JP3729263B2 - 面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置 - Google Patents

面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置 Download PDF

Info

Publication number
JP3729263B2
JP3729263B2 JP2002279066A JP2002279066A JP3729263B2 JP 3729263 B2 JP3729263 B2 JP 3729263B2 JP 2002279066 A JP2002279066 A JP 2002279066A JP 2002279066 A JP2002279066 A JP 2002279066A JP 3729263 B2 JP3729263 B2 JP 3729263B2
Authority
JP
Japan
Prior art keywords
layer
mirror
reflectance
resonator
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002279066A
Other languages
English (en)
Other versions
JP2004119582A (ja
JP2004119582A5 (ja
Inventor
剛 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002279066A priority Critical patent/JP3729263B2/ja
Priority to US10/665,447 priority patent/US7126977B2/en
Priority to EP03021180A priority patent/EP1403987B1/en
Priority to DE60304961T priority patent/DE60304961T2/de
Publication of JP2004119582A publication Critical patent/JP2004119582A/ja
Publication of JP2004119582A5 publication Critical patent/JP2004119582A5/ja
Application granted granted Critical
Publication of JP3729263B2 publication Critical patent/JP3729263B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18391Aperiodic structuring to influence the near- or far-field distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • H01S5/18313Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、面発光型半導体レーザおよびその製造方法、ならびに該面発光型半導体レーザを含む光モジュールおよび光伝達装置に関する。
【0002】
【背景技術】
面発光型半導体レーザは、光通信や光演算、および各種センサの光源として大いに期待されている。光通信においては、現在、マルチモードファイバを用いた短距離の光通信用光源として面発光型半導体レーザを適用することが検討されており、将来は、シングルモードファイバを用いた長距離通信用の光源としても面発光型半導体レーザを適用することが期待されている。
【0003】
シングルモードファイバに適した光源の性質として、横モードがシングルモード(0次基本モード)であることがあげられる。したがって、シングルモードファイバを用いた光源として面発光型半導体レーザを適用する場合、安定したシングルモードでの発振が要求される。
【0004】
面発光型半導体レーザにてシングルモードの光を得る方法の一つとして、選択酸化によって電流狭窄層を形成し、該電流狭窄層によって電流狭窄と同時に光閉じ込めを行なう方法が知られている。例えば、AlGaAs系の層から形成された面発光型半導体レーザの場合、にAlの組成が高い層をあらかじめ多層膜ミラー中に形成しておき、この層を側面から酸化することによって、電流狭窄層を形成することができる。この電流狭窄層は、中央に残存するAlの組成が高い領域(アパーチャ部)と、その周辺に形成された酸化アルミニウムを含む領域(酸化狭窄部)とからなる。しかしながら、この方法では、アパーチャ部と、酸化狭窄部との屈折率の差が大きすぎるため、光閉じ込め効果が大きくなりすぎるおそれがある。このため、安定したシングルモードを得るためには、アパーチャ部の径を4μm以下に形成するのが望ましい。しかしながら、この場合、発光効率が低下するのに加えて、電流経路が制限されることによって素子抵抗が増加するという問題が生じるおそれがある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、横モードの安定した制御が可能な面発光型半導体レーザおよびその製造方法を提供することにある。
【0006】
また、本発明の目的は、前記面発光型半導体レーザを含む光モジュールおよび光伝達装置を提供することにある。
【0007】
【課題を解決するための手段】
1.第1の面発光型半導体レーザ
本発明の第1の面発光型半導体レーザは、
基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザであって、
前記共振器は、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーとを含み、
前記出射面の上に反射率調整層が形成され、
前記レーザ光の波長をλとしたとき、
前記第2ミラーは、光学的膜厚がmλ/2(mは自然数)である層を含み、
前記反射率調整層の光学的膜厚が(2m−1)λ/4(mは自然数)である。
【0008】
本願において、「光学的膜厚」とは、層の実際の膜厚に屈折率を乗じて得られる値をいう。例えば、レーザ光の波長がλであって、光学的膜厚がλ/2、屈折率nが1.4である層の場合、この層の実際の膜厚は、光学的膜厚/屈折率nと等しいことから、λ/2/1.4=0.357λである。なお、本願において、単に「膜厚」というときは、層の実際の膜厚をいうものとする。
【0009】
また、「基板と垂直方向に出射する」とは、前記基板において前記共振器の設置面と垂直方向に光を出射することをいう。
【0010】
本発明の第1の面発光型半導体レーザによれば、前記反射率調整層と、前記第2ミラーにおいて該反射率調整層の下方領域とからなる領域の反射率が、それ以外の領域の反射率よりも小さくなっている。
【0011】
すなわち、前記反射率調整層と、前記第2ミラーにおいて該反射率調整層の下方領域とからなる領域を第1領域とし、前記第2ミラーにおいて前記第1領域以外の領域を第2領域としたとき、前記第1領域における前記レーザ光の反射率を、前記第2領域における前記レーザ光の反射率よりも大きくすることができる。これにより、前記第2領域と比較して前記第1領域におけるレーザ発振の閾値を低減することができるため、横モードの安定した光を得ることが可能となる。
2.第2の面発光型半導体レーザ
本発明の第2の面発光型半導体レーザは、
基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザであって、
前記共振器に電流を注入するための第1電極および第2電極を含み、
前記第1電極は、少なくとも一部が前記共振器の上面に形成され、かつ、該共振器の上面に開口部を有し、
前記開口部内に前記出射面が設けられ、
前記出射面の上に反射率調整層が形成されている。
【0012】
本発明の第2の面発光型半導体レーザによれば、前記第1電極の少なくとも一部が前記共振器の上面に形成され、該共振器の上面に開口部を有し、この開口部内に設けられた出射面の上に前記反射率調整層が形成されている。このように、前記第1電極と前記反射率調整層とが異なる層にて形成されていることにより、前記第1電極および前記反射率調整層をそれぞれ、独立した形状および大きさに形成することができ、素子設計の自由度を高めることができる。
【0013】
この場合、前記共振器は、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーとを含み、前記反射率調整層と、前記第2ミラーにおいて該反射率調整層の下方領域とからなる領域を第1領域とし、前記第2ミラーにおいて前記第1領域以外の領域を第2領域としたとき、前記第1領域における前記レーザ光の反射率を、前記第2領域における前記レーザ光の反射率よりも大きくすることができる。これにより、前記第2領域と比較して前記第1領域におけるレーザ発振の閾値を低減することができるため、横モードの安定した光を得ることが可能となる。
【0014】
また、この場合、前記レーザ光の波長をλとしたとき、前記第2ミラーは、光学的膜厚がmλ/2(mは自然数)である層を含み、前記反射率調整層の光学的膜厚が(2m−1)λ/4(mは自然数)であることができる。この構成によれば、前記反射率調整層と、前記第2ミラーにおいて該反射率調整層の下方領域とからなる領域の反射率を高めることができ、該領域においてレーザ発振の閾値を効果的に低減することができる。これにより、横モードの安定した光を得ることが可能となる。
3.本発明の第1および第2の面発光型半導体レーザは、以下の態様(1)〜(7)をとることができる。
【0015】
(1)前記光学的膜厚がmλ/2である層が、前記第2ミラーの最上層を構成することができる。この構成によれば、前記第1領域における反射率を効果的に高めることができ、横モードの安定した光を確実に得ることが可能となる。
【0016】
(2)前記反射率調整層は、前記レーザ光に対して光学的に透明であることができる。この構成によれば、レーザ光を効率良く出射させることが可能となり、モードの制御が可能な高効率の面発光レーザを得ることができる。
【0017】
(3)前記反射率調整層の平面形状が円形であることができる。この場合、前記反射率調整層の直径が6μm以下であることができる。この構成によれば、高次モードのレーザ光が立ちにくくなるため、シングルモードの安定したレーザ光をより容易に得ることができる。よって、例えばシングルモードファイバを用いた光通信用の光源に適用可能となる。また、この場合、前記出射面は円形であり、前記反射率調整層を、前記出射面の中心軸と同軸上に設けることができる。この構成によれば、横モードが円形である安定したレーザ光を得ることができる。
【0018】
(4)前記反射率調整層は、熱硬化型樹脂または紫外線硬化型樹脂からなることができる。
【0019】
(5)前記反射率調整層の膜厚が一定でないように形成することができる。この場合、前記反射率調整層の膜厚を、前記第1電極との接触面近傍で大きくすることができる。
【0020】
(6)前記第2ミラーには、さらに、同心円状の平面形状を有する電流狭窄層が形成でき、前記電流狭窄層の内径円の面積を、前記反射率調整層の断面積より大きくすることができる。この構成によれば、前記電流狭窄層に起因する素子の抵抗値を小さくすることができるため、発光効率を高めることができる。さらに、前記電流狭窄層が形成されていることにより、横モードの制御と独立に、電流経路の制御をも行なうことができる。この結果、高効率で信頼性に優れた面発光レーザを得ることができる。
【0021】
(7)前記共振器は、少なくとも一部に柱状部を含むことができる。
4.第1の面発光型半導体レーザの製造方法
本発明の第1の面発光型半導体レーザの製造方法は、
基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザの製造方法であって、
(a)前記基板上に共振器を形成し、
前記共振器には、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーと、を形成し、
前記第2ミラーには、かつ光学的膜厚がmλ/2(mは自然数)である層を形成し、
(b)前記出射面の上に、光学的膜厚が(2m−1)λ/4(mは自然数)である反射率調整層を形成すること、を含む。
【0022】
本発明の第1の面発光型半導体レーザの製造方法によれば、横モードの安定した制御が可能な面発光型半導体レーザを容易に製造することができる。
【0023】
この場合、前記(b)において、前記出射面に対して液滴をインクジェット法にて吐出して前記反射率調整層の前駆体を形成した後、該前駆体を硬化させることにより、前記出射面の上に前記反射率調整層を形成することができる。ここで、前記前駆体は、例えば、熱硬化型樹脂または紫外線硬化型樹脂等、エネルギー線を付与することによって硬化する材料からなることができる。この方法によれば、
インクジェット法を用いて前記反射率調整層を形成することにより、CVD法や蒸着、エッチング等を用いて前記反射率調整層を形成する場合と比較して、素子に加わるダメージを少なくすることができるうえ、より簡易に前記反射率調整層を形成することができる。また、インクジェット法を用いて前記反射率調整層を形成する場合、液滴の量を調整することによって、前記反射率調整層の膜厚を容易かつ厳密に制御することができる。
【0024】
また、この場合、前記光学的膜厚がmλ/2である層を、前記第2ミラーの最上層に形成することができる。
5.第2の面発光型半導体レーザの製造方法
本発明の第2の面発光型半導体レーザの製造方法は、
基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザの製造方法であって、
(a)前記基板上に共振器を形成し、
(b)前記共振器に電流を注入するための第1電極および第2電極を形成し、その際、前記第1電極は、少なくとも一部が前記共振器の上面に形成され、かつ、該共振器の上面に開口部を設けるように形成され、
(c)前記出射面の上に反射率調整層を形成すること、を含む。
【0025】
本発明の第2の面発光型半導体レーザの製造方法によれば、横モードの安定した制御が可能な面発光型半導体レーザを容易に製造することができる。
【0026】
この場合、前記(c)において、前記出射面に対して液滴をインクジェット法にて吐出して前記反射率調整層の前駆体を形成した後、該前駆体を硬化させることにより、前記出射面の上に前記反射率調整層を形成することができる。ここで、前記前駆体は、例えば、熱硬化型樹脂または紫外線硬化型樹脂等、エネルギー線を付与することによって硬化する材料からなることができる。この方法によれば、
第1の面発光型半導体レーザの製造方法の欄にて、インクジェット法を用いて前記反射率調整層を形成する場合の作用効果について説明したのと同様の作用効果を有する。
【0027】
また、この場合、前記(a)において、前記共振器を、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーとを含むように形成し、
前記第2ミラーに、光学的膜厚がmλ/2(mは自然数)である層を形成し、
前記(c)において、前記反射率調整層の光学的膜厚が(2m−1)λ/4(mは自然数)となるように形成することができる。
【0028】
さらに、この場合、前記光学的膜厚がmλ/2である層を、前記第2ミラーの最上層に形成することができる。
5.光モジュールおよび光伝達装置
本発明の面発光型半導体レーザと、光導波路とを含む光モジュールに適用することができる。また、前記光モジュールを含む光伝達装置に適用することができる。
【0029】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、図面を参照しながら説明する。
【0030】
[第1の実施の形態]
1.面発光型半導体レーザの構造
図1は、本発明を適用した第1の実施の形態に係る面発光型半導体レーザ(以下、「面発光レーザ」ともいう)100を模式的に示す断面図である。図2は、本発明を適用した第1の実施の形態に係る面発光レーザ100を模式的に示す平面図である。図1は、図2のA−A線における断面を示す図である。
【0031】
本実施の形態の面発光レーザ100は、図1に示すように、基板(本実施形態ではn型GaAs基板)101と、基板101上に形成された垂直共振器(以下「共振器」とする)140とを含む。この面発光レーザ100は、共振器140の上面に設けられた出射面108から、基板101と垂直方向にレーザ光を出射できる。
【0032】
次に、この面発光レーザ100の各構成要素について説明する。
【0033】
本実施の形態においては、この共振器140は柱状の半導体堆積体(以下「柱状部」とする)130を含み、柱状部130の側面は絶縁層106で覆われている。
【0034】
共振器140には柱状部130が形成されている。ここで、柱状部130とは、共振器140の一部であって、少なくとも第2ミラー104を含む柱状の半導体堆積体をいう。この柱状部130は絶縁層106で埋め込まれている。すなわち、柱状部130の側面は絶縁層106で取り囲まれている。さらに、柱状部130上には第1電極107が形成されている。
【0035】
共振器140は、例えば、n型Al0.9Ga0.1As層とn型Al0.15Ga0.85As層とを交互に積層した40ペアの分布反射型多層膜ミラー(以下、「第1ミラー」という)102、GaAsウエル層とAl0.3Ga0.7Asバリア層からなり、ウエル層が3層で構成される量子井戸構造を含む活性層103、およびp型Al0.9Ga0.1As層とp型Al0.15Ga0.85As層とを交互に積層した25ペアの分布反射型多層膜ミラー(以下、「第2ミラー」という)104が順次積層されて構成されている。なお、第1ミラー102、活性層103、および第2ミラー104を構成する各層の組成および層数はこれに限定されるわけではない。
【0036】
第1ミラー102を構成する各層は、出射面108から出射されるレーザ光の波長をλとしたとき、λ/4の奇数倍(例えばλ/4)の光学的膜厚(本実施の形態においては、図1に示すZ方向と平行な方向の膜厚)を有する。また、第2ミラー104は、光学的膜厚がmλ/2(mは自然数)である層を含み、この層を除いて、第2ミラー104を構成する各層は、λ/4の奇数倍(例えばλ/4)の光学的膜厚を有する。本実施の形態においては、第2ミラー104において、光学的膜厚がmλ/2(mは自然数)である層が最上層を構成する場合について示す。
【0037】
第2ミラー104は、例えばCがドーピングされることによりp型にされ、第1ミラー102は、例えばSiがドーピングされることによりn型にされている。したがって、第2ミラー104、不純物がドーピングされていない活性層103、および第1ミラー102により、pinダイオードが形成される。
【0038】
また、本実施の形態においては、共振器140のうち面発光レーザ100のレーザ光出射側から第1ミラー102の途中にかけての部分が、レーザ光出射側からから見て円形の形状にエッチングされて柱状部130が形成されている場合について示す。なお、本実施の形態では、柱状部130の平面形状を円形としたが、この形状は任意の形状をとることが可能である。
【0039】
さらに、第2ミラー104を構成する層のうち活性層103に近い領域に、酸化アルミニウムからなる電流狭窄層105を形成することができる。この電流狭窄層105は、リング状に形成されている。すなわち、この電流狭窄層105は、平面形状が同心円状である。換言すれば、この電流狭窄層105を、図1におけるX−Y平面に平行な面で切断した場合における断面が同心円状である。
【0040】
電流狭窄層105の内径円の面積は、反射率調整層110(後述する)の断面積よりも小さくすることができる。この構成によれば、電流狭窄層105に起因する素子の抵抗値を小さくすることができるため、発光効率を高めることができる。さらに電流狭窄層105が形成されていることにより、横モードの制御と独立に、電流経路の制御をも行なうことができる。この結果、高効率で信頼性に優れた面発光レーザを得ることができる。
【0041】
また、本実施の形態に係る面発光レーザ100においては、柱状部130の側面ならびに第1ミラー102の上面を覆うようにして、絶縁層106が形成されている。
【0042】
この面発光レーザ100の製造工程においては、柱状部130の側面を覆う絶縁層106を形成した後、柱状部130の上面および絶縁層106の上面に第1電極107を、基板101の裏面101bに第2電極109を、それぞれ形成する。これらの電極形成の際には一般的に、アニール処理を約400℃で行なう(後述する製造プロセスを参照)。したがって、樹脂を用いて絶縁層106を形成する場合、このアニール処理工程に耐え得るためには、絶縁層106を構成する樹脂は耐熱性に優れたものであることが必要とされる。この要求を満たすためには、絶縁層106を構成する樹脂がポリイミド樹脂、フッ素系樹脂、アクリル樹脂、またはエポキシ樹脂等であることが望ましく、特に、加工の容易性や絶縁性の観点から、ポリイミド樹脂であるのが望ましい。
【0043】
第1電極107および第2電極109は、共振器140に電流を注入するために設けられている。具体的には、この第1電極107および第2電極109によって活性層103に電流が注入される。
【0044】
第1電極107は、図1に示すように、少なくとも一部が柱状部130の上面に形成されている。具体的には、第1電極107は、柱状部130の上面および絶縁層106の上に形成されている。第1電極107は、例えばAuとZnの合金とAuとの積層膜から形成することができる。
【0045】
また、第1電極107は、共振器130の上面130aに開口部118を有する。すなわち、柱状部130の上面130aの中央部には、第1電極107が形成されていない部分(開口部118)が設けられている。この開口部118内に出射面108が設けられている。この出射面108がレーザ光の出射口となる。本実施の形態の面発光レーザ100においては、出射面108は円形である場合を示す。
【0046】
さらに、基板101の裏面101bには、第2電極109が形成されている。すなわち、図1に示す面発光レーザ100では、柱状部130上で第1電極107と接合し、かつ、基板101の裏面101bで第2電極109と接合している。第2電極109は、例えばAuとGeの合金とAuとの積層膜から形成することができる。
【0047】
出射面108の上には反射率調整層110が形成されている。この反射率調整層110は、その平面形状を円形に形成することができる。この場合、反射率調整層110の直径を6μm以下にすることができる。この構成によれば、高次モードのレーザ光が立ちにくくなるため、シングルモードの安定したレーザ光をより容易に得ることができる。よって、例えばシングルモードファイバを用いた光通信用の光源に適用可能となる。また、この場合、この反射率調整層110は、出射面108の中心軸と同軸状に設けることができる。この構成によれば、横モードが円形である安定したレーザ光を得ることができる。
【0048】
また、この反射率調整層110は、出射面108から出射されるレーザ光に対して透明な材質から形成することができる。このように、反射率調整層110が前記レーザ光に対して透明な材質からなることにより、レーザ光を効率良く出射させることが可能となり、モードの制御が可能な高効率の面発光レーザを得ることができる。
【0049】
反射率調整層110は、例えば熱または光等のエネルギーを付加することによって硬化可能な液体材料(例えば紫外線硬化型樹脂または熱硬化型樹脂)からなる。紫外線硬化型樹脂としては、例えば紫外線硬化型のアクリル系樹脂およびエポキシ系樹脂が挙げられる。また、熱硬化型樹脂としては、熱硬化型のポリイミド系樹脂の前駆体等が例示できる。
【0050】
紫外線硬化型樹脂は、短時間の紫外線照射によって硬化する。このため、熱工程など素子に対するダメージを与えやすい工程を経ずに硬化させることができる。したがって、紫外線硬化型樹脂を用いて反射率調整層110を形成する場合、素子へ与える影響を少なくすることができる。
【0051】
また、この反射率調整層110は、光学的膜厚d(図3参照)が(2m−1)λ/4(mは自然数)である。
【0052】
図1には、面発光レーザ100とともに、第2ミラー104の反射率の断面プロファイルが示されている。また、図1における第2ミラー104近傍の拡大断面図を図3に示す。図3に示すように、反射率調整層110と、第2ミラー104において反射率調整層110の下方領域とからなる領域を第1領域191とし、第2ミラー104において第1領域191以外の領域を第2領域192とする。具体的には、図3において、網掛けで示した領域が第1領域191であり、斜線で示した領域が第2領域192である。ここで、第1領域191におけるレーザ光の反射率が、第2領域192におけるレーザ光の反射率よりも大きくなるように形成されている。図1および図3に、第1領域191および第2領域192それぞれにおける反射率の分布を示す。図1および図3において、矢印の向きに進むほど反射率が大きいことを示す。
【0053】
前述したように、第2ミラー104は、光学的膜厚がmλ/2である層を含み、この層以外の第2ミラー104を構成する各層は、λ/4の奇数倍の光学的膜厚を有する。第2ミラー104を構成するすべての層の光学的膜厚がλ/4の奇数倍である場合と比較すると、本実施の形態の面発光レーザ100のように、この第2ミラー104が、光学的膜厚がmλ/2である層を含み、かつ、該層以外のすべての光学的膜厚がλ/4の奇数倍である場合、第2ミラー104の反射率は低い。しかしながら、この場合において、さらに、出射面108の上に、光学的膜厚が(2m−1)λ/4である反射率調整層110が形成されることにより、第1領域191の反射率を大きくすることができる。これにより、第1領域191におけるレーザ光の反射率を、第2領域192におけるレーザ光の反射率よりも大きくなるように形成できる。その結果、第2領域192よりも第1領域191のほうが、より効率良くレーザ発振が生じるため、シングルモードの光を効率良く得ることができる。
2.面発光型半導体レーザの動作
本実施の形態の面発光レーザ100の一般的な動作を以下に示す。なお、下記の面発光型半導体レーザの駆動方法は一例であり、本発明の趣旨を逸脱しない限り、種々の変更が可能である。
【0054】
まず、第1電極107と第2電極109とで、pinダイオードに順方向の電圧を印加すると、活性層103において、電子と正孔との再結合が起こり、係る再結合による発光が生じる。そこで生じた光が第2ミラー104と第1ミラー102との間を往復する際に誘導放出が起こり、光の強度が増幅される。光利得が光損失を上まわると、レーザ発振が起こり、柱状部130上面にある出射面108から反射率調整層110を経て、基板101に対して垂直方向(図1に示すZ方向)にレーザ光が出射される。ここで、「基板101に対して垂直方向」とは、基板101の表面101a(図1ではX−Y平面と平行な面)に対して垂直な方向(図1ではZ方向)をいう。
3.面発光型半導体レーザの製造プロセス
次に、本発明を適用した第1の実施の形態に係る面発光レーザ100の製造方法の一例について、図4〜図10を用いて説明する。図4〜図10は、図1〜図3に示す本実施の形態の面発光レーザ100の一製造工程を模式的に示す断面図であり、それぞれ図1に示す断面に対応している。
【0055】
(1)まず、n型GaAsからなる基板101の表面に、組成を変調させながらエピタキシャル成長させることにより、半導体多層膜150を形成する(図4参照)。
【0056】
ここで、半導体多層膜150は例えば、n型Al0.9Ga0.1As層とn型Al0.15Ga0.85As層とを交互に積層した40ペアの第1ミラー102、GaAsウエル層とAl0.3Ga0.7Asバリア層からなり、ウエル層が3層で構成される量子井戸構造を含む活性層103、およびp型Al0.9Ga0.1As層とp型Al0.15Ga0.85As層とを交互に積層した25ペアの第2ミラー104からなる。この際、第2ミラー104の最上層のみ、光学的膜厚がmλ/2になるように成長させる。前記第2ミラー104の最上層を除いて、第1ミラー102および第2ミラー104を構成する各層は、光学的膜厚がλ/4の奇数倍に形成される。これらの層を順に基板101上に堆層させることにより、半導体多層膜150が形成される。なお、第2ミラー104を成長させる際に、活性層103近傍の少なくとも1層を、AlAs層またはAl組成が0.95以上のAlGaAs層(Al組成が高い層)に形成する。この層は後に酸化され、電流狭窄層105となる。また、第2ミラー104の最表面の層は、キャリア密度を高くし、電極(後述する第1電極107)とのオーミック接触をとりやすくしておくのが望ましい。
【0057】
エピタキシャル成長を行なう際の温度は、成長方法や原料、基板101の種類、あるいは形成する半導体多層膜150の種類、厚さ、およびキャリア密度によって適宜決定されるが、一般に、450℃〜800℃であるのが好ましい。また、エピタキシャル成長を行なう際の所要時間も、温度と同様に適宜決定される。また、エピタキシャル成長させる方法としては、有機金属気相成長(MOVPE:Metal−Organic Vapor Phase Epitaxy)法や、MBE法(Molecular Beam Epitaxy)法、あるいはLPE法(Liquid Phase Epitaxy)を用いることができる。
【0058】
(2)続いて、柱状部130を形成する(図5参照)。
【0059】
具体的には、半導体多層膜150上に、フォトレジスト(図示しない)を塗布した後フォトリソグラフィ法により該フォトレジストをパターニングすることにより、所定のパターンのレジスト層R100を形成する。ついで、このレジスト層R100をマスクとして、例えばドライエッチング法により、第2ミラー104、活性層103、および第1ミラー102の一部をエッチングして、柱状の半導体堆積体(柱状部)130を形成する。以上の工程により、図5に示すように、基板101上に、柱状部130を含む共振器140が形成される。その後、レジスト層R100を除去する。
【0060】
(3)次いで、必要に応じて、電流狭窄層105を形成する(図6参照)。
【0061】
具体的には、図6に示すように、例えば400℃程度の水蒸気雰囲気中に、上記工程によって共振器140が形成された基板101を投入することにより、前述の第2ミラー104中のAl組成が高い層を側面から酸化して、電流狭窄層105を形成することができる。酸化レートは、炉の温度、水蒸気の供給量、酸化すべき層(前記Al組成が高い層)のAl組成および膜厚に依存する。酸化により形成される電流狭窄層を備えた面発光レーザでは、駆動する際に、電流狭窄層が形成されていない部分(酸化されていない部分)のみに電流が流れる。したがって、酸化によって電流狭窄層を形成する工程において、形成する電流狭窄層105の範囲を制御することにより、電流密度の制御が可能となる。
【0062】
(4)次いで、柱状部130を取り囲む絶縁層106を形成する(図7参照)。
【0063】
ここでは、絶縁層106を形成するための材料として、ポリイミド樹脂を用いた場合について説明する。まず、例えばスピンコート法を用いて、樹脂前駆体(ポリイミド前駆体)を共振器140上に塗布して、樹脂前駆体層(図示せず)を形成する。この際、前記樹脂前駆体層の膜厚が柱状部130の高さより大きくなるように形成する。なお、前記樹脂前駆体層の形成方法としては、前述したスピンコート法のほか、ディッピング法、スプレーコート法、インクジェット法等の公知技術が利用できる。
【0064】
次いで、この基板を、例えばホットプレート等を用いて加熱して溶媒を除去した後、柱状部130の上面130a(図7参照)を露出させる。柱状部130の上面130aを露出させる方法としては、CMP法、ドライエッチング法、ウエットエッチング法などが利用できる。この後、前記樹脂前駆体層を約350℃の炉内にてイミド化させることで、絶縁層106が形成される。なお、イミド化工程を経てほぼ完全に硬化させた絶縁層をエッチングして、柱状部130の上面130aを露出させてもよい。
【0065】
(5)次に、活性層103に電流を注入するための第1電極107および第2電極109、およびレーザ光の出射面108を形成する(図8参照)。
【0066】
まず、第1電極107および第2電極109を形成する前に、必要に応じて、プラズマ処理法等を用いて、柱状部130の上面130aを洗浄する。これにより、より安定した特性の素子を形成することができる。つづいて、例えば真空蒸着法により絶縁層106および柱状部130の上面130a(図7参照)に、例えばAuとZnの合金とAuとの積層膜(図示せず)を形成する。この場合、最表面にAu層を形成する。次いで、リフトオフ法により、柱状部130の上面130aに、前記積層膜が形成されていない部分を形成する。この部分が開口部118となる(図8参照)。出射面108は、開口部118内に設けられる。すなわち、柱状部130の上面130aのうち開口部118内の領域が出射面108として機能する。なお、前記工程において、リフトオフ法のかわりに、ドライエッチング法を用いることもできる。
【0067】
また、基板101の裏面101bに、例えば真空蒸着法により、例えばAuとGeの合金とAuとの積層膜(図示せず)を形成する。次いで、アニール処理する。アニール処理の温度は電極材料に依存する。本実施形態で用いた電極材料の場合は、通常400℃前後で行なう。
【0068】
(6)次いで、出射面108の上に反射率調整層110を形成する(図9および図10参照)。
【0069】
具体的には、まず、開口部118の内側に、フォトリソグラフィ法により、レジスト層R200を形成する。このレジスト層R200は、開口部218を有する。この開口部218は、反射率調整層110を形成するために利用される。具体的には、この開口部218は円形の平面形状を有し、その中心軸が開口部118の中心軸と一致するように形成される。
【0070】
次いで、この開口部218に対して、インクジェット法により液滴110aを吐出して、反射率調整層110(図1〜図3参照)の前駆体110bを形成した後(図10参照)、この前駆体110bを硬化させることにより、出射面108の上に反射率調整層110を形成する。ここで、前駆体110bは、エネルギー線を付与することによって硬化する材料、例えば熱硬化型樹脂または紫外線硬化型樹脂からなる。
【0071】
インクジェットの吐出方法としては、例えば、(i)熱により液体(ここではレンズ材)中の気泡の大きさを変化させることで圧力を生じ、液体を吐出する方法、(ii)圧電素子により生じた圧力によって液体を吐出させる方法とがある。圧力の制御性の観点からは、前記(ii)の方法が望ましい。
【0072】
インクジェットヘッド120のノズル112の位置と、液滴110aの吐出位置とのアライメントは、一般的な半導体集積回路の製造工程における露光工程や検査工程で用いられる公知の画像認識技術を用いて行なわれる。例えば、図9に示すように、インクジェットヘッド120のノズル112の位置と、面発光レーザ100の開口部118とのアライメントを画像認識により行なう。アライメント後、インクジェットヘッド120に印加する電圧を制御した後、液滴110aを吐出する。これにより、出射面108の上に前駆体110bを形成する(図10参照)。
【0073】
この場合、ノズル112から吐出される液滴110aの吐出角度にはある程度のばらつきがあるが、液滴110aが着弾した位置が開口部118の内側であれば、レジスト層R200で囲まれた領域に液滴110aが濡れ広がり、自動的に位置の補正がなされる。
【0074】
以上の工程を行なった後、図10に示すように、エネルギー線(例えば紫外線)113を照射することにより、前駆体110bを硬化させる。これにより出射面108の上に、反射率調整層110を形成する(図1〜図3参照)。最適な紫外線の波長および照射量は、前駆体110bの材質に依存する。例えば、アクリル系紫外線硬化樹脂を用いて前駆体110bを形成した場合、波長350nm程度、強度10mWの紫外線を5分間照射することで硬化を行なう。その後、レジスト層R200を除去する。
【0075】
以上のプロセスにより、図1〜図3に示す面発光レーザ100が得られる。
4.作用および効果
本実施の形態に係る面発光レーザ100は、以下に示す作用および効果を有する。
【0076】
(1)反射率調整層110と、第2ミラー104において反射率調整層110の下方領域とからなる領域の反射率が、それ以外の領域の反射率よりも小さくなっている。具体的には、レーザ光の波長をλとしたとき、第2ミラー104が、光学的膜厚がmλ/2である層を含み、反射率調整層110の光学的膜厚が(2m−1)λ/4であることにより、第1領域191におけるレーザ光の反射率を、第2領域192におけるレーザ光の反射率よりも大きくなるように形成できる(図3参照)。これにより、第2領域192と比較して第1領域191におけるレーザ発振の閾値を低減することができるため、横モードの安定した光を得ることが可能となる。
【0077】
特に、光学的膜厚がmλ/2である層が、第2ミラー104の最上層を構成することにより、第1領域191における反射率を効果的に高めることができ、横モードの安定した光を確実に得ることが可能となる。
【0078】
(2)第1電極107の少なくとも一部が共振器130の上面130aに形成され、共振器130の上面130aに開口部118を有し、この開口部118内に設けられた出射面108の上に反射率調整層110が形成されている。すなわち、第1電極107と反射率調整層110とが異なる層にて形成されていることにより、第1電極107および反射率調整層110をそれぞれ、独立した形状および大きさに形成することができ、素子設計の自由度を高めることができる。
【0079】
(3)反射率調整層110が熱硬化型樹脂または紫外線硬化型樹脂からなる。また、この反射率調整層110は、インクジェット法にて形成することができる。
インクジェット法を用いて反射率調整層110を形成することにより、CVD法や蒸着、エッチング等を用いて反射率調整層110を形成する場合と比較して、素子に加わるダメージを少なくすることができるうえ、より簡易に反射率調整層110を形成することができる。また、インクジェット法を用いて反射率調整層110を形成する場合、液滴の量を調整することによって、反射率調整層110の膜厚を容易かつ厳密に制御することができる。
【0080】
[第2の実施の形態]
1.面発光型半導体レーザの構造
図11は、本発明を適用した第2の実施の形態に係る面発光レーザ200を模式的に示す断面図である。図12は、本発明を適用した第2の実施の形態に係る面発光レーザ200を模式的に示す平面図である。図11は、図12のA−A線における断面を示す図である。
【0081】
本実施の形態に係る面発光レーザ200は、反射率調整層210が第1電極107の開口部118全体に形成されている点以外は、第1の実施の形態に係る面発光レーザ100とほぼ同様の構造を有する。第1の実施の形態に係る面発光レーザ100と実質的に同じ機能を有する構成要素には同一符号を付して、その詳細な説明を省略する。
【0082】
図11には、面発光レーザ200とともに、第2ミラー104の反射率の断面プロファイルが示されている。また、図11における第2ミラー104近傍の拡大断面図を図13に示す。図13に示すように、反射率調整層210と、第2ミラー104において反射率調整層210の下方領域とからなる領域を第1領域291とし、第2ミラー104において第1領域291以外の領域を第2領域292とする。具体的には、図13において、網掛けで示した領域が第1領域291であり、斜線で示した領域が第2領域292である。
【0083】
この面発光レーザ200においても、第1の実施の形態の面発光レーザ100と同様に、第1領域291におけるレーザ光の反射率を、第2領域292におけるレーザ光の反射率よりも大きくなるように形成されている。これにより、第2領域292と比較して第1領域291においては、より効率良くレーザ発振が生じるため、シングルモードの光を効率良く得ることができる。
【0084】
例えば、反射率調整層210は、第1電極107との接触面近傍を除く部分の光学的膜厚d(図13参照)を、第1の実施の形態の反射率調整層110と同様に、(2m−1)λ/4(mは自然数)に形成することができる。また、この反射率調整層210は、第1の実施の形態の反射率調整層110と同様の材質からなる。
【0085】
さらに、図11および図13に示すように、反射率調整層210は膜厚が一定ではなく、第1電極107との接触面近傍でその膜厚が大きくなるように形成することができる。これにより、第1電極107との接触面近傍では、該接触面に近づくにつれて、第1領域291の反射率が低下していく(図13参照)。
2.面発光型半導体レーザの製造プロセス
第2の実施の形態に係る面発光レーザ200は、途中の工程(電極107,109を形成する工程)まで、第1の実施の形態に係る面発光レーザ100の製造工程を用いて形成することができる。このため、電極形成工程までの説明は省略する。
【0086】
前記電極形成後、第1の実施の形態においては、反射率調整層110を形成する工程において、開口部118にレジスト層R200を形成して、レジスト層R200に形成された開口部218に液滴110aを吐出したのに対し(図9参照)、本実施の形態においては、反射率調整層210を形成する工程において、レジスト層R200を形成せずに、開口部118(図9参照)内に直接液滴110aを吐出して、反射率調整層の前駆体(図示せず)を形成する。これ以降の工程(硬化工程)は、第1の実施の形態と同様である。これにより、反射率調整層210(図11〜図13参照)を形成する。
【0087】
なお、開口部118に液滴110aを吐出する前に、必要に応じて、出射面108および開口部118の側面に対して、液滴110aとの濡れ性を高めるための処理を行なうことができる。
3.面発光型半導体レーザの動作および作用効果
本実施の形態の面発光レーザ200の動作は、第1の実施の形態の面発光レーザ100と基本的に同様であるため、説明は省略する。
【0088】
また、本実施の形態に係る面発光レーザ200およびその製造方法は、第1の実施の形態に係る面発光レーザ100およびその製造方法と実質的に同じ作用および効果を有する。
【0089】
さらに、本実施の形態に係る面発光レーザ200では、開口部118に直接液滴110aを吐出する工程を経て、反射率調整層210が形成される。このため、レジスト層R200を用いることなく、反射率調整層210を形成することができる。これにより、簡易な方法にて、反射率の高い領域が必然的に限定され、安定した横モードの制御が可能な面発光レーザを得ることができる。
【0090】
[第3の実施の形態]
1.面発光型半導体レーザの構造
図14は、本発明を適用した第3の実施の形態に係る面発光レーザ300を模式的に示す断面図である。図15は、本発明を適用した第3の実施の形態に係る面発光レーザ300を模式的に示す平面図である。図14は、図15のA−A線における断面を示す図である。
【0091】
本実施の形態に係る面発光レーザ300は、第2電極119が第1電極107とともに、基板101の表面101aの上方に形成されている点以外は、第1の実施の形態に係る面発光レーザ100とほぼ同様の構造を有する。第1の実施の形態に係る面発光レーザ100と実質的に同じ機能を有する構成要素には同一符号を付して、その詳細な説明を省略する。
【0092】
この面発光レーザ300では、基板101の表面101aの上方に、第1電極107および第2電極119の2つのパッドが形成されている。開口部111は、図14に示すように、少なくとも第1ミラー102まで到達するように形成されている。
2.面発光型半導体レーザの製造プロセス
本実施の形態に係る面発光レーザ300は、途中の工程まで、第1の実施の形態に係る面発光レーザ100の製造工程を用いて形成される。すなわち、前述した第1の実施の形態に係る面発光レーザ100の製造工程において、共振器140の上に絶縁層106を形成した後(図7参照)、絶縁層106に開口部111(図14参照)を形成する。開口部111の形成方法としては、ウエットエッチング法やドライエッチング法等が例示できる。必要に応じて、開口部111の底面に相当する第1ミラー102の露出面をエッチングしてもよい。
【0093】
次いで、第1の実施の形態と同様に第1電極107を形成する。さらに、開口部111の底面から絶縁層106の上面にかけて第2電極119を形成する。第2電極119は、第1の実施の形態の面発光レーザ100の第2電極109を形成するための材料と同様の材料を用いることができる。また、本実施の形態において、第2電極119を形成する場合、例えばリフトオフ法を用いて、開口部111の底面に相当する第1ミラー102の露出面から絶縁層106の上面に至るまでをカバーするようにパターニングを行なう。以降の工程(反射率調整層110を形成する工程)は、第1の実施の形態と同様である。以上の工程により、面発光レーザ300を形成することができる。
3.面発光型半導体レーザの動作および作用効果
本実施の形態の面発光レーザ300の動作は、第1の実施の形態の面発光レーザ100と基本的に同様であるため、説明は省略する。
【0094】
さらに、本実施の形態に係る面発光レーザ300では、第1電極107と第2電極119とがいずれも、基板101の表面101aの上方に形成されている。これにより、例えば、第1電極107および第2電極119の上にバンプを介して駆動素子等に実装することができる。これにより、ワイヤ等を介さずに素子を駆動させることができ、いわゆるフェイスダウン構造の実装を達成することができる。また、第1電極107および第2電極119は、同一面上に形成されている。このように、同一面上に複数のパッドが形成されていることにより、安定した実装が可能になる。
【0095】
[第4の実施の形態]
図16は、本発明を適用した第4の実施の形態に係る光モジュールを模式的に説明する図である。本実施の形態に係る光モジュールは、構造体1000(図16参照)を含む。この構造体1000は、第1の実施の形態に係る面発光レーザ100(図1参照)、プラットフォーム1120、第1の光導波路1130およびアクチュエータ1150を有する。また、この構造体1000は、第2の光導波路1302を有する。第2の光導波路1302は、基板1308の一部をなす。第2の光導波路1302には、接続用光導波路1304を光学的に接続してもよい。接続用光導波路1304は、光ファイバであってもよい。また、プラットフォーム1120は、樹脂1306によって基板1308に固定されている。
【0096】
本実施の形態の光モジュールでは、面発光レーザ100(出射面108・図1参照)から光が出射した後、第1および第2の光導波路1130,1302(および接続用光導波路1304)を通して、受光素子(図示せず)にこの光が受光される。
【0097】
[第5の実施の形態]
図17は、本発明を適用した第5の実施の形態に係る光伝達装置を説明する図である。本実施の形態では、第1の光導波路1130と受光素子220との間に、複数の第3の光導波路1230,1310,1312を有する。また、本実施の形態に係る光伝達装置は、複数(2つ)の基板1314,1316を有する。
【0098】
本実施の形態では、面発光レーザ100側の構成(面発光レーザ100、プラットフォーム1120、第1の光導波路1130、第2の光導波路1318、アクチュエータ1150を含む。)と、受光素子220側の構成(受光素子220、プラットフォーム1220、第3の光導波路1230,1310を含む。)との間に、第3の光導波路1312が配置されている。第3の光導波路1312として、光ファイバなどを使用して、複数の電子機器間の光伝達を行なうことができる。
【0099】
例えば、図18において、光伝達装置1100は、コンピュータ、ディスプレイ、記憶装置、プリンタ等の電子機器1102を相互に接続するものである。電子機器1102は、情報通信機器であってもよい。光伝達装置1100は、光ファイバ等の第3の光導波路1312を含むケーブル1104を有する。光伝達装置1100は、ケーブル1104の両端にプラグ1106が設けられたものであってもよい。それぞれのプラグ1106内に、面発光レーザ100,受光素子220側の構成が設けられる。いずれかの電子機器1102から出力された電気信号は、発光素子によって光信号に変換され、光信号はケーブル1104を伝わり、受光素子によって電気信号に変換される。電気信号は、他の電子機器1102に入力される。こうして、本実施の形態に係る光伝達装置1100によれば、光信号によって、電子機器1102の情報伝達を行なうことができる。
【0100】
図19は、本発明を適用した実施の形態に係る光伝達装置の使用形態を示す図である。光伝達装置1110は、電子機器1112間を接続する。電子機器1112として、液晶表示モニター又はディジタル対応のCRT(金融、通信販売、医療、教育の分野で使用されることがある。)、液晶プロジェクタ、プラズマディスプレイパネル(PDP)、ディジタルTV、小売店のレジ(POS(Point of Sale Scanning)用)、ビデオ、チューナー、ゲーム装置、プリンタ等が挙げられる。
【0101】
なお、図18および図19に示す光伝達装置において、面発光レーザ100のかわりに、面発光レーザ200(図11〜図13参照),300(図14および図15参照)を用いた場合でも、同様の作用および効果を奏することができる。
【0102】
[第6の実施の形態]
図20は、本発明を適用した第6の実施の形態に係る光伝達装置を説明する図である。本実施の形態では、光伝達装置がICチップ間光インターコネクション装置2000である場合を例にとり説明する。
1.光伝達装置の構造
本実施の形態の光インターコネクション装置2000は、複数のICチップが積層されて形成されている。本実施の形態の光インターコネクション装置2000では、図20に示すように、ICチップが2つ積層されている例を示したが、積層されるICチップの数はこれに限定されるわけではない。
【0103】
この光インターコネクション装置2000は、積層されたICチップ501,502間でレーザ光521,522が伝送され、データのやり取りが行われる。ICチップ501,502はそれぞれ、基板(例えばシリコン基板)511,512と、この基板511,512にそれぞれ形成されたIC領域531,532とを含む。ICチップ501,502としては、CPUやメモリ、ASICなどの各種のICが例示できる。
【0104】
ICチップ501においては、基板511上に、第1の実施の形態に係る面発光レーザ100および光検出器541が設置されている。同様に、ICチップ502においては、基板512上に、第1の実施の形態に係る面発光レーザ100および光検出器542が設置されている。なお、本実施の形態においては、第1の実施の形態に係る面発光レーザ100を基板511,512にそれぞれ設置した場合について示したが、面発光レーザ100の一方および両方について、第2および第3の面発光レーザ200,300をかわりに設置することもできる。
2.光伝達装置の動作
次に、この光インターコネクション装置2000の動作について、図20を参照して説明する。
【0105】
この光インターコネクション装置2000において、ICチップ501のIC領域531で電気的に処理された信号は、面発光レーザ100の共振器140(図1参照;図20では図示せず)でレーザ光パルス信号に変換された後、ICチップ502の光検出器542へと送られる。光検出器542は、受信したレーザ光パルスを電気信号へと変換してIC領域532へ送る。
【0106】
一方、ICチップ502に形成された面発光レーザ100から光検出器541へとレーザ光を送る場合も同様に動作する。すなわち、この光インターコネクション装置2000において、ICチップ502のIC領域532で電気的に処理された信号は、面発光レーザ100の共振器140でレーザ光パルス信号に変換された後、ICチップ501の光検出器541へと送られる。光検出器541は、受信したレーザ光パルスを電気信号へと変換してIC領域531へ送る。こうしてICチップ501、502はレーザ光を介してデータのやり取りを行なう。
【0107】
なお、基板511,512がシリコン基板からなる場合、面発光レーザ100の共振器の発振波長を1.1μm以上にすることにより、面発光レーザから出射する光が基板(シリコン基板)511,512を通過することができる。
【0108】
ところで、処理速度の高速化および高周波化に伴い、電気的接続によるICチップ間の信号伝送においては一般に、次のような課題が生じるようになる。
・配線間の信号伝達タイミングのズレ(スキュー)が発生する
・高周波電気信号の伝送における消費電力が増大する
・配線レイアウトの設計が困難になる
・インピーダンスのマッチングが必要となる
・アースノイズ遮断対策が必要となる
これに対して、本実施の形態の光インターコネクション装置2000のように、ICチップ間の信号伝送を光信号で行なうことにより、上記課題を解決することができる。
【0109】
本発明は、上述した実施の形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および結果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
【0110】
例えば、上記実施の形態では、柱状部を一つ有する面発光型半導体レーザについて説明したが、基板面内で柱状部が複数個設けられていても本発明の形態は損なわれない。また、複数の面発光型半導体レーザがアレイ化されている場合でも、同様の作用および効果を有する。
【0111】
また、例えば、上記実施の形態において、各半導体層におけるp型とn型とを入れ替えても本発明の趣旨を逸脱するものではない。上記実施の形態では、AlGaAs系のものについて説明したが、発振波長に応じてその他の材料系、例えば、GaInP系、ZnSSe系、InGaN系、AlGaN系、InGaAs系、GaInNAs系、GaAsSb系の半導体材料を用いることも可能である。
【0112】
さらに、上記実施形態では、化合物半導体基板としてGaAs基板を用いた場合を示したが、他の基板、例えば、GaN基板、AlN基板、InP基板、GaP基板、ZnSe基板、ZnS基板、CdTe基板、ZnTe基板、CdS基板等の化合物半導体基板を用いることもできる。
【0113】
[実験例]
本実施の形態の面発光レーザ100について、第2ミラー104の反射率についてシミュレーションを行なった。図21は、この測定によって得られた第2ミラー104内の第1および第2領域191,192の反射率を示している。また、この測定において、面発光レーザ100を構成する各層は、上記実施の形態で示した構造および組成を有するものとし、この面発光レーザ100の発振波長は850nmとした。なお、この測定において、上記の例にて示した反射率は、電流狭窄層105の反射率を考慮していない。
【0114】
まず、第2ミラー104が、光学的膜厚がλ/4である25ペアのn型Al0.9Ga0.1As層とn型Al0.15Ga0.85As層とが交互に積層され、最上層の光学的膜厚のみをλ/2に形成した場合、発振波長の850nmの光について第2ミラー104の反射率は、99.04%であった。この場合において、前記光学的膜厚がλ/2である最上層に加えて、出射面108の上に、光学的膜厚がλ/4である反射率調整層110を形成した場合、第2ミラー104のうち第1領域191(図3参照)の反射率は99.57%となり、第2領域192(図3参照)の反射率は、反射率調整層110が形成されていない場合と同様に、99.04%であった。なお、図21は、第1領域191および第2領域192それぞれにおける各波長の光の反射率を示している。図21においては、第1領域191における反射率が実線で、第2領域192における反射率が破線で示されている。
【0115】
本実験例によれば、第2ミラー104の最上層の光学的膜厚がλ/2であり、出射面108の上に、光学的膜厚がλ/4である反射率調整層110が形成されていることにより、第1領域191におけるレーザ光の反射率を、第2領域192におけるレーザ光の反射率よりも大きくなるように形成することができた(図21参照)。これにより、第2領域192と比較して第1領域191におけるレーザ発振の閾値を低減することができるため、横モードの安定した光を得ることが可能となった。
【図面の簡単な説明】
【図1】 本発明を適用した第1の実施の形態に係る面発光型半導体レーザを模式的に示す断面図である。
【図2】 本発明を適用した第1の実施の形態に係る面発光型半導体レーザを模式的に示す平面図である。
【図3】 図1に示す第2ミラーを模式的に示す拡大断面図である。
【図4】 図1〜図3に示す面発光型半導体レーザの一製造工程を模式的に示す断面図である。
【図5】 図1〜図3に示す面発光型半導体レーザの一製造工程を模式的に示す断面図である。
【図6】 図1〜図3に示す面発光型半導体レーザの一製造工程を模式的に示す断面図である。
【図7】 図1〜図3に示す面発光型半導体レーザの一製造工程を模式的に示す断面図である。
【図8】 図1〜図3に示す面発光型半導体レーザの一製造工程を模式的に示す断面図である。
【図9】 図1〜図3に示す面発光型半導体レーザの一製造工程を模式的に示す断面図である。
【図10】 図1〜図3に示す面発光型半導体レーザの一製造工程を模式的に示す断面図である。
【図11】 本発明を適用した第2の実施の形態に係る面発光型半導体レーザを模式的に示す断面図である。
【図12】 本発明を適用した第2の実施の形態に係る面発光型半導体レーザを模式的に示す平面図である。
【図13】 図11に示す第2ミラーを模式的に示す拡大断面図である。
【図14】 本発明を適用した第3の実施の形態に係る面発光型半導体レーザを模式的に示す断面図である。
【図15】 本発明を適用した第3の実施の形態に係る面発光型半導体レーザを模式的に示す平面図である。
【図16】 本発明を適用した第4の実施の形態に係る光モジュールを模式的に示す図である。
【図17】 本発明を適用した第5の実施の形態に係る光伝達装置を示す図である。
【図18】 本発明を適用した第5の実施の形態に係る光伝達装置の使用形態を示す図である。
【図19】 本発明を適用した第5の実施の形態に係る光伝達装置の使用形態を示す図である。
【図20】 本発明を適用した第6の実施の形態に係る光伝達装置を示す図である。
【図21】 本実験例において、第2ミラー104を構成する第1および第2領域191,192反射率を示す図である。
【符号の説明】
100,200,300 面発光型半導体レーザ、 101 化合物半導体基板、 101a 半導体基板の表面、 101b 半導体基板の裏面、 102第1ミラー、 103 活性層、 104 第2ミラー、 105 酸化狭窄層、 106 絶縁層、 107 第1電極、 108 出射面、 109,119 第2電極、 110,210 反射率調整層、 110a 液滴、 110b 前駆体、 112 ノズル、 113 エネルギー線、 118 開口部、 120 インクジェットヘッド、 130 柱状部、 130a 柱状部の上面、 140 共振器、 150 半導体多層膜、 191,291 第1領域、 192,292 第2領域、 218 開口部、 220 受光素子、 1000 構造体、 1100,1110 光伝達装置、 1110,1112電子機器、 1104 ケーブル、 1106 プラグ、 1114 駆動用IC、 1120,1220 プラットフォーム、 1130 第1の光導波路、 1150 アクチュエータ、 1152 クッション、 1154 エネルギー供給源、 1230,1310,1312 第3の光導波路、 1302,1318 第2の光導波路、 1304 接続用光導波路、 1306 樹脂、1308 基板、 1314,1316 基板、 2000 光インターコネクション装置、 R100,R200 レジスト層

Claims (17)

  1. 基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザであって、
    前記共振器は、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーとを含み、
    前記出射面の上に反射率調整層が形成され、
    前記レーザ光の波長をλとしたとき、
    前記第2ミラーは、光学的膜厚がmλ/2(mは自然数)である層を含み、
    前記反射率調整層の光学的膜厚が(2m−1)λ/4(mは自然数)であり、
    前記光学的膜厚がmλ/2である層は、前記第2ミラーの上面全体にわたって設けられている、面発光型半導体レーザ。
  2. 請求項1において、
    前記反射率調整層と、前記第2ミラーにおいて該反射率調整層の下方領域とからなる領域を第1領域とし、前記第2ミラーにおいて前記第1領域以外の領域を第2領域としたとき、
    前記第1領域における前記レーザ光の反射率は、前記第2領域における前記レーザ光の反射率よりも大きい、面発光型半導体レーザ。
  3. 基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザであって、
    前記共振器に電流を注入するための第1電極および第2電極を含み、
    前記第1電極は、少なくとも一部が前記共振器の上面に形成され、かつ、該共振器の上面に開口部を有し、
    前記開口部内に前記出射面が設けられ、
    前記出射面の上に反射率調整層が形成され、
    前記共振器は、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーとを含み、
    前記レーザ光の波長をλとしたとき、
    前記第2ミラーは、光学的膜厚がmλ/2(mは自然数)である層を含み、
    前記反射率調整層の光学的膜厚が(2m−1)λ/4(mは自然数)であり、
    前記光学的膜厚がmλ/2である層は、前記第2ミラーの上面全体にわたって設けられている、面発光型半導体レーザ。
  4. 請求項3において、
    前記反射率調整層と、前記第2ミラーにおいて該反射率調整層の下方領域とからなる領域を第1領域とし、前記第2ミラーにおいて前記第1領域以外の領域を第2領域としたとき、
    前記第1領域における前記レーザ光の反射率は、前記第2領域における前記レーザ光の反射率よりも大きい、面発光型半導体レーザ。
  5. 請求項1または4において、
    前記光学的膜厚がmλ/2である層が、前記第2ミラーの最上層を構成する、面発光型半導体レーザ。
  6. 請求項1ないし5のいずれかにおいて、
    前記反射率調整層は、前記レーザ光に対して光学的に透明である、面発光型半導体レーザ。
  7. 請求項1ないし6のいずれかにおいて、
    前記反射率調整層の平面形状が円形である、面発光型半導体レーザ。
  8. 請求項7において、
    前記反射率調整層の直径が6μm以下である、面発光型半導体レーザ。
  9. 請求項7または8において、
    前記出射面は円形であり、
    前記反射率調整層は、前記出射面の中心軸と同軸上に設けられている、面発光型半導体レーザ。
  10. 請求項1ないし9のいずれかにおいて、
    前記反射率調整層は、熱硬化型樹脂または紫外線硬化型樹脂からなる、面発光型半導体レーザ。
  11. 請求項3ないし10のいずれかにおいて、
    前記反射率調整層の膜厚は、前記第1電極との接触面近傍で大きくなっている、面発光型半導体レーザ。
  12. 請求項1、または4ないし11のいずれかにおいて、
    前記第2ミラーには、さらに、同心円状の平面形状を有する電流狭窄層が形成され、
    前記電流狭窄層の内径円の面積は、前記反射率調整層の断面積より大きい、面発光型半導体レーザ。
  13. 請求項1ないし12のいずれかにおいて、
    前記共振器は、少なくとも一部に柱状部を含む、面発光型半導体レーザ。
  14. 請求項1ないし13のいずれかに記載の面発光型半導体レーザと、光導波路とを含む、光モジュール。
  15. 請求項14に記載の光モジュールを含む、光伝達装置。
  16. 基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザの製造方法であって、
    (a)前記基板上に、上面に出射面を有する共振器を形成し、
    前記共振器には、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーと、を形成し、
    前記第2ミラーには、光学的膜厚がmλ/2(mは自然数)である層を該第2ミラーの上面全体にわたるように形成し、
    (b)前記出射面に対して液滴をインクジェット法にて吐出して前記反射率調整層の前駆体を形成した後、該前駆体を硬化させることにより、前記出射面の上に、光学的膜厚が(2m−1)λ/4(mは自然数)である反射率調整層を形成すること、を含む、面発光型半導体レーザの製造方法。
  17. 基板上に形成された共振器を含み、該共振器の上面に設けられた出射面から該基板と垂直方向にレーザ光を出射できる面発光型半導体レーザの製造方法であって、
    (a)前記基板上に共振器を形成し、
    前記共振器には、前記基板の上方に設けられた第1ミラーと、活性層と、該活性層を挟んで該第1ミラーに対向するように設けられた第2ミラーと、を形成し、
    前記第2ミラーには、光学的膜厚がmλ/2(mは自然数)である層を該第2ミラーの上面全体にわたるように形成し、
    (b)前記共振器に電流を注入するための第1電極および第2電極を形成し、その際、前記第1電極は、少なくとも一部が前記共振器の上面に形成され、かつ、該共振器の上面に、前記出射面を底面に有する開口部を設けるように形成され、
    (c)前記出射面に対して液滴をインクジェット法にて吐出して前記反射率調整層の前駆体を形成した後、該前駆体を硬化させることにより、前記出射面の上に前記反射率調整層を形成すること、を含む、面発光型半導体レーザの製造方法。
JP2002279066A 2002-09-25 2002-09-25 面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置 Expired - Fee Related JP3729263B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002279066A JP3729263B2 (ja) 2002-09-25 2002-09-25 面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置
US10/665,447 US7126977B2 (en) 2002-09-25 2003-09-22 Surface emitting semiconductor laser and manufacturing method thereof, light module, light transmission device
EP03021180A EP1403987B1 (en) 2002-09-25 2003-09-24 VCSEL with a reflection layer made of resin for single transverse mode emission
DE60304961T DE60304961T2 (de) 2002-09-25 2003-09-24 VCSEL mit einer reflektierenden Schicht aus Harz zur Emission einer transversalen Mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279066A JP3729263B2 (ja) 2002-09-25 2002-09-25 面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置

Publications (3)

Publication Number Publication Date
JP2004119582A JP2004119582A (ja) 2004-04-15
JP2004119582A5 JP2004119582A5 (ja) 2005-09-08
JP3729263B2 true JP3729263B2 (ja) 2005-12-21

Family

ID=31973274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279066A Expired - Fee Related JP3729263B2 (ja) 2002-09-25 2002-09-25 面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置

Country Status (4)

Country Link
US (1) US7126977B2 (ja)
EP (1) EP1403987B1 (ja)
JP (1) JP3729263B2 (ja)
DE (1) DE60304961T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104805A (ja) * 2010-10-16 2012-05-31 Canon Inc 面発光レーザ、面発光レーザアレイ、画像形成装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838218B2 (ja) * 2003-05-19 2006-10-25 ソニー株式会社 面発光型半導体レーザ素子及びその製造方法
JP4120813B2 (ja) 2003-06-12 2008-07-16 セイコーエプソン株式会社 光学部品およびその製造方法
JP4649866B2 (ja) * 2004-04-19 2011-03-16 ソニー株式会社 面発光半導体レーザー及びこれを用いた光学装置
JP4203752B2 (ja) * 2004-05-28 2009-01-07 セイコーエプソン株式会社 面発光型半導体レーザおよびその製造方法、光スイッチ、ならびに、光分岐比可変素子
JP2006091285A (ja) * 2004-09-22 2006-04-06 Sumitomo Electric Ind Ltd 発光装置
US7483469B2 (en) 2004-11-01 2009-01-27 Seiko Epson Corporation Surface-emitting type semiconductor laser and its manufacturing method, optical module, and light transmission device
JP4091647B2 (ja) * 2006-07-21 2008-05-28 三菱電機株式会社 半導体光素子の製造方法
US7499481B2 (en) 2006-11-14 2009-03-03 Canon Kabushiki Kaisha Surface-emitting laser and method for producing the same
CN101356700B (zh) * 2006-12-18 2012-09-05 精工爱普生株式会社 光芯片和光组件
US8077752B2 (en) 2008-01-10 2011-12-13 Sony Corporation Vertical cavity surface emitting laser
JP4582237B2 (ja) 2008-01-10 2010-11-17 ソニー株式会社 面発光型半導体レーザ
JP2009266919A (ja) * 2008-04-23 2009-11-12 Sony Corp 面発光型半導体レーザおよびその製造方法
JP5505615B2 (ja) * 2009-12-02 2014-05-28 株式会社リコー 光デバイス、光走査装置及び画像形成装置
JP6835743B2 (ja) * 2015-06-09 2021-02-24 トランプ フォトニック コンポーネンツ ゲーエムベーハー 垂直共振器型面発光レーザ
GB2573576B (en) * 2018-05-11 2020-06-10 Rockley Photonics Ltd Optoelectronic device and method of manufacturing thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274187A (ja) 1987-05-06 1988-11-11 Sharp Corp 光結合素子の製造方法
US5256596A (en) * 1992-03-26 1993-10-26 Motorola, Inc. Top emitting VCSEL with implant
US5428634A (en) * 1992-11-05 1995-06-27 The United States Of America As Represented By The United States Department Of Energy Visible light emitting vertical cavity surface emitting lasers
US5838715A (en) * 1996-06-20 1998-11-17 Hewlett-Packard Company High intensity single-mode VCSELs
US6936839B2 (en) * 1996-10-16 2005-08-30 The University Of Connecticut Monolithic integrated circuit including a waveguide and quantum well inversion channel devices and a method of fabricating same
US5917848A (en) * 1997-07-17 1999-06-29 Motorola, Inc. Vertical cavity surface emitting laser with phase shift mask
US5831960A (en) * 1997-07-17 1998-11-03 Motorola, Inc. Integrated vertical cavity surface emitting laser pair for high density data storage and method of fabrication
US6026111A (en) * 1997-10-28 2000-02-15 Motorola, Inc. Vertical cavity surface emitting laser device having an extended cavity
JP3697903B2 (ja) 1998-07-06 2005-09-21 富士ゼロックス株式会社 面発光レーザおよび面発光レーザアレイ
JP2000067449A (ja) 1998-08-18 2000-03-03 Seiko Epson Corp 面発光型半導体レーザおよびその製造方法
US6144682A (en) * 1998-10-29 2000-11-07 Xerox Corporation Spatial absorptive and phase shift filter layer to reduce modal reflectivity for higher order modes in a vertical cavity surface emitting laser
US6185241B1 (en) * 1998-10-29 2001-02-06 Xerox Corporation Metal spatial filter to enhance model reflectivity in a vertical cavity surface emitting laser
US6160834A (en) * 1998-11-14 2000-12-12 Cielo Communications, Inc. Vertical cavity surface emitting lasers with consistent slope efficiencies
US6751245B1 (en) * 1999-06-02 2004-06-15 Optical Communication Products, Inc. Single mode vertical cavity surface emitting laser
JP3566902B2 (ja) 1999-09-13 2004-09-15 古河電気工業株式会社 面発光半導体レーザ素子
WO2001020734A1 (fr) 1999-09-13 2001-03-22 The Furukawa Electric Co., Ltd. Laser a semi-conducteur a emission par la surface
JP2001284722A (ja) 2000-03-29 2001-10-12 Seiko Epson Corp 面発光型半導体レーザおよびその製造方法
JP3770305B2 (ja) 2000-03-29 2006-04-26 セイコーエプソン株式会社 面発光型半導体レーザおよびその製造方法
JP4239439B2 (ja) * 2000-07-06 2009-03-18 セイコーエプソン株式会社 光学装置およびその製造方法ならびに光伝送装置
US6905900B1 (en) * 2000-11-28 2005-06-14 Finisar Corporation Versatile method and system for single mode VCSELs
TW521448B (en) * 2001-03-09 2003-02-21 Seiko Epson Corp Method of fabricating surface-emission type light-emitting device, surface-emitting semiconductor laser, method of fabricating the same, optical module and optical transmission device
US6975661B2 (en) * 2001-06-14 2005-12-13 Finisar Corporation Method and apparatus for producing VCSELS with dielectric mirrors and self-aligned gain guide
US6618414B1 (en) * 2002-03-25 2003-09-09 Optical Communication Products, Inc. Hybrid vertical cavity laser with buried interface
KR20040013569A (ko) * 2002-08-07 2004-02-14 삼성전자주식회사 파장 가변형 면방출 반도체 레이저

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104805A (ja) * 2010-10-16 2012-05-31 Canon Inc 面発光レーザ、面発光レーザアレイ、画像形成装置

Also Published As

Publication number Publication date
US7126977B2 (en) 2006-10-24
US20040114654A1 (en) 2004-06-17
DE60304961D1 (de) 2006-06-08
EP1403987B1 (en) 2006-05-03
DE60304961T2 (de) 2006-11-02
EP1403987A1 (en) 2004-03-31
JP2004119582A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3729263B2 (ja) 面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置
JP3767496B2 (ja) 面発光型発光素子およびその製造方法、光モジュール、光伝達装置
US7483469B2 (en) Surface-emitting type semiconductor laser and its manufacturing method, optical module, and light transmission device
KR100756762B1 (ko) 광 소자 및 그 제조 방법
KR100734454B1 (ko) 광 소자 및 그 제조 방법
US6900069B2 (en) Method of fabricating surface-emission type light-emitting device, surface-emitting semiconductor laser, method of fabricating the same, optical module and optical transmission device
US7520680B2 (en) Light-receiving element, manufacturing method for the same, optical module, and optical transmitting device
JP4092570B2 (ja) 光素子およびその製造方法、光モジュール、ならびに光モジュールの駆動方法
JP4074498B2 (ja) 面発光型発光素子、光モジュールおよび光伝達装置
JP2004119583A (ja) 光学素子の製造方法
JP4165244B2 (ja) 受光素子の製造方法
JP3818386B2 (ja) 面発光型発光素子およびその製造方法、光モジュール、光伝達装置
KR100649414B1 (ko) 광소자 및 그 제조 방법, 광모듈, 광전달 장치
JP2006344667A (ja) 面発光型半導体レーザおよびその製造方法、光モジュール、並びに、光伝達装置
JP2004014993A (ja) 面発光型発光素子およびその製造方法、面発光型発光素子の実装構造、光モジュール、光伝達装置
JP2005354111A (ja) 面発光型発光素子およびその製造方法、光モジュール、光伝達装置
JP4366598B2 (ja) 面発光型半導体レーザおよびその製造方法、光モジュール、並びに、光伝達装置
JP3824089B2 (ja) 光素子の製造方法
JP3818391B2 (ja) 光素子
JP2002344081A (ja) 面発光型半導体レーザおよびその製造方法、光モジュール、光伝達装置
JP4258640B2 (ja) 導波路型光素子の製造方法
JP2007258730A (ja) 受光素子、光モジュール、光伝達装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees