JP3647181B2 - 窒素酸化物の測定方法 - Google Patents

窒素酸化物の測定方法 Download PDF

Info

Publication number
JP3647181B2
JP3647181B2 JP02558097A JP2558097A JP3647181B2 JP 3647181 B2 JP3647181 B2 JP 3647181B2 JP 02558097 A JP02558097 A JP 02558097A JP 2558097 A JP2558097 A JP 2558097A JP 3647181 B2 JP3647181 B2 JP 3647181B2
Authority
JP
Japan
Prior art keywords
gas
measured
measurement
electrode
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02558097A
Other languages
English (en)
Other versions
JPH09288087A (ja
Inventor
伸秀 加藤
邦彦 中垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP02558097A priority Critical patent/JP3647181B2/ja
Priority to EP97301200A priority patent/EP0791828A1/en
Publication of JPH09288087A publication Critical patent/JPH09288087A/ja
Application granted granted Critical
Publication of JP3647181B2 publication Critical patent/JP3647181B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0037Specially adapted to detect a particular component for NOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、車両の排出ガスや大気中に含まれる窒素酸化物を測定する窒素酸化物の測定方法に関する。
【0002】
【従来の技術】
従来、米国特許第4,909,072号に記載されているように、第1の拡散律速手段を介して被測定ガスを第1の内部空所に導入し、該第1の内部空所内の酸素分圧を、第1の電気化学的セルを用いた酸素ポンプにより、所定の低い値に制御し、更に、該第1の内部空所のガスを第2の拡散律速手段を介して第2の内部空所に導入し、該第2の内部空所に設けられた第2の電気化学的セルを用いた酸素ポンプによりCO2 やH2 Oを還元し、その際に発生する酸素を汲み出し、その際に必要とした電気量からCO2 やH2 Oを測定する方法が提案されている。
【0003】
そして、前記測定において、第2の内部空所に設けられた第2の電気化学的セルに加える電圧を、第1の内部空所に設けられた第1の電気化学的セルに加える電圧よりも高くすることにより、平衡酸素分圧の差を用いて、酸素ガスとCO2 やH2 Oとを分離して測定していた。
【0004】
しかしながら、このようにポンプ電圧でガス成分を分離して測定する方法では、通常、0.8ボルト以上の高い電圧を第2の電気化学的セルに加える必要があり、電極は極度の還元性雰囲気に曝されることになり、低酸素分圧下での電極の焼結によりポンプ能力が徐々に低下するという欠点があった。
【0005】
また、第2の電気化学的セルのプラス側の電極が還元性の雰囲気に曝された場合には、固体電解質が還元され、セルが劣化するという欠点もあった。
【0006】
また、ヨーロッパ公開特許0678740A1では、第2の内部空所中に触媒を配置し、CO2 やH2 Oの分解しない450mV前後の電圧を第2の電気化学的セルに加えることにより、NOxを分離して検出することに成功している。
【0007】
【発明が解決しようとする課題】
これらの従来の方法においては、その作動原理から、第2の内部空所中の酸素分圧を第1の内部空所中の酸素分圧に比べて低くすることが必要であり、この両者の酸素分圧の差に相当する値が、主としてNOx量に対応する第2の電気化学的セルのポンプ電流のゼロ点のオフセットとなり、特に微量のNOxを測定する際に誤差を増大させるおそれがある。
【0008】
本発明は、かかる従来の窒素酸化物の測定方法における欠点を解消すべくなされたものであって、その解決すべき課題とするところは、被測定ガス中の例えばNOx濃度を、酸素あるいはCO2 、H2 O等の影響を受けることなく、常にオフセットがゼロの状態において、長期間安定に測定可能とした窒素酸化物の測定方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る窒素酸化物の測定方法は、一方が、外部空間からの被測定ガスの導入側に配設された一対のポンプ電極を有する主ポンプ手段を用いて、外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を所定の値に制御し、一方が、前記主ポンプ手段にてポンピング処理された後の被測定ガスの導入側に設けられた一対の検出電極を有する測定用ポンプ手段を用いて、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記一対の検出電極間に印加される測定用電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を窒素酸化物が分解され得る所定の値に制御し、前記測定用ポンプ手段での処理雰囲気中における酸素分圧が、前記主ポンプ手段での処理雰囲気中における酸素分圧以上となる状態の下で、前記測定用ポンプ手段の前記ポンピング処理によって該測定用ポンプ手段に流れるポンプ電流を検出し、前記検出されたポンプ電流に基づいて前記被測定ガス中の酸化物を測定することを特徴とする。
【0010】
これにより、まず、外部空間から導入された被測定ガスのうち、酸素が主ポンプ手段によってポンピング処理され、該酸素は所定濃度に調整される。前記主ポンプ手段にて酸素の濃度が調整された被測定ガスは、次の測定用ポンプ手段に導かれる。測定用ポンプ手段は、一対の検出電極間に印加される測定用電圧に基づいて、前記被測定ガスのうち、酸素をポンピング処理する。前記測定用ポンプ手段によりポンピング処理される酸素の量に応じて該測定用ポンプ手段に生じるポンプ電流が電流検出手段により検出されることで、酸素量に応じた酸化物が測定される。
【0011】
つまり、前記測定用ポンプ手段において、前記一対の検出電極間に前記窒素酸化物を分解するのに十分な電圧を印加するか、あるいは該測定用ポンプ手段に前記窒素酸化物を分解する窒素酸化物分解触媒を配設するようにすれば、前記電圧及び/又は前記窒素酸化物分解触媒の作用により分解された窒素酸化物から生成された酸素がポンピング処理され、それによって生じるポンプ電流が電流検出手段により検出されることで、酸素量に応じた酸化物が測定される。
【0012】
特に、本発明に係る窒素酸化物の測定方法においては、測定用ポンプ手段での処理雰囲気中における酸素分圧を、前記主ポンプ手段での処理雰囲気中における酸素分圧以上となる状態において、前記測定用ポンプ手段に流れるポンプ電流を検出するようにしているため、測定用ポンプ手段に流れるポンプ電流のオフセットをゼロにすることができ、微量の窒素酸化物でも正確な測定が可能となる。しかも、測定用ポンプ手段での処理雰囲気中の酸素分圧を前記主ポンプ手段での処理雰囲気中における酸素分圧より高くすれば、測定用ポンプ手段における一対の検出電極の焼結を防止することができる。
【0013】
つまり、従来の測定方法においては、測定されるNOx濃度Cnは、第2の電気化学的セルによって汲み出されるポンプ電流Ip2に関し、Cn=K・Ip2−Aであった。但し、Kは定数、Aは第1の内部空所内の残存酸素に起因するオフセット値である。
【0014】
これに対して、本発明に係る窒素酸化物の測定方法においては、測定用ポンプ手段での処理雰囲気中における酸素分圧を主ポンプ手段での処理雰囲気中における酸素分圧以上にした状態に制御するようにしているため、前記測定用ポンプ手段に流れるポンプ電流には、該主ポンプ手段での処理雰囲気中における残存酸素に相当するポンプ電流は含まれず、前記の関係式でみた場合、オフセット値Aは原理的にゼロとなって、Cn=K・Ip2となる。従って、本発明に係る窒素酸化物の測定方法によれば、特に高酸素濃度中のNOx、あるいは微量のNOxを測定する際の精度が向上する。
【0015】
また、以下に示すように、外部空間における被測定ガスがO2 のリッチ雰囲気の場合でも高精度に測定することができるという効果を奏する。
【0016】
即ち、O2 のリッチ雰囲気とリーン雰囲気では、O2 にかかる拡散抵抗の加わり方が異なる。リーン雰囲気では、主ポンプ手段を通じて酸素を汲み出すため、汲み出し過ぎが発生することはないが、一般に、リッチ雰囲気では、無尽蔵にある酸素供給源(H2 O,CO2 )からなんの拡散抵抗もない状態でポンピング処理するため、汲み込み過ぎが発生する。
【0017】
しかし、本発明では、主ポンプ手段での処理雰囲気中における酸素分圧を測定用ポンプ手段での処理雰囲気中における酸素分圧と同等か、あるいはそれ以下となるようにしているため、外部空間における被測定ガスがO2 のリッチ雰囲気であっても、主ポンプ手段での処理空間に汲み込まれる酸素量が少なくて済み、検出精度的に有利となる。
【0018】
次に、本発明に係る窒素酸化物の測定方法は、上述した本発明に係る測定方法とほぼ同じであるため、その動作原理についての詳細説明は省略するが、この発明においては、前記測定用ポンプ手段に供給される前記測定用電圧のレベルを前記主ポンプ手段に供給される制御電圧以下にした状態の下で、測定用ポンプ手段に流れるポンプ電流を検出するようにしている。
【0019】
この場合、上述した本発明と同様に、測定用ポンプ手段に流れるポンプ電流のオフセットをゼロにすることができ、微量の窒素酸化物でも正確な測定が可能となり、特に高酸素濃度中のNOx、あるいは微量のNOxを測定する際の精度が向上する。
【0020】
次に、本発明に係る窒素酸化物の測定方法は、一方が、外部空間からの被測定ガスの導入側に配設された一対のポンプ電極を有する主ポンプ手段を用いて、外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を所定の値に制御し、一方が、前記主ポンプ手段にてポンピング処理された後の被測定ガスの導入側に設けられた一対の検出電極を有する濃度検出手段の前記一方の検出電極の近傍に形成された補助ポンプ電極を有する補助ポンプ手段を用いて、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記補助ポンプ電極と前記他方の検出電極間に印加される電圧に基づいて前記ポンピング処理し、前記濃度検出手段を用いて、前記補助ポンプ手段での処理雰囲気中における酸素分圧が、前記主ポンプ手段での処理雰囲気中における酸素分圧以上となる状態の下で、前記濃度検出手段に配設された窒素酸化物分解触媒の作用によって生成された酸素と他方の検出電極側のガスに含まれる酸素との分圧差に応じた酸素濃淡電池起電力を検出し、検出された前記起電力に基づいて前記被測定ガス中の酸化物を測定することを特徴とする。
【0021】
これにより、まず、外部空間から導入された被測定ガスのうち、酸素が主ポンプ手段によってポンピング処理され、該酸素は所定濃度に調整される。前記主ポンプ手段にて酸素の濃度が調整された被測定ガスは、次の濃度検出手段に導かれ、該濃度検出手段において、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素の量と他方の検出電極側のガスに含まれる酸素の量との差に応じた酸素濃淡電池起電力が発生し、該起電力が電圧検出手段により検出されることで、酸素量に応じた窒素酸化物が測定される。
【0022】
この場合、前記濃度検出手段において、窒素酸化物分解触媒の作用によって分解された窒素酸化物から生成された酸素の量と他方の検出電極側のガスに含まれる酸素の量との差に応じた酸素濃淡電池起電力が一対の検出電極間に発生し、該起電力が電圧検出手段により検出されることで、酸素量に応じた窒素酸化物が測定される。
【0023】
特に、本発明においては、濃度検出手段での処理雰囲気中における酸素分圧を、前記主ポンプ手段での処理雰囲気中における酸素分圧以上となる状態において、前記濃度検出手段に発生する起電力を検出するようにしているため、該濃度検出手段において発生する起電力のオフセットをゼロにすることができ、微量の窒素酸化物でも正確な測定が可能となり、特に、高酸素濃度中のNOx、あるいは微量のNOxを測定する際の精度が向上する。しかも、濃度測定手段での処理雰囲気中の酸素分圧を前記主ポンプ手段での処理雰囲気中における酸素分圧より高くすれば、濃度測定手段における一対の検出電極の焼結を防止することができる。
【0024】
また、この発明においても、上述した発明と同様に、主ポンプ手段での処理雰囲気中における酸素分圧を測定用ポンプ手段での処理雰囲気中における酸素分圧と同等か、あるいはそれ以下となるようにしているため、外部空間における被測定ガスがO2のリッチ雰囲気であっても、主ポンプ手段での処理空間に汲み込まれる酸素量が少なくて済み、検出精度的に有利となる。
【0025】
そして、前記測定方法において、前記主ポンプ手段を用いて、外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧をNOが分解され得ない所定の値に制御するようにしてもよい。また、前記外部空間から導入された被測定ガスの処理空間に露呈する少なくとも一つの電極として、NOxに対する触媒活性の低い電極を用いることが望ましい。この場合、前記外部空間から導入された被測定ガスの処理空間に露呈する少なくとも一つの電極は、窒素酸化物の分解触媒としての活性が極めて低く、低酸素分圧下でもNOを分解することがないため、窒素酸化物の測定に際して妨害成分となる酸素を実質的にゼロとなるまで、かつ、窒素酸化物の測定に影響を及ぼすことなく排除することができ、測定用ポンプ手段及び電流検出手段を通じて被測定ガスに含まれる窒素酸化物を高精度に、かつ、安定に測定することができる。
【0026】
前記NOxに対する触媒活性の低い電極としては、Au又はAuと白金族元素との合金を含むことが好ましい。この場合、前記主ポンプ手段での処理雰囲気に曝される電極上でのNOの分解作用が一層好適に抑制される。
【0027】
また、前記測定方法において、一方が、前記主ポンプ手段における前記一方のポンプ電極と対向するように配設された一対の測定電極を有する濃度測定手段を用いて、前記主ポンプ手段でのポンピング処理時における被測定ガスに含まれる酸素の量と他方の測定電極側のガスに含まれる酸素の量との差に応じて生じる酸素濃淡電池起電力を測定し、前記濃度測定手段にて測定された前記起電力に基づいて前記主ポンプ手段の前記制御電圧を調整するようにしてもよい。
【0028】
これにより、前記濃度測定手段において、前記主ポンプ手段でのポンピング処理時における前記被測定ガスに含まれる酸素の量と前記他方の測定電極側のガスに含まれる酸素の量との差に応じた起電力が測定され、この測定された起電力に基づいて、前記主ポンプ手段の一対のポンプ電極間に印加される制御電圧のレベルが調整される。
【0029】
主ポンプ手段は、外部空間から導入された被測定ガスのうち、酸素を制御電圧のレベルに応じた量ほどポンピング処理する。前記レベル調整された制御電圧の主ポンプ手段への供給によって、前記被測定ガスにおける酸素の濃度は、所定レベルにフィードバック制御されることとなる。
【0030】
また、前記測定方法において、前記一方の検出電極の近傍に形成された補助ポンプ電極を有する補助ポンプ手段を用いて、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記補助ポンプ電極と前記他方の検出電極間に印加される電圧に基づいて前記ポンピング処理するようにしてもよい。
【0031】
これにより、まず、主ポンプ手段にて所定のガス成分が所定濃度に粗調整された被測定ガスは、更に補助ポンプ手段によって所定のガス成分の濃度が微調整される。
【0032】
一般に、外部空間における被測定ガス中の所定ガス成分の濃度が大きく(例えば0から20%)変化すると、主ポンプ手段に導かれる被測定ガスの所定ガス成分の濃度分布が大きく変化し、測定用ポンプ手段あるいは濃度検出手段に導かれる所定ガス成分量も変化する。
【0033】
このとき、主ポンプ手段にてポンピング処理された後の被測定ガスにおける酸素濃度は、補助ポンプ手段でのポンピング処理にて微調整されることになるが、主ポンプ手段でのポンピング処理によって、前記補助ポンプ手段に導かれる被測定ガス中の酸素の濃度変化は、外部空間からの被測定ガス(主ポンプ手段に導かれる被測定ガス)における酸素の濃度変化よりも大幅に縮小されるため、測定用ポンプ手段における一方の検出電極近傍あるいは濃度検出手段における一方の検出電極近傍での所定ガス成分の濃度を精度よく一定に制御することができる。
【0034】
従って、測定用ポンプ手段あるいは濃度検出手段に導かれる所定ガス成分の濃度は、前記被測定ガス(主ポンプ手段に導かれる被測定ガス)における酸素の濃度変化の影響を受け難くなり、その結果、電流検出手段にて検出されるポンプ電流値あるいは電圧検出手段にて検出される起電力は、前記被測定ガスにおける所定ガス成分の濃度変化に影響されず、被測定ガス中に存在する目的成分量に正確に対応した値となる。
【0035】
そして、上述した各発明において、他方の測定電極を基準ガスが導入される空間に露呈する位置に配設することで、被測定ガスに含まれる酸素と基準ガスに含まれる酸素との比較を行うことができ、より正確な窒素酸化物の検出を行うことができる。
【0036】
特に、前記他方の測定電極を、前記他方の検出電極と共通に構成することが好ましい。この場合、濃度測定手段における他方の測定電極と測定用ポンプ手段あるいは濃度検出手段における他方の検出電極との共通電極が基準ガスの導入空間に露呈することになり、濃度測定手段、測定用ポンプ手段、濃度検出手段の各検出処理における基準電極として定義することができ、これに準じて、濃度測定手段における一方の測定電極並びに測定用ポンプ手段及び濃度検出手段における一方の検出電極をそれぞれ測定電極並びに検出電極と定義することができる。
【0037】
なお、前記主ポンプ手段は、固体電解質からなる基体にて囲まれ、かつ、前記被測定ガスが導入される第1室の内外に形成された内側ポンプ電極及び外側ポンプ電極と、これら両電極にて挟まれた前記基体にて構成することができる。
【0038】
また、前記測定用ポンプ手段は、固体電解質からなる基体にて囲まれ、かつ、前記主ポンプ手段にてポンピング処理された後の被測定ガスが導入される第2室内に形成された検出電極と、固体電解質からなる基体にて囲まれ、かつ、基準ガスが導入される基準ガス導入室に形成された基準電極と、前記検出電極と前記基準電極にて挟まれた前記基体にて構成することができる。
【0039】
また、前記濃度検出手段は、固体電解質からなる基体にて囲まれ、かつ、前記主ポンプ手段にてポンピング処理された後の被測定ガスが導入される第2室内に形成された検出電極と、固体電解質からなる基体にて囲まれ、かつ、基準ガスが導入される基準ガス導入室に形成された基準電極と、前記検出電極と前記基準電極にて挟まれた前記基体にて構成することができる。
【0040】
また、前記濃度測定手段は、固体電解質からなる基体にて囲まれ、かつ、前記外部空間からの被測定ガスが導入される前記第1室内に形成された測定電極と、固体電解質からなる基体にて囲まれ、かつ、基準ガスが導入される基準ガス導入室に形成された前記基準電極と、前記測定電極と前記基準電極にて挟まれた前記基体にて構成することができる。
【0041】
更に、前記測定方法において、前記外部空間における前記被測定ガスを、該被測定ガスに対して所定の拡散抵抗を付与する第1の拡散律速部を通じて第1室に導入し、前記主ポンプ手段にてポンピング処理された後の前記被測定ガスを、該被測定ガスに対して所定の拡散抵抗を付与する第2の拡散律速部を通じて第2室に導入するようにしてもよい。
【0042】
また、前記第2室における前記被測定ガスを、該被測定ガスに対して所定の拡散抵抗を付与する第3の拡散律速部を通じて前記一方の検出電極側に導入するようにしてもよい。
【0043】
なお、前記固体電解質としては、ZrO2 等のセラミックスを用いた酸素イオン伝導性固体電解質が好適であり、また、第1拡散律速部又は第2拡散律速部は、第1室及び第2室内の被測定ガスの状態を設定された所望の状態とすべく、前記被測定ガスに対して所定の拡散抵抗を付与する多孔質材料を用いると好適である。
【0044】
第1室、第2室内に配設される電極あるいは触媒を構成する窒素酸化物分解触媒は、Rhサーメットを用いると好適である。
【0045】
【発明の実施の形態】
以下、本発明に係る窒素酸化物の測定方法を例えば車両の排気ガスや大気中に含まれるNO、NO2 等の窒素酸化物を測定する窒素酸化物の測定装置に適用したいくつかの実施の形態例を図1〜図13を参照しながら説明する。
【0046】
まず、第1の実施の形態に係る測定装置50Aは、図1及び図2に示すように、全体として、長尺な板状体形状に構成されており、ZrO2 等の酸素イオン伝導性固体電解質を用いたセラミックスよりなる例えば5枚の固体電解質層52a〜52eが積層されて構成され、下から1層目が基板層52eとされ、下から2層目及び4層目が第1及び第2のスペーサ層52d及び52bとされ、下から3層目及び5層目が第1及び第2の固体電解質層52c及び52aとされている。
【0047】
具体的には、基板層52e上に第1のスペーサ層52dが積層され、更に、この第1のスペーサ層52d上に第1の固体電解質層52c、第2のスペーサ層52b及び第2の固体電解質層52aが順次積層されている。
【0048】
第2の固体電解質層52aの下面、第2のスペーサ層52bの側面並びに第1の固体電解質層52cの上面によって、被測定ガス中の酸素分圧を調整するための第1室54と、被測定ガス中の酸素分圧を微調整し、更に被測定ガス中の酸化物、例えば窒素酸化物(NOx)を測定するための第2室56が区画、形成されている。
【0049】
また、第2の固体電解質層52aのうち、第1室54に対応する箇所に、外部の被測定ガス存在空間と第1室54とを連通させるための貫通孔(第1の拡散律速部)58が設けられている。
【0050】
第1及び第2の固体電解質層52c及び52a間には、測定装置50Aの先端部分において第2のスペーサ層52bが挟設され、第1室54と第2室56間において第2の拡散律速部60が挟設されている。
【0051】
そして、第2の固体電解質層52aの下面、第2のスペーサ層52bの側面並びに第1の固体電解質層52cの上面によって、酸化物測定の基準となる基準ガス、例えば大気が導入される空間(基準ガス導入空間62)が区画、形成されている。
【0052】
即ち、この第1の実施の形態に係る測定装置50Aにおいては、第1室54、第2室56及び基準ガス導入空間62は、共に第2のスペーサ層52bの積層位置に形成され、ほぼ同一面上に配置された形となっている。
【0053】
ここで、前記第1及び第2の拡散律速部58及び60は、第1室54及び第2室56にそれぞれ導入される被測定ガスに対して所定の拡散抵抗を付与するものであり、例えば、被測定ガスを導入することができる多孔質材料又は所定の断面積を有した小孔からなる通路として形成することができる。
【0054】
なお、第2の拡散律速部60内に、ZrO2 等からなる多孔質体を充填、配置して、前記第2の拡散律速部60の拡散抵抗が前記第1の拡散律速部58の拡散抵抗よりも大きくするようにしてもよい。
【0055】
また、前記第2の固体電解質層52aの下面のうち、前記第1室54を形づくる下面に、平面ほぼ矩形状の多孔質サーメット電極からなる内側ポンプ電極64が形成され、前記第2の固体電解質層52aの上面のうち、前記内側ポンプ電極64に対応する部分に、外側ポンプ電極66が形成されており、これら内側ポンプ電極64、外側ポンプ電極66並びにこれら両電極64及び66間に挟まれた第2の固体電解質層52aにて電気化学的なポンプセル、即ち、主ポンプセル68が構成されている。
【0056】
そして、前記主ポンプセル68における内側ポンプ電極64と外側ポンプ電極66間に、外部の可変電源70を通じて所望の制御電圧(ポンプ電圧)Vp1を印加して、外側ポンプ電極66と内側ポンプ電極64間に正方向あるいは負方向にポンプ電流Ip1を流すことにより、前記第1室54内における雰囲気中の酸素を外部空間に汲み出し、あるいは外部空間の酸素を第1室54内に汲み入れることができるようになっている。
【0057】
また、前記第1の固体電解質層52cの上面のうち、前記第1室54を形づくる上面であって、かつ第2の拡散律速部60に近接する部分に、平面ほぼ矩形状の多孔質サーメット電極からなる測定電極72が形成され、前記第1の固体電解質層52cの下面のうち、基準ガス導入空間62に露呈する部分に基準電極74が形成されており、これら測定電極72、基準電極74及び第1の固体電解質層52cによって、電気化学的なセンサセル、即ち、制御用酸素分圧検出セル76が構成されている。
【0058】
この制御用酸素分圧検出セル76は、第1室54内の雰囲気と基準ガス導入空間62内の基準ガス(大気)との間の酸素濃度差に基づいて、測定電極72と基準電極74との間に発生する起電力を電圧計78にて測定することにより、前記第1室54内の雰囲気の酸素分圧が検出できるようになっている。
【0059】
即ち、基準電極74及び測定電極72間に生じる電圧V1は、基準ガス導入空間62に導入される基準ガスの酸素分圧と、第1室54内の被測定ガスの酸素分圧との差に基づいて生じる酸素濃淡電池起電力であり、ネルンストの式として知られる
V1=RT/4F・ln(P1(O2 )/P0(O2 ))
R:気体定数
T:絶対温度
F:ファラデー数
P1(O2 ):第1室54内の酸素分圧
P0(O2 ):基準ガスの酸素分圧
の関係を有している。そこで、前記ネルンストの式に基づく電圧V1を電圧計78によって測定することで、第1室54内の酸素分圧を検出することができる。
【0060】
前記検出された酸素分圧値は可変電源70のポンプ電圧をフィードバック制御系80を通じて制御するために使用され、具体的には、第1室54内の雰囲気の酸素分圧が、次の第2室56において酸素分圧の制御を行い得るのに十分な低い所定の値となるように、主ポンプセル68のポンプ動作が制御される。
【0061】
なお、前記内側ポンプ電極64及び外側ポンプ電極66は、第1室54内に導入された被測定ガス中のNOx、例えば、NOに対する触媒活性が低い不活性材料により構成される。具体的には、前記内側ポンプ電極64及び外側ポンプ電極66は、多孔質サーメット電極にて構成することができ、この場合、Pt等の金属とZrO2 等のセラミックスとから構成されることになるが、特に、被測定ガスに接触する第1室54内に配置される内側ポンプ電極64及び測定電極72は、測定ガス中のNO成分に対する還元能力を弱めた、あるいは還元能力のない材料を用いる必要があり、例えばLa3 CuO4 等のペロブスカイト構造を有する化合物、あるいはAu等の触媒活性の低い金属とセラミックスのサーメット、あるいはAu等の触媒活性の低い金属とPt族金属とセラミックスのサーメットで構成されることが好ましい。更に、電極材料にAuとPt族金属の合金を用いる場合は、Au添加量を金属成分全体の0.03〜35vol%にすることが好ましい。
【0062】
また、この第1の実施の形態に係る測定装置50Aにおいては、図2に示すように、前記第1の固体電解質層52cの上面のうち、前記第2室56を形づくる上面であって、かつ第2の拡散律速部60から離間した部分に、平面ほぼ矩形状の多孔質サーメット電極からなる検出電極82が形成され、該検出電極82、前記基準電極74及び第1の固体電解質層52cによって、電気化学的なポンプセル、即ち、測定用ポンプセル84が構成される。
【0063】
前記検出電極82は、酸化物分解触媒、例えばRhサーメット、あるいは触媒活性の低い材料、あるいは触媒活性の低い材料の近傍に酸化物分解触媒を配置する等の構成を適宜選択できる。
【0064】
この第1の実施の形態においては、検出電極82は、被測定ガス成分たるNOxを還元し得る金属であるRhとセラミックスとしてのジルコニアからなる多孔質サーメットにて構成され、これによって、第2室56内の雰囲気中に存在するNOxを還元するNOx還元触媒として機能するほか、前記基準電極74との間に、直流電源86を通じて一定電圧Vp2が印加されることによって、第2室56内の雰囲気中の酸素を基準ガス導入空間62に汲み出せるようになっている。
【0065】
前記測定用ポンプセル84のポンプ動作によって流れるポンプ電流Ip2は、電流計88によって検出されるようになっている。
【0066】
また、この第1の実施の形態に係る測定装置50Aにおいては、第1の固体電解質層52c及び基板層52eに挟まれ、かつ、第1のスペーサ層52dにて三方が囲まれた形態において、外部からの給電によって発熱するヒータ90が埋設されている。このヒータ90は、酸素イオンの伝導性を高めるために設けられるもので、該ヒータ90の上下面には、基板層52e及び第1の固体電解質層52cとの電気的絶縁を得るために、アルミナ等のセラミック層92が形成されている。
【0067】
前記ヒータ90は、図2に示すように、測定装置50Aの先端側に位置する第2室56側に偏倚して配設されており、第1室54よりも第2室56がより高温に、換言すれば内側ポンプ電極64や測定電極72よりも、検出電極82の方がより高温に加熱されるようになっている。
例えば、被測定ガスのガス温度が300℃〜850℃の間で変化するとき、第1室54内の内側ポンプ電極64や測定電極72が400℃〜900℃に、第2室56内の検出電極82が700℃〜900℃に加熱されるように、前記ヒータ90が配置される。これは、固体電解質層の酸素イオン伝導性を所定の値に維持するためと、電極の分極を小さくし、触媒の活性を維持することを目的としている。
【0068】
特に、この第1の実施の形態に係る測定装置50Aにおいては、第2室56内における酸素分圧を、第1室54内における酸素分圧に対し、高いか、あるいは等しい状態において前記測定用ポンプセル84に流れるポンプ電流Ip2を検出するようにしている。具体的には、前記測定用ポンプセル84における直流電源86の電圧Vp2を前記主ポンプセル68におけるポンプ電圧(起電力V1と等価)に対し、低いか、あるいは等しい状態にして、前記測定用ポンプセル84に流れるポンプ電流Ip2を電流計88を通じて検出する。
【0069】
第1の実施の形態に係る測定装置50Aは、基本的には以上のように構成されるものであり、次にその作用効果について説明する。
【0070】
酸化物の測定に先立ち、当該第1の実施の形態に係る測定装置50Aを第1室54内に被測定ガスが導入できる状態に設定する。次いで、ヒータ90に通電し、例えば測定装置50Aにおける第1室54の第1及び第2の固体電解質層52c及び52aを400℃〜900℃に加熱すると共に、第2室56の第1及び第2の固体電解質層52c及び52aを700℃〜900℃に加熱する。測定装置50Aをこのような温度状態に加熱することにより、第1及び第2の固体電解質層52c及び52aが所望の状態に活性化されることになる。
【0071】
次に、前述のように設定した測定装置50Aに対して被測定ガスを導入することにより、前記被測定ガス中に含まれるNOx等の酸化物の測定を開始する。
【0072】
第1の拡散律速部58を介して所定の拡散抵抗のもとに第1室54内に導入された被測定ガスは、可変電源70によって外側ポンプ電極66及び内側ポンプ電極64間に印加された所定のポンプ電圧Vp1によって、その中に含まれる酸素分圧が所定値に制御される。即ち、第1室54内の酸素分圧は、電圧計78によって検出される基準電極74及び測定電極72間の電圧V1に基づいて測定することができる。
【0073】
この電圧V1は、前述したネルンストの式で規定される酸素濃淡電池起電力であり、この電圧V1が例えば203mV(500℃)となるようにフィードバック制御系80を通じて可変電源70のポンプ電圧Vp1を制御することで、第1室60内の酸素分圧が所定値、例えば10-6atmに制御される。なお、第1の拡散律速部58は、主ポンプセル68の内側ポンプ電極64及び外側ポンプ電極66間にポンプ電圧Vp1を印加した際に、被測定ガス中の酸素が測定空間(第1室54)に拡散流入する量を絞り込み、前記主ポンプセル68に流れるポンプ電流Ip1を抑制する働きをしている。
【0074】
また、第1室54内においては、外部の被測定ガスによる加熱、更にはヒ−タ90による加熱環境下においても、内側ポンプ電極64や測定電極72にて雰囲気中のNOが分解されない酸素分圧下の状態、例えばNO→1/2N2 +1/2O2 の反応が起こらない酸素分圧下の状況が形成される。
【0075】
これは、第1室54内において被測定ガス(雰囲気)中のNOがN2 とO2 にまで分解されると、第2室56内でのNOxの正確な測定ができなくなるからであり、この意味において、第1室54内においてNOの分解に関与する成分(少なくとも主ポンプセル68における内側ポンプ電極64の成分)にてNOが分解され得ない状況を形成する必要がある。
【0076】
第1室54において所定の酸素分圧に制御された被測定ガスは、第1の拡散律速部58よりも拡散抵抗が大きく設定された第2の拡散律速部60を介して第2室56に導入される。
【0077】
第2室56内に導き入れられた被測定ガス中のNOx成分は、該第2室56内に配置されたNOx分解触媒の作用を受けて、窒素と酸素とに分解される。ここで生成された酸素は、測定用ポンプセル84における検出電極82と基準電極74との間に、酸素が第2室56から基準ガス導入空間62側に汲み出される方向に、所定の電圧、例えば185mV(600℃)が印加されることによって、測定用ポンプセル84によるポンピング作用を受ける。
【0078】
これによって、前記NOxの分解で生成された酸素は、第2室56外へ汲み出され、該第2室56内の酸素分圧は例えば10-5atmとなり、このとき、測定用ポンプセル84に流れるポンプ電流Ip2は、第2室56中での分解により生成された酸素量以内であり、第1室54で残存した酸素に基づく電流がこのポンプ電流Ip2に加わることはない。
【0079】
即ち、この第1の実施の形態に係る測定装置50Aにおいては、従来の方法でセンサ出力のオフセットの原因となっていた第1室54内に残存する微量の酸素の影響を除去することができ、NOxの検出を高精度に行うことができる。
【0080】
例えば、第1室54内の雰囲気中の酸素濃度が0.02ppmで、第2室56内の雰囲気中の酸素濃度が0.2ppm、被測定ガスのNO濃度が100ppmとしたとき、NOが分解されて発生する酸素濃度50ppmと第2室56内の雰囲気中の酸素濃度0.2ppmとの差=49.8ppmに相当するポンプ電流Ip2が流れることになる。従って、測定用ポンプセル84におけるポンプ電流値Ip2は、ほとんどがNOが分解された量を表し、そのため、被測定ガス中の酸素濃度に依存するようなこともない。
【0081】
即ち、前記ポンプ電流Ip2は、その大部分は被測定ガス中のNOx成分が分解されて生成された酸素によるものであり、従来の方法に比べ、被測定ガス中の酸素による影響を排除した状態で、微量のNOxまで精度よく測定することができる。なお、外側ポンプ電極66及び基準電極74は、第1室54内及び第2室56内の酸素を放出できる雰囲気中に形成されていればよく、例えば空気中であってもよい。
【0082】
このように、前記第1の実施の形態に係る測定装置50Aにおいては、第2室56内における酸素分圧を、第1室54内における酸素分圧以上とした状態において、前記測定用ポンプセル84に流れるポンプ電流Ip2を検出するようにしているため、測定用ポンプセル84に流れるポンプ電流Ip2のオフセットをゼロにすることができ、微量のNOxでも正確な測定が可能となる。しかも、第2室56内における酸素分圧を第1室54内における酸素分圧より高くすれば、第2室56内に露呈する検出電極82の焼結を防止することができる。
【0083】
つまり、従来の測定方法においては、測定されるNOx濃度Cnは、第2の電気化学的セルによって汲み出されるポンプ電流Ip2に関し、Cn=K・Ip2−Aであった。但し、Kは定数、Aは第1の内部空所内の残存酸素に起因するオフセット値である。
【0084】
これに対して、前記第1の実施の形態に係る測定装置50Aにおいては、第2室54内における酸素分圧を第1室54内における酸素分圧以上にした状態に制御するようにしているため、前記測定用ポンプセル84に流れるポンプ電流Ip2には、該第1室54内における残存酸素に相当するポンプ電流は含まれず、前記の関係式でみた場合、オフセット値Aは原理的にゼロとなって、実質的にCn=K・Ip2となる。従って、前記第1の実施の形態に係る測定装置50Aによれば、特に、高酸素濃度中のNOx、あるいは微量のNOxを測定する際の精度が向上する。
【0085】
次に、図3を参照しながら前記第1の実施の形態に係る測定装置50Aの変形例について説明する。なお、図2と対応するものについては同符号を付してその重複説明を省略する。
【0086】
この変形例に係る測定装置50Aaは、図3に示すように、前記第1の実施の形態に係る測定装置50A(図2参照)とほぼ同じ構成を有するが、測定用ポンプセル84に代えて、測定用酸素分圧検出セル100が設けられている点で異なる。
【0087】
この測定用酸素分圧検出セル100は、第1の固体電解質層52cの上面のうち、前記第2室56を形づくる上面に形成された検出電極102と、前記第1の固体電解質層52cの下面に形成された前記基準電極74と、前記第1の固体電解質層52cによって構成されている。
【0088】
この場合、測定用酸素分圧検出セル100における検出電極102と基準電極74との間に、検出電極102の周りの雰囲気と基準電極74の周りの雰囲気との間の酸素濃度差に応じた起電力(酸素濃淡電池起電力)V2が発生することとなる。
【0089】
従って、前記検出電極102及び基準電極74間に発生する起電力(電圧)V2を電圧計104にて測定することにより、検出電極102の周りの雰囲気の酸素分圧、換言すれば、被測定ガス成分(NOx)の還元又は分解によって発生する酸素によって規定される酸素分圧が電圧値V2として検出される。
【0090】
そして、外部空間のNO濃度が徐々に増加すると、前記検出電極102も上述した測定用ポンプセル84(図2参照)における検出電極82と同様に、NOx還元触媒として機能することから、前記検出電極102では、NOの還元又は分解反応が引き起こされ、該検出電極102の周りの雰囲気中の酸素濃度が上がり、これによって、検出電極102と基準電極74間に発生する起電力V2が徐々に低下することとなる。
【0091】
前記起電力V2の低下の度合いが、NOx濃度を表すことになる。つまり、前記検出電極102と基準電極74と第1の固体電解質層52cとから構成される測定用酸素分圧検出セル100から出力される起電力V2が、被測定ガス中のNOx濃度を表すことになる。
【0092】
そして、この変形例に係る測定装置50Aaにおいても、第1の実施の形態に係る測定装置50Aと同様に、第2室56内における酸素分圧を、第1室54内における酸素分圧以上とした状態において、前記測定用酸素分圧検出セル100に発生する起電力V2を検出するようにしている。
【0093】
そのため、測定用酸素分圧検出セル100に発生する起電力V2のオフセットをゼロにすることができ、微量のNOxでも正確な測定が可能となる。特に、高酸素濃度中のNOx、あるいは微量のNOxを測定する際の精度が向上する。しかも、第2室56内における酸素分圧を第1室54内における酸素分圧より高くすれば、第2室56内に露呈する検出電極102の焼結を防止することができる。
【0094】
次に、図4を参照しながら第2の実施の形態に係る測定装置50Bについて説明する。なお、図2と対応するものについては同符号を付してその重複説明を省略する。
【0095】
この第2の実施の形態に係る測定装置50Bは、図4に示すように、前記第1の実施の形態に係る測定装置50Aとほぼ同様の構成を有するが、以下の点で異なる。
【0096】
即ち、この第2の実施の形態に係る測定装置50Bは、第1の実施の形態に係る測定装置50Aよりも簡素化された構成を有し、前記第1の実施の形態に係る測定装置50Aにおいて設けられていた制御用酸素分圧検出セル76が省略され、主ポンプセル68の外側ポンプ電極66と内側ポンプ電極64間に直流電源106が接続されている。
【0097】
また、この第2の実施の形態に係る測定装置50Bにおいては、第1及び第2の固体電解質層52c及び52a間における測定装置50Bの先端部分に外部空間と第1室54とを連通させる第1の拡散律速部58が挟設されており、第2の固体電解質層52aの下面、第1及び第2の拡散律速部58及び60の側面並びに第1の固体電解質層52cの上面によって、被測定ガス中の酸素分圧を調整するための第1室54が区画、形成され、第2の固体電解質層52aの下面、第2の拡散律速部60の側面、第2のスペーサ層52bの側面並びに第1の固体電解質層52cの上面によって、被測定ガス中の酸素分圧を微調整し、更に被測定ガス中の酸化物、例えば窒素酸化物(NOx)を測定するための第2室56が区画、形成されている。
【0098】
この場合、前記第1の拡散律速部58が、通気性のある多孔質のセラミックスで作られており、第1室54に露呈する内側ポンプ電極64は、Au:0.5%、Pt:99.5%のサーメットからなり、第2の拡散律速部60は空隙にて構成されている。
【0099】
この第2の実施の形態に係る測定装置50Bにおいては、主ポンプセル68に接続された直流電源106の電圧Vp1が固定の例えば450mV(650℃)に設定され、測定用ポンプセル84に接続された直流電源86の電圧Vp2が固定の例えば400mV(650℃)に設定されてNOxの測定が行われる。
【0100】
それ以外の構成並びに窒素酸化物の測定原理については、前記第1の実施の形態に係る測定装置50Aとほぼ同じであるため、ここではその重複説明を省略する。
【0101】
ここで、前記第2の実施の形態に係る測定装置50Bについての一つの実験例を示す。この実験例は、酸素:8%、炭酸ガス:6%、NOx:10〜200ppm、残り:窒素ガスと飽和状態の水蒸気からなる組成の被測定ガスについて、第1室54及び第2室56の温度を共に650℃、主ポンプセル68に印加するポンプ電圧Vp1を450mVとし、測定用ポンプセル84に印加する測定用電圧Vp2を400mV及び600mVとした場合の測定用ポンプセル84に流れるポンプ電流Ip2の出力特性をみたものである。
【0102】
この実験結果を図5に示す。この図5において、「○」が測定用電圧Vp2を400mVとした出力特性(特性A)を示し、「△」が測定用電圧Vp2を600mVとした出力特性(特性B)を示す。
【0103】
この図5に示す実験結果から、測定用電圧Vp2がポンプ電圧Vp1よりも低い400mVの出力特性(特性A)は、原点を通る直線となり、オフセットが認められないことがわかる。
【0104】
次に、図6を参照しながら前記第2の実施の形態に係る測定装置50Bの変形例について説明する。なお、図3及び図4と対応するものについては同符号を付してその重複説明を省略する。
【0105】
この変形例に係る測定装置50Baは、図6に示すように、前記第2の実施の形態に係る測定装置50B(図4参照)とほぼ同じ構成を有するが、測定用ポンプセル84に代えて、前記第1の実施の形態に係る測定装置の変形例50Aa
(図3参照)と同様に測定用酸素分圧検出セル100が設けられている点で異なる。
【0106】
測定用酸素分圧検出セル100における検出電極102と基準電極74との間に、検出電極102の周りの雰囲気と基準電極74の周りの雰囲気との間の酸素濃度差に応じた起電力(酸素濃淡電池起電力)V2が発生することから、該起電力(電圧)V2を電圧計104にて測定することにより、検出電極102の周りの雰囲気の酸素分圧が電圧値V2として検出される。
【0107】
この場合も、測定用酸素分圧検出セル100に発生する起電力V2のオフセットをゼロにすることができ、微量のNOxでも正確な測定が可能となる。
【0108】
次に、図7を参照しながら第3の実施の形態に係る測定装置50Cについて説明する。なお、図4と対応するものについては同符号を付してその重複説明を省略する。
【0109】
この第3の実施の形態に係る測定装置50Cは、図7に示すように、前記第2の実施の形態に係る測定装置50B(図4参照)とほぼ同様の構成を有するが、以下の点で異なる。
【0110】
即ち、この第3の実施の形態に係る測定装置50Cは、全体として、ZrO2 等の酸素イオン伝導性固体電解質を用いたセラミックスよりなる6枚の固体電解質層52a〜52fが積層されて構成され、下から1層目及び2層目が第1及び第2の基板層52f及び52eとされ、下から3層目及び5層目が第1及び第2のスペーサ層52d及び52bとされ、下から4層目及び6層目が第1及び第2の固体電解質層52c及び52aとされている。
【0111】
そして、第2の基板層52bと第1の固体電解質層52cとの間において、第1の固体電解質層52cの下面、第2の基板層52bの上面及び第1のスペーサ層52dの側面によって、基準ガス導入空間62が区画、形成され、第1の固定電解質層52cの下面のうち、前記基準ガス導入空間62に露呈する部分に基準電極74が形成されている。
【0112】
また、この第3の実施の形態に係る測定装置50Cにおいては、第1の拡散律速部58がスリット状の開口として構成され、第2の拡散律速部60は、測定用ポンプセル84における検出電極82を被覆するように形成された多孔質Al2 3 層あるいは多孔質ZrO3 層にて構成されている。従って、第2室56は、多孔質層の第2の拡散律速部60と検出電極82との界面に相当する。
【0113】
また、この第3の実施の形態に係る測定装置50Cにおいては、主ポンプセル84を構成する内側ポンプ電極64が、第1の固定電解質層52cの上面のうち、第1室54に露呈する部分に形成され、基準電極74が前記主ポンプセル68の外側ポンプ電極66(図4参照)を兼用した構成となっている。前記内側ポンプ電極64は、Au:0.5%、Pt:99.5%のサーメットにて構成され、検出電極82は、Rhのサーメットにて構成されている。
【0114】
従って、前記主ポンプセル68における内側ポンプ電極64と基準電極74間に、外部の直流電源106を通じて所望の固定電圧(ポンプ電圧)Vp1が印加されることによって、基準電極74と内側ポンプ電極64間に正方向にポンプ電流Ip1が流れ、これによって、前記第1室54内における雰囲気中の酸素が基準ガス導入空間62に汲み出されるようになっている。
【0115】
ここで、前記第3の実施の形態に係る測定装置50Cについての一つの実験例を示す。この実験例は、酸素:20%、NOx:10〜200ppm、残り:窒素ガスと飽和状態の水蒸気からなる組成の被測定ガスについて、第1室54及び第2室56の温度を共に650℃、第1室54内の酸素分圧を10-8atmとし、第2室56(第2の拡散律速部60と検出電極82との界面)の酸素分圧を10-6atmとした場合の測定用ポンプセル84に流れるポンプ電流Ip2の出力特性をみたものである。
【0116】
この実験結果を図8に示す。この図8から前記ポンプ電流Ip2の出力特性は、原点を通る直線となり、オフセットが認められないことがわかる。
【0117】
次に、図9を参照しながら前記第3の実施の形態に係る測定装置50Cの変形例について説明する。なお、図3及び図7と対応するものについては同符号を付してその重複説明を省略する。
【0118】
この変形例に係る測定装置50Caは、図9に示すように、前記第3の実施の形態に係る測定装置50C(図7参照)とほぼ同じ構成を有するが、測定用ポンプセル84に代えて、前記第1の実施の形態に係る測定装置の変形例50Aa
(図3参照)と同様に測定用酸素分圧検出セル100が設けられている点で異なる。
【0119】
この場合も、測定用酸素分圧検出セル100に発生する起電力V2のオフセットをゼロにすることができ、微量のNOxでも正確な測定が可能となる。
【0120】
次に、図10を参照しながら第4の実施の形態に係る測定装置50Dについて説明する。なお、図2と対応するものについては同符号を付してその重複説明を省略する。
【0121】
この第4の実施の形態に係る測定装置50Dは、図10に示すように、前記第1の実施の形態に係る測定装置50A(図2参照)とほぼ同様の構成を有するが、第2室56に補助ポンプセル110が設けられている点で異なる。
【0122】
この補助ポンプセル110は、前記第2の固体電解質層52aの下面のうち、前記第2室56を形づくる下面に形成された平面ほぼ矩形状の多孔質サーメット電極からなる補助ポンプ電極112と、前記基準電極74と、第2の固体電解質層52a、第2のスペーサ層52b及び第1の固体電解質層52cにて構成されている。
【0123】
前記補助ポンプ電極112は、前記主ポンプセル68における内側ポンプ電極64と同様に、被測定ガス中のNO成分に対する還元能力を弱めた、あるいは還元能力のない材料を用いている。この場合、例えばLa3 CuO4 等のペロブスカイト構造を有する化合物、あるいはAu等の触媒活性の低い金属とセラミックスのサーメット、あるいはAu等の触媒活性の低い金属とPt族金属とセラミックスのサーメットで構成されることが好ましい。更に、電極材料にAuとPt族金属の合金を用いる場合は、Au添加量を金属成分全体の0.03〜35vol%にすることが好ましい。
【0124】
そして、前記補助ポンプセル110における補助ポンプ電極112と基準電極74間に、外部の電源114を通じて所望の一定電圧Vp3を印加することにより、第2室56内の雰囲気中の酸素を基準ガス導入空間62に汲み出せるようになっている。
【0125】
この場合、前記第1の実施の形態に係る測定装置50Aと同様に、制御用酸素分圧検出セル76における測定電極72及び基準電極74間に現れる電圧V1が、例えば203mV(500℃)となるようにフィードバック制御系80を通じて可変電源70のポンプ電圧Vp1を制御することで、第1室54内の酸素分圧が所定値、例えば10-6atmに制御される。また、測定用ポンプセル84に印加されるポンプ電圧Vp2としては例えば185mV(600℃)が設定され、補助ポンプセル110に印加される電圧Vp3としては例えば300mV(600℃)が設定される。
【0126】
これによって、第2室56内の雰囲気の酸素分圧が、実質的に被測定ガス成分(NOx)が還元又は分解され得ない状況下で、かつ目的成分量の測定に実質的に影響がない低い酸素分圧値とされる。この場合、第1室54における主ポンプセル68の働きにより、この第2室56内に導入される酸素の量の変化は、被測定ガスの変化よりも大幅に縮小されるため、第2室56における酸素分圧は精度よく一定に制御される。
【0127】
ところで、前記主ポンプセル68を動作させて第1室54内の雰囲気の酸素分圧をNOx測定に実質的に影響がない低い酸素分圧値に制御しようとしたとき、換言すれば、制御用酸素分圧検出セル76にて検出される電圧V1が一定となるように、フィードバック制御系80を通じて可変電源70のポンプ電圧Vp1を調整したとき、被測定ガス中の酸素濃度が大きく、例えば0〜20%に変化すると、通常、第2室56内の雰囲気及び検出電極82付近の雰囲気の各酸素分圧は、僅かに変化するようになる。これは、被測定ガス中の酸素濃度が高くなると、測定電極72上の第1室54の幅方向及び厚み方向に酸素濃度分布が生じ、この酸素濃度分布が被測定ガス中の酸素濃度により変化するためであると考えられる。
【0128】
しかし、この第4の実施の形態に係る測定装置50Dにおいては、第2室56に対して、その内部の雰囲気の酸素分圧を常に一定に低い酸素分圧値となるように、補助ポンプセル110を設けるようにしているため、第1室54から第2室56に導入される雰囲気の酸素分圧が被測定ガスの酸素濃度に応じて変化しても、前記補助ポンプセル110のポンプ動作によって、第2室56内の雰囲気の酸素分圧を常に一定の低い値とすることができ、その結果、NOxの測定に実質的に影響がない低い酸素分圧値に制御することができる。
【0129】
このように、第2室56内の雰囲気中の酸素濃度は、補助ポンプセル110にて一定に制御されていることから、前記測定用ポンプセル84に流れるポンプ電流Ip2は、NOxの濃度に比例することになる。その結果、測定用ポンプセル84におけるポンプ電流値Ip2は、ほとんどがNOが還元又は分解された量を表し、そのため、被測定ガス中の酸素濃度に依存するようなこともない。
【0130】
次に、図11を参照しながら第4の実施の形態に係る測定装置50Dの変形例について説明する。なお、図10と対応するものについては同符号を付してその重複説明を省略する。
【0131】
この変形例に係る測定装置50Daは、図11に示すように、前記第4の実施の形態に係る測定装置50D(図10参照)とほぼ同様の構成を有するが、測定用ポンプセル84における検出電極82を被覆するように、第3の拡散律速部120を構成する多孔質Al2 3 層あるいは多孔質ZrO3 層が形成されている点で異なる。この場合、第3の拡散律速部120と検出電極82との界面で第3室122が形成されたかたちとなる。
【0132】
そして、前記測定用ポンプセル84における直流電源86は、第3の拡散律速部120により制限されたNOxの流入下において、測定用ポンプセル84で分解時に生成した酸素のポンピングに対して限界電流を与える大きさの電圧Vp2を印加できるようになっている。
【0133】
従って、この変形例に係る測定装置50Daにおいては、前記第2室56内において酸素分圧が制御された被測定ガスは、第3の拡散律速部120を通じて所定の拡散抵抗の下に、検出電極82に導かれることとなる。
【0134】
この場合、第2室56内の雰囲気中の酸素濃度は、補助ポンプセル110にて一定に制御されていることから、前記測定用ポンプセル84に流れるポンプ電流Ip2は、NOxの濃度に比例することになる。また、このNOxの濃度は、第3の拡散律速部120にて制限されるNOxの拡散量に対応していることから、被測定ガスの酸素濃度が大きく変化したとしても、測定用ポンプセル84から電流計88を通じて正確にNOx濃度を測定することが可能となり、NOx濃度の検出感度も向上することになる。
【0135】
次に、図12を参照しながら第5の実施の形態に係る測定装置50Eについて説明する。なお、図3及び図10と対応するものについては同符号を付してその重複説明を省略する。
【0136】
この第5の実施の形態に係る測定装置50Eは、図12に示すように、前記第4の実施の形態に係る測定装置50D(図10参照)とほぼ同様の構成を有するが、測定用ポンプセル84に代えて、前記第1の実施の形態に係る測定装置の変形例50Aa(図3参照)と同様に測定用酸素分圧検出セル100が設けられている点で異なる。
【0137】
測定用酸素分圧検出セル100における検出電極102と基準電極74との間に、検出電極102の周りの雰囲気と基準電極74の周りの雰囲気との間の酸素濃度差に応じた起電力(酸素濃淡電池起電力)V2が発生することから、該起電力(電圧)V2を電圧計104にて測定することにより、検出電極102の周りの雰囲気の酸素分圧が電圧値V2として検出される。
【0138】
この場合、第1室54から第2室56に導入される雰囲気の酸素分圧が被測定ガスの酸素濃度に応じて変化しても、前記補助ポンプセル110のポンプ動作によって、第2室56内の雰囲気の酸素分圧を常に一定の低い値とすることができ、その結果、NOxの測定に実質的に影響がない低い酸素分圧値に制御することができる。
【0139】
次に、図13を参照しながら第5の実施の形態に係る測定装置50Eの変形例について説明する。なお、図12と対応するものについては同符号を付してその重複説明を省略する。
【0140】
この変形例に係る測定装置50Eaは、図13に示すように、前記第5の実施の形態に係る測定装置50Eとほぼ同様の構成を有するが、測定用酸素分圧検出セル100における検出電極102を被覆するように、第3の拡散律速部120を構成する多孔質Al2 3 層あるいは多孔質ZrO3 層が形成されている点で異なる。この場合、第3の拡散律速部120と検出電極102との界面で第3室122が形成されたかたちとなる。
【0141】
この場合、第2室56に導き入れられた被測定ガスは、該第2室56に配された第3の拡散律速部120の所定の拡散抵抗の下に検出電極102側に拡散し、その結果、NOxの還元が検出電極102にて行われると共に、該検出電極102と基準電極74との間に発生する起電力V2が電圧計104にて測定されることとなる。
【0142】
この変形例に係る測定装置50Eaにおいても、前記第5の実施の形態に係る測定装置50Eと同様に、被測定ガスの酸素濃度が大きく変化したとしても、測定用酸素分圧セル100から電圧計104を通じて正確にNOx濃度を測定することが可能となり、NOx濃度の検出感度も向上することになる。
【0143】
前記第1〜第5の実施の形態に係る測定装置(各変形例も含む)によれば、被測定ガス中に共存する水や炭酸ガス及び酸素の影響を受けることなく、実質的にオフセットのない状態で微量のNOxまで正確に測定することが可能であり、産業上極めて有用である。
【0144】
なお、この発明に係る窒素酸化物の測定方法は、上述の実施の形態に限らず、この発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
【0145】
【発明の効果】
本発明の窒素酸化物の測定方法によれば、被測定ガス中の例えばNOx濃度を、酸素あるいはCO2 、H2 O等の影響を受けることなく、常にオフセットが実質的にゼロの状態において、長期間安定に測定することが可能となる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る測定装置を示す平面図である。
【図2】図1におけるA−A線上の断面図である。
【図3】第1の実施の形態に係る測定装置の変形例を示す断面図である。
【図4】第2の実施の形態に係る測定装置を示す断面図である。
【図5】第2の実施の形態に係る測定装置において、ポンプ電圧Vp1を450mVとし、測定用電圧Vp2を400mV及び600mVとした場合の測定用ポンプセルに流れるポンプ電流Ip2の出力特性を示すグラフである。
【図6】第2の実施の形態に係る測定装置の変形例を示す断面図である。
【図7】第3の実施の形態に係る測定装置を示す断面図である。
【図8】第3の実施の形態に係る測定装置において、第1室内の酸素分圧を10-8atmとし、第2室56(第2の拡散律速部と検出電極との界面)の酸素分圧を10-6atmとした場合の測定用ポンプセルに流れるポンプ電流Ip2の出力特性を示すグラフである。
【図9】第3の実施の形態に係る測定装置の変形例を示す断面図である。
【図10】第4の実施の形態に係る測定装置を示す断面図である。
【図11】第4の実施の形態に係る測定装置の変形例を示す断面図である。
【図12】第5の実施の形態に係る測定装置を示す断面図である。
【図13】第5の実施の形態に係る測定装置の変形例を示す断面図である。
【符号の説明】
50A〜50E…測定装置 50Aa〜50Ea…測定装置
52a…第2の固体電解質層 52b…第2のスペーサ層
52c…第1の固体電解質層 52d…第2のスペーサ層
52e…第2の基板層 52f…第1の基板層
54…第1室 56…第2室
58…第1の拡散律速部 60…第2の拡散律速部
62…基準ガス導入空間 64…内側ポンプ電極
66…外側ポンプ電極 68…主ポンプセル
70…可変電源 72…測定電極
74…基準電極 76…制御用酸素分圧検出セル
82…検出電極 84…測定用ポンプセル
90…ヒータ 100…測定用酸素分圧検出セル
102…検出電極 110…補助ポンプセル
112…補助ポンプ電極 120…第3の拡散律速部

Claims (17)

  1. 一方が、外部空間からの被測定ガスの導入側に配設された一対のポンプ電極を有する主ポンプ手段を用いて、外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を所定の値に制御し、
    一方が、前記主ポンプ手段にてポンピング処理された後の被測定ガスの導入側に設けられた一対の検出電極を有する測定用ポンプ手段を用いて、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記一対の検出電極間に印加される測定用電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を窒素酸化物が分解され得る所定の値に制御し、
    前記測定用ポンプ手段での処理雰囲気中における酸素分圧が、前記主ポンプ手段での処理雰囲気中における酸素分圧以上となる状態の下で、前記測定用ポンプ手段の前記ポンピング処理によって該測定用ポンプ手段に流れるポンプ電流を検出し、
    前記検出されたポンプ電流に基づいて前記被測定ガス中の酸化物を測定することを特徴とする窒素酸化物の測定方法。
  2. 一方が、外部空間からの被測定ガスの導入側に配設された一対のポンプ電極を有する主ポンプ手段を用いて、外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を所定の値に制御し、
    一方が、前記主ポンプ手段にてポンピング処理された後の被測定ガスの導入側に設けられた一対の検出電極を有する測定用ポンプ手段を用いて、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記一対の検出電極間に印加される測定用電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を窒素酸化物が分解され得る所定の値に制御し、
    前記測定用ポンプ手段に供給される前記測定用電圧のレベルを前記主ポンプ手段に供給される制御電圧以下にした状態の下で、前記測定用ポンプ手段の前記ポンピング処理によって該測定用ポンプ手段に流れるポンプ電流を検出し、
    前記検出されたポンプ電流に基づいて前記被測定ガス中の酸化物を測定することを特徴とする窒素酸化物の測定方法。
  3. 請求項1又は2記載の窒素酸化物の測定方法において、
    前記測定用ポンプ手段は、前記一対の検出電極間に窒素酸化物を分解するのに十分な電圧を印加し、あるいは該測定用ポンプ手段に配設された窒素酸化物分解触媒のいずれか、あるいは両方の作用によって生成した酸素を、前記一対の検出電極間に印加される前記測定用電圧に基づいてポンピング処理することを特徴とする窒素酸化物の測定方法。
  4. 一方が、外部空間からの被測定ガスの導入側に配設された一対のポンプ電極を有する主ポンプ手段を用いて、外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧を所定の値に制御し、
    一方が、前記主ポンプ手段にてポンピング処理された後の被測定ガスの導入側に設けられた一対の検出電極を有する濃度検出手段の前記一方の検出電極の近傍に形成された補助ポンプ電極を有する補助ポンプ手段を用いて、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記補助ポンプ電極と前記他方の検出電極間に印加される電圧に基づいて前記ポンピング処理し、
    前記濃度検出手段を用いて、前記補助ポンプ手段での処理雰囲気中における酸素分圧が、前記主ポンプ手段での処理雰囲気中における酸素分圧以上となる状態の下で、前記濃度検出手段に配設された窒素酸化物分解触媒の作用によって生成された酸素と他方の検出電極側のガスに含まれる酸素との分圧差に応じた酸素濃淡電池起電力を検出し、
    検出された前記起電力に基づいて前記被測定ガス中の酸化物を測定することを特徴とする窒素酸化物の測定方法。
  5. 請求項1〜4のいずれか1項に記載の窒素酸化物の製造方法において、
    前記主ポンプ手段を用いて、外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧をNOが分解され得ない所定の値に制御することを特徴とする窒素酸化物の測定方法。
  6. 請求項1〜のいずれか1項に記載の窒素酸化物の測定方法において、
    前記外部空間から導入された被測定ガスの処理空間に露呈する少なくとも一つの電極としてNOxに対する触媒活性の低い電極を用いることを特徴とする窒素酸化物の測定方法。
  7. 請求項記載の窒素酸化物の測定方法において、
    前記NOxに対する触媒活性の低い電極が、Au又はAuと白金族元素との合金を含むことを特徴とする窒素酸化物の測定方法。
  8. 請求項1〜のいずれか1項に記載の窒素酸化物の測定方法において、
    一方が、前記主ポンプ手段における前記一方のポンプ電極と対向するように配設された一対の測定電極を有する濃度測定手段を用いて、前記主ポンプ手段でのポンピング処理時における被測定ガスに含まれる酸素の量と他方の測定電極側のガスに含まれる酸素の量との差に応じて生じる酸素濃淡電池起電力を測定し、
    前記濃度測定手段にて測定された前記起電力に基づいて前記主ポンプ手段の前記制御電圧を調整することを特徴とする窒素酸化物の測定方法。
  9. 請求項1〜のいずれか1項に記載の窒素酸化物の測定方法において、
    前記他方の測定電極は、基準ガスが導入される空間に露呈する位置に配設されていることを特徴とする窒素酸化物の測定方法。
  10. 請求項8又は9記載の窒素酸化物の測定方法において、
    前記他方の測定電極は、前記他方の検出電極と共通に構成されていることを特徴とする窒素酸化物の測定方法。
  11. 請求項1〜10のいずれか1項に記載の窒素酸化物の測定方法において、
    前記主ポンプ手段は、固体電解質からなる基体にて囲まれ、かつ前記被測定ガスが導入される第1室の内外に形成された内側ポンプ電極及び外側ポンプ電極と、
    これら両電極にて挟まれた前記基体を有することを特徴とする窒素酸化物の測定方法。
  12. 請求項1〜3並びに5〜11のいずれか1項に記載の窒素酸化物の測定方法において、
    前記測定用ポンプ手段は、固体電解質からなる基体にて囲まれ、かつ前記主ポンプ手段にてポンピング処理された後の被測定ガスが導入される第2室内に形成された検出電極と、
    固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された基準電極と、
    前記検出電極と前記基準電極にて挟まれた前記基体を有することを特徴とする窒素酸化物の測定方法。
  13. 請求項4〜11のいずれか1項に記載の窒素酸化物の測定方法において、
    前記濃度検出手段は、固体電解質からなる基体にて囲まれ、かつ前記主ポンプ手段にてポンピング処理された後の被測定ガスが導入される第2室内に形成された検出電極と、
    固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された前記基準電極と、
    前記検出電極と前記基準電極にて挟まれた前記基体を有することを特徴とする窒素酸化物の測定方法。
  14. 請求項〜13のいずれか1項に記載の窒素酸化物の測定方法において、
    前記濃度測定手段は、固体電解質からなる基体にて囲まれ、かつ前記外部空間からの被測定ガスが導入される前記第1室内に形成された測定電極と、
    固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された前記基準電極と、
    前記測定電極と前記基準電極にて挟まれた前記基体を有することを特徴とする窒素酸化物の測定方法。
  15. 請求項11〜14のいずれか1項に記載の窒素酸化物の測定方法において、
    前記外部空間における前記被測定ガスは、該被測定ガスに対して所定の拡散抵抗を付与する第1の拡散律速部を通じて第1室に導入され、
    前記主ポンプ手段にてポンピング処理された後の前記被測定ガスは、該被測定ガスに対して所定の拡散抵抗を付与する第2の拡散律速部を通じて第2室に導入されることを特徴とする窒素酸化物の測定方法。
  16. 請求項11〜15のいずれか1項に記載の窒素酸化物の測定方法において、
    前記第2室における前記被測定ガスは、該被測定ガスに対して所定の拡散抵抗を付与する第3の拡散律速部を通じて前記一方の検出電極側に導入されることを特徴とする窒素酸化物の測定方法。
  17. 請求項3〜16のいずれか1項に記載の窒素酸化物の測定方法において、
    前記窒素酸化物分解触媒はRhサーメットであることを特徴とする窒素酸化物の測定方法。
JP02558097A 1996-02-23 1997-02-07 窒素酸化物の測定方法 Expired - Lifetime JP3647181B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02558097A JP3647181B2 (ja) 1996-02-23 1997-02-07 窒素酸化物の測定方法
EP97301200A EP0791828A1 (en) 1996-02-23 1997-02-24 Method for measuring nitrogen oxides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3675496 1996-02-23
JP8-36754 1996-02-23
JP02558097A JP3647181B2 (ja) 1996-02-23 1997-02-07 窒素酸化物の測定方法

Publications (2)

Publication Number Publication Date
JPH09288087A JPH09288087A (ja) 1997-11-04
JP3647181B2 true JP3647181B2 (ja) 2005-05-11

Family

ID=26363218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02558097A Expired - Lifetime JP3647181B2 (ja) 1996-02-23 1997-02-07 窒素酸化物の測定方法

Country Status (2)

Country Link
EP (1) EP0791828A1 (ja)
JP (1) JP3647181B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488591B2 (ja) * 1996-03-28 2004-01-19 日本碍子株式会社 酸化物センサ
JP3544437B2 (ja) * 1996-09-19 2004-07-21 日本碍子株式会社 ガスセンサ
US6214208B1 (en) 1996-12-02 2001-04-10 Ngk Spark Plug Co., Ltd. Method and apparatus for measuring NOx gas concentration
US6695964B1 (en) 1996-12-02 2004-02-24 Ngk Spark Plug Co., Ltd. Method and apparatus for measuring NOx gas concentration
US6344134B1 (en) * 1998-01-16 2002-02-05 Ngk Spark Plug Co., Ltd. Method for measuring NOx concentration and NOx concentration sensor
JP3534612B2 (ja) 1998-05-18 2004-06-07 日本特殊陶業株式会社 平面型限界電流式センサ
JP3701124B2 (ja) 1998-07-08 2005-09-28 日本碍子株式会社 ガスセンサ及び窒素酸化物センサ
EP0981046A1 (en) * 1998-08-10 2000-02-23 Ngk Spark Plug Co., Ltd Method for measuring concentration of a component in a gas
JP3587290B2 (ja) * 1998-09-17 2004-11-10 日本特殊陶業株式会社 NOxガスセンサ
JP2000137018A (ja) * 1998-11-02 2000-05-16 Denso Corp ガス濃度検出装置とそれに用いるガス濃度センサ
DE19912100B4 (de) * 1999-03-18 2004-03-04 Robert Bosch Gmbh Elektrochemischer Gassensor
WO2000057167A1 (fr) * 1999-03-23 2000-09-28 Hitachi, Ltd. Dispositif de mesure de constituants de gaz
DE19941051C2 (de) * 1999-08-28 2003-10-23 Bosch Gmbh Robert Sensorelement zur Bestimmung der Sauerstoffkonzentration in Gasgemischen und Verfahren zur Herstellung desselben
JP4563606B2 (ja) * 2000-03-31 2010-10-13 株式会社デンソー 積層型センサ素子
DE10157733B4 (de) * 2001-11-24 2004-02-26 Robert Bosch Gmbh Sensor zur Bestimmung der Konzentration einer Gaskomponente in einem Gasgemisch
JP2005283266A (ja) * 2004-03-29 2005-10-13 Ngk Insulators Ltd ガスセンサ素子
JP2006112918A (ja) * 2004-10-14 2006-04-27 Hitachi Ltd 酸素センサ
US7578925B2 (en) 2005-12-07 2009-08-25 Ford Global Technologies, Llc System and method for updating a baseline output of a gas sensor
JP2009244140A (ja) * 2008-03-31 2009-10-22 Ngk Insulators Ltd ガスセンサおよびNOxセンサ
JP2010164589A (ja) * 2010-04-30 2010-07-29 Hitachi Automotive Systems Ltd 酸素センサ
JP6498985B2 (ja) 2014-03-31 2019-04-10 日本碍子株式会社 センサ素子及びガスセンサ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672861B2 (ja) * 1986-08-04 1994-09-14 日本碍子株式会社 NOxセンサ
JP2636883B2 (ja) * 1988-04-30 1997-07-30 日本碍子株式会社 NOx濃度測定装置
US5034112A (en) * 1988-05-19 1991-07-23 Nissan Motor Company, Ltd. Device for measuring concentration of nitrogen oxide in combustion gas
US4909072A (en) * 1988-07-22 1990-03-20 Ford Motor Company Measurement and control of exhaust gas recirculation with an oxygen pumping device
US5217588A (en) * 1992-02-27 1993-06-08 Gte Laboratories Incorporated Method and apparatus for sensing NOx
JP2885336B2 (ja) * 1994-04-21 1999-04-19 日本碍子株式会社 被測定ガス中のNOx濃度の測定方法及び測定装置
GB2288873A (en) * 1994-04-28 1995-11-01 Univ Middlesex Serv Ltd Multi-component gas analysis apparatus
DE4439901C2 (de) * 1994-11-08 1998-01-15 Bosch Gmbh Robert Elektrochemischer Meßfühler zur Bestimmung von Stickoxiden in Gasgemischen
JP3450084B2 (ja) * 1995-03-09 2003-09-22 日本碍子株式会社 可燃ガス成分の測定方法及び測定装置

Also Published As

Publication number Publication date
EP0791828A1 (en) 1997-08-27
JPH09288087A (ja) 1997-11-04

Similar Documents

Publication Publication Date Title
JP3647181B2 (ja) 窒素酸化物の測定方法
JP3671100B2 (ja) 酸化物センサ
JP3571494B2 (ja) ガスセンサ
JP3537983B2 (ja) ガスセンサ
JP3610182B2 (ja) ガスセンサ
JP3701114B2 (ja) NOx分解電極の酸化防止方法
JP3488591B2 (ja) 酸化物センサ
JP3050781B2 (ja) 被測定ガス中の所定ガス成分の測定方法及び測定装置
KR101851281B1 (ko) 암모니아 센서
JP3272215B2 (ja) NOxセンサ及びNOx測定方法
JP3623065B2 (ja) 窒素酸化物センサ
KR101851277B1 (ko) NOx 센서
JPH1090222A (ja) ガスセンサ
JP3631582B2 (ja) ガスセンサ
WO2008007706A1 (fr) Détecteur de gaz et détecteur d'oxyde d'azote
JP4205792B2 (ja) NOx分解電極及びNOx濃度測定装置
JP2009244140A (ja) ガスセンサおよびNOxセンサ
JP3583890B2 (ja) ガスセンサ及びガスセンサの制御方法
JP3664558B2 (ja) ガスセンサ
JP3534612B2 (ja) 平面型限界電流式センサ
JP3619344B2 (ja) 窒素酸化物の測定装置
JPH10227760A (ja) ガスセンサ
US7182846B2 (en) Hydrogen-containing gas measurement sensor element and measuring method using same
JP2004294455A (ja) ガスセンサ
JP3540177B2 (ja) ガスセンサ及びそれを用いた可燃性ガス成分濃度測定装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

EXPY Cancellation because of completion of term