴射されたシース液は、振動装置90から容器40の小径筒部42に加えられた振動によって、それぞれに粒子を収容した液滴となる。特に、本実施の形態では、振動装置90が容器40の小径筒部42に設けてあるので、振動装置90が発生した振動が効率良く層流混合液に伝達され、図5に示すように良好に液滴96に分離される。
【0035】
オリフィス74から噴射されるシース液に含まれる液滴は、電源回路92から電極93に印加される電圧によって正極性又は負極性に荷電される。電源回路92は、信号処理装置24で検出された該粒子の生物学的性質から作成された信号に基づいて制御され、特定の液滴のみ荷電される。荷電された液滴96は、電極板94a,95aの間を通過する際に偏向され、特定の粒子だけが採取される。また、電極板94a、95aに付着した水分は、背後に設けた吸引装置94b、95bによって、多孔板で形成されたこれら電極板94a,95aを透過して吸引装置94b、95bに吸引される。そのため、電極板94a,95aの間には一定の電界が維持される。
【0036】
なお、容器40または流路ブロック2の内部で細胞が詰まった場合、基台から容器40と流路ブロック2を取り外し洗浄して詰まった細胞を除去する。また、洗浄後の容器40と流路ブロック2を再びもとの状態に組み立てる。このとき、流路ブロック2の検出流路中心に励起光の集光位置を一致させる必要があり、ビームエキスパンダ、集光レンズに付設された集光位置調整装置を操作し、第1と第2のレーザ光の集光位置を調整する。しかし、蛍光・側方散乱光を検出する第2の検出装置については、その蛍光・側方散乱光を集光する手段として流路ブロックに固定された光ファイバを用いているので、同様の調整はまったく不要である。
【0037】
また、上述の実施の形態では、振動装置90を容器40の小径筒部42に固定し、この小径筒部42を流れる層流混合液に振動を加えたが、図9に示すように、流路ブロック2の上端に振動装置90を設置し、上下方向(液滴の吐出方向)に向けて振動を加えてもよい。この場合、液滴のきれが良くなり、効率的に液滴が形成される。当然ながら、振動装置90の設置場所や加振方向に関する技術は、本発明のフローサイトメータに限らず、従来のフローサイトメータにも適用できる。
【0038】
さらに、上述の実施の形態では、容器40の中心軸に沿って真っ直ぐの懸濁液供給管49を配置したが、図10に示すように、上部を斜めに曲げた別の懸濁液供給管49を利用し、下部直管部を容器中心軸と平行に配置した状態で、容器40に対する上部直管部の挿入量を調整することにより、懸濁液供給管49から吐出する懸濁液の位置を調整することができる。なお、懸濁液49の吐出口を調整する機構については、本発明のフローサイトメータに限らず、他のフローサイトメータにも適用できる。
【0039】
さらにまた、図10に示すように、容器40の大径筒部41と小径筒部42の少なくともいずれか一方にシース液を排出するドレーン管97を接続するとともに、シース液供給管46とドレーン管97を弁機構98を介してシース液供給部45とシース液回収部99に接続し、弁機構98を操作することによって、シース液供給管46をシース液供給部45またはシース液回収部99のいずれか一方に選択的に流体接続し、ドレーン管97をシース液供給部45またはシース液回収部99のいずれか一方に選択的に流体接続するようにしてもよい。この場合、弁機構98を操作することによって、容器40内に滞留している細胞・ごみ・空気を抜き取って回収したり、シース液の交換を行うことが自由にできる。また、このような細胞等を回収する配管についても、本発明のフローサイトメータに限らず、他のフローサイトメータにも適用できる技術である。
【0040】
III.信号処理系
図11は、信号処理装置24の回路を示す。図示するように、信号処理装置24は複数のアンプ101を備えており、第1の検出部21と第2の検出部25の光検出器から出力された信号(前方散乱光、側方散乱光、蛍光に対応する信号)がそれぞれ増幅される。増幅された信号はパラメータセレクタ102に送信され、予め決められた波長域のパルス波形の信号として取り出される。パラメータセレクタ102で取り出された信号は、アナログ信号の状態でA/W/H演算器103に送信され、その面積、幅、高さ、面積が計算される。次に、アナログ信号はA/D変換器104でデジタル信号に変換された後、先入れ先だし(FIFO)メモリ105に送信されて記憶される。
【0041】
上述のように、第2の検出部における2つの光ファイバ26,27は、流路3の流れの方向に関して異なる位置に配置されている。したがって、一つの粒子から出た蛍光・散乱光を第2の光ファイバ27で検出する時刻は、同一の粒子から出た蛍光・散乱光を第1の光ファイバ26で検出する時刻よりも所定時間遅れる。その結果、一つの粒子について、第1の光ファイバ26に関係する信号がFIFOメモリ105に入力される時間と、第2の光ファイバ27に関係する信号がFIFOメモリ105に入力される時間との間に上記所定時間の差を生じる。そのため、FIFOメモリ105はタイミング制御部106に接続されており、上記所定の時間遅れを考慮したタイミングをもってタイミング制御部106から送信される信号に基づき、一つの粒子に関連した信号がFIFOメモリ105から同時に出力される。
【0042】
FIFOメモリ105から出力されたデジタル信号はコンペンセーション回路107に送信され、そこで予め決められた比率をもとに各蛍光成分からその蛍光成分に含まれていると思われる別の蛍光成分が除去される。コンペンセーションが行われたデジタル信号はlog変換/増幅回路108に送られ、そこでlog変換または増幅される。変換または増幅されたデジタル信号は、ホストコンピュータ109とソーティング制御回路110に送られる。ホストコンピュータ109に送信された信号は、例えば粒子の生物学的性質の検出に利用される。また、ソーティング制御回路110に送信された信号は、ソーティング装置における電源回路の制御に利用される。
【0043】
このように、信号処理装置24では、パラメータセレクタ102から出力されたアナログ信号をA/W/H演算器103でその面積、幅、高さ、面積を計算しているので、例えば、デジタル信号プロセッサの中でコンペンセーション回路とlog変換回路との間にA/W/H演算器を設けた場合に比べて、分解性・精度の点で優れた結果が得られる。また、アンプから出力されたアナログ信号をlog変換する一方、デジタル信号プロセッサではFIFOメモリから出力されたデジタル信号をコンペンセーション回路でコンペンセーションし更にA/W/H演算器でその面積等を計算する場合には、アナログ信号を用いたlog変換の精度が悪く、またコンペンセーションされたデジタル信号をlog変換し更に再log変換しなければならないという問題があるのに対し、上述した信号処理装置24ではそのような問題がないという利点を有する。
【0044】
以上に説明した本発明のフローサイトメータでは、蛍光・側方散乱光を検出するための集光手段として光ファイバを利用しているが、前方散乱光を集光するための手段として光ファイバを利用することもできる。この場合、前方散乱光を集光するための光ファイバも、図6を参照して説明した方法と同様の方法で、流路の近傍に固定することができる。また、照明部についても、集光レンズなどの光学機器を用いることなく、レーザ発生器から出力された光を光ファイバを介して流路まで導光してもよい。この場合、光ファイバから出力された光を集光するために、この光ファイバの出光端を凸レンズ状に曲面加工するのが好ましい。そして、このような構成を採用すれば、洗浄後の光軸調整が更に簡単になる、またはまったく不要になる。
【0045】
また、上述のフローサイトメータでは、蛍光・側方散乱光を検出するための第1と第2の光ファイバを流路の片側に並列して配置したが、流路を挟むようにしてその左右両側にそれぞれ分けて配置することもできる。
【0046】
【発明の効果】
以上の説明から明らかなように、本発明に係るフローサイトメータによれば、洗浄後の光軸調整が容易になる。また、高精度で生物学的粒子の生物学的性質が検出できる。
【図面の簡単な説明】
【図1】 本発明に係る生物学的粒子の生物学的性質を得る装置の光学的要素を示す図。
【図2】 本発明に係る生物学的粒子の生物学的性質を得る装置の流体力学的構成を示す側面図。
【図3】 図2に示す装置に付設された角度調整装置の断面図。
【図4】 図1に示す装置の検出流路とその近傍に配置された光ファイバの一部を拡大した拡大横断面図。
【図5】 図1に示す装置の検出流路とその近傍に配置された光ファイバの一部を拡大した拡大縦断面図。
【図6】 図1に示す装置の流路形成部材(流路ブロック)の拡大斜視図。
【図7A】 図6に示す流路形成部材に組み込まれるファイバホルダの拡大正面図。
【図7B】 図6に示す流路形成部材に組み込まれるファイバホルダの拡大側面図。
【図8A】 ファイババンドルを用いたファイバホルダの拡大正面図。
【図8B】 図8Aに示すファイバホルダの拡大断面図。
【図9】 本発明に係る装置の他の形態の側面図。
【図10】 本発明に係る装置の他の形態の側面図で、シーズ液から異物を除去する流体回路を示す図。
【図11】 信号処理装置の回路図。
【図12】 生物学的粒子の生物学的性質を得る従来装置を示す斜視図。
【符号の説明】
1:装置
2:流路形成部材(流路ブロック)
3:流路
4:シースフロー
5:照明部
6:第1のレーザ発生器
7:第2のレーザ発生器
8:第1のレーザ光
9:光ファイバ
10:ビームエキスパンダ
11:集光レンズ
12:第2のレーザ光
13:光ファイバ
14:ビームエキスパンダ
15:集光レンズ
16:ミラー
17〜20:集光位置調整装置
21:第1の検出部
22:集光レンズ
23:光検出器
24:信号処理装置
25:第2の検出器
26:第1の光ファイバ
27:第2の光ファイバ
28、29:ファイバコネクタ
30,31:分光器
32,33:セルフォックスレンズ
34a,36a:分光フィルタ
35,37:光検出器
40:容器
41:大径筒部
42:小径筒部
43:テーパ部
44:層流形成室
45:シース液供給部
46:シース液供給管
47:鞘管
48:懸濁液供給部
49:懸濁液供給管
50:吐出口
51:角度調整機構
55〜58:流路壁面
59:前方散乱光
60:蛍光・側方散乱光
61,62:光ファイバ端面
64〜67:流路角部
70:上部ブロック
71:下部ブロック
72:オリフィスプレート
75:プレート
77:スペースプレート
78:カバープレート(仕切り壁)
80:凹部
81:ファイバホルダ
91:ソーティング装置
92:電源回路
93:電極
94a,95a:電極板(偏向板)
105:先入れ先だし(FIFO)メモリ

Claims (16)

  1. 染色処理された生物学的粒子を含む液体に光を当て、該生物学的粒子からの情報光を検出して、該生物学的粒子の生物学的情報を得る装置(1)において、
    光を透過する材料からなり、染色処理された生物学的試料を含む液体が流れる流路(3)を形成する流路形成部材(2)と、
    上記流路(3)を流れる粒子に光を当てる照明部(5)と、
    上記粒子に当てられた光から得られる第1の情報光を検出する第1の検出部(21)と、
    上記粒子に当てられた光から得られる第2の情報光を検出する第2の検出部(25)とを有し、
    上記第1の検出部(21)、第2の検出部(25)の少なくともいずれか一方は一つまたは複数の光ファイバ(26,27)を備えており、
    上記光ファイバ(26,27)の一端面(61,62)は上記情報光を集光できるように流路(3)の近傍に配置されており、
    上記流路形成部材(2)は、上記光ファイバ(26,27)の一端面(61,62)とこの一端面(61,62)が対向する壁面(56)との間に仕切り壁(78)を有し、
    上記光ファイバ(26,27)は上記一端面(61,62)が上記仕切り壁(78)に接触させて又は透明の充填材(86)を介して接触させて配置されていることを特徴とする装置。
  2. 上記流路形成部材(2)に形成された流路は、対向する一対の平坦な第1の壁面(57,58)と、上記第1の壁面(57,58)と直交する方向に伸びた対向する一対の平坦な第2の壁面(55,56)によって形成された四角形の断面を有し、
    上記照明部(5)は上記一対の第1の壁面(57,58)の一方の壁面(57)に光を入射し、
    上記第1の検出部(21)は上記一対の第1の壁面(57,58)の他方の壁面(58)を透過した光を検出し、
    上記第2の検出部(25)は上記一対の第2の壁面(55,56)の一方の壁面(56)を透過した光を検出することを特徴とする請求項1に記載の装置。
  3. 上記光ファイバ(26,27)の一端面(61,62)は上記一対の第2の壁面(55,56)の一方の壁面(56)に平行に配置されていることを特徴とする請求項2に記載の装置。
  4. 上記四角形の断面を有する流路(3)は、上記一対の第1の壁面(57,58)と一対の第2の壁面(55,56)が交差する角部(64〜67)から生じる拡散散乱光が上記光ファイバ(26,27)に入らないように決められていることを特徴とする請求項2または3のいずれか一に記載の装置
  5. 染色処理された生物学的粒子を含む液体に光を当て、該生物学的粒子からの情報光を検出して、該生物学的粒子の生物学的情報を得る装置において、
    光を透過する材料からなり、染色処理された生物学的試料を含む液体が流れる流路(3)を形成する流路形成部材(2)と、
    上記流路(3)を流れる粒子に光を当てる照明部(5)と、
    上記粒子に当てられた光から得られる第1の情報光を検出する第1の検出部(21)と、
    上記粒子に当てられた光から得られる第2の情報光を検出する第2の検出部(25)とを有し、
    上記照明部(5)は上記流路(3)の中心軸方向に所定の間隔をあけた第1の位置(151)と第2の位置(152)にそれぞれ光を集光する第1の光学部(6,9,10,11)と第2の光学部(7,13,14,15,16)を有し、
    上記第1の検出部(21)、第2の検出部(25)の少なくともいずれか一方は第1の光ファイバ(26)と第2の光ファイバ(27)を備えており、
    上記第1の光ファイバ(26)と第2の光ファイバ(27)の一端面(61,62)は 上記第1の位置(151)と第2の位置(152)で光が当てられた粒子からの上記情報光をそれぞれ集光できるように流路(3)の近傍に配置されており、
    上記流路形成部材(2)は、少なくとも一つの平坦面(76)を有する第1の透光部材(75)と、一対の平行な平坦面を有し且つ一方の平坦面を上記第1の透光部材(75)と所定の間隔をあけて対向させた第2の透光部材(78)と、第1の透光部材(75)の平坦面とこれに対向する第2の透光部材(78)の平坦面との間に挟持されかつ所定の間隔をあけて対向し、上記第1の透光部材(75)と第2の透光部材(78)とともに四角形の流路(3)を形成する一対の第3の透光部材(77)とを備えており、
    上記光ファイバ(26,27)は上記一端面(61,62)が上記第2の透光部材(78)に接触させて又は透明の充填材(86)を介して接触させて配置されていることを特徴とする装置。
  6. 上記第1の位置(151)と第2の位置(152)は、第1の位置(151)で光を当てられた粒子からの散乱光が第2の光ファイバ(27)に検出されず且つ第2の位置(152)で光を当てられた粒子からの散乱光が第1の光ファイバ(26)に検出されないように決められていることを特徴とする請求項5に記載の装置
  7. 一本の光ファイバの周りに六本の光ファイバを隙間無く配置したファイババンドル(87)を有し、上記ファイババンドル(87)に含まれた複数の光ファイバの中から選択された2つの光ファイバが上記第1の光ファイバ(26)と第2の光ファイバ(27)として使用されていることを特徴とする請求項5または6のいずれか一に記載の装置
  8. 上記流路形成部材(2)は、上記第2の透光部材(78)の他方の平坦面に対向する第4の部材(79)を備えており、上記第4の部材(79)は上記一以上の光ファイバ(26,27)の一端を保持するファイバブロック(81)を保持していることを特徴とする請求項5〜7のいずれかに記載の装置
  9. 上記第1の検出部(21)と第2の検出部(25)の少なくともいずれか一方は、上記光ファイバ(26,27)の他端にファイバコネクタ(28,29)を備えており、このファイバコネクタ(28,29)に上記光ファイバ(26,27)を通じて送られる光をコリメートするレンズ(32,33)が収容されていることを特徴とする請求項1〜8のいずれか一に記載の装置
  10. 上記第1の検出部(21)と第2の検出部(26)の少なくともいずれか一方は、上記光ファイバ(26,27)から出力された光を分光する分光器(30,31)と、上記分光器(30,31)で分光された光に含まれる情報を読み取る複数の光検出器(35,37)を備えていることを特徴とする請求項1〜9のいずれか一に記載の装置
  11. 上記複数の光検出器(35,37)から出力された複数のアナログ信号の面積・幅・高さを演算するA/W/H回路(103)と、上記A/W/H回路(103)から出力されたアナログ信号をデジタル信号に変換するA/D変換器(104)と、上記A/D変換器(104)から出力されたデジタル信号に基づくデジタル情報を保存するとともに保存されている複数のデジタル情報を同時に出力する先入れ先だしメモリ(105)と、上記メモリ(105)から出力されたデジタル情報を補正するコンペンセーション部(107)と、上記コンペンセーション部(107)から出力されたデジタル情報を対数演算する Log 演算部(108)を有する信号処理部(24)を備えていることを特徴とする請求項10に記載の装置。
  12. 上記流路(3)の上流側に配置されて層流形成室(44)を形成する筒状容器(40)と、
    上記筒状容器(40)の上部から上記液体の主要部を構成するシース液を供給するシース液供給管(46)と、
    上記筒状容器(40)の中心軸に沿って配置され、上記粒子を含む懸濁液を上記層流形成室(44)の中を流れているシース液に対して供給する懸濁液供給管(49)と、
    上記懸濁液供給管(49)の懸濁液吐出口(50)の位置を調整する機構(51)を備 えたことを特徴とする請求項1〜11のいずれか一に記載の装置
  13. 上記層流形成室の下部に接続されたドレーン管(97)と、
    上記シース液の供給部(45)と、
    上記シース液の回収部(99)と、
    上記シース液供給管(46)を上記供給部(45)または回収部(99)のいずれか一方に選択的に流体接続する手段(98)と、
    上記ドレーン管(97)を上記供給部(45)または回収部(99)のいずれか一方に選択的に流体接続する手段(98)を備えた請求項1〜12のいずれか一に記載の装置
  14. 上記液体の流れに対してその直交方向から振動を与える手段(90)を備えていることを特徴とする請求項1〜13のいずれか一に記載の装置
  15. 上記液体の流れに対してその流れの方向に振動(90)を与える手段を備えていることを特徴とする請求項1〜14のいずれか一に記載の装置
  16. 上記流路から流出する液滴に電荷を付与する荷電手段(93)と、
    荷電された液滴の落下経路の近傍に配置され一対の偏向板(94a,95a)と、
    上記一対の偏向板(94a,95a)の間に電界を形成する電源回路(92)を有し、
    上記偏向板(94a,95a)の少なくとも一方を多孔板で形成し、
    上記多孔板の背後には上記多孔板の表面に付着した液滴を背面に向けて吸引する吸引部(94b、95b)を設けたことを特徴とする請求項1〜15のいずれか一に記載の装置
JP2002351162A 2002-12-03 2002-12-03 生物学的粒子の情報を得る装置 Active JP3891925B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351162A JP3891925B2 (ja) 2002-12-03 2002-12-03 生物学的粒子の情報を得る装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002351162A JP3891925B2 (ja) 2002-12-03 2002-12-03 生物学的粒子の情報を得る装置
EP03777193A EP1574838A4 (en) 2002-12-03 2003-12-03 Device for collecting information on biological particle
US10/537,091 US7443491B2 (en) 2002-12-03 2003-12-03 System for collecting information on biological particles
PCT/JP2003/015461 WO2004051238A1 (ja) 2002-12-03 2003-12-03 生物学的粒子の情報を得る装置

Publications (2)

Publication Number Publication Date
JP2004184217A JP2004184217A (ja) 2004-07-02
JP3891925B2 true JP3891925B2 (ja) 2007-03-14

Family

ID=32463135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351162A Active JP3891925B2 (ja) 2002-12-03 2002-12-03 生物学的粒子の情報を得る装置

Country Status (4)

Country Link
US (1) US7443491B2 (ja)
EP (1) EP1574838A4 (ja)
JP (1) JP3891925B2 (ja)
WO (1) WO2004051238A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345237B2 (en) 2010-03-31 2013-01-01 Furukawa Electric Co., Ltd. Optical information analyzing device and optical information analyzing method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699767B2 (en) 2002-07-31 2010-04-20 Arryx, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
CA2493411A1 (en) * 2002-07-31 2004-02-05 Arryx, Inc. System and method of sorting materials using holographic laser steering
US7118676B2 (en) * 2003-09-04 2006-10-10 Arryx, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
AU2005280762A1 (en) * 2004-06-30 2006-03-09 University Of Rochester Photodynamic therapy with spatially resolved dual spectroscopic monitoring
JP4565205B2 (ja) * 2004-07-01 2010-10-20 タマティーエルオー株式会社 検体分析素子
JP4488882B2 (ja) * 2004-12-14 2010-06-23 三井造船株式会社 フローサイトメータおよびフローサイトメータを用いた測定方法
US7355696B2 (en) * 2005-02-01 2008-04-08 Arryx, Inc Method and apparatus for sorting cells
JP4756948B2 (ja) 2005-08-08 2011-08-24 ベイバイオサイエンス株式会社 フローサイトメータおよびフローサイトメトリ方法
US7379180B2 (en) * 2006-01-26 2008-05-27 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7336356B2 (en) 2006-01-26 2008-02-26 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7880108B2 (en) * 2007-10-26 2011-02-01 Becton, Dickinson And Company Deflection plate
US8094299B2 (en) * 2008-07-24 2012-01-10 Beckman Coulter, Inc. Transducer module
JP5361587B2 (ja) * 2009-07-16 2013-12-04 キヤノン株式会社 反応処理装置および反応処理方法
JP5534214B2 (ja) * 2009-10-05 2014-06-25 ベイバイオサイエンス株式会社 フローサイトメータおよびフローサイトメトリ方法
JP5691195B2 (ja) 2010-03-01 2015-04-01 ソニー株式会社 マイクロチップ及び微小粒子分析装置
WO2011121750A1 (ja) * 2010-03-31 2011-10-06 古河電気工業株式会社 光情報解析装置及び光情報解析方法
JP4805418B1 (ja) * 2010-03-31 2011-11-02 古河電気工業株式会社 細胞の識別装置及び識別方法
JP5437148B2 (ja) 2010-04-23 2014-03-12 ベイバイオサイエンス株式会社 フローサイトメータおよびセルソータ
US8384045B2 (en) 2010-07-01 2013-02-26 Sony Corporation Minute particle analyzing device and method
US8976352B2 (en) * 2011-08-30 2015-03-10 Sony Corporation Microparticle analysis apparatus
WO2015111293A1 (ja) * 2014-01-24 2015-07-30 ソニー株式会社 粒子分取装置及び粒子分取方法
WO2016133760A1 (en) 2015-02-18 2016-08-25 Becton, Dickinson And Company Optical detection systems and methods of using the same
JP6509759B2 (ja) * 2016-03-01 2019-05-08 ソニー株式会社 マイクロチップ及び微小粒子分析装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591290A (en) * 1969-04-04 1971-07-06 Battelle Development Corp Urological apparatus and method
JPS5767960A (en) 1980-10-16 1982-04-24 Canon Inc Development device
US4595291A (en) * 1982-10-15 1986-06-17 Tokyo Shibaura Denki Kabushiki Kaisha Particle diameter measuring device
JPH058385B2 (ja) 1983-04-05 1993-02-02 Becton Dickinson Co
US4545677A (en) 1984-03-05 1985-10-08 Becton, Dickinson And Company Prismatic beam expander for light beam shaping in a flow cytometry apparatus
EP0183798A1 (en) * 1984-06-01 1986-06-11 HERCHER, Michael Optical systems for flow cytometers
US4702598A (en) * 1985-02-25 1987-10-27 Research Corporation Flow cytometer
JPS6244650A (en) * 1985-08-22 1987-02-26 Canon Inc Particle analyzing device
JPS6413436A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Cell for photodetection
JPH01129161A (en) * 1987-11-16 1989-05-22 Hitachi Ltd Flow cell optical system for measuring particle
US4981580A (en) 1989-05-01 1991-01-01 Coulter Corporation Coincidence arbitration in a flow cytomery sorting system
JPH0783819A (ja) * 1993-07-20 1995-03-31 Canon Inc 粒子測定装置
US5489977A (en) * 1993-08-11 1996-02-06 Texaco Inc. Photomeric means for monitoring solids and fluorescent material in waste water using a falling stream water sampler
JPH0792077A (ja) 1993-09-24 1995-04-07 Canon Inc 粒子解析装置
WO1996012171A2 (en) * 1994-10-14 1996-04-25 University Of Washington High speed flow cytometer droplet formation system
DE69533469T2 (de) * 1994-12-26 2005-09-22 Sysmex Corp. Durchflusszytometer
JPH1073528A (ja) * 1996-08-30 1998-03-17 Toa Medical Electronics Co Ltd 撮像機能付きフローサイトメータ
JPH10132728A (ja) * 1996-10-29 1998-05-22 Nippon Koden Corp 粒子分類装置の散乱光収集装置
JP3608066B2 (ja) * 1997-01-14 2005-01-05 株式会社日立製作所 粒子分析装置
JP2941228B2 (ja) * 1997-04-15 1999-08-25 日本カノマックス株式会社 粒子測定装置及びその校正方法
US6149867A (en) * 1997-12-31 2000-11-21 Xy, Inc. Sheath fluids and collection systems for sex-specific cytometer sorting of sperm
US6079836A (en) * 1998-07-20 2000-06-27 Coulter International Corp. Flow cytometer droplet break-off location adjustment mechanism
JP2002031595A (ja) * 2000-07-14 2002-01-31 Sysmex Corp フローセルの製造方法およびそのフローセル
US20020028434A1 (en) * 2000-09-06 2002-03-07 Guava Technologies, Inc. Particle or cell analyzer and method
EP1371965B1 (en) * 2001-01-25 2015-04-29 Precision System Science Co., Ltd. Small object identifying device and its identifying method
AU2002318269A1 (en) * 2001-07-18 2003-03-03 The Regents Of The University Of Michigan Gas-focusing flow cytometer cell and flow cytometer detection system with waveguide optics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345237B2 (en) 2010-03-31 2013-01-01 Furukawa Electric Co., Ltd. Optical information analyzing device and optical information analyzing method

Also Published As

Publication number Publication date
EP1574838A1 (en) 2005-09-14
US20060152707A1 (en) 2006-07-13
WO2004051238A1 (ja) 2004-06-17
US7443491B2 (en) 2008-10-28
JP2004184217A (ja) 2004-07-02
EP1574838A4 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US10648899B2 (en) Method for sorting cell particle in solution
US9638620B2 (en) System for deforming and analyzing particles
US10197493B2 (en) Multiple flow channel particle analysis system
US10267721B2 (en) Apparatus and method for analyzing and sorting cell particles in solution
US8045162B2 (en) Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US20150152497A1 (en) Apparatus and method for producing high purity x-chromosome bearing and/or y-chromosome bearing populations of spermatozoa
JP3049254B2 (ja) 2種類の光源を備えた光学式粒子分析装置
US7479625B2 (en) Sensing photons from object in channels
AU2004269406B2 (en) Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network
US3738759A (en) Apparatus and methods for flow photometry of particles of a dispersion
US4501970A (en) Fluorometer
JP4002577B2 (ja) 粒子の光学的検出および分析
US8241571B2 (en) Particle or cell analyzer and method
JP5243790B2 (ja) 光学流体顕微鏡装置
US8314933B2 (en) Optofluidic microscope device with photosensor array
US7692773B2 (en) Light emitting diode based measurement systems
US6707551B2 (en) Multipass cavity for illumination and excitation of moving objects
US7386199B2 (en) Providing light to channels or portions
FI82772C (fi) Floedescytometrisk apparat.
US7477381B2 (en) Optical system and method for optically analyzing light from a sample
US4600302A (en) Flow cytometry apparatus with uniform incoherent light excitation
US6409141B1 (en) Particle analyzer and composite lens formed by integrally joining plural lens elements of different focal points
US5428451A (en) Process and apparatus for counting particles
US6795192B2 (en) SPR sensor and SPR sensor array
US3946239A (en) Ellipsoidal cell flow system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250