JP3791338B2 - 電気光学装置及びその製造方法並びに投射型表示装置 - Google Patents

電気光学装置及びその製造方法並びに投射型表示装置 Download PDF

Info

Publication number
JP3791338B2
JP3791338B2 JP2001032517A JP2001032517A JP3791338B2 JP 3791338 B2 JP3791338 B2 JP 3791338B2 JP 2001032517 A JP2001032517 A JP 2001032517A JP 2001032517 A JP2001032517 A JP 2001032517A JP 3791338 B2 JP3791338 B2 JP 3791338B2
Authority
JP
Japan
Prior art keywords
electro
region
light
optical device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001032517A
Other languages
English (en)
Other versions
JP2002236460A5 (ja
JP2002236460A (ja
Inventor
研一 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001032517A priority Critical patent/JP3791338B2/ja
Publication of JP2002236460A publication Critical patent/JP2002236460A/ja
Publication of JP2002236460A5 publication Critical patent/JP2002236460A5/ja
Application granted granted Critical
Publication of JP3791338B2 publication Critical patent/JP3791338B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アクティブマトリクス駆動方式の電気光学装置の技術分野に属し、特に画素スイッチング用の薄膜トランジスタ(Thin Film Transistor:以下適宜、TFTと称す)を、基板上の積層構造中に備えた形式の電気光学装置及びその製造方法、並びにそのような電気光学装置を備えた投射型表示装置の技術分野に属する。
【0002】
【背景技術】
TFTアクティブマトリクス駆動形式の電気光学装置では、各画素に設けられた画素スイッチング用TFTのチャネル領域に入射光が照射されると光による励起で光リーク電流が発生してTFTの特性が変化する。特に、プロジェクタのライトバルブ用の電気光学装置の場合には、入射光の強度が高いため、TFTのチャネル領域やその周辺領域に対する入射光の遮光を行うことは重要となる。そこで従来は、対向基板に設けられた各画素の開口領域を規定する遮光膜により係るチャネル領域やその周辺領域を遮光するように構成されている。
【0003】
特に最近では、画素の高開口率化、即ち各画素における開口領域の比率を高めることを図るために、対向基板側ではなく、TFTアレイ基板上に設けられた内蔵遮光膜により、或いはTFT上を通過すると共にAl(アルミニウム)等の金属膜からなるデータ線により、係るチャネル領域やその周辺領域を遮光する技術も開発されている。この技術によれば、対向基板側で遮光する場合と比べて、TFTに近接して遮光を行なうことができ、更に両基板の貼り合わせ時のずれを考慮してマージンを大きく採る必要もなく、加えて、基板面に斜めに入射する光に対する遮光性能も高められる。このため、遮光膜の形成領域を小さく抑えることができ、遮光性能を落とすことなく画素の高開口率化を図ることが可能とされている。
【0004】
【発明が解決しようとする課題】
しかしながら、画素スイッチング用のTFTと画素電極とは、直接あるいは中継層を介してコンタクトホール等により接続する必要がある。同様に、画素スイッチング用のTFTとデータ線等の配線とは、直接あるいは中継層を介してコンタクトホール等により接続する必要がある。そして、係るコンタクトホール等の存在により基板上の積層構造が複雑化して、TFTのコンタクト領域付近では、遮光を完璧に行うことが困難となる。例えば、TFTの半導体層では、チャネル領域とソース領域及びドレイン領域とが同一半導体層からなるので、チャネル領域を覆う内蔵遮光膜を、ソース引き出し用或いはドレイン引き出し用のコンタクトホールのところには形成することはできず、ここからの光の侵入及び伝播が生じてしまう。
【0005】
そして、このような遮光を完璧に行うことが困難なコンタクト領域を通してTFTのチャネル領域に光が到達すると、上述の如き光リーク電流の発生によるトランジスタ特性の変化が生じて、画像品位が低下してしまう。特に、近年の表示画像の高品位化という一般的要請に沿うべく電気光学装置の高精細化或いは画素ピッチの微細化を図るに連れて、例えば1000ルクス程度の僅かな光に起因する光リーク電流の発生により、画像品位の劣化が視認可能な程度まで顕在化しまう。加えて、このようにコンタクトホールを避けるように内蔵遮光膜を形成したのでは、この領域で光抜けが生じてコントラスト比も低下してしまう可能性もある。
【0006】
以上のようにコンタクトホール等が設けられるTFTのコンタクト領域では十分な遮光ができないという問題点がある。
【0007】
本発明は上述の問題点に鑑みなされたものであり、画素スイッチング用のTFTのコンタクト領域付近における耐光性に優れており、高品位の画像表示が可能な電気光学装置及びその製造方法、並びにそのような電気光学装置を備えた投射型表示装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明の電気光学装置は、上記課題を解決するために、基板上に、画素電極と、該画素電極に電気的に接続されており、半導体層からなるチャネル領域、ソース領域及びドレイン領域を有するスイッチング素子と、前記ソース領域に第1のコンタクトホールを介して電気的に接続されたソース引き出し電極と、前記ドレイン領域に第2のコンタクトホールを介して電気的に接続されたドレイン引き出し電極と、前記半導体層の上層に形成されたゲート絶縁膜及び前記ゲート絶縁膜の上層に形成されたゲート電極と、前記ソース領域と前記ドレイン領域とのうち少なくとも一方の領域において、当該領域を形成する半導体層の前記ゲート絶縁膜が形成されていない表面上に、コンタクトホールを介さずに積層された導電性の遮光膜と、を備えており、前記第1及び第2のコンタクトホールのうち前記少なくとも一方の領域に対応するコンタクトホールは、前記導電性の遮光膜に接続されるとともに、当該導電性の遮光膜の形成領域内に形成されることを特徴とする。
【0009】
本発明の電気光学装置によれば、薄膜トランジスタで画素電極をスイッチング制御することにより、例えばアクティブマトリクス駆動方式の液晶駆動等が可能となる。そして特に、ソース領域におけるソース引き出し電極とのコンタクト領域や、ドレイン領域におけるドレイン引き出し電極とのコンタクト領域は、導電性の遮光膜片で覆われているので、当該コンタクトホールを介して、例えばプロジェクタ用途の場合の投射光などの入射光が半導体層内に侵入して最終的にチャネル領域或いはその隣接領域に到達することを効果的に防止できる。即ち、光リーク電流の発生によって薄膜トランジスタの特性が変化してしまう事態を防止できる。加えて、コンタクト領域における表示画像の光抜けを効果的に防止できる。特にコンタクト領域付近では、コンタクトホール等が存在するため、内蔵遮光膜で完璧に遮光することが困難である事実に鑑みれば、このようにコンタクト領域自体を遮光膜片で覆ってしまうのことは遮光性能を向上させる上で非常に効果的である。
【0010】
本発明の電気光学装置の一態様では、前記遮光膜片は、前記コンタクト領域上に前記薄膜トランジスタのゲート絶縁膜を介して積層されており、該ゲート絶縁膜に開孔されたコンタクトホール内で前記コンタクト領域と接触している。
【0011】
この態様によれば、コンタクトホール内で遮光膜片とコンタクト領域とが接触することにより、ソース領域におけるコンタクト領域とソース引出し電極との電気的な接続や、ドレイン領域におけるコンタクト領域とドレイン引出し電極との電気的な接続がなされる。特に、コンタクトホール等が存在するものの、これを遮光膜片で覆ってしまうので、コンタクトホール付近における遮光性能を向上させ得る。
【0012】
本発明の電気光学装置の他の態様では、前記遮光膜片は、金属膜又は合金膜からなる。
【0013】
この態様によれば、金属膜又は合金膜からなる遮光膜片によりコンタクト領域付近における遮光性能を向上させ得る。このような遮光膜片は、例えば、Ti(チタン)、Cr(クロム)、W(タングステン)、Ta(タンタル)、Mo(モリブデン)、Pb(鉛)等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等から構成される。或いは、Al等の他の金属を含有する膜から構成される。
【0014】
或いは本発明の電気光学装置の他の態様では、前記薄膜トランジスタのゲート絶縁膜は、前記コンタクト領域で除去されており、前記遮光膜片は、前記コンタクト領域がサリサイド化されてなる。
【0015】
この態様によれば、ゲート絶縁膜が除去されたコンタクト領域がサリサイド化されてなる、即ち半導体層上に自己整合的に形成されたシリサイドからなる遮光膜片によって、ソース領域におけるコンタクト領域とソース引出し電極との電気的な接続や、ドレイン領域におけるコンタクト領域とドレイン引出し電極との電気的な接続がなされる。従って、コンタクト領域における接触抵抗を低めつつ、コンタクト領域付近における遮光性能を向上させ得る。
【0016】
本発明の電気光学装置の他の態様では、前記遮光膜片と別層からなると共に前記薄膜トランジスタの少なくともチャネル領域を上方から覆う内蔵遮光膜を更に備えており、前記遮光膜片と前記内蔵遮光膜とは、平面的に見て少なくとも部分的に重なっている。
【0017】
この態様によれば、内蔵遮光膜により、入射光がチャネル領域に直接入射することを効果的に防止できる。特に、相互に別層からなる遮光膜片と内蔵遮光膜とを重ねることで、平面的に見て両者間の隙間を入射光が通過しないようにできる。
【0018】
尚、本発明における内臓遮光膜は、例えばTi、Cr、W、Ta、Mo、Pb等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等から構成される。或いは、Al等の他の金属を含有する膜から構成される。そして、このような内蔵遮光膜は、蓄積容量の電極或いは容量線を兼ねてもよく、データ線を兼ねてもよく、中継層を兼ねてもよい。
【0019】
加えて、このような内蔵遮光膜に代えて又は加えて、基板上における薄膜トランジスタの下側に遮光膜を設けてもよい。これにより、当該電気光学装置をライトバルブとして複板式のプロジェクタを構成した場合における他のライトバルブから出射されて合成光学系を突き抜けてくる光や、当該電気光学装置における基板の裏面反射などの戻り光が、薄膜トランジスタに入射するのを効果的に防止できる。
【0020】
この態様では、前記内蔵遮光膜は、平面的に見て前記コンタクト領域を避けるように切り欠かれており、前記遮光膜片は、平面的に見て前記内蔵遮光膜が切り欠かれている領域を覆うように構成してもよい。
【0021】
このように構成すれば、ソース領域に至るコンタクトホール、ドレイン領域に至るコンタクトホール等のソース引出し電極やドレイン引き出し電極に係る接続経路が、内蔵遮光膜の層間位置の上下に跨っている場合にも、内蔵遮光膜がこのような接続経路を妨害しないようにでき、しかもその結果として生じる平面的に見て内蔵遮光膜がない領域を遮光膜片で遮光できる。従って、コンタクト領域付近における遮光性能を維持できる。
【0022】
或いは本発明の電気光学装置の他の態様では、前記遮光膜片と同一層からなると共に前記薄膜トランジスタの少なくともチャネル領域を上方から覆う内蔵遮光膜を更に備える。
【0023】
この態様によれば、内蔵遮光膜により、入射光がチャネル領域に直接入射することを効果的に防止できる。特に遮光膜片と内蔵遮光膜とを同一層から構成するので、両者を形成することによる積層構造や製造プロセスの複雑化を回避できる。
【0024】
上述した内蔵遮光膜を備えた態様では、前記内蔵遮光膜は、前記半導体層における前記チャネル領域に加えて、前記チャネル領域に隣接する領域を覆うように構成してもよい。
【0025】
このように構成すれば、チャネル領域のみならず、半導体層におけるLDD(Lightly Doped Drain)領域、オフセット領域等のチャネルに隣接する領域を内蔵遮光膜で覆うので、半導体層における光リーク電流の発生による薄膜トランジスタの特性の変化をより確実に防止できる。
【0026】
上述した内蔵遮光膜を備えた態様では、前記内蔵遮光膜は、定電位に落とされているように構成してもよい。
【0027】
このように構成すれば、内蔵遮光膜が、ゲート電極、他の電極、配線等に近接配置されていても、例えば比較的薄い絶縁膜のみを介して積層形成されていても、内蔵遮光膜における電位の変動が、このようなゲート電極等に対して悪影響を及ぼす事態を未然防止できる。
【0028】
本発明の電気光学装置の他の態様では、前記遮光膜片は、前記薄膜トランジスタのゲート電極と同一層からなる。
【0029】
この態様によれば、遮光膜片とゲート電極とを同一層から構成するので、遮光膜片を追加的に形成することによる積層構造や製造プロセスの複雑化を回避できる。
【0030】
この態様では、前記ゲート電極は、少なくとも部分的に遮光性のサリサイドからなってもよい。
【0031】
このように構成すれば、導電性且つ遮光性のサリサイドからなるゲート電極により、薄膜トランジスタを構築でき、同時に、遮光性のサリサイドからなる遮光膜片によりコンタクト領域付近における遮光性能を高めることが可能となる。
【0032】
本発明の電気光学装置の他の態様では、前記薄膜トランジスタに接続されたデータ線を更に備えており、前記ソース引出し電極は、コンタクトホール内で前記ソース領域に接続された中継層の一部からなり、該中継層を中継して前記ソース領域と前記データ線とが電気的に接続されている。
【0033】
この態様によれば、中継層を中継することにより、データ線とソース領域との層間距離が長くても、両者間を一つのコンタクトホールで接続する技術的困難性を回避しつつ比較的小径の二つ以上の直列なコンタクトホールで両者間を良好に接続できる。例えば、中継層は、導電性シリコン、高融点金属、Al等の金属やシリサイド等の導電材料を含んでなる。そして、このような中継層及びソース領域間のコンタクトホール付近における遮光機能を遮光膜片により向上できる。
【0034】
本発明の電気光学装置の他の態様では、前記薄膜トランジスタに接続されたデータ線を更に備えており、前記ソース引出し電極は、コンタクトホール内で前記ソース領域に接続された前記データ線の一部からなる。
【0035】
この態様によれば、ソース引出し電極を含むデータ線及びソース領域間のコンタクトホール付近における遮光機能を遮光膜片により向上できる。
【0036】
本発明の電気光学装置の他の態様では、前記ドレイン引出し電極は、コンタクトホール内で前記ドレイン領域に接続された中継層の一部からなり、該中継層を中継して前記ドレイン領域と前記画素電極とが電気的に接続されている。
【0037】
この態様によれば、中継層を中継することにより、画素電極とドレイン領域との層間距離が長くても、両者間を一つのコンタクトホールで接続する技術的困難性を回避しつつ比較的小径の二つ以上の直列なコンタクトホールで両者間を良好に接続できる。例えば、中継層は、導電性シリコン、高融点金属、Al等の金属やシリサイド等の導電材料を含んでなる。そして、このような中継層及びドレイン領域間のコンタクトホール付近における遮光機能を遮光膜片により向上できる。
【0038】
尚、本発明に係る薄膜トランジスタとしては、ゲート電極がチャネル領域の上側に位置する所謂トップゲート型でもよいし、ゲート電極がチャネル領域の下側に位置する所謂ボトムゲート型でもよい。
【0039】
本発明の投射型表示装置は上記課題を解決するために、上述した本発明の電気光学装置(その各種態様を含む)と、該電気光学装置に光を入射する光源と、前記電気光学装置から出射される光を画像として投射する投射光学系とを備える。
【0040】
本発明の投射型表示装置によれば、ライトバルブとして機能する電気光学装置に光源からの光が入射され、この電気光学装置から出射される光は、投射光学系により、スクリーン等に画像として投射される。この際、当該電気光学装置は、上述した本発明の電気光学装置であるので、光源からの光の強度を高めても、前述の如く優れた遮光性能によって光リーク電流の低減された薄膜トランジスタにより画素電極を良好にスイッチング制御できる。この結果、最終的には高品位の画像を表示可能となる。
【0041】
本発明の一の電気光学装置の製造方法は上記課題を解決するために、上述した遮光膜片がゲート絶縁膜に開孔されたコンタクトホール内でコンタクト領域と接触している態様に係る電気光学装置を製造する電気光学装置の製造方法であって、前記基板上に前記半導体層を形成する工程と、前記半導体層上に前記ゲート絶縁膜を形成する工程と、前記ゲート絶縁膜に前記コンタクトホールを開孔する行程と、前記コンタクトホールを開孔した後に、前記遮光膜片を形成する工程とを含む。
【0042】
本発明の一の電気光学装置の製造方法によれば、上述した遮光膜片がゲート絶縁膜に開孔されたコンタクトホール内でコンタクト領域と接触している態様に係る電気光学装置を比較的容易に製造できる。
【0043】
本発明の他の電気光学装置の製造方法は上記課題を解決するために、上述した遮光膜片はコンタクト領域がサリサイド化されてなる態様に係る電気光学装置を製造する電気光学装置の製造方法であって、前記基板上に前記半導体層を形成する工程と、前記半導体層上に前記ゲート絶縁膜を形成する工程と、前記ゲート絶縁膜を前記コンタクト領域で除去する工程と、前記ゲート絶縁膜を除去した後に、前記コンタクト領域をサリサイド化する工程とを含む。
【0044】
本発明の他の電気光学装置の製造方法によれば、上述した遮光膜片はコンタクト領域がサリサイド化されてなる態様に係る電気光学装置を比較的容易に製造できる。
【0045】
本発明のこのような作用及び他の利得は次に説明する実施の形態から明らかにされる。
【0046】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態は、本発明の電気光学装置を液晶装置に適用したものである。
【0047】
(第1実施形態)
先ず本発明の第1実施形態における電気光学装置の画素部における構成について、図1から図4を参照して説明する。図1は、電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。図2は、データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。図3は、図2のA−A’断面図であり、図4は、図2に示した半導体層、遮光膜片等を抜粋して示す部分平面図である。尚、図3においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。
【0048】
図1において、本実施形態における電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素には夫々、画素電極9aと当該画素電極9aをスイッチング制御するためのTFT30とが形成されており、画像信号が供給されるデータ線6aが当該TFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしても良い。また、TFT30のゲートに走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、…、Snを所定のタイミングで書き込む。画素電極9aを介して電気光学物質の一例としての液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、後述する対向基板に形成された対向電極との間で一定期間保持される。液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能にする。ノーマリーホワイトモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として電気光学装置からは画像信号に応じたコントラストを持つ光が出射する。ここで、保持された画像信号がリークするのを防ぐために、画素電極9aと対向電極との間に形成される液晶容量と並列に蓄積容量70を付加する。
【0049】
図2において、電気光学装置のTFTアレイ基板上には、マトリクス状に複数の透明な画素電極9a(点線部9a’により輪郭が示されている)が設けられており、画素電極9aの縦横の境界に各々沿ってデータ線6a及び走査線3aが設けられている。
【0050】
また、半導体層1aのうち図中右上がりの細かい斜線領域で示したチャネル領域1a’に対向するように走査線3aが配置されており、走査線3aはゲート電極として機能する。本実施形態では、走査線3aは、当該ゲート電極となる部分において幅広に形成されている。このように、走査線3aとデータ線6aとの交差する個所には夫々、チャネル領域1a’に走査線3aがゲート電極として対向配置された画素スイッチング用のTFT30が設けられている。
【0051】
図2及び図3に示すように、蓄積容量70は、TFT30の高濃度ドレイン領域1e及び画素電極9aに接続された画素電位側容量電極としての中継層71と、固定電位側容量電極としての容量線300の一部とが、誘電体膜75を介して対向配置されることにより形成されている。
【0052】
容量線300は、例えば金属又は合金を含む導電性の遮光膜からなり内蔵遮光膜の一例を構成すると共に固定電位側容量電極としても機能する。容量線300は、例えば、Ti、Cr、W、Ta、Mo、Pb等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等からなる。但し、容量線300は、例えば導電性のポリシリコン膜等からなる第1膜と高融点金属を含む金属シリサイド膜等からなる第2膜とが積層された多層構造を持ってもよい。
【0053】
中継層71は、例えば導電性のポリシリコン膜からなり画素電位側容量電極として機能する。中継層71は、画素電位側容量電極としての機能の他、内蔵遮光膜としての容量線300とTFT30との間に配置される光吸収層としての機能を持ち、更に、画素電極9aとTFT30の高濃度ドレイン領域1eとを中継接続する機能を持つ。但し、中継層71も、容量線300と同様に、金属又は合金を含む単一層膜若しくは多層膜から構成してもよい。
【0054】
容量線300は平面的に見て、走査線3aに沿ってストライプ状に伸びており、TFT30に重なる個所が図2中上下に突出している。そして、図2中縦方向に夫々伸びるデータ線6aと図2中横方向に夫々伸びる容量線300とが相交差して形成されることにより、TFTアレイ基板10上におけるTFT30の上側に、平面的に見て格子状の内蔵遮光膜が構成されており、各画素の開口領域を規定している。
【0055】
図2及び図3に示すように、TFTアレイ基板10上におけるTFT30の下側には、下側遮光膜11aが格子状に設けられている。
【0056】
下側遮光膜11aは、前述の如く内蔵遮光膜の一例を構成する容量線300と同様に、例えば、Ti、Cr、W、Ta、Mo、Pb等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等からなる。
【0057】
また図3において、容量電極としての中継層71と容量線300との間に配置される誘電体膜75は、例えば膜厚5〜200nm程度の比較的薄いHTO(High Temperature Oxide)膜、LTO(Low Temperature Oxide)膜等の酸化シリコン膜、あるいは窒化シリコン膜等から構成される。蓄積容量70を増大させる観点からは、膜の信頼性が十分に得られる限りにおいて、誘電体膜75は薄い程良い。
【0058】
また容量線300は、画素電極9aが配置された画像表示領域からその周囲に延設され、定電位源と電気的に接続されて、固定電位とされる。係る定電位源としては、TFT30を駆動するための走査信号を走査線3aに供給するための後述の走査線駆動回路や画像信号をデータ線6aに供給するサンプリング回路を制御する後述のデータ線駆動回路に供給される正電源や負電源の定電位源でもよいし、対向基板20の対向電極21に供給される定電位でも構わない。更に、下側遮光膜11aについても、その電位変動がTFT30に対して悪影響を及ぼすことを避けるために、容量線300と同様に、画像表示領域からその周囲に延設して定電位源に接続するとよい。
【0059】
画素電極9aは、中継層71を中継することにより、コンタクトホール83及び85を介して半導体層1aのうち高濃度ドレイン領域1e上に形成された導電性の遮光膜片502に電気的に接続されている。このように中継層71を利用すれば、層間距離が例えば2000nm程度に長くても、両者間を一つのコンタクトホールで接続する技術的困難性を回避しつつ比較的小径の二つ以上の直列なコンタクトホールで両者間を良好に接続でき、画素開口率を高めること可能となり、コンタクトホール開孔時におけるエッチングの突き抜け防止にも役立つ。
【0060】
本実施形態では特に、遮光膜片502は、絶縁膜2上に形成されているが、絶縁膜2に開孔されたコンタクトホール512を介して高濃度ドレイン領域1eに接触している。即ち、中継層71は、導電性の遮光膜片502を介して高濃度ドレイン領域1eと電気的に接続されている。
【0061】
そして、図2及び図3並びに図4に抜粋して示すように、高濃度ドレイン領域1eにおけるコンタクト領域が遮光膜片502により覆われているので、入射光がコンタクトホール83を介して半導体層1a内に侵入して最終的にチャネル領域1a’或いはその隣接領域である低濃度ドレイン領域1cに到達することを防止でき、加えて当該コンタクト領域における表示画像の光抜けを防止できる。
【0062】
このような遮光膜片502は、例えば金属膜又は合金膜からなり、より具体的には、例えば、Ti、Cr、W、Ta、Mo、Pb等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等から構成される。或いは、Al等の他の金属を含有する膜から構成される。また、遮光膜片502の膜厚は、十分な遮光性及び導電性が得られる限りにおいて任意であるが、例えば数十nmから数百nmとされる。
【0063】
他方、データ線6aは、コンタクトホール81を介して半導体層1aのうち高濃度ソース領域1d上に形成された導電性の遮光膜片501に電気的に接続されている。
【0064】
本実施形態では特に、遮光膜片501は、絶縁膜2上に形成されているが、絶縁膜2に開孔されたコンタクトホール511を介して高濃度ソース領域1dに接触している。即ち、データ線6aは、導電性の遮光膜片501を介して高濃度ソース領域1dと電気的に接続されている。
【0065】
そして、図2及び図3並びに図4に抜粋して示すように、高濃度ソース領域1dにおけるコンタクト領域が遮光膜片501により覆われているので、入射光がコンタクトホール81を介して半導体層1a内に侵入して最終的にチャネル領域1a’或いはその隣接領域である低濃度ソース領域1bに到達することを防止でき、加えて当該コンタクト領域における表示画像の光抜けを防止できる。
【0066】
このような遮光膜片501は、例えば前述の遮光膜片502と同一膜から同時に形成される。
【0067】
図2及び図3において、電気光学装置は、透明なTFTアレイ基板10と、これに対向配置される透明な対向基板20とを備えている。TFTアレイ基板10は、例えば石英基板、ガラス基板、シリコン基板からなり、対向基板20は、例えばガラス基板や石英基板からなる。
【0068】
図3に示すように、TFTアレイ基板10には、画素電極9aが設けられており、その上側には、ラビング処理等の所定の配向処理が施された配向膜16が設けられている。画素電極9aは例えば、ITO(Indium Tin Oxide)膜などの透明導電性膜からなる。また配向膜16は例えば、ポリイミド膜などの有機膜からなる。
【0069】
他方、対向基板20には、その全面に渡って対向電極21が設けられており、その下側には、ラビング処理等の所定の配向処理が施された配向膜22が設けられている。対向電極21は例えば、ITO膜などの透明導電性膜からなる。また配向膜22は、ポリイミド膜などの有機膜からなる。
【0070】
本実施形態では特に、図2では省略しているが、対向基板20上には、第1遮光膜23がデータ線6a及び走査線3aに沿って格子状に形成されている。
【0071】
このような構成を採ることで、前述の如く内蔵遮光膜を構成する容量線300及びデータ線6aと共に当該対向基板20上の第1遮光膜23により、対向基板20側からの入射光がチャネル領域1a’や低濃度ソース領域1b及び低濃度ドレイン領域1cに侵入するのを、阻止できる。
【0072】
このように構成された、画素電極9aと対向電極21とが対面するように配置されたTFTアレイ基板10と対向基板20との間には、後述のシール材により囲まれた空間に電気光学物質の一例である液晶が封入され、液晶層50が形成される。液晶層50は、画素電極9aからの電界が印加されていない状態で配向膜16及び22により所定の配向状態をとる。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなる。シール材は、TFTアレイ基板10及び対向基板20をそれらの周辺で貼り合わせるための、例えば光硬化性樹脂や熱硬化性樹脂からなる接着剤であり、両基板間の距離を所定値とするためのグラスファイバー或いはガラスビーズ等のギャップ材が混入されている。
【0073】
更に、画素スイッチング用TFT30の下には、下地絶縁膜12が設けられている。下地絶縁膜12は、下側遮光膜11aからTFT30を層間絶縁する機能の他、TFTアレイ基板10の全面に形成されることにより、TFTアレイ基板10の表面の研磨時における荒れや、洗浄後に残る汚れ等で画素スイッチング用TFT30の特性の劣化を防止する機能を有する。
【0074】
図3において、画素スイッチング用TFT30は、LDD(Lightly Doped Drain)構造を有しており、走査線3a、当該走査線3aからの電界によりチャネルが形成される半導体層1aのチャネル領域1a’、走査線3aと半導体層1aとを絶縁するゲート絶縁膜を含む絶縁膜2、半導体層1aの低濃度ソース領域1b及び低濃度ドレイン領域1c、半導体層1aの高濃度ソース領域1d並びに高濃度ドレイン領域1eを備えている。
【0075】
走査線3a上には、高濃度ソース領域1dへ通じるコンタクトホール81及び高濃度ドレイン領域1eへ通じるコンタクトホール83が各々開孔された第1層間絶縁膜41が形成されている。
【0076】
第1層間絶縁膜41上には中継層71及び容量線300が誘電体膜75を挟んで形成されており、これらの上には、高濃度ソース領域1d及び中継層71へ夫々通じるコンタクトホール81及びコンタクトホール85が各々開孔された第2層間絶縁膜42が形成されている。
【0077】
第2層間絶縁膜42上にはデータ線6aが形成されており、これらの上には、中継層71へ通じるコンタクトホール85が形成された第3層間絶縁膜43が形成されている。画素電極9aは、このように構成された第3層間絶縁膜43の上面に設けられている。
【0078】
以上図1から図4を参照して説明したように、本実施形態の電気光学装置によれば、半導体層1aのコンタクト領域付近における耐光性を顕著に高めることが可能となり、強力な入射光や戻り光が入射するような過酷な条件下にあっても光リーク電流の低減された薄膜トランジスタにより画素電極を良好にスイッチング制御でき、最終的には、明るく高コントラストの画像を表示できる。
【0079】
上述の実施形態では、図4に示したように、容量線300及びデータ線6aからなる内蔵遮光膜が形成された領域Asと、内蔵遮光膜とは別層からなる遮光膜片501及び502とは、平面的に見て部分的に重なっている。従って、内蔵遮光膜の形成領域Asと遮光膜片501及び502との隙間を入射光が通過しないようにでき、遮光性能を高められる。逆に、コンタクトホールとの関係から、内蔵遮光膜を、平面的に見てコンタクト領域を避けるように切り欠いて構成する場合には、遮光膜片で当該切り欠かれている領域を覆うように構成すればよい。
【0080】
また以上説明した実施形態では、ドレイン引出し電極は、コンタクトホール83内で遮光膜片502に接続された中継層71の一部からなり、ソース引出し電極は、コンタクトホール81内で高濃度ソース領域1dに接続されたデータ線6aの一部からなる。しかし、ソース引出し電極を、データ線6aと遮光膜片501とを中継接続する中継層の一部から構成することも可能である。
【0081】
尚、上述の実施形態では、図3に示したように多数の所定パターンの導電層を積層することにより、画素電極9aの下地面、即ち第3層間絶縁膜43の表面におけるデータ線6aや走査線3aに沿った領域に段差が生じるのを、第3層間絶縁膜43の表面を平坦化処理することで緩和してもよい。例えば、CMP(Chemical Mechanical Polishing)処理等で研磨することにより、或いは有機SOG(Spin On Glass)を用いて平らに形成してもよい。このように配線、素子等が存在する領域と存在しない領域との間における段差を緩和することにより、最終的には段差に起因した液晶の配向不良等の画像不良を低減できる。但し、このように第3層間絶縁膜43に平坦化処理を施すのに代えて又は加えて、TFTアレイ基板10、下地絶縁膜12、第1層間絶縁膜41及び第2層間絶縁膜42のうち少なくとも一つに溝を掘って、データ線6a等の配線やTFT30等を埋め込むことにより平坦化処理を行ってもよい。
【0082】
加えて本実施形態では、画素スイッチング用TFT30は、好ましくは図3に示したようにLDD構造を持つが、低濃度ソース領域1b及び低濃度ドレイン領域1cに不純物の打ち込みを行わないオフセット構造を持ってよいし、走査線3aの一部からなるゲート電極をマスクとして高濃度で不純物を打ち込み、自己整合的に高濃度ソース及びドレイン領域を形成するセルフアライン型のTFTであってもよい。
【0083】
また本実施形態では、画素スイッチング用TFT30のゲート電極を高濃度ソース領域1d及び高濃度ドレイン領域1e間に1個のみ配置したシングルゲート構造としたが、これらの間に2個以上のゲート電極を配置してもよい。このようにデュアルゲート或いはトリプルゲート以上でTFTを構成すれば、チャネルとソース及びドレイン領域との接合部のリーク電流を防止でき、オフ時の電流を低減することができる。
【0084】
(第2実施形態)
次に、本発明の第2実施形態の電気光学装置について図5及び図6を参照して説明する。ここに、図5は、第2実施形態における図2のA−A’断面図であり、図6は、このうち半導体層、遮光膜片等を抜粋して示す部分平面図である。尚、図5においては、図3に示した第1実施形態の場合と同様の構成要素には同様の参照符号を付し、その説明は省略する。
【0085】
図5及び図6に示すように、第2実施形態では、第1実施形態の場合と異なり、高濃度ソース領域1d上の絶縁膜2が除去されており、係る除去された個所から露出した高濃度ソース領域1d上にサリサイド(自己整合的シリサイド)化された導電性の遮光膜片601が形成されている。他方で、高濃度ドレイン領域1e上の絶縁膜2が除去されており、係る除去された個所から露出した高濃度ドレイン領域1e上にサリサイド化された導電性の遮光膜片602が形成されている。その他の構成については、上述した第1実施形態の場合と同様である。
【0086】
従って第2実施形態によれば、高濃度ソース領域1dにおけるコンタクト領域とソース引出し電極たるデータ線6aとの電気的な接続や、高濃度ドレイン領域1eにおけるコンタクト領域とドレイン引出し電極たる中継層71との電気的な接続が、遮光膜片601及び602によってなされる。従って、導電性かつ遮光性のサリサイドの採用により、各コンタクト領域における接触抵抗を低めつつ、コンタクト領域付近における遮光性能を向上させ得る。
【0087】
(変形形態)
以上説明した実施形態には各種の変形形態が考えられる。
【0088】
一の変形形態としては、上述の容量線300及びデータ線6aからなる内蔵遮光膜に代えて、内蔵遮光膜を少なくとも部分的に、遮光膜片501及び502若しくは601及び602と同一層から構成してもよい。このように構成すれば、遮光膜片と内蔵遮光膜とを同一層から構成するので、両者を形成することによる積層構造や製造プロセスの複雑化を回避できる。
【0089】
他の変形形態としては、遮光膜片501及び502若しくは601及び602を、TFT30のゲート電極たる走査線3aと同一層から構成してもよい。この場合、走査線3aを遮光性とし且つゲート電極としても機能させる必要性が生じるが、例えばこのような走査線3aは、サリサイドから構成すればよい。更に、この変形形態の場合には、走査線3aを、導電性に優れた膜及び遮光性に優れた膜を含む二層膜或いは多層膜から構成してもよい。
【0090】
(製造プロセス)
次に、上述した第1実施形態の電気光学装置の製造プロセスについて図7及び図8を参照して説明する。ここに図7及び図8は、製造プロセスの各工程における電気光学装置の積層構造を、図3の断面図のうち半導体層1a付近に係る部分で順を追って示す工程図である。
【0091】
先ず図7の工程(1)に示すように、石英基板、ハードガラス、シリコン基板等のTFTアレイ基板10を用意する。ここで、好ましくはN2(窒素)等の不活性ガス雰囲気且つ約900〜1300℃の高温でアニール処理し、後に実施される高温プロセスにおけるTFTアレイ基板10に生じる歪みが少なくなるように前処理しておく。
【0092】
続いて、このように処理されたTFTアレイ基板10の全面に、Ti、Cr、W、Ta、Mo及びPd等の金属や金属シリサイド等の金属合金膜を、スパッタリングにより、100〜500nm程度の膜厚、好ましくは約200nmの膜厚の遮光膜を形成する。そしてフォトリソグラフィ及びエッチングにより、平面形状が格子状の下側遮光膜11aを形成する。
【0093】
次に工程(2)では、下側遮光膜11a上に、例えば、常圧又は減圧CVD法等によりTEOS(テトラ・エチル・オルソ・シリケート)ガス、TEB(テトラ・エチル・ボートレート)ガス、TMOP(テトラ・メチル・オキシ・フォスレート)ガス等を用いて、NSG、PSG、BSG、BPSGなどのシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる下地絶縁膜12を形成する。この下地絶縁膜12の膜厚は、例えば約500〜2000nm程度とする。
【0094】
続いて、下地絶縁膜12上に、約450〜550℃、好ましくは約500℃の比較的低温環境中で、流量約400〜600cc/minのモノシランガス、ジシランガス等を用いた減圧CVD(例えば、圧力約20〜40PaのCVD)により、アモルファスシリコン膜を形成する。その後、窒素雰囲気中で、約600〜700℃にて約1〜10時間、好ましくは、4〜6時間のアニール処理を施することにより、ポリシリコン膜を約50〜200nmの粒径、好ましくは約100nmの粒径となるまで固相成長させる。固相成長させる方法としては、RTA(Rapid Thermal Anneal)を使ったアニール処理でも良いし、エキシマレーザー等を用いたレーザーアニールでも良い。この際、画素スイッチング用のTFT30を、nチャネル型とするかpチャネル型にするかに応じて、V族元素やIII族元素のドーパントを僅かにイオン注入等によりドープしても良い。そして、フォトリソグラフィ及びエッチングにより、所定パターンを有する半導体層1aを形成する。
【0095】
続いて、TFT30を構成する半導体層1aを約900〜1300℃の温度、好ましくは約1000℃の温度により熱酸化して下層ゲート絶縁膜を形成し、続けて減圧CVD法等により、若しくは両者を続けて行うことにより、上層ゲート絶縁膜を形成する、これにより、多層の高温酸化シリコン膜(HTO膜)や窒化シリコン膜からなる(ゲート絶縁膜を含む)絶縁膜2を形成する。この結果、半導体層1aは、約30〜150nmの厚さ、好ましくは約35〜50nmの厚さとなり、絶縁膜2の厚さは、約20〜150nmの厚さ、好ましくは約30〜100nmの厚さとなる。
【0096】
続いて、画素スイッチング用のTFT30のスレッシュホールド電圧Vthを制御するために、半導体層1aのうちNチャネル領域或いはPチャネル領域に、ボロン等のドーパントを予め設定された所定量だけイオン注入等によりドープする。
【0097】
次に図7の工程(3)では、エッチングにより、絶縁膜2のうち高濃度ソース領域1dのコンタクト領域上にある部分にコンタクトホール511を開孔すると同時に絶縁膜2のうち高濃度ドレイン領域1eのコンタクト領域上にある部分にコンタクトホール512を開孔する.
次に図7の工程(4)では、コンタクトホール511及び512が開孔された絶縁膜2上に、Ti、Cr、W、Ta、Mo及びPd等の金属や金属シリサイド等の金属合金膜を、スパッタリングにより、数十〜数百nm程度の膜厚の遮光膜を形成する。そしてフォトリソグラフィ及びエッチングにより、コンタクトホール511を覆う位置に遮光膜片501を形成すると同時にコンタクトホール512を覆う位置に遮光膜片502を形成する。
【0098】
次に図8の工程(5)では、減圧CVD法等によりポリシリコン膜を堆積し、更にリン(P)を熱拡散し、このポリシリコン膜を導電化する。又は、Pイオンをこのポリシリコン膜の成膜と同時に導入したドープトシリコン膜を用いてもよい。このポリシリコン膜の膜厚は、約100〜500nmの厚さ、好ましくは約350nm程度である。そして、フォトリソグラフィ及びエッチングにより、TFT30のゲート電極部を含めて所定パターンの走査線3aを形成する。
【0099】
例えば、TFT30をLDD構造を持つnチャネル型のTFTとする場合、半導体層1aに、先ず低濃度ソース領域1b及び低濃度ドレイン領域1cを形成するために、走査線3a(ゲート電極)をマスクとして、PなどのV族元素のドーパントを低濃度で(例えば、Pイオンを1〜3×1013/cm2のドーズ量にて)ドープする。これにより走査線3a下の半導体層1aはチャネル領域1a’となる。更に、画素スイッチング用TFT30を構成する高濃度ソース領域1d及び高濃度ドレイン領域1eを形成するために、走査線3aよりも幅の広い平面パターンを有するレジスト層を走査線3a上に形成する。その後、PなどのV族元素のドーパントを高濃度で(例えば、Pイオンを1〜3×1015/cm2のドーズ量にて)ドープする。尚、例えば、低濃度のドープを行わずに、オフセット構造のTFTとしてもよく、走査線3aをマスクとして、Pイオン、Bイオン等を用いたイオン注入技術によりセルフアライン型のTFTとしてもよい。この不純物のドープにより走査線3aは更に低抵抗化される。
【0100】
次に図8の工程(6)では、走査線3a上に、例えば、常圧又は減圧CVD法等によりTEOSガス、TEBガス、TMOPガス等を用いて、NSG、PSG、BSG、BPSGなどのシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第1層間絶縁膜41を形成する。この第1層間絶縁膜12の膜厚は、例えば約500〜2000nm程度とする。ここで好ましくは、800℃の程度の高温でアニール処理し、層間絶縁膜41の膜質を向上させておく。
【0101】
続いて、層間絶縁膜41に対する反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングにより、コンタクトホール83を同時開孔する。
【0102】
続いて、減圧CVD法等によりポリシリコン膜を堆積し、更にリン(P)を熱拡散し、このポリシリコン膜を導電化する。又は、Pイオンをこのポリシリコン膜の成膜と同時に導入したドープトシリコン膜を用いてもよい。このポリシリコン膜の膜厚は、約100〜500nmの厚さ、好ましくは約150nm程度である。そして、フォトリソグラフィ及びエッチングにより、中継層71を形成する。
【0103】
続いて、画素電位側容量電極を兼ねる画素電極中継層71及び第1層間絶縁膜41上に、減圧CVD法、プラズマCVD法等により高温酸化シリコン膜(HTO膜)や窒化シリコン膜からなる誘電体膜75を膜厚50nm程度の比較的薄い厚さに堆積する。但し、誘電体膜75は、絶縁膜2の場合と同様に、単層膜或いは多層膜のいずれから構成してもよく、一般にTFTのゲート絶縁膜を形成するのに用いられる各種の公知技術により形成可能である。そして、誘電体膜75を薄くする程、蓄積容量70は大きくなるので、結局、膜破れなどの欠陥が生じないことを条件に、膜厚50nm以下の極薄い絶縁膜となるように誘電体膜75を形成すると有利である。
【0104】
続いて、誘電体膜75上に、Ti、Cr、W、Ta、Mo及びPd等の金属や金属シリサイド等の金属合金膜を、スパッタリングにより、100〜500nm程度の膜厚に形成する。そしてフォトリソグラフィ及びエッチングにより、所定パターンを持つ容量線300を形成する。即ち、蓄積容量70が完成する。
【0105】
但し、容量線300を多層膜から構成する場合には、先ず誘電体膜75上に減圧CVD法等によりポリシリコン膜を堆積し、更にリン(P)を熱拡散し、このポリシリコン膜を導電化して第1膜を形成し、この上に更に、金属や金属シリサイド等の金属合金膜を第2膜として積層形成した後、フォトリソグラフィ及びエッチングにより第1及び第2膜から所定パターンを持つ容量線300を形成してもよい。
【0106】
次に図8の工程(7)では、例えば、常圧又は減圧CVD法やTEOSガス等を用いて、NSG、PSG、BSG、BPSGなどのシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第2層間絶縁膜42を形成する。第1層間絶縁膜42の膜厚は、例えば500〜1500nm程度である。
【0107】
続いて、第2層間絶縁膜42に対する反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングにより、コンタクトホール81を開孔する。
【0108】
続いて、第2層間絶縁膜42上の全面に、スパッタリング等により、遮光性のAl等の低抵抗金属や金属シリサイド等を金属膜として、約100〜500nmの厚さ、好ましくは約300nmに堆積する。そして、フォトリソグラフィ及びエッチングにより、所定パターンを有するデータ線6aを形成する。
【0109】
次に図8の工程(8)では、データ線6a上を覆うように、例えば、常圧又は減圧CVD法やTEOSガス等を用いて、NSG、PSG、BSG、BPSGなどのシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第3層間絶縁膜43を形成する。第3層間絶縁膜43の膜厚は、例えば500〜1500nm程度である。
【0110】
続いて、第3層間絶縁膜43に対する反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングにより、不図示のコンタクトホール85(図2及び図3参照)を開孔する。
【0111】
続いて、第3層間絶縁膜43上に、スパッタ処理等により、ITO膜等の透明導電性膜を、約50〜200nmの厚さに堆積する。そして、フォトリソグラフィ及びエッチングにより、画素電極9aを形成する。尚、当該液晶装置を反射型の液晶装置に用いる場合には、Al等の反射率の高い不透明な材料から画素電極9aを形成してもよい。
【0112】
続いて、画素電極9aの上にポリイミド系の配向膜の塗布液を塗布した後、所定のプレティルト角を持つように且つ所定方向でラビング処理を施すこと等により、配向膜16(図3参照)が形成される。
【0113】
他方、図3に示した対向基板20については、ガラス基板等が先ず用意され、額縁としての遮光膜が、例えば金属クロムをスパッタした後、フォトリソグラフィ及びエッチングを経て形成される。尚、これらの遮光膜は、導電性である必要はなく、Cr、Ni、Alなどの金属材料の他、カーボンやTiをフォトレジストに分散した樹脂ブラックなどの材料から形成してもよい。
【0114】
その後、対向基板20の全面にスパッタ処理等により、ITO等の透明導電性膜を、約50〜200nmの厚さに堆積することにより、対向電極21を形成する。更に、対向電極21の全面にポリイミド系の配向膜の塗布液を塗布した後、所定のプレティルト角を持つように且つ所定方向でラビング処理を施すこと等により、配向膜22(図3参照)が形成される。
【0115】
最後に、上述のように各層が形成されたTFTアレイ基板10と対向基板20とは、配向膜16及び22が対面するようにシール材(図9及び図10参照)により貼り合わされ、真空吸引等により、両基板間の空間に、例えば複数種類のネマティック液晶を混合してなる液晶が吸引されて、所定層厚の液晶層50が形成される。
【0116】
以上説明した製造プロセスにより、前述した第1実施形態の電気光学装置を製造できる。
【0117】
他方、第2実施形態の電気光学装置を製造する場合には、図7の工程(3)及び(4)に代えて、先ず遮光膜片601及び602を形成する領域だけ、絶縁膜2を除去した後、金属膜をスパッタリング、真空蒸着、CVD法等により体積し、これを熱処理することで自己整合的に、遮光膜片601及び602を形成すればよい。或いは、金属−シリコン合金を堆積後に熱処理することで自己整合的に、遮光膜片601及び602を形成してもよい。係る熱処理は、例えば電気アニール又はランプアニールにより行う。残りの工程は、上述した図7及び図8に示したのと同様で済む。加えて、第2実施形態の電気光学装置を製造する場合には、コンタクト領域をサリサイド化するので、当該コンタクト領域における電気抵抗を下げることができる。このため、図8の行程(5)における高濃度ソース領域1d及び高濃度ドレイン領域1eを低抵抗化するためのイオン打ち込み等を省略することも可能となる。
【0118】
尚、上述の製造プロセスでは、コンタクトホール511及び512を絶縁膜2の形成後に開孔したが、コンタクトホール511及び512を走査線3aの形成後に開孔し、その後遮光膜片501及び502を形成することも可能である。
【0119】
(電気光学装置の全体構成)
以上のように構成された各実施形態における電気光学装置の全体構成を図9及び図10を参照して説明する。尚、図9は、TFTアレイ基板10をその上に形成された各構成要素と共に対向基板20の側から見た平面図であり、図10は、図9のH−H’断面図である。
【0120】
図9において、TFTアレイ基板10の上には、シール材52がその縁に沿って設けられており、その内側に並行して、画像表示領域10aの周辺を規定する額縁としての遮光膜53が設けられている。シール材52の外側の領域には、データ線6aに画像信号を所定タイミングで供給することによりデータ線6aを駆動するデータ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられており、走査線3aに走査信号を所定タイミングで供給することにより走査線3aを駆動する走査線駆動回路104が、この一辺に隣接する2辺に沿って設けられている。走査線3aに供給される走査信号遅延が問題にならないのならば、走査線駆動回路104は片側だけでも良いことは言うまでもない。また、データ線駆動回路101を画像表示領域10aの辺に沿って両側に配列してもよい。更にTFTアレイ基板10の残る一辺には、画像表示領域10aの両側に設けられた走査線駆動回路104間をつなぐための複数の配線105が設けられている。また、対向基板20のコーナー部の少なくとも1箇所においては、TFTアレイ基板10と対向基板20との間で電気的に導通をとるための導通材106が設けられている。そして、図10に示すように、図9に示したシール材52とほぼ同じ輪郭を持つ対向基板20が当該シール材52によりTFTアレイ基板10に固着されている。
【0121】
尚、TFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等に加えて、複数のデータ線6aに画像信号を所定のタイミングで印加するサンプリング回路、複数のデータ線6aに所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
【0122】
以上図1から図10を参照して説明した実施形態では、データ線駆動回路101及び走査線駆動回路104をTFTアレイ基板10の上に設ける代わりに、例えばTAB(Tape Automated bonding)基板上に実装された駆動用LSIに、TFTアレイ基板10の周辺部に設けられた異方性導電フィルムを介して電気的及び機械的に接続するようにしてもよい。また、対向基板20の投射光が入射する側及びTFTアレイ基板10の出射光が出射する側には各々、例えば、TN(Twisted Nematic)モード、VA(Vertically Aligned)モード、PDLC(Polymer Dispersed Liquid Crystal)モード等の動作モードや、ノーマリーホワイトモード/ノーマリーブラックモードの別に応じて、偏光フィルム、位相差フィルム、偏光板などが所定の方向で配置される。
【0123】
以上説明した実施形態における電気光学装置は、プロジェクタに適用されるため、3枚の電気光学装置がRGB用のライトバルブとして各々用いられ、各ライトバルブには各々RGB色分解用のダイクロイックミラーを介して分解された各色の光が投射光として各々入射されることになる。従って、各実施形態では、対向基板20に、カラーフィルタは設けられていない。しかしながら、画素電極9aに対向する所定領域にRGBのカラーフィルタをその保護膜と共に、対向基板20上に形成してもよい。このようにすれば、プロジェクタ以外の直視型や反射型のカラー電気光学装置について、各実施形態における電気光学装置を適用できる。また、対向基板20上に1画素1個対応するようにマイクロレンズを形成してもよい。あるいは、TFTアレイ基板10上のRGBに対向する画素電極9a下にカラーレジスト等でカラーフィルタ層を形成することも可能である。このようにすれば、入射光の集光効率を向上することで、明るい電気光学装置が実現できる。更にまた、対向基板20上に、何層もの屈折率の相違する干渉層を堆積することで、光の干渉を利用して、RGB色を作り出すダイクロイックフィルタを形成してもよい。このダイクロイックフィルタ付き対向基板によれば、より明るいカラー電気光学装置が実現できる。
【0124】
(投射型表示装置の実施形態)
次に、以上詳細に説明した液晶装置をライトバルブとして用いた投射型表示装置の実施形態について図11及び図12を参照して説明する。
【0125】
先ず、本実施形態の投射型カラー表示装置の回路構成について図11のブロック図を参照して説明する。尚、図11は、投射型カラー表示装置における3枚のライトバルブのうちの1枚に係る回路構成を示したものである。これら3枚のライトバルブは、基本的にどれも同じ構成を持つので、ここでは1枚の回路構成に係る部分について説明を加えるものである。但し厳密には、3枚のライトバルブでは、入力信号が夫々異なり(即ち、R用、G用、B用の信号で夫々駆動され)、更にG用のライトバルブに係る回路構成では、R用及びB用の場合と比べて、画像を反転して表示するように画像信号の順番を各フィールド又はフレーム内で逆転させるか又は水平或いは垂直走査方向を逆転させる点も異なる。
【0126】
図11において、投射型カラー表示装置は、表示情報出力源1000、表示情報処理回路1002、駆動回路1004、液晶装置100、クロック発生回路1008並びに電源回路1010を備えて構成されている。表示情報出力源1000は、ROM(Read Only Memory)、RAM(Random Access Memory)、光ディスク装置などのメモリ、画像信号を同調して出力する同調回路等を含み、クロック発生回路1008からのクロック信号に基づいて、所定フォーマットの画像信号などの表示情報を表示情報処理回路1002に出力する。表示情報処理回路1002は、増幅・極性反転回路、相展開回路、ローテーション回路、ガンマ補正回路、クランプ回路等の周知の各種処理回路を含んで構成されており、クロック信号に基づいて入力された表示情報からデジタル信号を順次生成し、クロック信号CLKと共に駆動回路1004に出力する。駆動回路1004は、液晶装置100を駆動する。電源回路1010は、上述の各回路に所定電源を供給する。尚、液晶装置100を構成するTFTアレイ基板の上に、駆動回路1004を搭載してもよく、これに加えて表示情報処理回路1002を搭載してもよい。
【0127】
次に図12を参照して、本実施形態の投射型カラー表示装置の全体構成、特に光学的な構成について説明する。ここに図12は、投射型カラー表示装置の図式的断面図である。
【0128】
図12において、本実施形態における投射型カラー表示装置の一例たる液晶プロジェクタ1100は、上述した駆動回路1004がTFTアレイ基板上に搭載された液晶装置100を含む液晶モジュールを3個用意し、夫々RGB用のライトバルブ100R、100G及び100Bとして用いたプロジェクタとして構成されている。液晶プロジェクタ1100では、メタルハライドランプ等の白色光源のランプユニット1102から投射光が発せられると、3枚のミラー1106及び2枚のダイクロイックミラー1108によって、RGBの3原色に対応する光成分R、G、Bに分けられ、各色に対応するライトバルブ100R、100G及び100Bに夫々導かれる。この際特にB光は、長い光路による光損失を防ぐために、入射レンズ1122、リレーレンズ1123及び出射レンズ1124からなるリレーレンズ系1121を介して導かれる。そして、ライトバルブ100R、100G及び100Bにより夫々変調された3原色に対応する光成分は、ダイクロイックプリズム1112により再度合成された後、投射レンズ1114を介してスクリーン1120にカラー画像として投射される。
【0129】
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴なう電気光学装置及びその製造方法並びに投射型表示装置もまた本発明の技術的範囲に含まれるものである。
【図面の簡単な説明】
【図1】本発明の第1実施形態の電気光学装置における画像表示領域を構成するマトリクス状の複数の画素に設けられた各種素子、配線等の等価回路である。
【図2】第1実施形態の電気光学装置におけるデータ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。
【図3】図2のA−A’断面図である。
【図4】図2のうち半導体層、遮光膜片等を抜粋して示す部分平面図である。
【図5】第2実施形態における図2のA−A’断面図である。
【図6】第2実施形態において、半導体層、遮光膜片等を抜粋して示す部分平面図である。
【図7】第1実施形態の電気光学装置を製造する製造プロセスの各工程における、電気光学装置の積層構造を、図3の断面図のうち半導体層1a付近に係る部分で順を追って示す工程図(その1)である。
【図8】第1実施形態の電気光学装置を製造する製造プロセスの各工程における、電気光学装置の積層構造を、図3の断面図のうち半導体層1a付近に係る部分で順を追って示す工程図(その2)である。
【図9】実施形態の電気光学装置におけるTFTアレイ基板をその上に形成された各構成要素と共に対向基板の側から見た平面図である。
【図10】図9のH−H’断面図である。
【図11】本発明の投射型表示装置の実施形態におけるライトバルブに係る回路構成を示したブロック図である。
【図12】本発明の投射型表示装置の実施形態の一例たるカラー液晶プロジェクタを示す図式的断面図である。
【符号の説明】
1a…半導体層
1a’…チャネル領域
1b…低濃度ソース領域
1c…低濃度ドレイン領域
1d…高濃度ソース領域
1e…高濃度ドレイン領域
2…絶縁膜
3a…走査線
6a…データ線
9a…画素電極
10…TFTアレイ基板
11a…下側遮光膜
12…下地絶縁膜
16…配向膜
20…対向基板
21…対向電極
22…配向膜
23…第1遮光膜
30…TFT
50…液晶層
70…蓄積容量
71…中継層
75…誘電体膜
81、83、85…コンタクトホール
300…容量線
501、502、601、602…遮光膜片
511、512…コンタクトホール

Claims (10)

  1. 基板上に、
    画素電極と、
    該画素電極に電気的に接続されており、半導体層からなるチャネル領域、ソース領域及びドレイン領域を有するスイッチング素子と、
    前記ソース領域に第1のコンタクトホールを介して電気的に接続されたソース引き出し電極と、
    前記ドレイン領域に第2のコンタクトホールを介して電気的に接続されたドレイン引き出し電極と、
    前記半導体層の上層に形成されたゲート絶縁膜及び前記ゲート絶縁膜の上層に形成されたゲート電極と、
    前記ソース領域と前記ドレイン領域とのうち少なくとも一方の領域において、当該領域を形成する半導体層の前記ゲート絶縁膜が形成されていない表面上に、コンタクトホールを介さずに積層された導電性の遮光膜と、
    を備えており、
    前記第1及び第2のコンタクトホールのうち前記少なくとも一方の領域に対応するコンタクトホールは、前記導電性の遮光膜に接続されるとともに、当該導電性の遮光膜の形成領域内に形成される
    ことを特徴とする電気光学装置。
  2. 前記遮光膜片は、金属膜又は合金膜からなることを特徴とする請求項1に記載の電気光学装置。
  3. 前記遮光膜片は、前記コンタクト領域がサリサイド化されてなることを特徴とする特徴とする請求項1に記載の電気光学装置。
  4. 前記遮光膜片と別層からなると共に前記薄膜トランジスタの少なくともチャネル領域を上方から覆う内蔵遮光膜を更に備えており、
    前記遮光膜片と前記内蔵遮光膜とは、平面的に見て少なくとも部分的に重なっていることを特徴とする請求項1から3のいずれか一項に記載の電気光学装置。
  5. 前記遮光膜片は、前記薄膜トランジスタのゲート電極と同一層からなることを特徴とする請求項1に記載の電気光学装置。
  6. 前記薄膜トランジスタに接続されたデータ線を更に備えており、
    前記ソース引き出し電極は、前記第1のコンタクトホールを介して前記ソース領域に接続された中継層の一部からなり、該中継層を中継して前記ソース領域と前記データ線とが電気的に接続されていることを特徴とする請求項1から5のいずれか一項に記載の電気光学装置。
  7. 前記薄膜トランジスタに接続されたデータ線を更に備えており、
    前記ソース引き出し電極は、前記第1のコンタクトホールを介して前記ソース領域に接続された前記データ線の一部からなることを特徴とする請求項1から6のいずれか一項に記載の電気光学装置。
  8. 前記ドレイン引き出し電極は、前記第2のコンタクトホールを介して前記ドレイン領域に接続された中継層の一部からなり、該中継層を中継して前記ドレイン領域と前記画素電極とが電気的に接続されていることを特徴とする請求項1から7のいずれか一項に記載の電気光学装置。
  9. 請求項1から8のいずれか一項に記載の電気光学装置と、
    該電気光学装置に光を入射する光源と、
    前記電気光学装置から出射される光を画像として投射する投射光学系と
    を備えたことを特徴とする投射型表示装置。
  10. 請求項3に記載の電気光学装置を製造する電気光学装置の製造方法であって、
    前記基板上に前記半導体層を形成する工程と、
    前記半導体層上に前記ゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜を前記コンタクト領域で除去する工程と、
    前記ゲート絶縁膜を除去した後に、前記コンタクト領域をサリサイド化する工程と
    を含むことを特徴とする電気光学装置の製造方法。
JP2001032517A 2001-02-08 2001-02-08 電気光学装置及びその製造方法並びに投射型表示装置 Expired - Fee Related JP3791338B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001032517A JP3791338B2 (ja) 2001-02-08 2001-02-08 電気光学装置及びその製造方法並びに投射型表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032517A JP3791338B2 (ja) 2001-02-08 2001-02-08 電気光学装置及びその製造方法並びに投射型表示装置

Publications (3)

Publication Number Publication Date
JP2002236460A JP2002236460A (ja) 2002-08-23
JP2002236460A5 JP2002236460A5 (ja) 2005-02-24
JP3791338B2 true JP3791338B2 (ja) 2006-06-28

Family

ID=18896434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032517A Expired - Fee Related JP3791338B2 (ja) 2001-02-08 2001-02-08 電気光学装置及びその製造方法並びに投射型表示装置

Country Status (1)

Country Link
JP (1) JP3791338B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954014B2 (en) 2015-12-28 2018-04-24 Lg Display Co., Ltd. Thin film transistor substrate and display using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053630A (ja) * 2002-07-16 2004-02-19 Sharp Corp 液晶表示装置及びその製造方法
JP2005012494A (ja) 2003-06-19 2005-01-13 Olympus Corp 画像処理装置
JP4613491B2 (ja) * 2004-01-13 2011-01-19 セイコーエプソン株式会社 電気光学装置の製造方法
KR101236726B1 (ko) * 2006-06-30 2013-02-25 엘지디스플레이 주식회사 액정표시장치의 제조방법
KR101453829B1 (ko) * 2007-03-23 2014-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 및 그 제조 방법
JP4760818B2 (ja) * 2007-11-22 2011-08-31 セイコーエプソン株式会社 電気光学基板、並びにこれを具備する電気光学装置及び電子機器
WO2012090788A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 表示素子
KR102123497B1 (ko) * 2013-11-04 2020-06-16 엘지디스플레이 주식회사 박막 트랜지스터 기판과 디스플레이 장치 및 그들의 제조방법
KR102558900B1 (ko) 2015-10-23 2023-07-25 엘지디스플레이 주식회사 표시장치와 이의 제조방법
CN115841973B (zh) * 2023-02-17 2023-04-28 成都莱普科技股份有限公司 一种用于晶圆激光退火的挡光环及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335890A (ja) * 1994-06-03 1995-12-22 Seiko Epson Corp 薄膜半導体装置の製造方法
JP3711781B2 (ja) * 1999-03-12 2005-11-02 セイコーエプソン株式会社 電気光学装置及びその製造方法
JP3687415B2 (ja) * 1999-05-28 2005-08-24 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置及び投射型表示装置
JP4221827B2 (ja) * 1999-06-30 2009-02-12 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954014B2 (en) 2015-12-28 2018-04-24 Lg Display Co., Ltd. Thin film transistor substrate and display using the same

Also Published As

Publication number Publication date
JP2002236460A (ja) 2002-08-23

Similar Documents

Publication Publication Date Title
JP3736461B2 (ja) 電気光学装置、投射型表示装置及び電気光学装置の製造方法
JP3381718B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP3731447B2 (ja) 電気光学装置及びその製造方法
JP4144183B2 (ja) 電気光学装置、その製造方法及び投射型表示装置
JP3736513B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP3873610B2 (ja) 電気光学装置及びその製造方法並びにプロジェクタ
JP3786515B2 (ja) 液晶装置及びその製造方法並びに電子機器
JP3937721B2 (ja) 電気光学装置及びその製造方法並びにプロジェクタ
JP3791338B2 (ja) 電気光学装置及びその製造方法並びに投射型表示装置
JP3743273B2 (ja) 電気光学装置の製造方法
JP3551778B2 (ja) 電気光学装置、電気光学装置用基板、電気光学装置の製造方法並びに電子機器
JP3799943B2 (ja) 電気光学装置およびプロジェクタ
JP3969439B2 (ja) 電気光学装置
JP3731368B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP3912064B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP4139530B2 (ja) 電気光学装置及び電子機器
JP4023107B2 (ja) 電気光学装置及びこれを具備する電子機器
JP3991567B2 (ja) 電気光学装置及び電子機器
JP3642326B2 (ja) 液晶パネル、電子機器、及びtftアレイ基板
JP3674274B2 (ja) 液晶パネル、液晶パネル用tftアレイ基板及び電子機器
JP4400239B2 (ja) 電気光学装置及び電子機器
JP4522666B2 (ja) Tftアレイ基板、液晶パネル及び液晶プロジェクタ
JP3736230B2 (ja) 電気光学装置、その製造方法及び電子機器
JP3867027B2 (ja) 電気光学装置及び電子機器
JP4269659B2 (ja) 電気光学装置及びその製造方法並びに電子機器

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees