JP3765793B2 - 永久磁石の製造方法 - Google Patents

永久磁石の製造方法 Download PDF

Info

Publication number
JP3765793B2
JP3765793B2 JP2002561846A JP2002561846A JP3765793B2 JP 3765793 B2 JP3765793 B2 JP 3765793B2 JP 2002561846 A JP2002561846 A JP 2002561846A JP 2002561846 A JP2002561846 A JP 2002561846A JP 3765793 B2 JP3765793 B2 JP 3765793B2
Authority
JP
Japan
Prior art keywords
powder
phase
alloy
group
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002561846A
Other languages
English (en)
Other versions
JPWO2002061769A1 (ja
Inventor
貴夫 関野
裕治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Publication of JPWO2002061769A1 publication Critical patent/JPWO2002061769A1/ja
Application granted granted Critical
Publication of JP3765793B2 publication Critical patent/JP3765793B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

技術分野
本発明は、希土類−鉄−ホウ素系の高性能永久磁石の製造方法に関し、特にモーターなどの回転機やアクチュエータなどに使用される耐熱性に優れた磁石の製造方法に関している。
背景技術
希土類−鉄−ホウ素系(R−T−B系)焼結磁石の耐熱性を向上させ、高温下においても保磁力を高く維持するため、従来からDyが原料合金に添加されてきた。Dyは、R−T−B系焼結磁石の主相であるR214B相の異方性磁界を高める効果を示す希土類元素の一種である。Dyは稀少元素であるため、今後、電気自動車の実用化が進展し、電気自動車用モーターなどに用いられる高耐熱磁石の需要が拡大してゆくと、Dy資源が逼迫する結果、原料コストの増加が懸念される。このため、高保磁力磁石におけるDy使用量削減技術の開発が強く求められている。
従来、Dyは原料鋳造時に他の元素と共に配合・溶解するように添加されてきた。このような従来方法によれば、Dyは磁石の主相内で均一に分布することになる。しかしながら、R−T−B系焼結磁石の保磁力発生機構は、核生成型であるため、高保磁力化には主相であるR2Fe14B結晶粒の表面近傍での逆磁区発生を抑えることが重用である。このため、図1に示すように、主相(Nd2Fe14B)結晶粒の表面近傍、すなわち主相外殻部のみにおいてDy濃度を高めることができれば、より少ないDy量で高保磁力化を果たすことができる。なお、図1において、Dy濃度が相対的に高められた主相外殻部を「(Nd,Dy)2Fe14B」と標記している。粒界相には、希土類リッチ(R−rich)相が存在している。
Dy使用量を削減し、図1に示すような組織を得る方法としては、例えば、Dyの酸化物を添加する方法(J.Magn.Soc.Jpn、11(1987)235)や、Dy水素化物を添加する方法(J.Alloys Compd.287(1999)206)等が提案されている。
しかしながら、上記の酸化物を添加する方法には、不純物である酸素量の増加によって磁化の低下が生じるという問題点があり、また、水素化物を添加する方法には、焼結性が低下するという問題点がある。
このような問題を避けるために、Nd2Fe14Bの化学量論組成に近い主相系合金とDyリッチな液相系合金をブレンドする多合金法による組織制御が以下に示すように数多く提案されている。
(1) Dy−Cu系合金を用いる方法(特開平6−96928号公報)
(2) 低融点のDy−Co系合金を用いる方法(IEEE Trans.Mag.31(1995)3623)
(3) Dy−Al系合金を用いる方法(特開昭62−206802号公報)
(4) B(ホウ素)を含んだRリッチなR−T−B合金を用いる方法(特開平5−21218号公報)
しかし、上記の従来技術で用いられるDy合金の組成は、いずれも希土類リッチであり、粉砕時等に酸化しやすく、最終的な磁石中の酸素量が増加するため、磁石特性が劣化するという問題がある。また、いずれの合金も、水素吸蔵処理による脆化を効率的に行なえないため、粉砕性/粉砕効率が悪く、最終的に微粉末を得るのが困難である。さらに、Dy−Cu系合金がDy−Co系合金を用いる場合、焼結性が大幅に低下するという問題もある。
本発明の主な目的は、主相系合金の粉末と、Dyなどの保磁力向上に寄与する希土類元素を含む非主相系合金の粉末をブレンドする永久磁石の製造方法において、非主相系合金の酸化を抑制するとともに、粉砕性を向上させる方法を提供することにある。
発明の開示
本発明による永久磁石の製造方法は、R214B相(Rは、全ての希土類元素およびY(イットリウム)からなる群から選択された少なくとも1種、Tは、全ての遷移元素からなる群から選択された少なくとも1種、Qは、B(ホウ素)およびC(炭素)からなる群から選択された少なくとも1種)を主相として含有する第1粉末、および、R217相を全体の25wt%(質量%)以上含有する第2粉末を含む混合粉末を用意する工程と、前記混合粉末を焼結する工程とを包含する。
好ましい実施形態においては、前記混合粉末に対する第2粉末の割合を1〜30wt%の範囲内とする。
好ましい実施形態においては、前記第2粉末は0.1〜10at%(原子%)の範囲内のCuを含有する。
好ましい実施形態においては、前記焼結工程は、共晶反応により、前記第2粉末に含まれるR217相を融解させる工程を含む。
好ましい実施形態においては、前記第1粉末は、Rx100-x-yyの組成式で表現される合金の粉末であって、組成比率を規定するxおよびyが、それぞれ、12.5≦x≦18(at%)、および5.5≦y≦20(at%)の関係を満足する。
前記第2粉末は、(R1pR2q)Cur100-p-q-rの組成式(R1は、DyおよびTbからなる群から選択された少なくとも1種、R2は、DyおよびTbを除く希土類元素およびYからなる群から選択された少なくとも1種)で表現される合金の粉末であって、組成比率を規定するp、q、およびrが、それぞれ、10≦(p+q)≦20(at%)、0.2≦p/(p+q)≦1.0、および、0.1≦r≦10(at%)の関係を満足する。
本発明による永久磁石の製造方法は、R214Q相(Rは、全ての希土類元素およびY(イットリウム)からなる群から選択された少なくとも1種、Tは、全ての遷移元素からなる群から選択された少なくとも1種、Qは、B(ホウ素)およびC(炭素)からなる群から選択された少なくとも1種)を主相として含有する第1粉末、および、(R1pR2q)Cur100-p-q-rの組成式(R1は、DyおよびTbからなる群から選択された少なくとも1種、R2は、DyおよびTbを除く希土類元素およびYからなる群から選択された少なくとも1種)で表現される合金の第2粉末を含む混合粉末を用意する工程と、前記混合粉末を焼結する工程とを包含する。
本発明による永久磁石の製造方法は、R214Q相(Rは、全ての希土類元素およびY(イットリウム)からなる群から選択された少なくとも1種、Tは、全ての遷移元素からなる群から選択された少なくとも1種、Qは、B(ホウ素)およびC(炭素)からなる群から選択された少なくとも1種)を主相として含有する第1粉末、および、Rmn相(mおよびnは正の数であり、m/n≦(1/6)の関係を満足する)を全体の25wt%以上含有する第2粉末を含む混合粉末を用意する工程と、前記混合粉末を焼結する工程とを包含する。
好ましい実施形態において、前記Rmn相はR217相である。
前記混合粉末を用意する工程は前記第2粉末用の合金に対して水素脆化処理を行ない、前記第2粉末の平均粒径を100μm以下にする工程を含むことが好ましい。
前記混合粉末の平均粒度(FSSS粒度)を、焼結前の段階において、5μm以下とすることが好ましい。
【図面の簡単な説明】
図1は、R−T−B系焼結磁石において、主相であるR2Fe14B結晶粒の表面近傍(主相外殻部)のDy濃度を他の部分よりも高くした組織を示す模式図である。
図2は、ストリップキャスティング法、遠心鋳造法およびインゴット法の3種を用いて鋳造した合金B2のX線回折パターンを示すグラフである。
図3は、合金B1〜B5のX線回折パターンを示すグラフであり、合金B1〜B5の希土類元素含有量が変化した場合に構成相がどのような影響を受けるかを示している。
図4Aは、実施例および比較例の残留磁束密度Br(単位:T(テスラ))および保磁力iHc(単位:kAm-1)を示すグラフであり、図4Bは、保磁力iHcのDy濃度(単位:at%)依存性を示すグラフである。
発明を実施するための最良の形態
本発明者は、R214B相を主相として含有する第1粉末に対して、希土類元素の組成比率が少ないR217相を全体の25wt%以上含有する第2粉末を加えて混合してから焼結を行なうことにより、R217相内のRを主相結晶粒の粒界部分に偏在させることができることを見出した。ここで、Rは、全ての希土類元素およびイットリウムからなる群から選択された少なくとも1種、Tは、全ての遷移元素からなる群から選択された少なくとも1種である。Tは、Feを50at%以上含むことが好ましく、また、耐熱性向上のためには、Feに加えてCoを含有していることが更に好ましい。
なお、B(ホウ素)の一部または全てがC(炭素)によって置換されていてもよいため、R214B相をR214Q相(Qは、B(ホウ素)およびC(炭素)からなる群から選択された少なくとも1種)と標記することができる。
Dyなどの希土類元素を第2粉末のR217相内にRとして含有させれば、Dyなどの希土類元素を主相外殻部分に相対的に高い濃度で局在させること、すなわち濃縮が可能になる。
上記の第2粉末は、R217相を主として含む原料合金に対して水素脆化処理を施すことにより、容易に得ることができる。これは、R217相と他相とが共存する組織ではR217相の格子間隔が水素吸蔵によって拡大し、粒界部で破断が生じやすくなるためである。このような第2粉末用合金は、R217B相を含む主相合金に比較して、希土類元素の量が相対的に少ない。具体的には、第2粉末用合金には、主にR217相から構成され、その残部は、RT2相、RT3相、および/またはRT5相などから構成されている。
第2粉末用合金におけるR217相の存在比率が少ないと、第2粉末用合金の粉砕性が低下するとともに、希土類元素量が相対的に多くなる結果、酸化の問題が生じる。このため、第2粉末用合金におけるR217相の含有割合は、25wt%以上であることが好ましく、40wt%以上であることが更に好ましい。このような原料合金は、インゴット鋳造法によるだけではなく、ストリップキャスト法などの急冷法でも作製することができる。また、上記の原料合金は、希土類元素の含有量が従来の液相系合金に比べても相対的に少ないため、粉砕時に酸化される可能性が小さく、磁石特性に悪影響を及ぼす酸化物を生成しにくい。
一方、第1粉末の原料として本発明で用いる主相系合金は、R2Fe14Q化合物の化学量論組成に比較して希土類リッチな組成を有していることが望ましい。希土類リッチであることにより、焼結時、主相系合金に含まれる希土リッチ相と第2粉末のR217相などが反応し、融液が生成され、液相焼結が適切に進行することになるからである。
217相は、このようにRリッチ相と反応することによって融解するが、粉末混合後の組成中にB(ホウ素)が不足していると、冷却過程において、再度、R217相が形成されてしまうことになる。R217相は、軟磁性相であるため、焼結磁石に残存すると、保磁力の低下を引き起こし、望ましくない。故に、R217相の残存を回避するためには、主相系合金の組成をR214B化合物の化学量論組成に比較してBリッチなものとすることが好ましい。
なお、保磁力増加の効果を得るには、第2粉末用原料合金にDyを添加することが好ましい。TbはDyと同様の効果を発揮するため、Dyとともに、またはDyに代えて、Tbを添加しても良い。
Dyおよび/またはTbは、第1粉末用原料合金に添加しても良いが、DyやTbの使用量を低減しつつ、保磁力を増加させるという本発明の目的を効果的に達成するためには、DyやTbを第1粉末用の原料合金に添加しないことが好ましい。
また、第1粉末および/または第2粉末に対して、特に第2粉末に対して、適量のCuを添加しておけば、粒界相におけるDy濃度を減少させることができるため、主相外殻部に濃縮されるDy濃度をさらに高める効果が得られるので好ましい。実験によれば、第2粉末中におけるCu含有量の好ましい範囲は、0.1〜10at%である。
第1粉末および第2粉末に含まれる元素Tは、全ての遷移元素からなる群から選択された少なくとも1種であるが、実用上、Fe、Co、Al、Ni、Mn、Sn、In、およびGaからなる群から選択されることが望ましい。元素Tは、主にFeおよび/またはCoから形成されていることが好ましく、種々の目的で他の元素が添加される。たとえばAlを原料合金に添加すれば、比較的低い温度領域(800℃程度)でも優れた焼結性を発揮させることができる。
Alの添加は、第2粉末に対して1at%以上15at%以下の範囲で行うことが好ましい。
以上の観点から、第1粉末用の原料合金をRx100-x-yyの組成式で表現すると、組成比率を規定するxおよびyは、それぞれ、12.5≦x≦18(at%)、および5.5≦y≦20(at%)の関係を満足することが好ましい。
また、第2粉末用の原料合金は、(R1pR2q)Cur100-p-q-rの組成式(R1は、DyおよびTbからなる群を選択された少なくとも1種、R2は、DyおよびTbを除く希土類元素およびYからなる群から選択された少なくとも1種、Tは全ての遷移元素から選択された少なくとも1種)で表現することができる。実験によると、組成比率を規定するp、q、およびrは、それぞれ、10≦(p+q)≦20(at%)、0.2≦p/(p+q)≦1.0、および0.1≦r≦10(at%)の関係を満足することが好ましい。
第2粉末用原料合金は、R217相を主として含有するように作製されるが、希土類の含有量が相対的に少なくRmn相(mおよびnは正の数であり、m/n≦(1/6)の関係を満足する)を全体の25wt%以上含有するものを用いても良い。
このような組成を有する原料合金を粉砕することによって作製された第1粉末および第2粉末の混合は、微粉砕工程前に行なっても、微粉砕工程後に行なっても良い。第1粉末と第2粉末との混合を微粉砕前に行なう場合は、第1粉末用合金の微粉砕と第2粉末用合金の微粉砕とを同時に行うことになる。これに対して、別個に粗粉砕が行なわれた第1粉末合金および第2粉末合金に対し、更に別個に微粉砕を行なった後、それらの粉末を所定の比率で混合しても良い。また、別個に微粉砕された第1粉末合金および第2粉末合金を購入し、適切な割合で混合しても良い。混合粉末の全体に対する第2粉末の割合は、1〜30wt%の範囲内とすることが好ましい。
第2粉末は、第1粉末と混合する前には、上記原料合金を水素脆化処理によって粗粉砕し、その平均粒径が100μm以下となるようにすることが好ましい。本発明で用いる第2粉末用合金は、R217相を含有するため、水素脆化しやすいという利点を有している。また、第1粉末と第2粉末とを混合した後の混合粉末の平均粒度(FSSS粒度)は、焼結前の段階において、5μm以下とすることが好ましい。混合粉末の更に好ましい平均粒度は、2μm以上4μm以下である。第2粉末用の合金は従来にくらべて希土類元素含有量が少なく、粉砕時の酸化が抑制される。その結果、最終的に得られる焼結磁石中の酸素濃度は、質量比率で8000ppm以下に抑えられる。焼結磁石の酸素濃度は、質量比率で6000ppm以下であることが更に好ましい。
このように、本発明で用いる第2粉末用の合金は、今までに提案されていた希土類リッチな液相系合金の場合に問題となった粉砕性の悪さや、高希土類組成に起因する酸素に対する活性が抑えられ、また、焼結性も優れたものとなる。このため、本発明によれば、高保磁力磁石を生産性良く製造することができるようになる。
[実施例]
本実施例では、表1に示す合金A1〜A6を第1粉末の原料合金Aとして用い、合金B1〜B5を第2粉末の原料合金Bとして用いた。
【表1】
Figure 0003765793
鋳造方法の違いによる原料合金Bの構成相の変化を調べるため、15.5at%のDyを含有する合金B2を、ストリップキャスティング法、遠心鋳造法、およびインゴット法の3種を用いて鋳造し、その構成相を調査した。その結果を図2に示す。図2において、記号●および記号△は、それぞれ、R217相およびRT3相の回折ピークを示している。
図2からわかるように、鋳造方法が異なっても、原料の組成が同じであれば、結晶相の構成に大きな差は生じていない。このため、以下に説明する本発明の実施例(および比較例)では、インゴット法を代表的に用いて合金を作製し、使用した。
また、合金Bにおける希土類元素含有量が変化した場合において合金Bの構成相がどのような影響を受けるかを調査するため、希土類元素含有量が異なる合金B1〜B5について、X線回折測定を実施した。その結果を図3に示す。図3からわかるように、合金B中のDy量が比較的少ない場合、構成相は主としてR217相およびRT3相であるが、Dy量が多くなると、R217相の存在比率が低下していった。より具体的には、合金B4(Dy=21.8at%)の場合、R217相の存在比率は非常に小さく、合金B5(Dy=25.4at%)の場合は、R217相の存在を認めることはできなかった。
以上のことから、合金B中のDy量(希土類元素量)の好ましい範囲の上限は20at%以下であることがわかる。また、合金B中のDy量(希土類元素量)が10at%を下回ると、磁石特性が劣化する。このため、合金B中のDy量(希土類元素量)は、10at%以上20at%以下であることが好ましい。
以下、実施例および比較例の製造方法を説明する。
まず、上記表1に示す組成を有する合金Aおよび合金Bのそれぞれについて、水素吸蔵および脱水素処理を施すことにより、粗粉砕(水素脆化処理)を行った。Dy添加量の多い合金B4および合金B5では、水素処理による粉砕性が悪いため、水素脆化処理の後、スタンプミルを用いて粒径が420μm以下になるまで機械粉砕を行った。
次に、表1の実施例1〜4および比較例1〜2の各欄に示す配合比率で合金Aおよび合金Bを混合した後、N2ガス雰囲気のジェットミルを用いて微粉砕を行なった。微粉砕後における混合粉末の平均粒度(FSSS粒度)は、3〜3.5μm程度であった。この粉砕前後におけるDy量の変化を表2に示す。
【表2】
Figure 0003765793
表2の最右欄における「Dy歩留」とは、(粉砕後のDy量/粉砕前のDy量)×100で示される量である。この量が大きいほど、合金Bの粉砕性が優れていることを示す。表2からわかるように、比較例1および2では、合金Bの粉砕性が悪い。
次に、このようにして得られた微粉を用いて配向磁界中での成形工程を行なった後、焼結工程を行い、永久磁石を作製した。この磁石の磁気特性を評価した結果を表3および図4Aおよび図4Bに示す。
【表3】
Figure 0003765793
以上の結果から、実施例1〜4の場合は、一合金法と比較して少ないDy量で高い保磁力が得られることがわかる。また、比較例1〜2では、合金B中のDy量が多いにもかかわらず、Dy添加による高磁持力化の効果が確認されず、また、粉砕時におけるDy歩留が低いため、Dyが無駄に消費され、Dy削減効果も充分には得られなかった。
産業上の利用可能性
本発明によれば、粉砕性および耐酸化性に優れる2種類の合金粉末を適切に混合することにより、Dyなどの特性の希土類元素の主相外殻部における濃度を他の部分よりも向上させた組織を歩留まり良く作製できる。このため、Dyを原料合金の溶解時点から添加し、一様に拡散される方法に比べ、より少ないDy量で高い保磁力を示す焼結磁石を安価に生産性良く製造することができる。また、本発明によれが、Dyを主相外殻部で効率良く濃縮させることができるため、焼結磁石の主相内部における飽和磁化を高いままに維持し、Dy添加による残留磁束密度Brの低下を抑制することができる。

Claims (5)

  1. 214Q相(Rは、DyおよびTbを除く全ての希土類元素およびY(イットリウム)からなる群から選択された少なくとも1種、Tは、全ての遷移元素からなる群から選択された少なくとも1種、Qは、B(ホウ素)およびC(炭素)からなる群から選択された少なくとも1種)を主相として含有する第1粉末、および、R217相を全体の25wt%以上含有する第2粉末を含む混合粉末を用意する工程と、
    前記混合粉末を焼結する工程と、
    を包含し、
    前記第1粉末は、R x 100-x-y y の組成式で表現される合金の粉末であって、
    組成比率を規定するxおよびyが、それぞれ、
    12.5≦x≦18(at%)
    5.5≦y≦20(at%)
    の関係を満足し、
    前記第2粉末は、(R1 p R2 q )Cu r 100-p-q-r の組成式(R1は、DyおよびTbからなる群から選択された少なくとも1種、R2は、DyおよびTbを除く希土類元素およびYからなる群から選択された少なくとも1種)で表現される合金の粉末であって、
    組成比率を規定するp、q、およびrが、それぞれ、
    10≦(p + q)≦20(at%)
    0.2≦p/(p + q)≦1.0
    0.1≦r≦10(at%)
    の関係を満足する、焼結磁石の製造方法。
  2. 前記混合粉末に対する第2粉末の割合を1〜30wt%の範囲内とする請求項1に記載の焼結磁石の製造方法。
  3. 前記焼結工程は、共晶反応により、前記第2粉末に含まれるR217相を融解させる工程を含む請求項1に記載の焼結磁石の製造方法。
  4. 前記混合粉末を用意する工程は、前記第2粉末用の合金に対して水素脆化処理を行ない、前記第2粉末の平均粒径を100μm以下にする工程を含む請求項1から3のいずれかに記載の焼結磁石の製造方法。
  5. 前記混合粉末の平均粒度(FSSS粒度)を、焼結前の段階において、5μm以下とする請求項1から4のいずれかに記載の焼結磁石の製造方法。
JP2002561846A 2001-01-30 2002-01-22 永久磁石の製造方法 Expired - Lifetime JP3765793B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001021226 2001-01-30
JP2001021226 2001-01-30
PCT/JP2002/000442 WO2002061769A1 (fr) 2001-01-30 2002-01-22 Procede de preparation d'un aimant permanent

Publications (2)

Publication Number Publication Date
JPWO2002061769A1 JPWO2002061769A1 (ja) 2004-06-03
JP3765793B2 true JP3765793B2 (ja) 2006-04-12

Family

ID=18886820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002561846A Expired - Lifetime JP3765793B2 (ja) 2001-01-30 2002-01-22 永久磁石の製造方法

Country Status (6)

Country Link
US (1) US7244318B2 (ja)
EP (1) EP1365422B1 (ja)
JP (1) JP3765793B2 (ja)
CN (1) CN1246864C (ja)
AT (1) ATE555485T1 (ja)
WO (1) WO2002061769A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645648B1 (en) * 2001-03-30 2007-07-25 Neomax Co., Ltd. A rare earth alloy sintered compact
DE10291720T5 (de) * 2001-05-30 2004-08-05 Sumitomo Special Metals Co., Ltd. Verfahren zur Herstellung eines gesinterten Presslings für einen Seltenerdmetall-Magneten
JP4547840B2 (ja) * 2001-07-27 2010-09-22 Tdk株式会社 永久磁石およびその製造方法
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
CN100501884C (zh) 2005-03-14 2009-06-17 Tdk株式会社 R-t-b系烧结磁体
US8420160B2 (en) * 2006-09-15 2013-04-16 Intermetallics Co., Ltd. Method for producing sintered NdFeB magnet
WO2008096621A1 (ja) * 2007-02-05 2008-08-14 Showa Denko K.K. R-t-b系合金とその製造方法、r-t-b系希土類永久磁石用微粉、r-t-b系希土類永久磁石
JP4900085B2 (ja) * 2007-06-29 2012-03-21 Tdk株式会社 希土類磁石の製造方法
JP4900113B2 (ja) * 2007-07-24 2012-03-21 Tdk株式会社 希土類永久焼結磁石の製造方法
JP5532922B2 (ja) * 2007-07-27 2014-06-25 日立金属株式会社 R−Fe−B系希土類焼結磁石
KR101474947B1 (ko) * 2007-09-04 2014-12-19 히다찌긴조꾸가부시끼가이사 R­Fe­B계 이방성 소결 자석
JP5328161B2 (ja) * 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP5417632B2 (ja) 2008-03-18 2014-02-19 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP4835758B2 (ja) * 2009-03-30 2011-12-14 Tdk株式会社 希土類磁石の製造方法
JP5057111B2 (ja) * 2009-07-01 2012-10-24 信越化学工業株式会社 希土類磁石の製造方法
JP2011210823A (ja) * 2010-03-29 2011-10-20 Tdk Corp 希土類焼結磁石の製造方法及び希土類焼結磁石
CN102473498B (zh) * 2010-03-30 2017-03-15 Tdk株式会社 烧结磁铁、电动机、汽车以及烧结磁铁的制造方法
EP2503572B1 (en) * 2010-03-31 2015-03-25 Nitto Denko Corporation Manufacturing method for permanent magnet
MY165562A (en) 2011-05-02 2018-04-05 Shinetsu Chemical Co Rare earth permanent magnets and their preparation
JP6256140B2 (ja) * 2013-04-22 2018-01-10 Tdk株式会社 R−t−b系焼結磁石
JP6361089B2 (ja) 2013-04-22 2018-07-25 Tdk株式会社 R−t−b系焼結磁石
BR112015031725A2 (pt) 2013-06-17 2017-07-25 Urban Mining Tech Company Llc método para fabricação de um imã permanente de nd-fe-b reciclado
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering
JP6810026B2 (ja) 2015-03-25 2021-01-06 Tdk株式会社 希土類磁石
CN115083708A (zh) * 2021-03-10 2022-09-20 福建省长汀金龙稀土有限公司 一种钕铁硼磁体及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002297A1 (en) * 1979-04-18 1980-10-30 Namiki Precision Jewel Co Ltd Process for producing permanent magnet alloy
JPH07105289B2 (ja) 1986-03-06 1995-11-13 信越化学工業株式会社 希土類永久磁石の製造方法
US4849035A (en) * 1987-08-11 1989-07-18 Crucible Materials Corporation Rare earth, iron carbon permanent magnet alloys and method for producing the same
US5405455A (en) 1991-06-04 1995-04-11 Shin-Etsu Chemical Co. Ltd. Rare earth-based permanent magnet
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
DE69314098T2 (de) * 1992-06-24 1998-03-12 Sumitomo Spec Metals Verfahren zur Herstellung von R-Fe-B-Typ Sintermagneten durch Injektionsformen
JPH0696928A (ja) 1992-06-30 1994-04-08 Aichi Steel Works Ltd 希土類焼結磁石及びその製造方法
JP3157661B2 (ja) 1993-09-06 2001-04-16 住友特殊金属株式会社 R−Fe−B系永久磁石材料の製造方法
DE69434323T2 (de) * 1993-11-02 2006-03-09 Tdk Corp. Preparation d'un aimant permanent
US6139765A (en) * 1993-11-11 2000-10-31 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
US5647886A (en) * 1993-11-11 1997-07-15 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
JPH07245206A (ja) * 1994-03-04 1995-09-19 Tokin Corp 希土類永久磁石用粉末及びその製造方法
JPH09283312A (ja) * 1996-04-15 1997-10-31 Seiko Epson Corp ボンド磁石

Also Published As

Publication number Publication date
US7244318B2 (en) 2007-07-17
ATE555485T1 (de) 2012-05-15
JPWO2002061769A1 (ja) 2004-06-03
EP1365422A4 (en) 2008-12-31
EP1365422A1 (en) 2003-11-26
WO2002061769A1 (fr) 2002-08-08
CN1246864C (zh) 2006-03-22
EP1365422B1 (en) 2012-04-25
CN1489771A (zh) 2004-04-14
US20040050454A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3765793B2 (ja) 永久磁石の製造方法
JP5259351B2 (ja) 永久磁石とそれを用いた永久磁石モータおよび発電機
JP5504233B2 (ja) 永久磁石とその製造方法、およびそれを用いたモータおよび発電機
JP4805998B2 (ja) 永久磁石とそれを用いた永久磁石モータおよび発電機
JP7418598B2 (ja) 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
WO2013122255A1 (ja) R-t-b系焼結磁石
WO2004064085A1 (ja) 異方性磁石粉末の製造方法
JP3254229B2 (ja) 希土類永久磁石の製造方法
JP4951703B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
JP3715573B2 (ja) 磁石材料及びその製造方法
JP4900085B2 (ja) 希土類磁石の製造方法
JPWO2011030387A1 (ja) 磁石材料、永久磁石、およびそれを用いたモータと発電機
JP2000082610A (ja) 高電気抵抗率希土類永久磁石とその製造方法
JP2006310660A (ja) 高電気抵抗r−t−b系焼結磁石およびその製造方法
JP7130156B1 (ja) 希土類焼結磁石および希土類焼結磁石の製造方法、回転子並びに回転機
JP7214043B2 (ja) 希土類焼結磁石および希土類焼結磁石の製造方法、回転子並びに回転機
JP2011210838A (ja) 希土類焼結磁石及びその製造方法、並びに回転機
JP3143157B2 (ja) 希土類永久磁石の製造方法
JPH068488B2 (ja) 永久磁石合金
JP5235264B2 (ja) 希土類焼結磁石及びその製造方法
JP4687493B2 (ja) 希土類焼結磁石及びその製造方法
JPH05182813A (ja) 希土類永久磁石の製造方法
WO2024042638A1 (ja) 希土類焼結磁石、希土類焼結磁石の製造方法、回転子および回転機
JP2632122B2 (ja) 希土類永久磁石の製造方法
JP2021057564A (ja) R−t−b系焼結磁石の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

EXPY Cancellation because of completion of term