JP3695061B2 - 能動型振動制御装置 - Google Patents

能動型振動制御装置 Download PDF

Info

Publication number
JP3695061B2
JP3695061B2 JP12585697A JP12585697A JP3695061B2 JP 3695061 B2 JP3695061 B2 JP 3695061B2 JP 12585697 A JP12585697 A JP 12585697A JP 12585697 A JP12585697 A JP 12585697A JP 3695061 B2 JP3695061 B2 JP 3695061B2
Authority
JP
Japan
Prior art keywords
vibration
temperature
control
engine
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12585697A
Other languages
English (en)
Other versions
JPH10319972A (ja
Inventor
勉 浜辺
寛 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12585697A priority Critical patent/JP3695061B2/ja
Publication of JPH10319972A publication Critical patent/JPH10319972A/ja
Application granted granted Critical
Publication of JP3695061B2 publication Critical patent/JP3695061B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Vibration Prevention Devices (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、車両エンジン等の振動源で発生する振動に、振動源及び支持体間に介在する制御振動源が発生する制御振動を干渉させることにより、支持体側に伝達される振動の低減を図るようにした能動型振動制御装置に関し、特に、制御振動源を駆動させるための制御アルゴリズムが、制御振動源と残留振動を検出する手段との間の伝達関数を含み、この伝達関数を所定のタイミングで同定することの可能なものにおいて、適切な温度環境下で同定処理を行うことができるようにしたものである。
【0002】
【従来の技術】
本発明のような能動型騒音制御装置及び能動型振動制御装置の場合、制御音源又は制御振動源と残留騒音又は残留振動を検出する手段との間の伝達関数は、その能動型騒音制御装置又は能動型振動制御装置の適用対象装置,適用対象設備等の特性のばらつきによって、微妙に異なる。また、適用対象装置等の使用に伴う特性変化等によって、当初の状態からは変化してしまう可能性があるため、高精度の騒音又は振動低減制御を実行するためには、能動型騒音制御装置又は能動型振動制御装置を適用対象装置に組み込んだ後に伝達関数を同定したり、適用対象装置の定期検査毎に伝達関数を同定することが望ましい。
【0003】
そこで、本出願人は、先に特開平6−332471号公報に開示されるような技術を提案している。すなわち、この公報に開示された従来技術は、制御音源や制御振動源からインパルス信号に応じた同定音や同定振動を発生させ、その応答を残留騒音や残留振動を検出する手段で計測することにより、能動型騒音振動制御装置や能動型騒音振動制御装置の制御アルゴリズムに必要な伝達関数を同定するようになっている。そして、そのインパルス信号に応じた同定音や同定振動を発生するタイミングを、騒音源や振動源から騒音や振動が発生していない状態から発生する状態に移行する直前に限ることにより、演算負荷の大幅な増大を招くことなく、また、人間等に不快感を与えることなく、伝達関数の同定が行えるようになっていた。
【0004】
【発明が解決しようとする課題】
確かに、上述したような先行技術によれば、能動型騒音又は振動制御装置や、能動型騒音又は振動制御装置を適用した対象装置毎に、制御に必要な伝達関数を同定することは可能であるから、高精度の騒音又は振動の低減制御等が期待できる。
【0005】
ここで、能動型騒音又は振動制御装置を構成する構成品のうち、例えばゴム等の弾性体、或いは、ゴム等の弾性体内部に減衰力発生可能に流体を封入してなる流体封入式のマウントインシュレータ等、温度変化によりその特性が変化しやすいもので形成されている構成品等の場合には、能動型騒音又は振動制御装置が取り付けられた場所の雰囲気温度が変化したとき、或いは能動型騒音又は振動制御装置が稼働することによって装置自体が発熱し、この発熱等によって能動型騒音又は振動制御装置に温度変化が生じたとき等に、これら温度変化に応じて能動型騒音又は振動制御装置の特性が変化し、すなわち、制御音源又は制御振動源と、残留騒音又は残留振動を検出する手段との間の伝達特性が変化してしまう。
【0006】
しかしながら、上記の先行技術では、騒音源や振動源から騒音や振動が発生していない状態から発生する状態に移行する直前に限って、伝達関数を同定するようになっている。そのため、このように伝達関数を同定する際に、例えば環境温度が低く、0℃以下等の状態で同定を行った場合、支持弾性体がゴム等で形成されている場合には、ゴムは0℃以下になったときにその振動伝達特性が大きく変化することから、この状態で同定を行うと、一般に、能動型騒音又は振動制御装置がおかれるであろう0℃以上の通常温度における振動伝達特性とは大いに異なる伝達関数が同定されることになる。
【0007】
そのため、例えば走行中に徐々に温度が上昇し通常温度となった場合でも、振動伝達特性が大いに異なるときの伝達特性に応じて、振動低減処理が実行されることになって、最適な制御を行うことができないうえ、発散に至ってしまう可能性があるという問題がある。
【0008】
そこで、この発明は、上記従来の未解決の問題に着目してなされたものであり、伝達系の温度が所定温度範囲外の値であるときにその伝達特性が大きく変化するような伝達系において、伝達系の温度が所定温度範囲外の値である状態で伝達関数が同定されることによって、伝達系の温度が所定温度範囲内の値に移行したときに、伝達系の実際の伝達特性とは大きく異なる伝達関数に基づいて振動低減処理が実行されることを回避することが可能な、能動型振動制御装置を提供することを目的としている。
【0015】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る能動型振動制御装置は、振動源から発せられる振動と干渉する制御振動を発生可能な制御振動源と、前記振動の発生状態を表す基準信号を生成し出力する基準信号生成手段と、前記干渉後の振動を検出し残留振動信号として出力する残留振動検出手段と、前記基準信号及び前記残留振動信号に基づき前記制御振動源及び前記残留振動検出手段間の振動の伝達系の伝達関数を含む制御アルゴリズムを用いて前記振動が低減するように前記制御振動源を駆動する能動制御手段と、所定のタイミングで前記伝達関数を同定する伝達関数同定手段と、を備えた能動型振動制御装置において、前記伝達系の温度を検出する温度検出手段と、当該温度検出手段で検出した検出温度が予め設定した所定温度範囲外の値であるとき前記伝達関数同定手段による前記伝達関数の同定処理を禁止する同定禁止手段と、を有し、前記制御振動源は通電式の制御振動源であって、前記同定禁止手段は、前記検出温度が前記所定温度範囲よりも低いとき、前記制御振動源に通電するようになっていることを特徴としている。
【0016】
この発明によれば、振動源から発せられる振動と干渉する制御振動が制御振動源から発生され、これによって、振動源から発生される振動が低減される。前記制御振動源は能動制御手段によって駆動制御され、具体的には、振動の発生状態を表す基準信号と干渉後の振動を検出した残留振動信号とに基づいて、制御振動源と残留振動検出手段との間の伝達系の伝達関数を含む制御アルゴリズムを用いて、駆動制御される。また、所定のタイミングで伝達関数同定手段によって、伝達関数の同定処理が実行される。
【0017】
このとき、温度検出手段によって、制御振動源と残留振動検出手段との間の伝達系の温度が検出され、検出された温度が、予め設定した所定温度範囲外の値であるときには、同定禁止手段によって、前記伝達関数同定手段による同定処理の実行が禁止される。
【0018】
よって、例えば、制御振動源と残留振動検出手段との間の伝達系に、温度変化によって振動の伝達特性が変化しやすいものが介在している場合等には、温度変化によってその振動の伝達特性が変わることから、制御振動源と残留振動検出手段との間の伝達系の伝達特性も変化することになる。このとき、伝達系の伝達特性が、その温度が所定の温度範囲外の値となったときに特性が大きく変化するような場合には、所定温度範囲外の温度環境下で同定処理を実行した場合、このときの伝達特性に応じた伝達関数に同定されることになる。よって、その後、伝達系の温度が所定温度範囲内の値となった場合には、伝達系の実際の伝達特性と制御アルゴリズムで使用する伝達関数の伝達特性とが大きく異なってしまう。
【0019】
しかしながら、温度検出手段で検出された、制御振動源と残留振動検出手段との間の伝達系の温度が、所定温度範囲外の値であるときには、伝達関数同定手段による同定処理を禁止するようにしたから、例えば、通常はその温度が所定温度範囲内にあるような伝達系において、温度が所定温度範囲外の値である状態で同定処理を実行することによって、所定温度範囲内の温度である通常時に、所定温度範囲外の温度であるときの伝達特性に応じた伝達関数に基づいて、振動低減処理が実行されることによって、伝達系の実際の伝達特性とは大きく異なる伝達特性に基づいて振動低減処理が実行されることが回避される。
【0023】
また、このとき、制御振動源は、例えばコイル等に通電することによって制御振動を発生させるようにした通電式の制御振動源であって、温度検出手段で検出した温度が所定温度範囲よりも低いときには、同定禁止手段によって制御振動源に通電が行われる。よって、通電によって制御振動源に発熱が生じ、これによって伝達系の温度が上昇するから、伝達系の温度が所定温度範囲内の値に移行して、同定処理が実行可能となる。
【0024】
また、本発明の請求項2に係る能動型振動制御装置は、振動源から発せられる振動と干渉する制御振動を発生可能な制御振動源と、前記振動の発生状態を表す基準信号を生成し出力する基準信号生成手段と、前記干渉後の振動を検出し残留振動信号として出力する残留振動検出手段と、前記基準信号及び前記残留振動信号に基づき前記制御振動源及び前記残留振動検出手段間の振動の伝達系の伝達関数を含む制御アルゴリズムを用いて前記振動が低減するように前記制御振動源を駆動する能動制御手段と、所定のタイミングで前記伝達関数を同定する伝達関数同定手段と、を備え、車両に適用される能動型振動制御装置において、前記伝達系の温度を検出する温度検出手段と、当該温度検出手段で検出した検出温度が予め設定した所定温度範囲外の値であるとき前記伝達関数同定手段による前記伝達関数の同定処理を禁止する同定禁止手段と、を有し、前記振動源はエンジンであって、前記同定禁止手段は、前記検出温度が前記所定温度範囲よりも低いときには前記エンジンを起動させ、前記検出温度が前記所定温度範囲よりも高いときには前記エンジンを停止させるエンジン制御手段を備えることを特徴としている。
この発明によれば、騒音源から発せられる騒音と干渉する制御音が制御音源から発生され、これによって、騒音源から発生される騒音が低減される。前記制御音源は、能動制御手段によって駆動制御され、具体的には、騒音の発生状態を表す基準信号と、干渉後の騒音を検出した残留騒音信号とに基づいて、制御音源と残留騒音検出手段との間の伝達系の伝達関数を含む制御アルゴリズムを用いて、駆動制御される。前記伝達関数は、所定のタイミングで伝達関数同定手段によって同定され、この同定された伝達関数に基づいて制御アルゴリズムが実行されて制御音源から制御音が発生される。
このとき、制御音源と残留騒音検出手段との間の伝達系の温度が温度検出手段により検出され、検出された温度が、予め設定された所定温度範囲外の値であるときには、同定禁止手段によって、伝達関数同定手段による伝達関数の同定処理が禁止される。
ここで、温度変化に伴って音の伝搬特性が変化するから、制御音源と残留騒音検出手段との間の伝達系の伝達特性も変化するが、この伝達特性の変化が、例えば、伝達系の温度が所定温度範囲外の値となったときに大きく変化するような場合等には、所定温度範囲外の温度環境下で同定処理を実行した場合、このときの伝達特性に応じた伝達関数に同定されることになるから、その後、伝達系の温度が所定温度範囲内の値に移行した場合には、伝達系の実際の伝達特性と、制御アルゴリズムで使用される伝達関数の伝達特性とが大きく異なってしまう。しかしながら、温度検出手段で検出された、制御音源と残留騒音検出手段との間の伝達系の温度が、所定温度範囲外の値であるときには、伝達関数同定手段による同定処理の実行を禁止するようにしたから、例えば、通常はその温度が所定温度範囲内にあるような伝達系において、温度が所定温度範囲外の値であるときに同定処理を実行することによって、その温度が所定温度範囲内の値である通常時に、実際の伝達関数とは大きく異なる伝達関数に基づいて、騒音低減処理が行われることが回避される。
【0025】
また、このとき、温度検出手段で検出した温度が所定温度範囲よりも低いときには、エンジン制御手段によって、振動源としてのエンジンが起動され、逆に高いときにはエンジンが停止される。よって、所定温度範囲よりも温度が低いときにはエンジンが起動されてそのエンジンの発熱により伝達系の温度が上昇し、逆に高いときにはエンジンが停止されてその発熱が停止し伝達系の温度が低下して、伝達系が同定処理可能な状態に移行される。
また、本発明の請求項3に係る能動型振動制御装置は、前記同定禁止手段は、前記検出温度が前記所定温度範囲外の値であるとき、外部に通知するようになっていることを特徴としている。
この発明によれば、温度検出手段で検出した温度が予め設定した所定温度範囲外の値であるときには、同定禁止手段によってこれが外部に通知される。よって、例えば温度が所定温度範囲よりも低い値であるか高い値であるかを表示すること等によって、外部に通知するようにすれば、温度が低い場合には伝達系の温度が高くなるように、また、高い場合には伝達系の温度が低くなるように対処することができるから、伝達系の温度を所定温度範囲内の値に移行させて同定処理を実行することができる。
【0026】
また、本発明の請求項4に係る能動型振動制御装置は、車両に適用され、前記振動源はエンジンであり、前記制御振動源は、前記エンジンと車体側部材との間に介在する支持弾性体を備えた制御振動源であって、前記温度検出手段は、前記支持弾性体の温度を検出するようになっていることを特徴としている。
【0027】
この発明によれば、制御振動源は、振動源としてのエンジンと車体側部材との間に介在する支持弾性体を備えた制御振動源であって、この支持弾性体の温度が温度検出手段によって検出される。支持弾性体はエンジンと車体側部材との間に介在しているから、その伝達特性の変化は伝達系の伝達特性の変化の一因となり、特に、温度変化に対してその振動特性が大きく変化するゴム等で形成され支持弾性対の場合には、支持弾性体の特性変化は伝達系の伝達特性の変化に大きく起因することになる。よって、この支持弾性体の温度を温度検出手段によって検出し、温度検出手段の検出温度、つまり、支持弾性体の温度に基づいて、同定処理が実行可能であるか否かを判定することによって、より適切に判定が行われる。
【0028】
さらに、本発明の請求項5に係る能動型振動制御装置は、車両に適用され、前記振動源はエンジンであり、前記制御振動源は、前記エンジンと車体側部材との間に介在する支持弾性体を備えた制御振動源であって、前記温度検出手段は前記支持弾性体の周辺温度を検出して、当該周辺温度から前記支持弾性体の温度を予測するようになっていることを特徴としている。
【0029】
この発明によれば、制御振動源は、振動源としてのエンジンと車体側部材との間に介在する支持弾性体を備えた制御振動源であって、温度検出手段によって、支持弾性体の周辺温度が検出され、この支持弾性体の周辺温度から、支持弾性体の温度が予測される。そして、この予測した温度に基づいて、同定処理が実行可能か否かの判定が行われる。
【0030】
ここで、支持弾性体はエンジンと車体側部材との間に介在しているから、その伝達特性の変化は伝達系の伝達特性の変化の一因となるため、この支持弾性体の温度を検出することが好ましい。しかしながら、この支持弾性体の温度を直接検出することができない場合でも、例えば支持弾性体の周辺温度と支持弾性体の温度との相関関係を実験等によって予め検出しておき、検出した支持弾性体の周辺温度から、相関関係に基づいて支持弾性体の温度を予測し、予測した温度に基づいて同定処理が実行可能か否かを判定することによって、より適切に判定が行われる。
【0033】
本発明の請求項1に係る能動型振動制御装置によれば、温度検出手段で検出した伝達系の温度が、所定温度範囲外の値であるときには、伝達関数同定手段による同定処理を禁止するようにしたから、例えば所定温度範囲外の温度となったときにその伝達特性が大きく変化するような伝達系において、温度が所定温度範囲外の値であるときの伝達関数に同定されることによって、所定温度範囲内の温度に移行したときに伝達系の実際の伝達特性とは大きく異なる伝達関数に基づいて制御振動源が駆動制御されることを回避することができ、良好な振動低減制御を実行することができる。
【0035】
また、このとき、温度検出手段で検出した温度が、所定の温度範囲よりも低いときには、通電式の制御振動源に通電するようにしたから、この制御振動源の発熱によって、例えばエンジンを起動しなくても容易に伝達系の温度を上昇させることができる。
【0036】
本発明の請求項2に係る能動型振動制御装置によれば、温度検出手段で検出した伝達系の温度が、所定温度範囲外の値であるときには、伝達関数同定手段による同定処理を禁止するようにしたから、例えば所定温度範囲外の温度となったときにその伝達特性が大きく変化するような伝達系において、温度が所定温度範囲外の値であるときの伝達関数に同定されることによって、所定温度範囲内の温度に移行したときに伝達系の実際の伝達特性とは大きく異なる伝達関数に基づいて制御振動源が駆動制御されることを回避することができ、良好な振動低減制御を実行することができる。
また、このとき、温度検出手段で検出した温度が、所定の温度範囲よりも低い場合には、振動源としてのエンジンを起動させ、所定の温度範囲よりも高い場合には、エンジンを停止させるようにしたから、エンジンを駆動制御することによって、容易に伝達系の温度調整を行うことができ、伝達系を、同定処理を実行可能な状態に容易に移行させることができる。
【0037】
また、本発明の請求項3に係る能動型振動制御装置によれば、温度検出手段で検出した温度が、所定の温度範囲外の値であるときには、外部に通知するようにしたから、これに応じて伝達系の温度を高く、或いは低くする等の対処を行うことによって、伝達系の温度を所定温度範囲内に移行させて同定処理を実行することができる。
また、本発明の請求項4に係る能動型振動制御装置によれば、温度検出手段によって、エンジンと車体側部材との間に介在され、伝達系の伝達特性の変化に起因する支持弾性体の温度を検出するようにしたから、同定処理を禁止するか否かの判定をより適切に行うことができる。
【0038】
さらに、本発明の請求項5に係る能動型振動制御装置によれば、温度検出手段によって、エンジンと車体側部材との間に介在される支持弾性体の周辺温度を検出し、この周辺温度に基づいて支持弾性体の温度を予測するようにしたから、支持弾性体の温度を直接検出することができない場合でも、伝達系の温度変化に起因する支持弾性体の温度を適切に検出することができる。
【0039】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
図1乃至図4は、本発明の第1の実施の形態を示す図であって、図1は、本発明に係る能動型振動制御装置の実施の形態の一例を車両に適用した、概略構成図である。
【0040】
まず、構成を説明すると、エンジン30が駆動信号に応じた能動的な支持力を発生可能な能動型エンジンマウント1を介して、サスペンションメンバ等から構成される車体35に支持されている。なお、実際には、エンジン30及び車体35間には、能動型エンジンマウント1の他に、エンジン30及び車体35間の相対変位に応じた受動的な支持力を発生する複数のエンジンマウントも介在している。受動的なエンジンマウントとしては、例えばゴム状の弾性体で荷重を支持する通常のエンジンマウントや、ゴム状の弾性体内部に減衰力発生可能に流体を封入してなる公知の流体封入式のマウントインシュレータ等が適用できる。
【0041】
一方、能動型エンジンマウント1は、例えば図2に示すように構成されている。すなわち、この実施の形態における能動型エンジンマウント1は、エンジン30への取り付け用ボルト2aを上部に一体に備え且つ内部が空洞で下部が開口したキャップ2を有し、このキャップ2の下部外面には、軸が上下方向を向く内筒3の上端部がかしめ止めされている。
【0042】
内筒3は、下端側が縮径した形状となっていて、その下端部が内側に水平に折り曲げられて、ここに円形の開口部3aが形成されている。そして、内筒3の内側には、キャップ2及び内筒3内部の空間を上下に二分するように、キャップ2及び内筒3のかしめ止め部分に一緒に挟み込まれてダイアフラム4が配設されている。ダイアフラム4の上側の空間は、キャップ2の側面に孔を開けることにより大気圧に通じている。
【0043】
さらに、内筒3の内側には、オリフィス構成体5が配設されている。なお、本実施の形態では、内筒3内面及びオリフィス構成体5間には、薄膜状の弾性体(ダイアフラム4の外周部を延長させたものでもよい)が介在していて、これにより、オリフィス構成体5は内筒3内側に強固に嵌め込まれている。
【0044】
このオリフィス構成体5は、内筒3の内部空間に整合して略円柱形に形成されていて、その上面には円形の凹部5aが形成されている。そして、その凹部5aと、底面の開口部3aに対向する部分との間が、オリフィス5bを介して連通するようになっている。オリフィス5bは、例えば、オリフィス構成体5の外周面に沿って螺旋状に延びる溝と、その溝の一端部を凹部5aに連通させる流路と、その溝の他端部を開口部3aに連通させる流路とで構成される。
【0045】
一方、内筒3の外周面には、内周面側が若干上方に盛り上がった肉厚円筒状の支持弾性体6の内周面が加硫接着されていて、その支持弾性体6の外周面は、上端側が拡径した円筒部材としての外筒7の内周面上部に加硫接着されている。
【0046】
そして、外筒7の下端部は上面が開口した円筒形のアクチュエータケース8の上端部にかしめ止めされていて、そのアクチュエータケース8の下端面からは、車体35側への取り付け用の取り付けボルト9が突出している。取り付けボルト9は、その頭部9aが、アクチュエータケース8の内底面に張り付いた状態で配設された平板部材8aの中央の空洞部8bに収容されている。
【0047】
さらに、アクチュエータケース8の内側には、円筒形の鉄製のヨーク10Aと、このヨーク10Aの中央部に軸を上下に向けて巻き付けられた励磁コイル10Bと、ヨーク10Aの励磁コイル10Bに包囲された部分の上面に極を上下に向けて固定された永久磁石10Cと、から構成される電磁アクチュエータ10が配設されている。
【0048】
また、アクチュエータケース8の上端部はフランジ状に形成されたフランジ部8Aとなっていて、そのフランジ部8Aに外筒7の下端部がかしめられて両者が一体となっているのであるが、そのかしめ止め部分には、円形の金属製の板ばね11の周縁部(端部)が挟み込まれていて、その板ばね11の中央部の電磁アクチュエータ10側には、リベット11aによって磁化可能な磁路部材12が固定されている。なお、磁路部材12はヨーク10Aよりも若干小径の鉄製の円板であって、その底面が電磁アクチュエータ10に近接するような厚みに形成されている。
【0049】
さらに、上記かしめ止め部分には、フランジ部8Aと板ばね11とに挟まれるように、リング状の薄膜弾性体13と、力伝達部材14のフランジ部14aとが支持されている。具体的には、アクチュエータケース8のフランジ部8A上に、薄膜弾性体13と、力伝達部材14のフランジ部14aと、板ばね11と、をこの順序で重ね合わせると共に、その重なり合った全体を外筒7の下端部をかしめて一体としている。
【0050】
力伝達部材14は、磁路部材12を包囲する短い円筒形の部材であって、その上端部がフランジ部14aとなっており、その下端部は電磁アクチュエータ10のヨーク10Aの上面に結合している。具体的には、ヨーク10Aの上端面周縁部に形成された円形の溝に、力伝達部材14の下端部が嵌合して両者が結合されている。また、力伝達部材14の弾性変形時のばね定数は、薄膜弾性体13のばね定数よりも大きい値に設定されている。
【0051】
ここで、本実施の形態では、支持弾性体6の下面及び板ばね11の上面によって画成された部分に主流体室15が形成され、ダイアフラム4及び凹部5aによって画成された部分に副流体室16が形成されていて、これら主流体室15及び副流体室16間が、オリフィス構成体5に形成されたオリフィス5bを介して連通している。なお、これら主流体室15,副流体室16及びオリフィス5b内には、エチレングリコール等の流体が封入されている。
【0052】
かかるオリフィス5bの流路形状等で決まる流体マウントとしての特性は、走行中のエンジンシェイク発生時、つまり、5〜15Hzで能動型エンジンマウント1が加振された場合に高動ばね定数,高減衰力を示すように調整されている。
【0053】
そして、電磁アクチュエータ10の励磁コイル10Bは、コントローラ25からハーネス23aを通じて供給される電流である駆動信号yに応じて所定の電磁力を発生するようになっている。
【0054】
コントローラ25は、マイクロコンピュータ,必要なインタフェース回路,A/D変換器,D/A変換器,アンプ等を含んで構成され、エンジンシェイクよりも高周波の振動であるアイドル振動やこもり音振動・加速時振動が車体35に入力されている場合には、その振動を低減できる能動的な支持力が能動型エンジンマウント1に発生するように、能動型エンジンマウント1に対する駆動信号yを生成し出力するようになっている。
【0055】
ここで、アイドル振動やこもり音振動は、例えばレシプロ4気筒エンジンの場合、エンジン回転2次成分のエンジン振動が車体35に伝達されることが主な原因であるから、そのエンジン回転2次成分に同期して駆動信号yを生成し出力すれば、車体側低減が可能となる。そこで、本実施の形態では、燃焼タイミングに同期するように、エンジン30のクランク軸の回転に同期した(例えば、レシプロ4気筒エンジンの場合には、クランク軸が180度回転する度に一つの)インパルス信号を生成しこれを基準信号xとして出力するパルス信号生成器26(図1)を設けていて、その基準信号xがエンジン30における振動の発生状態を表す信号としてコントローラ25に供給されるようになっている。
【0056】
一方、電磁アクチュエータ10のヨーク10Aの下端面と、アクチュエータケース8の底面を形成する平板部材8aの上面との間に挟み込まれるように、エンジン30から支持弾性体6を通じて伝達する加振力を検出する荷重センサ22が配設されていて、荷重センサ22の検出結果がハーネス23bを通じて残留振動信号eとしてコントローラ25に供給されるようになっている。荷重センサ22としては、具体的には、圧電素子,磁歪素子,歪ゲージ等が適用可能である。
【0057】
そして、コントローラ25は、供給される残留振動信号e及び基準信号xに基づき、適応アルゴリズムの一つである同期式Filtered−X LMSアルゴリズムを実行することにより、能動型エンジンマウント1に対する駆動信号yを演算し、その駆動信号yを能動型エンジンマウント1に出力するようになっている。
【0058】
具体的には、コントローラ25は、フィルタ係数Wi (i=0,1,2,……,I−1:Iはタップ数)可変の適応ディジタルフィルタWを有していて、最新の基準信号xが入力された時点から所定のサンプリング・クロックの間隔で、その適応ディジタルフィルタWのフィルタ係数Wi を順番に駆動信号yとして出力する一方、基準信号x及び残留振動信号eに基づいて適応ディジタルフィルタWのフィルタ係数Wi を適宜更新する処理を実行するようになっている。
【0059】
適応ディジタルフィルタWの更新式は、Filtered−X LMSアルゴリズムに従った下記の(1)式のようになる。
i (n+1)=Wi (n)−μRT e(n) ……(1)
ここで、(n),(n+1)が付く項は、サンプリング時刻n,n+1,における値であることを表し、μは収束係数である。また、更新用基準信号RT は、理論的には、基準信号xを、能動型エンジンマウント1の電磁アクチュエータ10及び荷重センサ22間の伝達関数Cを有限インパルス応答型フィルタでモデル化した伝達関数フィルタC^でフィルタ処理をした値であり、基準信号xと伝達関数フィルタC^との関数である次式(2)として表すことができる。ここで、基準信号xの大きさは“1”であるから、伝達関数フィルタC^のインパルス応答を基準信号xに同期して次々と生成した場合のそれらインパルス応答波形のサンプリング時刻nにおける和に一致する。
【0060】
T =f(x,C^) ……(2)
また、理論的には、基準信号xを適応ディジタルフィルタWでフィルタ処理して駆動信号yを生成するのであるが、基準信号xの大きさが“1”であるため、フィルタ係数Wi を順番に駆動信号yとして出力しても、フィルタ処理の結果を駆動信号yとしたのと同じ結果になる。
【0061】
さらに、コントローラ25は上記のような適応ディジタルフィルタWを用いた振動低減処理を実行する一方で、その振動低減制御に必要な伝達関数Cを同定する処理をも実行するようになっている。
【0062】
すなわち、コントローラ25には、伝達関数Cの同定処理を開始するタイミングで操作される同定処理開始スイッチ28が設けられていて、例えば製造ラインにおける最終工程において、或いはディーラーにおける定期点検時において、作業者がその同定処理開始スイッチ28を操作すると、まず同定実行判定処理が実行されて、コントローラ25では、アクチュエータケース8を貫通してヨーク10Aに挿入して配設された、例えば熱電対等で形成される温度センサ29の温度検出値tを入力し、この温度検出値tが予め設定した所定の温度範囲内の値でない場合には、同定処理を実行しないようになっている。
【0063】
つまり、コントローラ25では、同定処理開始スイッチ28の操作信号が入力された場合には、温度センサ29の温度検出値tを読み込み、この温度検出値tが、予め設定した温度範囲、例えば支持弾性体6の温度特性に基づいて設定された範囲内にあるか否かを判定し、温度検出値tが予め設定された所定温度範囲内の値である場合には同定処理を実行し、所定温度範囲外の値である場合には、同定処理を実行せずに、例えば、インジケータに表示する等を行うことによって、外部に通知するようになっている。
【0064】
この同定処理は、例えば、エンジン30が作動していない状態で、正弦波の同定信号を電磁アクチュエータ10に供給し、これに応じて電磁アクチュエータ10が駆動して同定振動が発生することによって、荷重センサ22で検出される残留振動信号eを読み込み、所定数の残留振動信号eを時系列データとして保持し、同様にして周波数の異なる正弦波の同定信号を電磁アクチュエータ10に繰り返し供給して所定の周波数毎の残留振動信号eの時系列データを求め、これら時系列データそれぞれについてFFT演算を行って各時系列データの周波数成分を抽出する。そして、これら周波数成分を合成したものを逆FFT演算して時間軸上のインパルス応答に変化し、これを伝達関数フィルタC^として設定するようになっている。
【0065】
次に、第1の実施の形態の動作を説明する。
すなわち、能動型エンジンマウント1内の流体共振系の共振周波数を20Hzに調節している結果、5〜15Hzの振動であるエンジンシェイク発生時にもある程度の減衰力がこの能動型エンジンマウント1で発生するため、エンジン30側で発生したエンジンシェイクが能動型エンジンマウント1によってある程度減衰されると共に、図示しない他の流体封入式エンジンマウント等によってもエンジンシェイクは減衰されるから、車体35側の振動レベルが低減される。なお、エンジンシェイクに対しては、特に磁路部材12を積極的に変位させる必要はない。
【0066】
一方、アイドル振動周波数以上の周波数の振動が入力された場合には、コントローラ25は、所定の演算処理を実行し、電磁アクチュエータ10に駆動信号yを出力し、能動型エンジンマウント1に振動を低減し得る能動的な支持力を発生させる。
【0067】
これを、アイドル振動,こもり音振動入力時にコントローラ25内で実行される処理の概要を示すフローチャートである図3に従って具体的に説明する。
まず、そのステップ101において所定の初期設定が行われた後に、ステップ102に移行し、予め設定された伝達関数フィルタC^に基づいて更新用基準信号RT が演算される。なお、このステップ102では、一周期分の更新用基準信号RT がまとめて演算される。
【0068】
そして、ステップ103に移行し、カウンタiが零クリアされた後に、ステップ104に移行して、適応ディジタルフィルタWのi番目のフィルタ係数Wi が駆動信号yとして出力される。
【0069】
ステップ104で駆動信号yを出力したら、ステップ105に移行し、残留振動信号eが読み込まれる。そして、ステップ106に移行して、カウンタjが零クリアされ、次いでステップ107に移行し、適応ディジタルフィルタWのj番目のフィルタ係数Wj が上記(1)式にしたがって更新される。
【0070】
ステップ107における更新処理が完了したら、ステップ108に移行し、次の基準信号xが入力されているか否かを判定し、ここで基準信号xが入力されていないと判定された場合には、適応ディジタルフィルタWの次のフィルタ係数の更新又は駆動信号yの出力処理を実行すべく、ステップ109に移行する。
【0071】
ステップ109では、カウンタjが出力回数Ty (正確には、カウンタjは0からスタートするため、出力回数Ty から1を減じた値)に達しているか否かを判定する。この判定は、ステップ104で適応ディジタルフィルタWのフィルタ係数Wi を、駆動信号yとして出力した後に、適応ディジタルフィルタWのフィルタ係数Wi を、駆動信号yとして必要な数だけ更新したか否かを判断するためのものである。そこで、このステップ109の判定が「NO」の場合には、ステップ110でカウンタjをインクリメントした後に、ステップ107に戻って上述した処理を繰り返し実行する。
【0072】
しかし、ステップ109の判定が「YES」の場合には、適応ディジタルフィルタWのフィルタ係数のうち、駆動信号yとして必要な数のフィルタ係数の更新処理が完了したと判断できるから、ステップ111に移行してカウンタiをインクリメントした後に、所定時間待機する。この所定時間は、上記ステップ104の処理を実行してから所定のサンプリング・クロックの間隔に対応する時間が経過するまでの時間である。そして、サンプリング・クロックに対応する時間が経過したら、上記ステップ104に戻って上述した処理を繰り返し実行する。
【0073】
一方、ステップ108で基準信号xが入力されたと判断された場合には、ステップ112に移行し、カウンタi(正確には、カウンタiは0からスタートするため、カウンタiに1を加えた値)を最新の出力回数Ty として保存した後に、ステップ102に戻って、上述した処理を繰り返し実行する。
【0074】
このような図3の処理を繰り返し実行する結果、コントローラ25から能動型エンジンマウント1の電磁アクチュエータ10に対しては、基準信号xが入力された時点から、サンプリング・クロックの間隔で、適応ディジタルフィルタWのフィルタ係数Wi が順番に駆動信号yとして供給される。
【0075】
この結果、励磁コイル10Bに駆動信号yに応じた磁力が発生するが、磁路部材12には、すでに永久磁石10Cによる一定の磁力が付与されているから、その励磁コイル10Bによる磁力は永久磁石10Cの磁力を強める又は弱めるように作用すると考えることができる。つまり、励磁コイル10Bに駆動信号yが供給されていない状態では、磁路部材12は、板ばね11による支持力と、永久磁石10Cとの磁力との釣り合った中立の位置に変位することになる。そして、この中立の状態で励磁コイル10Bに駆動信号yが供給されると、その駆動信号yによって励磁コイル10Bに発生する磁力が永久磁石10Cの磁力と逆方向であれば、磁路部材12は電磁アクチュエータ10とのクリアランスが増大する方向に変位する。逆に、励磁コイル10Bに発生する磁力が永久磁石10Cの磁力と同じ方向であれば、磁路部材12は電磁アクチュエータ10とのクリアランスが減少する方向に変位する。
【0076】
このように磁路部材12は、正逆両方向に変位可能であり、磁路部材12が変位すれば主流体室15の容積が変化し、その容積変化によって支持弾性体6の拡張ばねが変形するから、この能動型エンジンマウント1に正逆両方向の能動的な支持力が発生するのである。
【0077】
そして、駆動信号yとなる適応ディジタルフィルタWの各フィルタ係数Wi は、同期式Filtered−X LMSアルゴリズムにしたがった上記(1)式によって逐次更新されるため、ある程度の時間が経過して適応ディジタルフィルタWの各フィルタ係数Wi が最適値に収束した後は、駆動信号yが能動型エンジンマウント1に供給されることによって、エンジン30から能動型エンジンマウント1を介して車体35側に伝達されるアイドル振動やこもり音振動が低減されるようになるのである。
【0078】
以上は車両走行時等に実行される振動低減処理の動作である。その一方、例えば車両が出荷される前の製造ラインの最終工程において、作業者が同定処理開始スイッチ28を操作すると、図4に示すように、同定実行判定処理が実行される。
【0079】
即ち、同定処理開始スイッチ28の操作信号が入力されると、まず、そのステップ201において、温度センサ29の温度検出値tを読み込み、続いて、ステップ202に移行し、温度検出値tが、予め設定した所定の温度範囲内に含まれるか否かを判定する。
【0080】
この所定の温度範囲は、例えば、伝達系の温度による特性変化に大きく起因する支持弾性体6の温度特性に基づいて設定され、例えば支持弾性体6がゴム等の温度によってその温度特性が大きく変化するもので形成されている場合には、その温度特性の変化の小さい温度の範囲が設定される。例えば、その温度特性が、温度が0℃以下,又は100℃以上となったときに、0〜100℃における特性に比較して大きく変化するような特性である場合には、温度範囲として0〜100℃が設定される。
【0081】
そして、温度検出値tが所定の温度範囲内に含まれる場合には、ステップ203に移行して、所定の同定処理を実行する。
一方、ステップ202の処理で温度検出値tが所定の温度範囲内に含まれない場合には、ステップ204に移行し、例えば、その温度検出値tが所定温度範囲よりも低いか高いかによって、例えば同定処理開始スイッチ28と共に設けられた表示装置等に、暖機又は冷機を指示表示して外部に通知する。そして、ステップ201の処理に戻る。そして、上記と同様に処理を行い、温度検出値tが所定温度範囲内の値となったとき(ステップ202)、同定処理を実行する(ステップ203)。
【0082】
したがって、同定処理開始スイッチ28が操作されたときに、温度センサ29で検出した温度検出値tが所定温度範囲内の値であるときには、そのまま同定処理が実行されるが、所定温度範囲内の値でない場合には、同定処理は実行されない。よって、ゴム製の支持弾性体6の場合、温度範囲として0〜100℃として設定しておけば、例えば0℃以下の温度環境下等、ゴムが硬化し、支持弾性体6の伝達特性が通常の伝達特性とは大きく異なる温度環境下で同定処理が実行されることはない。
【0083】
よって、温度変化に伴う温度特性の変化が少ない温度範囲の温度環境下においてのみ同定処理が行われ、特に、この温度範囲は、通常の稼働において一般に支持弾性体6がおかれる温度範囲を含んでいるから、例えば同定処理を行ったときの温度環境が、0℃以下等の所定の温度範囲外の温度環境下であって、その後、温度環境が変化し、所定温度範囲内の温度環境下に移行した場合に、この温度環境下においても、所定温度範囲外の温度環境下で設定された伝達関数に基づいて、制御アルゴリズムが実行されることを回避することができる。つまり、実際の伝達関数とは大きく異なる伝達関数に基づいて制御アルゴリズムが実行されることを回避することができる。よって、現在の伝達関数により近い伝達関数に基づいて制御振動が発生されて、良好な振動低減制御を実行することができる。
【0084】
特に、ゴム製の支持弾性体6の場合には、その温度が0〜100℃の範囲外となった場合には、その温度特性が大きく変化するため、0〜100℃の範囲外において同定された伝達関数に基づいて、0〜100℃の温度環境下で振動低減処理を実行した場合、実際の伝達特性とは大きく異なる制御振動が発生されることになり、発散に至ってしまう可能性があるが、上記実施の形態によれば、例えば温度範囲として温度特性の変化が小さい0〜100℃を設定すれば、この温度範囲内の温度環境下でのみ同定処理が実行されるから、通常の温度環境下における実際の支持弾性体6の伝達特性とは大きく異なる伝達特性に応じた伝達関数に同定されることを回避できるから、発散に至ることを回避することができる。
【0085】
また、上記第1の実施の形態では、温度検出値tが所定の温度範囲内の値でない場合には、所定の表示領域の表示するようにし、例えば、温度検出値tが所定の温度範囲よりも低い、或いは高いということを表示するようにしているから、この表示にしたがって、同定処理開始スイッチ28の操作員が対処することができる。つまり、例えば、所定温度範囲よりも低い場合には、エンジン30を起動させれば、このエンジン30の発熱によって、能動型エンジンマウント1の温度が上昇するから、これに応じて温度検出値tが上昇してより早い段階で、所定温度範囲内の値となって同定処理が可能となり、逆に、所定温度範囲よりも高い場合には、例えばエンジン30が稼働中であるならば、エンジン30を停止させる或いは、エンジン30をアイドリング状態にする等の対処を行えばより早い段階で所定温度範囲内の値となって同定処理を実行することができる。
【0086】
ここで、本実施の形態では、エンジン30が振動源に対応し、能動型エンジンマウント1が制御振動源に対応し、パルス信号生成器26が基準信号生成手段に対応し、荷重センサ22が残留振動検出手段に対応し、図3の処理が能動制御手段に対応し、温度センサ29が温度検出手段に対応し、図4のステップ203が伝達関数同定手段に対応し、ステップ202が同定禁止手段に対応している。
【0087】
次に、本発明の第2の実施の形態を説明する。
本発明の第2の実施の形態は、上記第1の実施の形態における、同定実行判定処理の処理内容が一部異なること以外は同様であり、全体的な構成や振動低減処理の処理内容は上記第1の実施の形態と同様であるため、その重複する説明は省略する。
【0088】
この第2の実施の形態においては、同定実行判定処理では、温度センサ29の温度検出値tが所定の温度範囲外の値である場合には、エンジンを駆動制御するエンジン制御装置に対して通知を行い、エンジンを停止又は起動させるようにしている。
【0089】
つまり、温度検出値tが所定温度範囲外の値である場合には、所定温度よりも低いときはエンジン30を起動させてエンジン30の稼働に伴う発熱によって、能動型エンジンマウント1の温度を上昇させ、所定温度よりも高い場合にはエンジン30の稼働を停止させて、エンジン30の稼働に伴う発熱を停止させ、能動型エンジンマウント1の温度の低下を図るようにしている。
【0090】
図5は、第2の実施の形態における同定実行判定処理の所定手順の一例を示すフローチャートである。なお、全体的な処理内容は上記第1の実施の形態と同様であるため、同一部分には同一番号を付与し、重複する説明は省略する。
【0091】
すなわち、コントローラ25では、同定処理開始スイッチ28からの指令信号を入力すると、まず、温度センサ29からの温度検出値tを読み込み(ステップ201)、続いて、温度検出値tが所定の温度範囲内の値であるか否かを判定する(ステップ202)。そして、温度検出値tが予め設定した所定温度範囲内の値でない場合には、ステップ211に移行して、エンジン30の駆動制御処理を実行する図示しないエンジン制御装置に対し、例えば温度検出値tが所定温度範囲よりも低い場合にはエンジン30を起動するように通知し、逆に温度検出値tが所定温度範囲よりも高い場合にはエンジン30を停止させるように通知する(エンジン制御手段)。そして、ステップ201の処理に戻る。
【0092】
そして、ステップ202の処理で、温度検出値tが所定温度範囲内の値である場合には、ステップ212に移行し、ステップ211の処理でエンジン制御装置に対して、エンジン30を停止或いは起動するように通知している場合には、これを解除するようにエンジン制御装置に通知する(ステップ213)。そして、ステップ203の同定処理を実行する。
【0093】
一方、エンジン制御装置に対して、エンジン30を停止或いは起動させるように通知していない場合には、そのままステップ203に移行して同定処理を実行する。
【0094】
したがって、この第2の実施の形態においても、温度検出値tが所定の温度範囲内の値でないときには、同定処理を実行しないようにしているから、上記第1の実施の形態と同等の作用効果を得ることができると共に、この第2の実施の形態においては、温度検出値tが所定温度範囲内の値でない場合には、温度検出値tに応じてエンジン30を起動する、或いは停止させるようにエンジン制御装置に通知し、エンジン制御装置によってエンジン30を駆動制御させるようにしているから、操作員が対処することなく、自動的に温度検出値tを所定温度範囲内の値に移行させることができる。
【0095】
次に、本発明の第3の実施の形態を説明する。
この第3の実施の形態は、温度センサ29で検出した温度検出値tが、所定温度範囲よりも低い値である場合には、電磁アクチュエータ10に通電することによって、この電磁アクチュエータ10の発熱により、温度検出値tを上昇させるようにしたものである。そして、上記第1の実施の形態において、その全体的な構成や振動低減処理等の処理内容は同様であるので、その重複する説明は省略する。
【0096】
図6は、第3の実施の形態における同定実行判定処理の処理手順の一例を示すフローチャートであって、上記第1の実施の形態における同定実行判定処理と同一部分には、同一符号を付与している。
【0097】
すなわち、同定処理開始スイッチ28から、指令信号が入力されるとコントローラ25では、まず、温度センサ29からの温度検出値tを読み込み(ステップ201)、この温度検出値tが所定の温度範囲内の値であるか否かを判定し(ステップ202)、所定の温度範囲内の値でない場合には、ステップ221に移行して、所定温度範囲よりも低い温度であるか否かを判定する。
【0098】
そして、所定温度範囲よりも低い温度である場合には、ステップ222に移行し、例えば図示しないイグニッションスイッチのスイッチ信号を参照すること等によってエンジン30が作動中であるか否かを判定する。
【0099】
そして、エンジン30が作動中である場合には、そのままステップ201に戻る。一方、ステップ222の処理でエンジン30が作動していない場合には、次のステップ223に移行し、電磁アクチュエータ10に対して、所定の直流電流を供給しステップ201に戻る。
【0100】
一方、ステップ221の処理で、温度検出値tが所定温度範囲よりも高い場合には、ステップ224に移行し、例えば同定処理開始スイッチ28と共に設けられた表示領域等に、能動型エンジンマウント1の冷機を指示する冷機指示表示を行い、ステップ201の処理に戻る。
【0101】
そして、前記ステップ202の処理で、温度検出値tが所定温度範囲内の値である場合には、次に、ステップ225に移行して、電磁アクチュエータ10に対して通電を行っているか否かを判定し、通電している場合には、この通電を終了した後(ステップ226)、ステップ203に移行して所定の同定処理を実行する。また、ステップ225の処理で電磁アクチュエータ10に対して通電を行っていない場合には、そのままステップ203に移行して所定の同定処理を実行する。
【0102】
したがって、この第3の実施の形態においても、温度検出値tが所定温度範囲内の値でない場合には、同定処理を実行しないようにしているから、上記第1の実施の形態と同様の作用効果を得ることができると共に、この第3の実施の形態においては、温度検出値tが所定温度範囲よりも低い値である場合には、電磁アクチュエータ10に電流供給を行うようにしているから、例えばエンジン30を起動させなくても、容易に温度上昇を図ることができる。
【0103】
また、温度検出値tが所定温度範囲よりも高い値である場合には、インジケータ等にこれを表示するようにしているから、操作員がこれに応じて対処することによって、容易に温度低下を図ることができ、より早い段階で同定処理を実行することができる。また、所定温度範囲よりも温度検出値tが高い場合にもインジケータ等に表示するようにすれば、操作員がこれを参照することによって、通電中であることを容易に認識することができる。
【0104】
なお、上記各実施の形態においては、製造ラインにおける最終工程において、或いはディーラーにおける定期点検時において、同定処理を実行する場合において適用した場合について説明したが、これに限るものではなく、例えばイグニッションスイッチがオン状態となったとき等に同定処理を実行するような場合には、この同定処理を実行する前に、温度センサ29の温度検出値tに基づいて同定処理を実行するか否かを判定するようにすればよく、要は同定処理を実行する前に、温度検出値tが所定の温度範囲内であるか否かを判定し、所定の温度範囲内の値であるときのみ同定処理を実行するようにすればよい。
【0105】
また、上記各実施の形態においては、所定の温度範囲として、例えばゴム製の支持弾性体6の温度特性が大きく変化する範囲を除いた0〜100℃を設定した場合について説明したが、これに限るものではなく、例えば通常の稼働状態において能動型エンジンマウント1がおかれる温度環境の温度範囲等、任意に設定することができる。
【0106】
また、上記各実施の形態においては、温度センサ29を電磁アクチュエータ10のヨーク10Aに挿入してここの温度を検出するようにした場合について説明したが、これに限るものではない。例えば、能動型エンジンマウント1の温度変化の影響を受けやすいのは、例えば支持弾性体6等、温度変化に伴いその振動の伝達関数が大きく変化するゴム等で形成された部分であるから、この支持弾性体6に温度センサを設けて支持弾性体6の温度を検出するようにしてもよい。この支持弾性体6はその耐久性の問題から、温度センサを支持弾性体6に挿入することはできないから、例えばその表面に温度センサを設けるようにしてもよく、また、予め実験等によって、ヨーク10Aと支持弾性体6との温度の相関関係を求めておき、この相関関係と温度センサ29で検出したヨーク10Aの温度検出値tとに基づいて支持弾性体6の温度を予測し、この予測した温度に基づいて、同定処理を実行するか否かの判定を行うようにしてもよい。
【0107】
また、支持弾性体6に限らず、主流体室15内の作動流体の温度,或いは能動型エンジンマウント1本体が設置されている場所の温度,等を測定するようにしてもよい。
【0108】
また、上記各実施の形態においては、残留振動を能動型エンジンマウント1に内蔵した荷重センサ22によって検出しているが、これに限定されるものではなく、例えば車室内の乗員足元位置にフロア振動を検出する加速度センサを配設し、その加速度センサの出力信号を残留振動信号eとしてもよい。
【0109】
また、上記各実施の形態においては、本発明における能動型振動制御装置をエンジン30から車体35に伝達される振動を低減する車両用の能動型振動制御装置に適用した場合について説明したが、本発明の対象はこれに限定されるものではなく、エンジン30以外で発生する振動を低減するための能動型振動制御装置であっても本発明は適用可能である。
【0110】
また、例えば騒音源としてのエンジン30から車室内に伝達される騒音を低減する能動型騒音制御装置であってもよく、かかる能動型騒音制御装置とする場合には、車室内に制御音を発生するための制御音源としてのラウドスピーカと、車室内の残留騒音を検出する残留騒音検出手段としてのマイクロフォンと、車室内の温度を測定する温度検出手段としての温度センサを設け、上記各実施の形態と同様の演算処理によって得られる駆動信号yに応じてラウドスピーカを駆動させると共に、マイクロフォンの出力を残留騒音信号eとして適応ディジタルフィルタWの各フィルタ係数Wi の更新処理に用い、同定実行判定処理等を実行すれば、上記各実施の形態と同様の作用効果を得ることができる。
【0111】
また、本発明の適用対象は車両に限定されるものではなく、エンジン30以外で発生する周期的な振動や騒音を低減するための能動型振動制御装置,能動型騒音制御装置や、非周期的な振動や騒音(ランダム・ノイズ)を低減するための能動型振動制御装置,能動型騒音制御装置であっても適用可能であり、適用対象に関係なく上記各実施の形態と同様の作用効果を奏することができる。例えば、工作機械からフロアや室内に伝達される振動を低減する装置等であっても、本発明は適用可能である。
【0112】
さらに、上記各実施の形態では、駆動信号yを生成するアルゴリズムとして同期式Filtered−X LMSアルゴリズムを適用しているが、適用可能なアルゴリズムはこれに限定されるものではなく、例えば、通常のFiltered−X LMSアルゴリズム等であってもよい。
【図面の簡単な説明】
【図1】第1の実施の形態を示す概略構成図である。
【図2】能動型エンジンマウントの一例を示す断面図である。
【図3】振動低減処理の概要を示すフローチャートである。
【図4】第1の実施の形態における同定実行判定処理の概要を示すフローチャートである。
【図5】第2の実施の形態における同定実行判定処理の概要を示すフローチャートである。
【図6】第3の実施の形態における同定実行判定処理の概要を示すフローチャートである。
【符号の説明】
1 能動型エンジンマウント
5b オリフィス
10 電磁アクチュエータ
11 板ばね
12 磁路部材
15 主流体室
16 副流体室
22 荷重センサ
25 コントローラ
26 パルス信号生成器
28 同定処理開始スイッチ
29 温度センサ
30 エンジン
35 車体

Claims (5)

  1. 振動源から発せられる振動と干渉する制御振動を発生可能な制御振動源と、
    前記振動の発生状態を表す基準信号を生成し出力する基準信号生成手段と、
    前記干渉後の振動を検出し残留振動信号として出力する残留振動検出手段と、
    前記基準信号及び前記残留振動信号に基づき前記制御振動源及び前記残留振動検出手段間の振動の伝達系の伝達関数を含む制御アルゴリズムを用いて前記振動が低減するように前記制御振動源を駆動する能動制御手段と、
    所定のタイミングで前記伝達関数を同定する伝達関数同定手段と、を備えた能動型振動制御装置において、
    前記伝達系の温度を検出する温度検出手段と、
    当該温度検出手段で検出した検出温度が予め設定した所定温度範囲外の値であるとき前記伝達関数同定手段による前記伝達関数の同定処理を禁止する同定禁止手段と、を有し、
    前記制御振動源は通電式の制御振動源であって、前記同定禁止手段は、前記検出温度が前記所定温度範囲よりも低いとき、前記制御振動源に通電するようになっていることを特徴とする能動型振動制御装置。
  2. 振動源から発せられる振動と干渉する制御振動を発生可能な制御振動源と、
    前記振動の発生状態を表す基準信号を生成し出力する基準信号生成手段と、
    前記干渉後の振動を検出し残留振動信号として出力する残留振動検出手段と、
    前記基準信号及び前記残留振動信号に基づき前記制御振動源及び前記残留振動検出手段間の振動の伝達系の伝達関数を含む制御アルゴリズムを用いて前記振動が低減するように前記制御振動源を駆動する能動制御手段と、
    所定のタイミングで前記伝達関数を同定する伝達関数同定手段と、を備え、車両に適用される能動型振動制御装置において、
    前記伝達系の温度を検出する温度検出手段と、
    当該温度検出手段で検出した検出温度が予め設定した所定温度範囲外の値であるとき前記伝達関数同定手段による前記伝達関数の同定処理を禁止する同定禁止手段と、を有し、
    前記振動源はエンジンであって、前記同定禁止手段は、前記検出温度が前記所定温度範囲よりも低いときには前記エンジンを起動させ、前記検出温度が前記所定温度範囲よりも高いときには前記エンジンを停止させるエンジン制御手段を備えることを特徴とする能動型振動制御装置。
  3. 前記同定禁止手段は、前記検出温度が前記所定温度範囲外の値であるとき、外部に通知するようになっていることを特徴とする請求項1又は請求項2記載の能動型振動制御装置。
  4. 車両に適用され、前記振動源はエンジンであり、前記制御振動源は、前記エンジンと車体側部材との間に介在する支持弾性体を備えた制御振動源であって、
    前記温度検出手段は、前記支持弾性体の温度を検出するようになっていることを特徴とする請求項1乃至3の何れかに記載の能動型振動制御装置。
  5. 車両に適用され、前記振動源はエンジンであり、前記制御振動源は、前記エンジンと車体側部材との間に介在する支持弾性体を備えた制御振動源であって、
    前記温度検出手段は前記支持弾性体の周辺温度を検出して、当該周辺温度から前記支持弾性体の温度を予測するようになっていることを特徴とする請求項1乃至3の何れかに記載の能動型振動制御装置。
JP12585697A 1997-05-15 1997-05-15 能動型振動制御装置 Expired - Fee Related JP3695061B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12585697A JP3695061B2 (ja) 1997-05-15 1997-05-15 能動型振動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12585697A JP3695061B2 (ja) 1997-05-15 1997-05-15 能動型振動制御装置

Publications (2)

Publication Number Publication Date
JPH10319972A JPH10319972A (ja) 1998-12-04
JP3695061B2 true JP3695061B2 (ja) 2005-09-14

Family

ID=14920644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12585697A Expired - Fee Related JP3695061B2 (ja) 1997-05-15 1997-05-15 能動型振動制御装置

Country Status (1)

Country Link
JP (1) JP3695061B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485920A (zh) * 2022-01-24 2022-05-13 广东汇天航空航天科技有限公司 一种控制信息生成方法、装置、电子设备和介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105814B2 (ja) * 1997-03-06 2000-11-06 静岡日本電気株式会社 移動通信システムおよびその端末装置
JP3695058B2 (ja) * 1997-05-09 2005-09-14 日産自動車株式会社 能動型振動制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799024B2 (ja) * 1990-01-20 1998-09-17 トキコ株式会社 粘性ダンパ
JPH0544775A (ja) * 1991-08-06 1993-02-23 Sanden Corp 機器の防振装置
JP2748735B2 (ja) * 1991-08-30 1998-05-13 日産自動車株式会社 能動型騒音制御装置
JP3403209B2 (ja) * 1991-10-31 2003-05-06 いすゞ自動車株式会社 車室内騒音の低減装置
JPH0633981A (ja) * 1992-07-10 1994-02-08 Mazda Motor Corp 車両の振動低減装置
JPH06129227A (ja) * 1992-10-15 1994-05-10 Toshiba Corp 能動消音装置
JP3555152B2 (ja) * 1993-12-08 2004-08-18 マツダ株式会社 車両の振動低減装置
JP3572486B2 (ja) * 1994-03-25 2004-10-06 本田技研工業株式会社 振動騒音制御装置
JPH08254163A (ja) * 1995-03-16 1996-10-01 Unisia Jecs Corp 自動車用アクティブ騒音制御装置
JPH08312714A (ja) * 1995-05-23 1996-11-26 Nissan Motor Co Ltd 制御型防振支持装置
JP3695058B2 (ja) * 1997-05-09 2005-09-14 日産自動車株式会社 能動型振動制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485920A (zh) * 2022-01-24 2022-05-13 广东汇天航空航天科技有限公司 一种控制信息生成方法、装置、电子设备和介质

Also Published As

Publication number Publication date
JPH10319972A (ja) 1998-12-04

Similar Documents

Publication Publication Date Title
JP3228153B2 (ja) 能動型振動制御装置
JPH112283A (ja) 能動型振動制御装置
WO2010113977A1 (ja) 能動型防振支持装置
JP3695061B2 (ja) 能動型振動制御装置
JP3695058B2 (ja) 能動型振動制御装置
JP3402120B2 (ja) 能動型振動制御装置
JP3593866B2 (ja) 能動型騒音振動制御装置
JP3509440B2 (ja) 能動型振動制御装置
JP3642189B2 (ja) 車両用能動型騒音振動制御装置
JPH10320059A (ja) 能動型振動制御装置
JP3419231B2 (ja) 能動型振動制御装置
JP3997610B2 (ja) 車両用能動型振動制御装置
JP3551653B2 (ja) 能動型騒音振動制御装置
JPH10212994A (ja) 車両用異常検出装置
JP3804275B2 (ja) 能動型騒音振動制御装置
JPH11338553A (ja) 能動型振動制御装置及び能動型騒音制御装置
JP3593886B2 (ja) 車両用能動型振動制御装置
JP2000002293A (ja) 能動型騒音振動制御装置
JPH11338505A (ja) 能動型振動制御装置及び能動型騒音制御装置
JP3624694B2 (ja) 能動型騒音振動制御装置
JP3747619B2 (ja) 能動型振動制御装置
JP3695052B2 (ja) 能動型騒音振動制御装置
JPH09317816A (ja) 能動型振動制御装置
JPH11133983A (ja) 能動型騒音振動制御装置
JP2000018315A (ja) アクティブ制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees