JP3645220B2 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
JP3645220B2
JP3645220B2 JP2001562840A JP2001562840A JP3645220B2 JP 3645220 B2 JP3645220 B2 JP 3645220B2 JP 2001562840 A JP2001562840 A JP 2001562840A JP 2001562840 A JP2001562840 A JP 2001562840A JP 3645220 B2 JP3645220 B2 JP 3645220B2
Authority
JP
Japan
Prior art keywords
voltage
igbt
gate
emitter
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001562840A
Other languages
English (en)
Inventor
毅 田中
博史 益永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP3645220B2 publication Critical patent/JP3645220B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Description

技術分野
この発明は、絶縁ゲート型バイポーラトランジスタ(以下、IGBT:nsulated ate ipolar ransistorと呼ぶ。)等の自己消弧型半導体を備え、上記半導体の保護機能を有するパワーモジュール(以下、インテリジェントパワーモジュールと呼ぶ。)に関するものである。
背景技術
IGBTはゲート電圧の大きさによりその流し得るコレクタ電流の大きさが決定され、ゲート電圧が大きいほどコレクタ電流も大きくなる。また、IGBTのコレクタ・エミッタ間電圧は、コレクタ電流が大きくなるとそれにともない増加する。
第6図に示すようにIGBTのコレクタ・ゲート間、ならびにゲート・エミッタ間には寄生のコンデンサCcg、Cgeが存在する。したがって、コレクタ・エミッタ間電圧VCEとゲート電圧VGEの関係は、
VGE=ΔVCE×Ccg/(Ccg+Cge)
ここで、Ccg<<Cgeであるため
VGE=ΔVCE×Ccg/Cge
つまり、コレクタ電流が増加するとコレクタ・エミッタ電圧VCEが増加し、そのためゲート電圧VGEが増加し、さらにコレクタ電流を増大させ、コレクタ電流の増加を加速させる。このため、IGBTに過電流が流れたとき、上記の現象によりコレクタ電流は急激に増加し、IGBTのターンオフ許容電流を超過してしまうという問題がある。
そこで、ゲート電圧を増大させない方法として、その一例に特開平2−262822号公報に示される従来例がある。第7図は、その従来例を示す要部回路図である。
第7図において、27はIGBT、21はIGBT27のオン時にゲートに正の電圧を与えるための直流電源、22はIGBT27のオフ時にゲートに負の電圧を与えるための直流電源、23はオンすることによりIGBT27のゲートに正の電圧を与えるトランジスタ、24はオンすることによりIGBT27のゲートに負の電圧を与えるためのトランジスタ、25はIGBT27ターンオン時のゲート電圧上昇速度を決定するゲートオン抵抗、26はIGBT27のターンオフ時にゲート電圧下降速度を決定するゲートオフ抵抗、28はIGBT27のゲート・エミッタ間電圧制限回路であり、28Aはトランジスタ、28Bはあらかじめ直流電源21と等しい電圧が充電されたコンデンサ、28Cは抵抗、28Dは比較器である。
第7図において、ゲート信号S1として“H”が入力されると、トランジスタ23がオンし、直流電源21→トランジスタ23→ゲートオン抵抗25を介してIGBT27のゲートに正の電圧が印加される。このためIGBT27はターンオンする。このとき、IGBT27のターンオンの速度は、ゲートオン抵抗25とIGBT27の寄生容量Cgeの時定数により決定される。
一方、ゲート信号S1に“L”が入力されると、トランジスタ24がオンし直流電源22→IGBT27のエミッタ→IGBT27のゲート→ゲートオフ抵抗26→トランジスタ24の経路によって、IGBT27のゲートに負の電圧が印加される。このためIGBT27はターンオフする。このとき、IGBT27のターンオフの速度は、ゲートオフ抵抗26とIGBT27の寄生容量Cgeとの時定数により決定される。
ここで、コンデンサ28BはIGBT27のゲート・エミッタ間容量Cgeに比して十分に大きな値を持つコンデンサとしている。また、コンデンサ28Bにはトランジスタ28Aのエミッターコレクタ間の漏れ電流により、常に直流電源21の電圧と等しい電圧が充電されている。
たとえば、IGBT27のコレクタ電流が過電流となり、先に延べたようにコレクタ電流が増大することにより、コレクタ・エミッタ電圧VCEが増加してゲート電圧VGEが増加した場合、直流電源21の電圧とゲート電圧VGEとを比較器28Dで比較し、ゲート電圧VGEが直流電源21の電圧より大きくなったとき比較器28Dの出力をLレベルにして、トランジスタ28Aをオンさせる。このとき、コンデンサ28Bは直流電源21の電圧が充電されているため、ゲート電圧VGEは直流電源21の電圧に保持される。それにより、ゲート電圧VGEは直流電源21の電圧以上に増加することはなく、コレクタ電流は直流電源21により決められたゲート電圧により流しうる電流値に抑制される。
一方、IGBTをインバータ等に適用する場合、その発生損失を低く押さえることが重要な項目となる。そのため、IGBTのコレクタ・エミッタ間飽和電圧VCE(sat)を低くすることが必要となる。しかし、IGBTのコレクタ・エミッタ間飽和電圧VCE(sat)とコレクタ飽和電流には第8図に示すようなトレードオフ関係を持つため、同じゲート電圧であってもコレクタ・エミッタ間飽和電圧VCE(sat)を低く設定すると、流し得るコレクタ電流(即ち、コレクタ飽和電流)が大きくなる。このように、コレクタ・エミッタ間飽和電圧VCE(sat)を低く設定した場合、IGBTの短絡耐量を越える恐れがあるため、短絡耐量を保持するためには、コレクタ・エミッタ間飽和電圧VCE(sat)を一定以下に下げることは非常に困難となる。
このことから、上記に示す従来例では、IGBTを短絡電流から保護するためには、一定以上のコレクタ・エミッタ間飽和電圧VCE(sat)とする必要があり、損失が少なくかつ短絡耐量の大きなIGBTを創出することが困難であり、インバータ装置の損失低減を困難なものとしていた。
また、短絡電流に対するIGBTの保護技術として、特開平4−79758号公報や、特開平8−139578号公報に開示されている第9図に示す従来技術では、短絡電流を検知するとゲートに直列接続された抵抗Rgを介してゲート電圧を低下させる方法をとっている。この従来技術においては、ゲート電圧Vgを下げてからIGBTのゲート・エミッタ間容量Cgeとゲート抵抗Rgの時定数により決められる時間によりIGBTのゲート・エミッタ間電圧が下降し、第10図に示すように短絡電流を検知してからゲート電圧が下がり初めコレクタ電圧が上昇し始めるまでTd1の遅れが生じる。この時点では、短絡電流はまだ上昇し、その後、コレクタ電圧が上昇したTd2の遅れの後に短絡電流は下がり始める。したがって、短絡電流を検知してからTd1+Td2の遅れの後に短絡電流はようやく下がり始めるため、すでに短絡電流は非常に高くなってしまい、IGBTの短絡耐量を超える恐れがあった。このため、IGBTを破壊に至らしめる危険があった。
この発明は以上のような問題を解決するためになされたもので、低いコレクタ・エミッタ間飽和電圧VCE(sat)を設定した自己消弧型半導体を備えた場合においても、当該半導体のコレクタ・エミッタ間を流れる短絡電流のピーク値を抑制して、当該短絡電流から上記半導体を保護することが可能なパワーモジュールを提供することを目的としている。
発明の開示
この発明に係るインテリジェントパワーモジュールは、電流検出用エミッタを有する自己消弧型半導体、及び上記自己消弧型半導体のコレクタ・エミッタ間に短絡電流が流れたとき上記自己消弧型半導体をオフする短絡電流抑制回路を備えたパワーモジュールにおいて、上記短絡電流抑制回路は、上記自己消弧型半導体のコレクタ・エミッタ間に短絡電流が流れたとき、上記電流検出用エミッタを流れる電流を検出して上記短絡電流を検出する検出器と、上記自己消弧型半導体のゲートに一方の端子が接続されるとともに、正電極が上記自己消弧型半導体のエミッタに接続された電源の負電極に他方の端子が接続された、半導体スイッチ及びコンデンサを含む直列体とを有し、上記半導体スイッチは、上記検出手段により上記短絡電流が検出されたときにオンするものである。このことにより、上記IGBTのコレクタ・エミッタ間に短絡電流が流れたとき、当該短絡電流のピーク値を抑制することができる。
又、半導体スイッチがオンした後の所望の時間後に、上記自己消弧型半導体をオフするものである。このことにより、上記IGBTをオフするときに、当該IGBTのコレクタ・エミッタ間に流れる電流が急速に降下することを防止できる。
又、短絡電流抑制回路は、コンデンサに並列に接続され、自己消弧型半導体をオフするときにおける該自己消弧型半導体のゲート・エミッタ間の電圧が、当該自己消弧型半導体のしきい値電圧より高くなるような抵抗値を有する抵抗を備えたものである。このことにより、IGBTをオフするときにおける当該IGBTのコレクタ・エミッタ間に流れる電流を、短絡耐量以下に抑えることができる。
又、短絡電流抑制回路は、コンデンサに並列に接続され、自己消弧型半導体をオフするときにおける該自己消弧型半導体のゲート・エミッタ間の電圧が、当該自己消弧型半導体のしきい値電圧より高くなるような降伏電圧を有する定電圧ダイオードを備えたものである。このことにより、IGBTをオフするときにおける当該IGBTのコレクタ・エミッタ間に流れる電流を、短絡耐量以下に抑えることができる。
又、直列体は、コンデンサに直列に接続された抵抗を有するものである。このことにより、半導体スイッチをオンしたとき、IGBTのコレクタ・エミッタ間に流れる電流が急速に降下することを防止できる。
【図面の簡単な説明】
第1図は、この発明の実施の形態1に係るインテリジェントパワーモジュールを示す要部回路図である。
第2図は、IGBTに短絡電流が流れた場合における、第1図に示すインテリジェントパワーモジュールの動作を説明するための説明図である。
第3図は、第1図に示すインテリジェントパワーモジュールのIGBTに短絡電流が流れた場合における、信号A、B、C、電圧VGE、VCE、及び電流IC、IGの波形図である。
第4図は、IGBTにおけるゲート電圧とコレクタ電流の関係を示す特性図である。
第5図は、この発明の実施の形態2に係るインテリジェントパワーモジュールを示す要部回路図である。
第6図は、コレクタ・ゲート間、及びゲート・エミッタ間にそれぞれ寄生するコンデンサを備えたIGBTを示す図である。
第7図は、従来のIGBTの保護回路を示す要部回路図である。
第8図は、IGBTにおけるコレクタ・エミッタ間飽和電圧とコレクタ飽和電流との関係を示す特性図である。
第9図は、他の従来のIGBTの保護回路を示す要部回路図である。
第10図は、第9図に示すIGBTの保護回路における、短絡電流、ゲート電圧、及びコレクタ電流の波形図である。
発明を実施するための最良の形態
本発明をより詳細に説明するために、添付の図面に従ってこれを説明する。
第1図は、この発明の実施の形態1に係るインテリジェントパワーモジュールの要部回路図である。第1図において、12は検出用エミッタを備えたIGBT、1はIGBT12のオン時にゲートに正の電圧を与えるための直流電源(電源電圧をEonとする)、2はIGBT12のオフ時にゲートに負の電圧を与えるための直流電源(電源電圧をEoffとする。)、3はオンすることによりIGBT12のゲートの正の電圧を与えるトランジスタ、4はオンすることによりIGBT12のゲートに負の電圧を与えるためのトランジスタ、5はIGBT12ターンオン時のゲート電圧上昇速度を決定するゲートオン抵抗(抵抗値をRonとする)、6はIGBT12のターンオフ時にゲート電圧下降速度を決定するゲートオフ抵抗(抵抗値をRoffとする)である。
8AはIGBTの検出電流ISを検出し、あらかじめ設定しておいた過電流レベルを超えると“H”を出力する過電流検出器、8Bは過電流検出器8Aが過電流を検出したときにオンするトランジスタ、8Cはトランジスタ8Bの駆動抵抗、8Dはトランジスタ8BがオンすることによりオンするMOSFET、8Eはトランジスタ8Bのコレクタ電流を抑制する抵抗、8Fは通常時の電圧を0Vとしているコンデンサ、8Gは抵抗(抵抗値をRcntとする)、8Hはコンデンサ8Fと直列に接続された抵抗、8Iはダイオード、8J、8KはMOSFET8Dのゲート−ソース間電圧保護用のツェナーダイオード、8Lは抵抗、8は上記8A〜8Lからなる短絡電流抑制回路である。
9はトランジスタ8Bがオンし、コレクタ電圧がLとなったとき、一定時間遅らせてHを出力するとともにその状態を保持する遅延回路、10は過電流を検出するとその状態を保持し,リセット信号が入力されるとその状態を解除するラッチ回路、11は遅延回路9の出力がHのときはゲート信号S1をトランジスタ3及び4に与え、遅延回路9の出力がLのときはLをトランジスタ3及び4に与えるOR回路である。
又、第2図は、第1図に示すインテリジェントパワーモジュールに短絡電流が流れた場合における、動作を説明するための説明図である。第2図において、13はIGBT12のコレクタ・ゲート間の寄生コンデンサ、14はIGBT12のゲート・エミッタ間の寄生コンデンサである。
又、信号Aはトランジスタ8Bから出力され、遅延回路9及びラッチ回路10に入力される信号であり、トランジスタ8Bのコレクタ電位に一致する。信号Bは遅延回路9からOR回路11に入力される信号、信号Cはゲート信号S1、又はラッチ回路10から出力された信号であって、OR回路11に入力されるものである。又、信号Dは信号B、Cに基づいてOR回路11から出力される信号である。
又、Vcはコンデンサ8Fの充電電圧、VCEはIGBT12のコレクタ・エミッタ間電圧、VCGはIGBT12のコレクタ・ゲート間電圧、VGEはIGBT12のゲート・エミッタ間電圧、ICはIGBT12のコレクタ・エミッタ間電流、ISはIGBT12の電流検出用エミッタから流れる検出電流、IGはMOSFET8Dのオン時にIGBT12のコレクタからゲートを通りMOSFET8Dに流れる電流である。
又、第3図は、第1図に示すインテリジェントパワーモジュールに短絡電流が流れた場合における、信号A、B、C。電圧VGE、VCE、及び電流IC、IGの波形図である。
ここで、第2図及び第3図に基づいて、第1図に示す実施の形態1に係るインテリジェントパワーモジュールの動作について説明する。
まず、IGBT12がオフ状態においては、コレクタ電流ICが流れていないため、過電流検出器8Aは過電流を検出せず出力は“L”である。したがって、トランジスタ8Bはオフであり信号A及び信号Bは“H”である。この状態でゲート信号S1がONで信号Cが“H”のとき、信号Dによりトランジスタ3のベースが駆動されトランジスタ3がオンする。このとき、直流電源1の正電極→トランジスタ3→ゲートオン抵抗5→IGBT12のゲート→IGBT12のエミッタ→直流電源1の負電極のルートで、IGBT12のゲートからエミッタへ正の電圧VGEが印加される。つまり、IGBT12のゲート電位は直流電源1のの正電流と同電位、IGBT12のエミッタ電位は直流電極1の負電極と同電位となり、電圧VGEとしては直流電源1の電源電圧Eonが印加される。したがって、IGBT12はオンする。このとき負荷抵抗(図示せず)と主回路電圧(図示せず)できまるコレクタ電流ICがIGBT12のコレクタからエミッタに流れる。
また、トランジスタ8BがオフしているためMOSFET8Dのゲート電位は直流電源1の正電極と同電位、またMOSFET8Dのソースはトランジスタ3がオンしているため同様に直流電極1の正電極と同電位であり、そのためMOSFET8Dはオフである。したがって、抵抗8Gの両端には電圧が印加されず、コンデンサ8Fの電圧Vcも0Vである。
次に、時刻t1において、何らかの要因で負荷が短絡したとき、コレクタ電流ICは上昇を始める。
そして、時刻t2において、電流ICがあらかじめ設定された過電流検知レベルを超え、過電流検出器8Aが過電流を検知すると、過電流検出器8Aの出力は“H”となり、トランジスタ8Bはオンする。ここで、トランジスタ3はオンしているため、MOSFET8Dのソースは直流電源1の正電極と同電位、またMOSFET8Dのゲートは直流電源2の負電極と同電位となり、ソースからゲートにEon+Eoffの電圧が印加されMOSFET8Dはオンする。この時、コンデンサ8Fの電圧が0Vであるため、ゲート電位VGEは一瞬降下する。
尚、ツェナーダイオード8Jは、このときにMOSFET8Dのソースエミッタ間の印加電圧が許容電圧を超えない様に、保護の目的で取り付けられているものである。
そして、MOSFET8Dがオンするため、IGBT12のコレクタからコレクタ・ゲート容量13→MOSFET8D→コンデンサ8F→抵抗8H→直流電源2→IGBT12のエミッタを通って、電流IGが流れる。したがって、コレクタ・ゲート容量13及びコンデンサ8Fは充電され、電圧VCG及びVcが上昇する。
電圧VCGが上昇し、それとともにIGBT12のコレクタ・エミッタ間電圧VCEも同様に上昇するので、電圧VCGの上昇速度つまり電圧VCEの上昇速度(dVce/dt)は、コンデンサ8Fの容量がコレクタ・ゲート間寄生コンデンサ13の容量に対して十分に大きい場合、以下の式によって決まる速度で上昇する。
dVce/dt=電流IG/コンデンサ13の容量
したがって、抵抗8Hの抵抗値が小さい程VCEの上昇速度(dVce/dt)は早くなる。尚、抵抗8Hは、MOSFET8Dがオンしたときに、IGBT12のコレクタ・エミッタ間に流れる電流ICが急速に降下することを防止するために設けたものである。
一方、トランジスタ8Bがオンと同時に信号Aおよび信号Bは“L”となる。また、ラッチ回路10の働きにより、信号Cも“L”となる。尚、遅延回路9は、一度“L”となるとその後一定期間後に“H”となるよう設定されている。ここで、信号Bが“L”のため,信号Cの状態に関わらず信号Dは“H”状態を保持しトランジスタ3はオンを保持する。
次に、時刻t3において、電圧VCEが上昇して主回路電源(図示せず)の電圧と電圧VCEが等しくなったとすると、短絡電流ICはそれ以上流れることができなくなり、減少を開始する。
このとき、上記のようにトランジスタ3はオンを保持しているので、IGBT12のゲート・エミッタ間電圧VGEは電圧EonとEoffを抵抗値RonとRcntにより分圧した電圧となる。即ち、このときの電圧VGEは、以下の式で表される値となる。
VGE=
(Eon+Eoff)×Rcnt/(Ron+Rcnt)
−Eoff
この電圧VGEをIGBT12のしきい値電圧より少し高い値となるようRcntを選ぶことでIGBT12はオフせず、第4図に示す関係から、このゲート電圧VGEにより決まる一定のコレクタ電流ICが保持されることとなる。
第4図は、ゲート電圧VGEとコレクタ電流ICの関係を示したもので、この図に示すとおり、IGBT12のコレクタ電流ICはゲート電圧VGEできまる電流しか流すことができない。よって、上記抵抗8Gの抵抗値Rcntの選定により、IGBT12をオフすることなく、短絡した過大な電流をターンオフ可能な電流レベルまで引き下げることが可能となる。
又、ここで、コンデンサ8Fの充電電圧Vcは、
Vc=(Eon+Eoff)×Rcnt/(Ron+Rcnt)
となる電圧に固定される。
次に、時刻t4において、遅延回路9により一定時間を超え信号Bが“H”になると、信号Cはすでに“L”に固定されているから、信号Dが“L”になり、トランジスタ4がオンする。このためコンデンサ8Fに充電された電荷とゲート・エミッタ間容量14に充電されていた電荷は、それぞれゲートオフ抵抗6→トランジスタ4を介して放電する。即ち、IGBT12がターンオフする。
通常のIGBT12ターンオフ時には、ゲート・エミッタ間容量14とRoffのみで決まる時定数にてゲート電圧VGEが下降するが、本実施の形態においては、ゲート・エミッタ間容量14及びコンデンサ8Fの見かけ上並列された容量とRoffとで決まる時定数となり、ゲート電圧VGEの下降時間がおそくなる。したがって,通常のターンオフ時と比較し、緩やかな下降速度(dVGE/dt)でゲート電圧VGEが下降するため、IGBT12に流れているコレクタ電流ICの下降速度(dIC/dt)も緩やかとなる。
ターンオフ時の電流ICの下降速度(dIC/dt)によって、主回路浮遊インダクタンス(図示せず)にサージ電圧が発生し、IGBT12のコレクタ・エミッタ間に印加されるが、本実施の形態においては、この下降速度(dIC/dt)が低いためサージ電圧も低くなり、IGBT12を電圧で破壊することを防止できる。
そして、時刻t5において、緩やかに降下した電流ICが短絡電流検出レベルを下回り、過電流検出器8Aによりトランジスタ8Bがオフする。
なお、一連の保護動作が終了した後、ラッチ回路10にリセット信号を入力すると、“L”状態は解除され、次のオンオフ動作を開始することができる。
上記のように、本実施の形態によれば、短絡電流を検知した直接にMOSFET8Dをオンさせ、IGBT12のコレクタからゲートに電流を引き込み電圧VCEを急上昇させるため、短絡電流のピークを瞬時に抑制することができ、かつ、IGBT12のターンオフ時にはIGBT12が安全に動作できるまでコレクタ電流ICを十分低く抑えることができ、しかも、ターンオフ時の電流ICの下降速度(dIC/dt)を下げることができ、IGBT12を短絡から安全に保護することができる。
したがって、たとえば非常に低いコレクタ・エミッタ間飽和電圧VCE(sat)を設定したIGBTにおいても、短絡電流から保護することが可能となり、IGBTの発生損失を低減することができる。
第5図は、この発明の実施の形態2を示す要部回路図であり、8Mはツェナーダイオードである。この実施例では、実施の形態1の抵抗8Gのかわりにツェナーダイオード8Mを用いた。ツェナーダイオード8Mの電圧値をIGBT12のしきい値電圧より少し高めに設定することにより、実施の形態1と同様の効果を得ることができる。実施の形態1では、ゲートオン抵抗5と抵抗8Gとの分圧により短絡電流通電時のゲート電圧VGEを決めていたが、ツェナーダイオード8Mの降伏電圧を利用して、ゲート電圧VGEをしきい値電圧より少し高い電圧として、実施の形態1と同様の動作を実現させることが可能となる。
産業上の利用可能性
以上のように、本発明にかかるパワーモジュールは、コレクタ・エミッタ間飽和電圧VCE(sat)が低く短絡耐量の低いIGBTを、短絡電流から保護するのに適している。

Claims (5)

  1. 電流検出用エミッタを有する自己消弧型半導体、及び上記自己消弧型半導体のコレクタ・エミッタ間に短絡電流が流れたとき上記自己消弧型半導体をオフする短絡電流抑制回路を備えたパワーモジュールにおいて、
    上記短絡電流抑制回路は、
    上記自己消弧型半導体のコレクタ・エミッタ間に短絡電流が流れたとき、上記電流検出用エミッタを流れる電流を検出して上記短絡電流を検出する検出器と、
    上記自己消弧型半導体のゲートに一方の端子が接続されるとともに、正電極が上記自己消弧型半導体のエミッタに接続された電源の負電極に他方の端子が接続された、半導体スイッチ及びコンデンサを含む直列体とを有し、
    上記半導体スイッチは、上記検出手段により上記短絡電流が検出されたときにオンすることを特徴とするパワーモジュール。
  2. 半導体スイッチがオンした後の所望の時間後に、上記自己消弧型半導体をオフすることを特徴とする請求の範囲第1項記載のパワーモジュール。
  3. 短絡電流抑制回路は、コンデンサに並列に接続され、自己消弧型半導体をオフするときにおける該自己消弧型半導体のゲート・エミッタ間の電圧が、当該自己消弧型半導体のしきい値電圧より高くなるような抵抗値を有する抵抗を備えたことを特徴とする請求の範囲第2項記載のパワーモジュール。
  4. 短絡電流抑制回路は、コンデンサに並列に接続され、自己消弧型半導体をオフするときにおける該自己消弧型半導体のゲート・エミッタ間の電圧が、当該自己消弧型半導体のしきい値電圧より高くなるような降伏電圧を有する定電圧ダイオードを備えたことを特徴とする請求の範囲第2項記載のパワーモジュール。
  5. 直列体は、コンデンサに直列に接続された抵抗を有することを特徴とする請求の範囲第1項記載のパワーモジュール。
JP2001562840A 2000-02-25 2000-02-25 パワーモジュール Expired - Lifetime JP3645220B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001114 WO2001063764A1 (fr) 2000-02-25 2000-02-25 Module de puissance

Publications (1)

Publication Number Publication Date
JP3645220B2 true JP3645220B2 (ja) 2005-05-11

Family

ID=11735722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001562840A Expired - Lifetime JP3645220B2 (ja) 2000-02-25 2000-02-25 パワーモジュール

Country Status (6)

Country Link
US (1) US6687106B1 (ja)
EP (1) EP1184984B1 (ja)
JP (1) JP3645220B2 (ja)
KR (1) KR100423717B1 (ja)
CN (1) CN1217487C (ja)
WO (1) WO2001063764A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042950A (ja) * 2006-08-01 2008-02-21 Mitsubishi Electric Corp 電力変換装置
FR2916867B1 (fr) 2007-06-01 2010-02-26 Schneider Electric Ind Sas Systeme de commande et de protection d'une sortie d'un equipement d'automatisme.
JP4752811B2 (ja) * 2007-06-06 2011-08-17 日産自動車株式会社 電圧駆動型素子の駆動回路
US7408755B1 (en) 2007-06-12 2008-08-05 Honeywell International Inc. Advanced inrush/transient current limit and overload/short circuit protection method and apparatus for DC voltage power supply
KR100942114B1 (ko) * 2007-11-06 2010-02-12 엘에스산전 주식회사 스위칭 소자의 구동장치
EP2197111B1 (en) 2008-12-15 2012-06-20 Danaher Motion Stockholm AB A gate driver circuit, switch assembly and switch system
JP5195547B2 (ja) * 2009-03-13 2013-05-08 富士電機株式会社 半導体装置
CN102498668A (zh) 2009-09-15 2012-06-13 三菱电机株式会社 栅极驱动电路
EP2495876A1 (en) * 2011-03-01 2012-09-05 ABB Oy Control of semiconductor component
US8630076B2 (en) 2011-03-09 2014-01-14 Northrop Grumman Systems Corporation Safe disconnect switch
JP5927739B2 (ja) * 2011-12-14 2016-06-01 富士電機株式会社 半導体装置
JP6070003B2 (ja) * 2012-09-20 2017-02-01 富士電機株式会社 半導体駆動装置
CN103905019B (zh) * 2012-12-31 2017-12-12 比亚迪股份有限公司 一种igbt模块门极驱动电阻等效调节电路
US9444448B2 (en) * 2013-12-10 2016-09-13 General Electric Company High performance IGBT gate drive
WO2016038717A1 (ja) 2014-09-11 2016-03-17 三菱電機株式会社 自己消弧型半導体素子の短絡保護回路
CN106451341B (zh) * 2016-11-22 2019-07-19 亿嘉和科技股份有限公司 负载过流保护电路及负载过流保护方法
CN106505887A (zh) * 2016-12-30 2017-03-15 海南金盘电气有限公司 一种直流供电系统
WO2018179274A1 (ja) * 2017-03-30 2018-10-04 三菱電機株式会社 電力用半導体素子の駆動回路およびモータ駆動装置
DE102022210651A1 (de) 2022-10-10 2024-04-11 Robert Bosch Gesellschaft mit beschränkter Haftung Steuerschaltung zur Steuerung eines Halbleiterschalters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965710A (en) 1989-11-16 1990-10-23 International Rectifier Corporation Insulated gate bipolar transistor power module
JPH0767073B2 (ja) * 1992-09-24 1995-07-19 富士電機株式会社 絶縁ゲート素子の駆動回路
JPH0786577A (ja) * 1993-09-10 1995-03-31 Mitsubishi Electric Corp トランジスタの保護装置
JP3193827B2 (ja) 1994-04-28 2001-07-30 三菱電機株式会社 半導体パワーモジュールおよび電力変換装置
JP3125622B2 (ja) * 1995-05-16 2001-01-22 富士電機株式会社 半導体装置
JPH08321756A (ja) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp 半導体素子駆動回路
JP3373704B2 (ja) 1995-08-25 2003-02-04 三菱電機株式会社 絶縁ゲートトランジスタ駆動回路
JPH1093408A (ja) * 1996-09-18 1998-04-10 Toshiba Corp Igbtの過電流保護回路
JPH1168535A (ja) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp 半導体装置
US6091615A (en) * 1997-11-28 2000-07-18 Denso Corporation Resonant power converter

Also Published As

Publication number Publication date
EP1184984B1 (en) 2003-10-22
CN1348627A (zh) 2002-05-08
EP1184984A4 (en) 2002-06-05
EP1184984A1 (en) 2002-03-06
US6687106B1 (en) 2004-02-03
CN1217487C (zh) 2005-08-31
KR20010112457A (ko) 2001-12-20
KR100423717B1 (ko) 2004-03-18
WO2001063764A1 (fr) 2001-08-30

Similar Documents

Publication Publication Date Title
JP3645220B2 (ja) パワーモジュール
KR101662471B1 (ko) 구동 보호 회로, 반도체 모듈 및 자동차
CN105577153B (zh) 半导体装置
US5485341A (en) Power transistor overcurrent protection circuit
EP0467681A2 (en) Drive circuit for current sense IGBT
KR20080045927A (ko) 절연 게이트 바이폴라 트랜지스터 폴트 보호 시스템
JP2018186691A (ja) 半導体素子の駆動装置
JP2016059036A (ja) 短絡保護用の回路、システム、及び方法
JP7326762B2 (ja) 半導体モジュールおよび駆動回路
CN113394956A (zh) 栅极驱动器的可调软关断和电流升压器
US10243356B2 (en) Overvoltage protection device
JP4091793B2 (ja) 電圧駆動形半導体素子のゲート駆動回路
JP6847641B2 (ja) ゲート駆動回路
JP2913699B2 (ja) 電圧駆動形半導体素子の駆動回路
JP4413482B2 (ja) 電力用半導体素子の駆動回路
US5945868A (en) Power semiconductor device and method for increasing turn-on time of the power semiconductor device
JP3649154B2 (ja) 過電流保護装置
JP2003284319A (ja) 駆動回路
JP3337796B2 (ja) 電圧駆動形素子の駆動回路
JP2973997B2 (ja) 電圧駆動形半導体素子の駆動回路
JPH06105448A (ja) 保護機能を備えたスイッチ装置
JP2000101408A (ja) パワー半導体素子のゲート駆動回路
JP2002135973A (ja) 過電圧保護回路
EP0614278B1 (en) Drive circuit for use with voltage-driven semiconductor device
JPH07147726A (ja) 半導体装置の過電圧制限回路

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Ref document number: 3645220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term