JP3649556B2 - 波長分散制御のための方法と装置及び分散量検出方法 - Google Patents

波長分散制御のための方法と装置及び分散量検出方法 Download PDF

Info

Publication number
JP3649556B2
JP3649556B2 JP22405697A JP22405697A JP3649556B2 JP 3649556 B2 JP3649556 B2 JP 3649556B2 JP 22405697 A JP22405697 A JP 22405697A JP 22405697 A JP22405697 A JP 22405697A JP 3649556 B2 JP3649556 B2 JP 3649556B2
Authority
JP
Japan
Prior art keywords
dispersion
signal
transmission line
intensity
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22405697A
Other languages
English (en)
Other versions
JPH1168657A (ja
Inventor
寛己 大井
丈二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22405697A priority Critical patent/JP3649556B2/ja
Priority to US09/044,130 priority patent/US6411416B1/en
Priority to US09/045,040 priority patent/US6081360A/en
Priority to DE69833463T priority patent/DE69833463T2/de
Priority to DE69834004T priority patent/DE69834004T2/de
Priority to DE69839099T priority patent/DE69839099T2/de
Priority to EP04008757A priority patent/EP1443690B1/en
Priority to EP98303222A priority patent/EP0898391B1/en
Priority to EP04008756A priority patent/EP1443689B1/en
Priority to CN98108392.7A priority patent/CN1244207C/zh
Publication of JPH1168657A publication Critical patent/JPH1168657A/ja
Priority to US09/345,806 priority patent/US6501580B1/en
Application granted granted Critical
Publication of JP3649556B2 publication Critical patent/JP3649556B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2519Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using Bragg gratings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/252Distortion or dispersion compensation after the transmission line, i.e. post-compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Description

【0001】
【発明の属する技術分野】
本発明は、伝送路の波長分散の制御のための方法と装置及び分散量検出方法に関する。
現在基幹系光通信において10Gb/s光伝送システムが実用化段階にあるが、急激な情報量の増加に伴い、更なる光通信システムの大容量化が望まれている。その方式としては時分割多重(光時分割多重を含む)および波長多重が候補として考えられており、時分割多重方式においては、40Gb/sシステムの研究も国内外で活発になってきている。
【0002】
本発明は、時分割多重方式による大容量光伝送システムを実現するための、伝送路の波長分散の監視および制御技術に言及する。
【0003】
【従来の技術】
40Gb/sシステムにおける伝送距離を制限する要因の一つとして、波長分散(群速度分散:GVD)がある。分散耐力がビットレートの二乗に反比例するために、10Gb/sでは約800ps/nmであった分散耐力が、40Gb/sでは1/16の約50ps/nmと厳しくなる。
【0004】
測定結果によれば、信号光波長が1.55μm(石英系ファイバにおける伝送損失が最小である波長)、入力信号光パワーが+3dBm、ビットレート40Gb/sの光時分割多重(OTDM)信号(後述)を、零分散波長が1.3μm(現在世界で最も広く布設されているもの)の単一モードファイバ(SMF)で50kmの距離を伝送し、分散補償ファイバ(DCF)で分散補償を行なったとき、パワーペナルティ(伝送による光信号の受信感度劣化)を1dB以下に抑えるために許される分散補償値の範囲の幅(分散補償トレランス)は30ps/nmであった。このときに必要な分散補償値は930ps/nm(18.6ps/nm/km×50km)であるから、930±15ps/nmと、ほぼ100%に近い精度で分散補償を行なわなければならないことがわかる。
【0005】
一方、伝送路分散は温度変化等の経時変化によって変わる。例えば、SMF50km伝送で、−50〜100℃の温度変化がある場合の伝送路分散の変化量は以下のように見積もられる。
(伝送路零分散波長の温度依存性)×(温度変化)×(分散スロープ)×(伝送距離)
=0.03nm/℃×150℃×0.07ps/nm2 /km×50km
=16ps/nm
これは、上記分散補償トレランスと比較しても無視出来ない値である。よって、40Gb/s以上の大容量伝送においては、伝送路分散を常時監視し、総分散を零に合わせ込む必要がある。その点については、1.55μm帯における波長分散の小さい分散シフトファイバ(DSF)を用いた場合でも同じである。
【0006】
自動分散等化システム(総分散を自動的に零にフィードバック制御するシステム)を開発する場合に問題となるのは、次の点である。
(i)可変分散補償器の実現
(ii)伝送路分散(または分散補償後の総分散量)の検出方法
(iii )分散補償量のフィードバック制御の方法
(i)に関しては、簡単には、分散補償量の異なるDCFを光スイッチで切換えて不連続に分散補償量を変えることが考えられる。連続的に可変する方法としては、現在までにファイバグレーティングに応力(M. M. Ohm et al., Tunable grating dispersion using a piezoelectric stack, OFC '97 Technical Digest, WJ3, pp.155-156)や温度傾斜(Sergio Barcelos et al., Characteristics of chirped fiber gratings for dispersion compensation, OFC '96 Technical Digest, WK12, pp.161-162)を与える方法、PLC(Planer Lightwave Circuit)に温度変化による位相変化を与える方法(K. Takiguchi, et al., Variable Group-Delay Dispersion Equalizer Using Lattice-Form Programmable Optical Filter on Planar Lightwave Circuit, IEEE J. Selected Topics in Quantum Electronics, ,1996, pp.270-276) で分散補償量を変化させることが試みられている。可変分散補償器を用いる代わりに、波長可変光源を用いて伝送路分散を変化させる方法も考えられる。この場合、光フィルタの中心波長も同時に連動変化させる必要がある。
【0007】
(ii)に関しては、複数の異なる波長の光をファイバに入力し、出力光間の群遅延差や位相差を測定するパルス法や位相法が従来から用いられてきた。しかし、これらの方法をシステム運用時に行う場合、分散量の測定時にシステム運用を中断するか、信号光とは別の波長の測定光を用いて波長多重する必要がある。後者の場合、伝送路分散が波長によって異なるため、測定光での分散量の測定結果から信号光での分散量を推定する必要が生じるという問題がある。“A. Sano et al., Automatic dispersion equalization by monitoring extracted-clock power level in a 40-Gbit/s, 200-km Transmission line, ECOC '96, TuD. 3.5, 1996, pp.207-210”には、受信した光信号からクロック成分(データ信号のビットレートがBb /sであるときBHz成分)のパワーを検出し、それが最大となるように分散補償量を制御することが開示されている。しかしながら、零復帰(RZ)信号の場合にはクロック成分が含まれているが、非零復帰(NRZ)信号、または複数のRZ信号を互いの裾が重なり合うようにして時分割多重したOTDM信号のように零分散時にクロック成分強度が最大とならない場合にはこの手法を適用することはできない。
【0008】
(iii )に関しては、システム運用を中断して可変分散補償器や波長可変光源によって総分散量を広範囲に掃引し、総分散量が零になる設定点を検出した後でその値に設定する方法が考えられる。しかし、システム運用を中断する必要無く常時制御できる方法が望ましい。
【0009】
【発明が解決しようとする課題】
したがって本発明の目的は、NRZ信号、複数のRZ信号を互いの裾が重なり合うようにして多重化したOTDM信号のように零分散時にクロック成分強度が最大とならない光信号について伝送路分散を制御するための方法と装置を提供することにある。
【0010】
本発明の他の目的は、システム運用を中断することなく伝送路分散を制御するための方法と装置および分散量検出方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御方法であって、該伝送路で伝送された光信号から特定の周波数の成分の強度を検出し、検出された特定周波数成分の強度が極小となるように伝送路の総分散量を制御するステップを具備する分散制御方法が提供される。
【0012】
本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御方法であって、総分散量の制御信号に低周波信号を重畳し、低周波信号が重畳された制御信号に従って伝送路の総分散量を変化させ、該伝送路で伝送された光信号から特定周波数の成分の強度を検出し、特定周波数成分の検出信号から前記低周波信号と同じ周波数の成分を抽出し、抽出された周波数成分の位相と該低周波信号の位相を比較し、該位相比較結果に基いて前記総分散量の制御信号を生成するステップを具備する分散制御方法もまた提供される。
【0013】
本発明によれば、データ信号で変調された光信号を伝送する伝送路の分散量を検出する方法であって、該伝送路で伝送された光信号から特定の周波数の成分の強度を検出し、検出された特定周波数成分の強度から伝送路の総分散量を決定するステップを具備する分散検出方法もまた提供される。
本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御装置であって、該伝送路で伝送された光信号から特定の周波数の成分の強度を検出する光検出器と、検出された特定周波数成分の強度が極小となるように伝送路の総分散量を制御する分散制御手段とを具備する分散制御装置もまた提供される。
【0014】
本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御装置であって、総分散量の制御信号に低周波信号を重畳する低周波重畳回路と、低周波信号が重畳された制御信号に従って伝送路の総分散量を変化させる分散可変手段と、該伝送路で伝送された光信号から特定周波数の成分の強度を検出する光検出器と、特定周波数成分の検出信号から前記低周波信号と同じ周波数の成分を抽出する信号抽出回路と、抽出された周波数成分の位相と該低周波信号の位相を比較する位相比較回路と、該位相比較回路の出力に基いて前記総分散量の制御信号を生成する制御信号生成回路とを具備する分散制御装置もまた提供される。
【0015】
本発明によれば、mビット/秒のデータ信号で振幅変調されたn個の光信号を時分割多重化して得られた、n・mビット/秒のデータ信号で変調された時分割多重光信号を光ファイバ伝送路に送信し、光ファイバ伝送路より受信した前記時分割多重光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出し、抽出したn・mヘルツ、またはmヘルツの周波数成分がそれぞれ極小値または極大値を示すように、上記光ファイバ伝送路の分散を可変にすることを特徴とする光ファイバ伝送路の分散制御方法もまた提供される。
【0016】
本発明によれば、時分割多重化された、mビット/秒のデータ信号で振幅変調されたn個の光信号を光ファイバ伝送路から受信する手段と、受信した前記時分割多重化された光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出する手段と、抽出したn・mヘルツ、またはmヘルツの周波数成分がそれぞれ極小値または極大値を示すように、上記光ファイバ伝送路の分散量を制御する手段とを備えたことを特徴とする光ファイバ伝送路の分散制御装置もまた提供される。
【0017】
【発明の実施の形態】
データ信号のビットレートが40GHz のOTDM信号、NRZ光信号、RZ光信号(デューティ50%)、およびRZ光信号(デューティ25%)のベースバンドスペクトル中の40GHz 成分強度の総分散依存性の計算機シミュレーションの結果をそれぞれ図1〜4に示す。図1〜4には振幅方向のアイ開口度についても示してある。入力光のパワーは平均で−5dBm,SMF長は50kmであり、SMFに直列に接続したDCFの分散量を変えることにより、総分散量を変えた。
【0018】
上記のOTDM信号とは図5に示すような光変調器10から出力される光信号である。図5において、LiNbO3 基板12にTiを熱拡散させて図5に示すような光導波路14を形成し、その上に図5中にハッチングで示す電極パターン16をAuで形成して、1入力2出力光スイッチ18、独立な2系列の光変調器を有するデータ変調部20、位相制御部22および光多重部24が形成される。1入力2出力光スイッチ18の光導波路に連続光を入力し、2つの電極に位相差が180°の20GHz クロックを印加すると、図6の(a)(b)欄に示す互いに逆相の2系統の20GHz 光クロックが光スイッチ18から出力され、データ変調部20の2つの光変調器へ入力される。2つの光変調器のそれぞれには20Gb/sのデータ信号が印加されて図6の(c)(d)欄に示す2系列のRZ信号がデータ変調器20から出力される。位相制御部22では2光波間の位相差が180°になるように光波の位相が調節され、光多重部24で合成される。2光波間の位相差が180°であるので、図6の(e)欄に示すように1が連続するところでは裾部分が打ち消し合ってRZ信号に近い波形になり、それ以外の隣接ビットの少なくとも一方が0になるところではNRZ信号の波形に近くなる。
【0019】
図3および図4のRZ信号については、総分散量が零になったときに40GHz 成分の強度が最大になることがわかる。これに対して、図1のOTDM信号および図2のNRZ信号では、逆に総分散量が零のときに40GHz 成分強度は極小となっていることがわかる。
参考のためにOTDM及びNRZについて光変調信号ベースハンドスペクトルをそれぞれ図7及び図8に示す。NRZについては40GHz 成分が無く、波長分散を受けた後ではスペクトル拡がりのために40GHz 成分を生じると定性的には考えられる。また、OTDM及びNRZの各々について、−40,0,+40ps/nmの分散を受けた後の波形(等化波形)を図9及び図10に示すが、OTDMとNRZの両方とも波形中心の“1”レベルが分散(正負)を受けた後に高くなり、クロスポイント位置が逆に下がっていることから、1タイムスロットの長さと同じ周期の強度変動が起きており、これによって40GHz 成分を生じることが分かる。
【0020】
したがって(ii)の点に関して、一般にビットレートがBb/sで、零分散においてBヘルツ成分が極小となる光信号を伝送する場合に、分散補償量や信号光波長等の可変分散デバイスの制御点を変化させて受光信号中のBHz成分強度が極小となる制御点を検出できれば、総分散量を零に設定できることになる。なお、BHz成分以外にも、BHzの高調波成分など、他の周波数成分を用いて同様の制御を行うことも考えられる。また、OTDM,NRZ波形においては、図1および図2から明らかなように極小点の両側に2つの極大点が対称に存在するから、極小点の検出が難しい場合、2つの極大点を与える可変分散補償デバイスの制御点を検出して、その中点を取ることで総分散量を零に設定することができる。
【0021】
さらに、mビット/秒のデータ信号で振幅変調されたn個のRZ信号を時分割多重して得られた、n・mビット/秒のデータ信号で変調されたOTDM信号の場合、前述のようにn・mヘルツ成分を抽出してそれが極小となるように伝送路の総分散を制御する代わりに、mヘルツ成分を抽出してそれが極大になるように伝送路の総分散を制御しても良い。このOTDM信号を構成する速度mビット/秒のRZ信号にはmヘルツ成分が含まれ、図3及び図4から明らかなように、それは総分散量が0のとき極大となるからである。すなわち、この場合、n・mヘルツ成分またはmヘルツ成分を抽出し、それがそれぞれ極小または極大となるように伝送路の総分散量が制御される。
【0022】
また、(iii )の点に関しては、BHz成分強度が極小(または極大)となる点を常時検出するために、極小点(または極大点)の回りで総分散量を低周波f0 で微小変動させる方法が考えられる。その方法の原理を図11および12に示す。図11のように分散補償量が極小点(または極大点)にある場合は、BHz成分強度は周波数2×f0 で時間変化し、周波数f0 の成分は含まない。この状態から図12の(b)や(c)のように分散補償量がずれた場合、図12に示すようにBHz成分強度の時間変化には周波数f0 の成分が現れ、しかも(b)と(c)でその成分の符号が逆になる。よって、BHz成分強度から周波数f0 の成分を検知し、その成分が無くなるように総分散量を変化させるようなフィードバックをかけることを考える。その変化の方向は、上記周波数f0 の成分の位相から判別することができる。
【0023】
また、図1〜4の特性を利用して、総分散量検出を行うこともできる。つまり、特定の周波数成分強度を検出し、その大きさと図1〜4の対応関係から総分散量を求めることができる。但し、特定の周波数成分強度と総分散量が1対1の関係になっていないので、必要に応じてある範囲で可変分散デバイスの制御点を掃引して特性測定を行う。
【0024】
以上の分散等化方式および分散検出方式は、時分割多重システムのみならず、波長多重(WDM)システムにも適用可能である。つまり、異なる各波長成分を分離した後に、各成分毎に本発明による分散等化方式および分散検出方式が適用できる。
図13は本発明に係る自動分散等化システムの一実施例を示す。光送信機30からのビットレートBb/sの光信号は光伝送路(SMF)32で伝送された後、可変分散補償器34を経て光受信機36へ入力される。光受信機36へ入力される光信号の一部は光カプラ38で分岐され、受光器40で電気信号に変換される。受光器40の出力から中心周波数がBHzのバンドパスフィルタ42でBHz成分が抽出され、強度検出部44でその強度が検出される。補償量制御部46においては、RZ信号に対してはBHz成分が極大になる方向に、OTDMまたはNRZ波形に対しては、BHz成分が極小になる方向に可変分散補償器34の分散補償量を制御する。なお、ここでは、可変分散補償器34が受信端に配置されているが、送信側や線型中継器中など、他の位置に配置されていても同様の制御が行える。また、mb/sのRZ信号をn個多重したOTDM信号の場合、mnヘルツ成分を極小にする代わりにmヘルツ成分を極大にしても良い。
【0025】
図14及び図15に図13の光送信機30、光受信機36の具体例を示す。図14の光送信機30において、光信号生成のための光変調器として図5に示したOTDM変調器10が使用されている。図14には、図5のOTDM変調器10が図5と同一の構成要素に同一の参照番号を用いて機能的に表わされている。
この例では、パラレルに入力される2つの10Gb/sのデータ信号をパラレル/シリアル変換部70で変換して1つの20Gb/sのNRZ信号を得る。この20Gb/sのNRZ信号をドライバ72に入力し、光変調器20を駆動する20Gb/sのドライブ信号を得る。各光変調器20の出力(20Gb/sのRZ光信号)は、位相調整部22で位相調整され(光の位相差が180°になるように位相がずらされる。)た後、それらを光多重部24(光カプラ)にて合波して、1つのNRZ形式の40Gb/sの光信号を得、光ポストアンプ74を経て伝送路へ送出される。このような、光送信器の詳細回路図を図16に示す。
【0026】
図15において、40Gb/sの光信号は、可変分散補償器34、光プリアンプ76、ビームスプリッタ38を介して、光DEMUX78に入力される。光DEMUX78としては、図17に示す偏光無依存型光DEMUXを用いることができる。
図17に偏光無依存型光DEMUX78の構造図を示す。受信側に配置する光DEMUXには偏光無依存性が要求される。そのため、まず、ファイバ伝送後に入力される40Gb/s OTDM信号を、初段の交差導波路型偏光スプリッタ80によりTE成分とTM成分に偏光分離する。なお、ここでは偏波消光比が20dB以上確保できるように交差長を最適化している。次に各々のモードに対し、20GHz 正弦波信号駆動の1×2スイッチ84を用いて、20Gb/s光RZ信号への光時分割分離を行う。このとき、それぞれの1×2スイッチの2出力は相補関係にある。ただし、一般にLNスイッチ(変調器)においては、TEモードよりTMモードの方が変調効率が大きいため、本デバイスでは偏光分離後のTEモード光を1/2波長板82でTMモード光に変換してから光分離を行っている。最終段では、2つの偏波ビームコンバイナで、同じビットシーケンス同志を合波している。このとき、TMモード光同志を合波すると、前述のOTDM変調器の場合と同様に光干渉の問題が生じるので、先にTE/TMモード変換を行わなかったポートの1×2スイッチ84の後段で1/2波長板88によりTM/TEモード変換を行った後、直交偏波成分をパワー合波している。
【0027】
光DEMUX78にて得られた、2つの20Gb/s光RZ信号は、それぞれフォトダイオード90に入力されて電気信号に変換され、プリアンプ92にて増幅された後等化アンプ94にて波形成形される。そして、シリアル/パラレル変換部96にて、元の10Gb/s NRZデーターに再生される。図示されていないが、その後、10Gb/s識別部によりデータが再生される。このような光受信機36の光分離までの部分の詳細回路図を図18に示す。
【0028】
次に可変分散補償器の一例(M. M. Ohm et al., “Tunable fiber grating dispersion using a piesoelectric stack", OFC '97 Technical Digest, WJ3, pp.155-156)について説明する。
図19に示すように、チャープドファイバグレーティング90の21個のセグメントの各々に別々に圧電素子92を取り付ける。各圧電素子への印加電圧V1 〜V21として図20に示すように傾斜をつけて電圧を与えると、クレーティング90の長手方向に加わる圧力が変化し、図20のA〜Dの電圧パターンに対して図21のように分散値(線の傾き)が変化する。
【0029】
図22は、補償量制御部の一例を示す図である。40Gb/sの周波数成分の強度値は、A/D変換器94でA/D変換され、ディジタル信号として、MPU96に入力される。MPU96は、メモリ98に記憶されている前回受信した強度値Ipと、今回の強度値Icとを比較し、現時点の分散量と40Gb/sの強度との関係が、図2におけるXのスロープにあるか、Yのスロープにあるかをチェックする。即ち、Xのスロープにあれば可変分散補償器34の分散量を減少させれば、分散量0(Zポイント)に収束する。またYのスロープであれば、可変分散補償器34の分散量を増加させれば分散量0に収束する。従って、Ic>Ipの場合は、Xスロープにあると見なし、図19の可変分散補償器34に与える電圧を制御するため、分散量が減少するようなV1 〜V21の値を求め、D/A変換器100経由で、各圧電素子に与える電圧を出力する。逆にIc<Ipの場合は、Yスロープにあると見なし、図19の可変分散補償器34に与える電圧を制御するため、分散量が増加するようなV1 〜V21の値を求める。
【0030】
なお、V1 〜V21の値を求めるためには、図20及び図21に示すデータ(分散量とV1 〜V21との関係を示すデータ)と、図2に示すデータ(40GHz 成分の強度と分散量との関係を示すデータ)をメモリにあらかじめ記憶しておく。そして、図2のX,Yスロープのいずれのスロープにあるかをまず求めて、現在の分散量Icを図2に示すデータより求める。現在の分散量Icから、分散量0のZポイントに収束させるために可変分散補償器34で補償すべき分散量Ic′を求める。即ち、Ic+Ic′=0となるように、Ic′を求める。
【0031】
このようにしてIc′が求まれば、図20及び図21に示されたデータをもとに、Ic′を得るために可変分散補償器34に与えるV1 〜V21を求める。
図23は図13のシステムの一変形を示す。図23以下の図面において、同一の構成要素には同一の参照番号を付してその説明を省略する。図23のシステムにおいては、図13のシステムにおける可変分散補償器34の代わりに光送信機30に波長可変光源48を用い、信号光波長制御部50で信号光の波長を制御することにより光伝送路32の波長分散量を制御している。
【0032】
図24は図13の自動分散等化システムのより詳細な構成の他の例を示す。発振器52は低周波数f0 の正弦波を発生する。発振器52が発生する低周波信号は、低周波重畳回路54において、分散補償量設定回路56からの補償量設定信号に重畳されて可変分散補償器34に与えられる。バンドパスフィルタ42から出力されるBHz成分は強度検出器58(例えば二乗検波器)でその強度が検出され、バンドパスフィルタ60において検出出力からf0 成分が抽出される。バンドパスフィルタ60で抽出されたf0 成分の位相と発振器52が出力する低周波信号の位相とが位相比較回路62において比較される。分散補償量設定回路56は位相比較回路62における比較結果に基いて補償量設定信号を生成し出力する。強度検出器58は乗算器またはミキサまたは一般のパワーディテクタ等で実現され、位相比較回路62は乗算器またはミキサまたは全波整流回路等と低域通過フィルタで実現される。
【0033】
図25の(a)〜(g)欄には図24中に(a)〜(g)で示した個所の信号波形を示す。
図25の(a)欄に示すように分散補償量が最適値から正の側にずれた場合、低周波重畳回路54の出力は(b)欄に示すようになる。分散補償量が最適値から正の側にずれている場合、分散補償量が増加すればNRZまたOTDMの場合BHz成分強度は増加するので(図1,2および12参照)、バンドパスフィルタ42で抽出されるBHz成分の振幅は(c)欄のように周波数f0 で変化し、それを強度検出し((d)欄)、f0 成分を抽出した結果((e)欄)は発振器52が出力する低周波信号((f)欄)と同相になり、位相比較回路62からは正の電圧が出力される((g)欄)。この正の出力信号に対して、分散補償量設定回路56が出力する分散補償量制御信号((a)欄)が低下するようにフィードバック制御することで分散補償量は最適値に近づく。分散補償量が最適値よりも低い場合にはバンドパスフィルタ60の出力は発振器52の出力に対して逆相になり、位相比較回路62からは負の電圧が出力されるので、負の出力信号に対して分散補償量信号が増加するようにフィードバック制御することで、分散補償量は最適値へ向かって変化する。なお、RZ信号の場合、分散補償量の変化の方向を上記とは逆にすれば良い。
【0034】
図26は図24のシステムの一変形を示す。図13から図23への変形と同様に、可変分散補償器34による分散補償量の制御が波長可変光源48による波長の制御に置き換えられた点を除いて図24と同様である。この方法の場合、受信側での位相比較で得られた検出信号を送信側に伝達する必要が生じる。これには低速の別回線を用意する方法、逆方向の伝送信号に情報を載せる方法が考えられる。
【0035】
図27は本発明の他の実施例に係る分散等化システムの一例を示す。これまでの例では、システム運用を行いながらの分散値制御を想定しているが、ここでは、システム立ち上げ時、および、自動分散等化制御が最適点から大きく外れたときの再立ち上げ時への適用、または、意図的にシステム運用を中断して分散量最適化を行う場合への適用を想定している。可変分散補償器34の分散補償量を広範囲で掃引し、そのときの強度検出部44の出力からBHz成分強度の変化を検出する。前述したように、BHz成分強度特性を図1〜4の特性と比較することによって、総分散量を検知することができる。RZ信号に対してはBHz成分が極大になる分散補償量を記録しておき、補償量掃引後にその分散補償量に設定してから、システムの運用を開始する。OTDMまたはNRZ波形に対しては、例えば、BHz成分強度が極大になる2つの分散補償量を記録しておき、補償量掃引後にその2つの値の中間に分散補償量を設定すればよい。
【0036】
図28は図27のシステムの一変形を示す。図27の可変分散補償器34の掃引および設定が波長可変光源48による波長の掃引および設定に置き換えられた点を除いて図27と同様である。
【0037】
【発明の効果】
以上述べたように本発明によれば、NRZ波形およびOTDM波形のようにクロック成分が零分散時に極小となる光信号についての伝送路分散の監視および制御が可能になり、また、システム運用を中断することなく伝送路分散を制御することができる。
【図面の簡単な説明】
【図1】40Gb/s OTDM信号についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。
【図2】40Gb/s NRZ信号についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。
【図3】40Gb/s RZ信号(デューティ50%)についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。
【図4】40Gb/s RZ信号(デューティ25%)についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。
【図5】40Gb/s OTDM信号を生成する光変調器の平面図である。
【図6】図5の光変調器の動作を説明する波形図である。
【図7】OTDM信号のベースバンドスペクトルである。
【図8】NRZ信号のベースバンドスペクトルである。
【図9】波長分散を受けた後のOTDM信号の波形図である。
【図10】波長分散を受けた後のNRZ信号の波形図である。
【図11】総分散量を低周波数f0 で微少変動させる方法において、分散補償量が極小点にある場合を説明する図である。
【図12】総分散量を低周波数f0 で微少変動させる方法において、分散補償量が極小点からずれた場合を説明する図である。
【図13】本発明に係る自動分散等化システムの一実施例を示すブロック図である。
【図14】図13の光送信機30の具体例を示すブロック図である。
【図15】図13の光受信機36の具体例を示すブロック図である。
【図16】光送信機の詳細回路図である。
【図17】偏光無依存型光DEMUXを示す図である。
【図18】光受信機の一部の詳細回路図である。
【図19】可変分散補償器の一例を示す図である。
【図20】図19の可変分散補償器の各セグメントへ与える電圧V1 〜V21のパターンA〜Dを示すグラフである。
【図21】各電圧パターンA〜Dにおける分散値を示すグラフである。
【図22】補償量制御部の構成の一例を示すブロック図である。
【図23】図13のシステムの一変形を示すブロック図である。
【図24】図13のシステムのより詳細な構成の一例を示すブロック図である。
【図25】図24のシステムの動作を説明する波形図である。
【図26】図24のシステムの一変形を示すブロック図である。
【図27】本発明の他の実施例に係る分散等化システムの一例を示すブロック図である。
【図28】図27のシステムの一変形を示すブロック図である。
【符号の説明】
10…光変調器
12…LiNbO3 基板
14…光導波路
16…電極パターン
18…1入力2出力光スイッチ
20…データ変調部
22…位相制御部
24…光多重部

Claims (18)

  1. データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御方法であって、
    前記光信号は光波の位相が互いに異なる複数の零復帰信号を多重化した光時分割多重信号、または非零復帰信号であり、かつ、特定の周波数の成分であって、その強度が総分散量に対して総分散量零の両側で極大となる周波数成分を有し、
    (a)該伝送路で伝送された光信号から、該特定周波数成分の強度を検出し、
    (b)検出された前記特定周波数成分の強度が該両側の極大の間で極小となるように前記伝送路の総分散量を制御するステップを具備する分散制御方法。
  2. 前記データ信号のビットレートはBビット/秒であり、
    ステップ(a)において周波数がBヘルツの成分の強度が検出される請求項1記載の方法。
  3. 前記伝送路は可変の分散値を有する可変分散補償器を含み、
    ステップ(b)は該可変分散補償器の分散値を制御して前記伝送路の総分散量を制御することを含む請求項1または2記載の方法。
  4. 前記伝送路は光信号の波長を変化しうる波長可変光源を含み、
    ステップ(b)は該波長可変光源の波長を制御して前記伝送路の総分散量を制御することを含む請求項1または2記載の方法。
  5. ステップ(b)において、検出された特定周波数成分の強度に基づき運用中に総分散量が連続的に制御される請求項1〜のいずれか1項記載の方法。
  6. ステップ(b)は、
    (i)総分散量の制御信号に低周波信号を重畳し、
    (ii)特定周波数成分の検出信号から該低周波信号と同じ周波数の成分を抽出し、
    (iii )抽出された周波数成分の位相と該低周波信号の位相を比較し、
    (iv)該位相比較結果に基いて前記総分散量の制御のための制御信号を生成するサブステップを含む請求項記載の方法。
  7. ステップ(b)は、
    (i)検出された特定周波数成分の強度が極大となる総分散量の2つの制御点を見い出し、
    (ii)該2つの制御点の中点を特定周波数成分の強度が極小となる制御点とするサブステップを含む請求項1〜のいずれか1項記載の方法。
  8. ステップ(b)は、
    (i)運用開始前または運用中断中に総分散量を掃引し、
    (ii)掃引中の特定周波数成分の強度から総分散量の制御点を見い出すサブステップを含む請求項1〜及びのいずれか1項記載の方法。
  9. データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御装置であって、
    前記光信号は、光波の位相が互いに異なる複数の零復帰信号を多重化した光時分割多重信号、または、非零復帰信号であり、かつ、特定の周波数の成分であって、その強度が総分散量に対して総分散量零の両側で極大となる周波数成分を有し、
    該伝送路で伝送された光信号から、該特定周波数成分の強度を検出する光検出器と、
    検出された特定周波数成分の強度が該両側の極大の間で極小となるように前記伝送路の総分散量を制御する分散制御手段とを具備する分散制御装置。
  10. 前記データ信号のビットレートはBビット/秒であり、
    前記光検出器は周波数がBヘルツの成分の強度を検出する請求項記載の装置。
  11. 前記伝送路は可変の分散値を有する可変分散補償器を含み、
    前記分散制御手段は該可変分散補償器の分散値を制御して前記伝送路の総分散量を制御する請求項9または10記載の装置。
  12. 前記光信号を生成する光送信機は光信号の波長を変化しうる波長可変光源を含み、
    前記分散制御手段は、該波長可変光源の波長を制御して前記伝送路の総分散量を制御する請求項9または10記載の装置。
  13. 前記分散制御手段は検出された特定周波数成分の強度に基づき運用中に総分散量を連続的に制御する請求項12のいずれか1項記載の装置。
  14. 前記分散制御手段は、
    総分散量の制御信号に低周波信号を重畳する低周波重畳回路と、
    特定周波数成分の検出信号から該低周波信号と同じ周波数の成分を抽出する信号抽出回路と、
    抽出された周波数成分の位相と該低周波信号の位相を比較する位相比較回路と、
    該位相比較回路の出力に基いて前記総分散量の制御のための制御信号を生成する制御信号生成回路とを含む請求項13記載の装置。
  15. mビット/秒のデータ信号で振幅変調された、光波の位相が互いに異なるn個の零復帰信号を時分割多重化して得られた、n・mビット/秒のデータ信号で変調された時分割多重光信号を光ファイバ伝送路に送信し、
    光ファイバ伝送路より受信した前記時分割多重光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出し、
    抽出したn・mヘルツの周波数成分がその両側の極大の間で極小値を示すか、またはmヘルツの周波数成分が極大値を示すように、上記光ファイバ伝送路の分散を可変にすることを特徴とする光ファイバ伝送路の分散制御方法。
  16. 時分割多重化された、mビット/秒のデータ信号で振幅変調された、光波の位相が互いに異なるn個の零復帰信号を光ファイバ伝送路から受信する手段と、
    受信した前記時分割多重化された光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出する手段と、
    抽出したn・mヘルツの周波数成分がその両側の極大の間で極小値を示すか、またはmヘルツの周波数成分が極大値を示すように、上記光ファイバ伝送路の分散量を制御する手段とを備えたことを特徴とする光ファイバ伝送路の分散制御装置。
  17. 前記分散制御手段は、
    検出された特定周波数成分の強度が極大となる総分散量の2つの制御点を見い出す手段と、
    該2つの制御点の中点を特定周波数成分の強度が極小となる制御点とする手段とを含む請求項9〜12のいずれか1項記載の装置。
  18. 前記分散制御手段は、
    運用開始前または運用中断中に総分散量を掃引する手段と、
    掃引中の特定周波数成分の強度から総分散量の制御点を見い出す手段とを含む請求項9〜12及び17のいずれか1項記載の装置。
JP22405697A 1997-08-20 1997-08-20 波長分散制御のための方法と装置及び分散量検出方法 Expired - Fee Related JP3649556B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP22405697A JP3649556B2 (ja) 1997-08-20 1997-08-20 波長分散制御のための方法と装置及び分散量検出方法
US09/044,130 US6411416B1 (en) 1997-08-20 1998-03-19 Method and apparatus for minimizing the intensity of a specific frequency component of an optical signal travelling through an optical fiber transmission line to thereby minimize the total dispersion
US09/045,040 US6081360A (en) 1997-08-20 1998-03-20 Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
DE69834004T DE69834004T2 (de) 1997-08-20 1998-04-27 Minimierung der Dispersion von faseroptischen Übertragungsstrecken
DE69839099T DE69839099T2 (de) 1997-08-20 1998-04-27 Verfahren zur Bestimmung der Dispersion einer faseroptischen Übertragungsleitung und zugehörige Vorrichtung
EP04008757A EP1443690B1 (en) 1997-08-20 1998-04-27 Method for determining dispersion of an optical fiber transmission line and apparatus therefor
DE69833463T DE69833463T2 (de) 1997-08-20 1998-04-27 Minimierung der Dispersion von faseroptischen Übertragungsstrecken
EP98303222A EP0898391B1 (en) 1997-08-20 1998-04-27 Minimizing dispersion in optical-fiber transmission lines
EP04008756A EP1443689B1 (en) 1997-08-20 1998-04-27 Minimizing dispersion in optical-fiber transmission lines
CN98108392.7A CN1244207C (zh) 1997-08-20 1998-05-19 把光信号总色散量减至最小的方法和设备
US09/345,806 US6501580B1 (en) 1997-08-20 1999-07-02 Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22405697A JP3649556B2 (ja) 1997-08-20 1997-08-20 波長分散制御のための方法と装置及び分散量検出方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004099702A Division JP3897768B2 (ja) 2004-03-30 2004-03-30 波長分散制御のための方法と装置及び分散量検出方法

Publications (2)

Publication Number Publication Date
JPH1168657A JPH1168657A (ja) 1999-03-09
JP3649556B2 true JP3649556B2 (ja) 2005-05-18

Family

ID=16807897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22405697A Expired - Fee Related JP3649556B2 (ja) 1997-08-20 1997-08-20 波長分散制御のための方法と装置及び分散量検出方法

Country Status (5)

Country Link
US (1) US6411416B1 (ja)
EP (3) EP0898391B1 (ja)
JP (1) JP3649556B2 (ja)
CN (1) CN1244207C (ja)
DE (3) DE69839099T2 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028723A1 (fr) 1997-11-28 1999-06-10 Fujitsu Limited Procede de mesure de la dispersion en mode de polarisation, dispositif de commande de compensation de dispersion et procede de commande de compensation de dispersion
KR100310834B1 (ko) * 1998-12-03 2001-12-17 오길록 고속광전송시스템에서의자동색분산등화장치
JP2000236299A (ja) * 1998-12-18 2000-08-29 Fujitsu Ltd 光送信機及び光伝送システム
US6266170B1 (en) * 1999-06-22 2001-07-24 Avanex Corporation Method and system for compensating for chromatic dispersion in an optical network
JP4517423B2 (ja) 1999-12-03 2010-08-04 住友電気工業株式会社 分散補償モジュール、線路切替装置および光通信システム
JP2001177475A (ja) * 1999-12-17 2001-06-29 Kddi Corp 波長分散補償装置、光受信装置及び光受信端局
FR2806559B1 (fr) * 2000-03-20 2002-05-31 Cit Alcatel Regenerateur optique synchrone par modulation d'intensite et modulation de phase par effet kerr croise
US6633684B1 (en) * 2000-07-07 2003-10-14 Athentech Technologies Corp. Distortion-free image contrast enhancement
EP1176751A1 (en) * 2000-07-27 2002-01-30 Alcatel Synchronizer for RZ-WDM signals and method for synchronisation
JP4592887B2 (ja) * 2000-08-07 2010-12-08 富士通株式会社 波長分散を補償する方法及びシステム
JP3798640B2 (ja) * 2001-03-02 2006-07-19 富士通株式会社 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
ITMI20010443A1 (it) * 2001-03-02 2002-09-02 Marconi Comm Spa Metodo e apparati per la rilevazione e compensazione di parametri della pmd in segnali trasmessi lungo collegamenti a fibre ottiche e sistem
US7536108B2 (en) 2001-06-29 2009-05-19 Nippon Telegraph & Telephone Corporation High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
DE10147871B4 (de) * 2001-09-28 2004-01-15 Siemens Ag Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
JP3863434B2 (ja) 2002-01-30 2006-12-27 三菱電機株式会社 分散等化装置および分散等化方法
US20040028319A1 (en) * 2002-07-03 2004-02-12 Mahesh Ajgaonkar Optical communication system and method
JP4082992B2 (ja) * 2002-11-21 2008-04-30 富士通株式会社 光分散モニタ装置および方法、並びに、それを用いた光伝送システム
JP2004222252A (ja) 2002-12-24 2004-08-05 Nec Corp 光信号モニタ装置、及びその方法
JP2004222240A (ja) 2002-12-25 2004-08-05 Nec Corp 光信号監視方法、及び光信号監視装置
JP4576094B2 (ja) 2003-03-03 2010-11-04 富士通株式会社 波長多重光中継伝送方法および中継装置
JP4468656B2 (ja) * 2003-05-27 2010-05-26 株式会社日立製作所 信号波形劣化補償器
JP2005079833A (ja) * 2003-08-29 2005-03-24 National Institute Of Information & Communication Technology 分散補償制御方法及び装置並びに光伝送方法及びシステム
JP2005159928A (ja) * 2003-11-28 2005-06-16 Hitachi Communication Technologies Ltd 自動分散補償方法
JP4280665B2 (ja) 2004-03-31 2009-06-17 富士通株式会社 分散補償方法及び補償ノード装置
JP2005341392A (ja) * 2004-05-28 2005-12-08 Fujitsu Ltd 光伝送装置、光伝送システムおよび分散補償方法
JP2006025011A (ja) * 2004-07-06 2006-01-26 Fujitsu Ltd 光伝送装置並びに光伝送システムの制御方法及び波長制御機能付きの光中継ノード
JP4312698B2 (ja) * 2004-11-08 2009-08-12 富士通株式会社 波長多重伝送システムを適用した光伝送ネットワーク設計方法
US7616894B2 (en) 2004-12-28 2009-11-10 Tyco Telecommunications (Us) Inc. System and method for mitigating dispersion slope in an optical communication system
US8599871B2 (en) * 2005-08-31 2013-12-03 Motorola Mobility Llc Method and apparatus for cross paging a multi network communication system
JP4744312B2 (ja) * 2006-01-31 2011-08-10 富士通株式会社 波長分散モニタ方法および装置、並びに、光伝送システム
JP4717694B2 (ja) * 2006-04-18 2011-07-06 日本電信電話株式会社 光直交振幅変調回路および光送信器
JP4935250B2 (ja) * 2006-08-31 2012-05-23 富士通株式会社 分散補償装置および分散補償制御方法
US8073326B2 (en) * 2006-12-06 2011-12-06 General Photonics Corporation Optical polarization division multiplexing in optical communication
JP5471241B2 (ja) * 2009-09-28 2014-04-16 沖電気工業株式会社 光信号品質モニタ装置
EP2408160B1 (en) * 2010-07-12 2013-03-06 Alcatel Lucent A method for transmission of data signals from a transmitting device to a receiving device using envelope tracking for signal amplification, a transmitting device and a receiving device therefor
EP2424326B1 (en) * 2010-08-23 2013-04-24 Alcatel Lucent A method for transmission of data signals from a transmitting device to a receiving device, and a receiving device therefor
US9178614B2 (en) * 2011-01-24 2015-11-03 Nippon Telegraph And Telephone Corporation Method for estimating amount of wavelength dispersion, wavelength dispersion compensation circuit, and receiving device
SI24131A (sl) * 2012-06-21 2013-12-31 Cobik Center Odliäśnosti Za Biosenzoriko Instrumentacijo In Procesno Kontrolo Naprava za stabilizacijo dolžine optične poti
US10404397B2 (en) * 2015-12-23 2019-09-03 Adva Optical Networking Se Wavelength division multiplexed telecommunication system with automatic compensation of chromatic dispersion
US10122460B2 (en) 2017-01-13 2018-11-06 Adva Optical Networking Se Method and apparatus for automatic compensation of chromatic dispersion
JPWO2021234776A1 (ja) * 2020-05-18 2021-11-25

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581138A (en) * 1993-06-21 1996-12-03 Matsushita Electric Industrial Co., Ltd. Compact motor with speed reducing mechanism
JP2739813B2 (ja) * 1993-12-20 1998-04-15 日本電気株式会社 偏波分散補償方法
JP3846918B2 (ja) 1994-08-02 2006-11-15 富士通株式会社 光伝送システム、光多重伝送システム及びその周辺技術
CA2185865C (en) * 1995-09-26 2002-07-16 Richard Edward Epworth Dispersion compensation
US6081360A (en) * 1997-08-20 2000-06-27 Fujitsu Limited Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
JP3913856B2 (ja) * 1997-08-28 2007-05-09 富士通株式会社 光パルス生成装置、分散測定装置、分散補償装置及び分散測定方法
US5982963A (en) * 1997-12-15 1999-11-09 University Of Southern California Tunable nonlinearly chirped grating

Also Published As

Publication number Publication date
EP0898391A3 (en) 2001-07-18
DE69833463D1 (de) 2006-04-20
EP1443690B1 (en) 2008-02-06
CN1209006A (zh) 1999-02-24
EP1443689A2 (en) 2004-08-04
EP1443690A2 (en) 2004-08-04
EP0898391B1 (en) 2006-03-29
CN1244207C (zh) 2006-03-01
DE69839099D1 (de) 2008-03-20
JPH1168657A (ja) 1999-03-09
DE69839099T2 (de) 2009-01-29
EP1443689A3 (en) 2004-12-15
DE69833463T2 (de) 2006-08-03
EP1443690A3 (en) 2004-12-15
US6411416B1 (en) 2002-06-25
EP1443689B1 (en) 2006-02-15
DE69834004T2 (de) 2006-08-17
DE69834004D1 (de) 2006-05-18
EP0898391A2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
JP3649556B2 (ja) 波長分散制御のための方法と装置及び分散量検出方法
US6081360A (en) Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
US7035548B2 (en) Polarization-mode dispersion detecting method, and a dispersion compensation controlling apparatus and a dispersion compensation controlling method
US7321736B2 (en) Optical receiving station, optical communication system, and dispersion controlling method
JP3846918B2 (ja) 光伝送システム、光多重伝送システム及びその周辺技術
JP4582874B2 (ja) 偏波モード分散補償方法および偏波モード分散補償装置
US20030002112A1 (en) High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
JP3886223B2 (ja) 分散制御方法及び装置
EP1814245B1 (en) Chromatic dispersion monitoring method and chromatic dispersion monitoring apparatus
US6456411B1 (en) Method of setting signal wavelength in optical transmission system
JP4350057B2 (ja) 光伝送システム、光多重伝送システム及びその周辺技術
JP2006271009A (ja) 光伝送システム、光多重伝送システム及びその周辺技術
JP3897768B2 (ja) 波長分散制御のための方法と装置及び分散量検出方法
US20020167703A1 (en) Tandem filters for reducing intersymbol interference in optical communications systems
JP3370595B2 (ja) プリセット型自動等化装置
JPH11346191A (ja) 光伝送システムの信号光波長の設定方法
Yu et al. Chromatic dispersion monitor for WDM systems using vestigial-sideband optical filtering
JP2005269667A (ja) 光伝送システム、光多重伝送システム及びその周辺技術
JP4357446B2 (ja) 光伝送システム、光多重伝送システム及びその周辺技術
JP2005229653A (ja) 光伝送システム、光多重伝送システム及びその周辺技術
JP2005252369A (ja) Wdm伝送システム
Fischer et al. Scaling of nonlinear threshold with fiber type and channel spacing in WDM transmission systems
JP2005218138A (ja) 光伝送システム、光多重伝送システム及びその周辺技術
JP2005223945A (ja) 光伝送システム、光多重伝送システム及びその周辺技術
Zhang et al. Adaptive chromatic dispersion compensation in 1.6 Tbit/s DPSK and ASK transmission experiments over 44... 94 km of SSMF

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees