JP3552517B2 - 高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法 - Google Patents

高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法 Download PDF

Info

Publication number
JP3552517B2
JP3552517B2 JP03136798A JP3136798A JP3552517B2 JP 3552517 B2 JP3552517 B2 JP 3552517B2 JP 03136798 A JP03136798 A JP 03136798A JP 3136798 A JP3136798 A JP 3136798A JP 3552517 B2 JP3552517 B2 JP 3552517B2
Authority
JP
Japan
Prior art keywords
less
welding
temperature
welded
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03136798A
Other languages
English (en)
Other versions
JPH11226738A (ja
Inventor
謙次 林
敏文 小嶋
道雄 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP03136798A priority Critical patent/JP3552517B2/ja
Publication of JPH11226738A publication Critical patent/JPH11226738A/ja
Application granted granted Critical
Publication of JP3552517B2 publication Critical patent/JP3552517B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に火力発電プラントの再熱蒸気管もしくは管寄せ等としての高温大径溶接鋼管又は主蒸気管等としての高温配管に使用される、高Crフェライト系耐熱鋼の溶接部のクリープ破断特性および靭性を改善する溶接方法及びその溶接鋼管の製造方法に関する。
【0002】
【従来の技術】
火力発電プラントの再熱蒸気管等は、高温・高圧条件の下で使用されるため、これまで、2.25%Cr−1%Mo鋼に代表されるCr−Mo鋼や18−8系オーステナイト系ステンレス鋼等の耐熱鋼の中から、目的に応じて好ましい材料が選択されてきた。
【0003】
例えば、2.25%Cr−1%Mo鋼は、JIS G3458 配管用合金鋼鋼管ではSTPA24として、またJIS G4109 ボイラ及び圧力容器用クロムモリブデン鋼鋼板ではSCMV4として規格化されている。この鋼は優れた経済性のみならず溶接性、信頼性も高く、豊富な実績を有している。
【0004】
しかし、クリープ強度を含めた高温強度は必ずしも十分ではなく、また、Cr量が低いため、耐酸化性あるいは耐水蒸気酸化性の点でも使用環境を考慮すると十分とは言えず、使用温度としては、550℃が実質的な上限温度となっている。
【0005】
一方、オーステナイト系の耐熱鋼である18−8系ステンレス鋼は、600℃以上の温度においても高い高温強度を有し、JIS G3463 ボイラ・熱交換器用ステンレス鋼鋼管 SUS304TBとして規格化されている。
【0006】
オーステナイト系ステンレス鋼は、溶接性、耐酸化性、耐水蒸気酸化性も良好であり、さらに高温において長時間曝された後も高い靭性を有するため、使い易い材料とされておりこの鋼も実績は豊富である。
しかし、オーステナイト系ステンレス鋼は熱膨張係数が大きいこと、応力腐食割れ感受性がCr−Mo鋼のようなフェライト系の耐熱鋼に比較して高いこと、また、材料価格が高価であること等の欠点を有している。
こうした既存の材料の欠点を解決するために、高温強度を向上させる目的でNb,Vを含有したフェライト系の材料である9%Cr−1%Mo鋼が開発されている。この鋼は、600℃においてもオーステナイト系ステンレス鋼に匹敵する高温強度を有するとともに、熱膨張係数が小さい、耐力が高い、応力腐食割れが起きにくい、耐酸化性に優れる等の長所を有する。この9%Cr−1%Mo鋼は、既にASTM規格 A213 T91/A219 P91あるいはA387−91として規格化され、経済的な材料として普及しつつある。
【0007】
また、さらに、フェライト系の耐熱鋼の長所を生かしつつ、高温強度、耐酸化性、耐水蒸気酸化性を改善した鋼として、Cr量を12%程度に上げた高クロム系耐熱鋼が、ボイラーの伝熱用鋼管を主たる使用対象として多数開発された。 たとえば、特開昭63−76854号公報、特開平3−97832号公報、特開平5−311345号公報等に開示された技術がある。これらはいずれも600℃以上の高温環境下においても十分な強度を持ち、耐酸化性、耐水蒸気酸化性にも優れた鋼とされている。
【0008】
しかしながら、これら高Crフェライト系耐熱鋼は、溶接した場合、溶接熱影響部に軟化を生ずる。このため溶接継手部のクリープ破断試験を実施すると、実際の使用環境に近い高温長時間側の試験条件では、溶接熱影響部の軟化域で破断が起こり、溶接継手部のクリープ破断強度は母材のそれと比較して低下することが知られている。
特に、火力発電プラントの再熱蒸気管や管寄せ等として使用される高温大径厚肉溶接鋼管等では、縦シーム溶接部が存在し、溶接継手部のクリープ破断強度の低下は特に問題となる。また、鋼管の周溶接部や配管同士の溶接部においても、溶接継手のクリープ破断強度が問題となる。
【0009】
したがって、溶接部を含む構造物を設計する際には、溶接継手部のクリープ破断強度の低下を考慮して材料全体を厚肉化せざるを得ず、高Crフェライト系耐熱鋼自体の優れたクリープ破断強度そのものを十分に生かし切れない。
【0010】
このため、Cr−Mo鋼の溶接熱影響部の軟化の発生を防止する発明がいくつかなされているが、その多くは熱処理方法による改善である。例えば、特公平6−92616号公報は、変態点以上の局部加熱を伴う溶接や熱間曲げ加工が実施されるCr−Mo鋼において、焼きならし後の焼き戻し処理温度を、材料のA 変態点よりも150℃低い温度以下で行い、溶接もしくは熱間加工後に、更に上記変態点より100℃低い温度以上で後熱処理する方法に関するものである。
【0011】
また、溶接熱影響部の軟化を防止して溶接継手部のクリープ破断強度を向上させる方法として、特公平7−94070号公報が開示されている。この発明は、配管同士を溶接した後に、溶接部近傍を焼きならし及び焼き戻し処理を行い、溶接した部材の熱影響部に生ずる軟化部を、応力集中部より離れた位置に移動させる方法である。
【0012】
【発明が解決しようとする課題】
しかし、特公平6−92616号公報の発明においては、溶接熱影響部において顕著に出現する局部軟化は改善されるものの、溶接熱影響部の硬さは依然として母材の鋼よりも低く、溶接継手部のクリープ破断強度は母材の水準には至らないものと推察される。
【0013】
また、特公平7−94070号公報の発明の場合、熱影響部は再度焼きならし−焼き戻し処理が施されるため、溶接熱影響部の硬さは母材の鋼の水準にまで回復し、したがってクリープ破断強度も母材の水準にあることが窺える。
【0014】
しかし、溶接継手部は、当然のことながら、母材の鋼と当該溶接熱影響部に加え、溶接金属部が含まれており、これらが一体となって、所要の特性を有しなければならない。しかしこれらの発明においては、溶接金属部についての検討はなされていない。
本発明者らは、高Crフェライト系耐熱鋼において、溶接熱影響部に生じる軟化も問題であり、その改善を必要とするが、一方通常用いられている溶接材料で溶接し、溶接継手部のクリープ破断試験を実施すると、母材よりも低い破断強度で溶接金属部で破断し、溶接金属のクリープ破断強度が問題となることを知見している。
これは、この高Crフェライト系耐熱鋼用の溶接材料が、溶接後応力除去焼鈍した状態のままで使用されることを前提としたものであり、母材と同様の熱処理、すなわち焼ならし−焼戻し処理を受けることを想定して成分設計されたものではないためである。
また、Crを8%以上含有する高Crフェライト系耐熱鋼用の溶接金属は、通常の溶接後、応力除去焼鈍後では靭性が低く、その改善も課題であったが、溶接後、溶接部を焼きならし焼戻しを実施することにより、溶接金属の靭性を改善することが可能となることを見出した。
【0015】
本発明の目的は、上記の問題点を解決するために、溶接継手部のクリープ破断強度および靭性を母材並に向上させることが可能な、高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
(1)本発明の方法は、質量%で、C:0.2%以下と、Si:0.9%以下と、Mn:1.5%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%と、Cu:2%以下と、Ni:1%以下と、Co:3%以下と、N:0.02〜0.15%と、B:0.001〜0.01%と、Ca:0.005%以下とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たし、残部Fe及び不可避的不純物からなる母材を溶接する方法において、質量%で、C:0.2%以下と、Si:0.9%以下と、Mn:1.05%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たす溶接金属となる溶接材料を用いて、前記母材を溶接した後に、溶接部部材全体もしくは溶接部近傍に対し、焼きならし及び焼き戻しの熱処理を施すことを特徴とする、溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法である。
(2)本発明の方法は、前記熱処理後に、さらに応力除去焼鈍の熱処理を行うことを特徴とする、上記(1)に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法である。
【0017】
(3)本発明の方法は、前記焼きならし処理を1000〜1150℃の温度で行い、前記焼き戻し処理を700℃〜Ac 変態点の温度で行うことを特徴とする、上記(1)または(2)に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法である。
(4)本発明の方法は、前記応力除去焼鈍処理を700〜760℃の温度で行うことを特徴とする、上記(2)または(3)に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法である。
【0018】
(5)本発明の方法は、質量%で、C:0.2%以下と、Si:0.9%以下と、Mn:1.5%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%と、Cu:2%以下と、Ni:1%以下と、Co:3%以下と、N:0.02〜0.15%と、B:0.001〜0.01%と、Ca:0.005%以下とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たし、残部Fe及び不可避的不純物からなる母材の鋼板を用いて管状部材を製造する方法において、前記母材鋼板を熱間または冷間曲げ加工により管状に成形し、質量%で、C:0.2%以下と、Si:0.9%以下と、Mn:1.05%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たす溶接金属となる溶接材料を用いて、継目部を溶接した後に、この鋼材に対して、下記(a)、(b)、(c)から選択された熱処理を含む工程を施すことを特徴とする、溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱溶接鋼管の製造方法である。
前記鋼材の溶接部部材全体もしくは溶接部近傍に対し焼きならし処理を1000〜1150℃の温度で行い、焼戻し処理を700℃〜Ac変態点の温度で行う工程 …(a)
前記鋼材に対し、熱間曲げ加工を1000〜1150℃の温度で行い、次いで溶接部部材全体もしくは溶接部近傍に対し、焼きならし処理を1000〜1150℃の温度で行い、焼戻し処理を700℃〜Ac変態点の温度で行う工程 …(b)
前記鋼材に対し、熱間曲げ加工を1000〜1150℃の温度で行い、次いで溶接部部材全体もしくは溶接部近傍に対し、焼戻し処理を700℃〜Ac変態点の温度で行う工程 …(c)
(6)本発明の方法は、前記熱処理後に、さらに応力除去焼鈍処理を700〜760℃の温度で行うことを特徴とする、上記(5)に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱溶接鋼管の製造方法である。
【0019】
【発明の実施の形態】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、以下に示す知見を得るに至った。
まず第1に、高Crフェライト系耐熱鋼の溶接による熱影響部の軟化の防止については、溶接熱影響部を溶接後、再度焼ならし処理を行い、次いで焼戻し処理を行うことにより解決できる。これにより、溶接熱影響部の硬さおよびクリープ破断強度を母材並に回復させることが可能であり、その結果溶接熱影響部の性能は母材と同等となる。この熱処理を溶接部材全体で行うと、熱処理による軟化域は生成せず、溶接構造物全体において、母材および熱影響部の性能は同等となる。 一方、この熱処理を溶接部近傍のみで行った場合は、溶接部の母材および熱影響部の性能は同等となるものの、溶接部から離れた位置に熱処理の熱履歴に起因した軟化域が形成される。溶接部材の構造、形状、および熱処理範囲によって異なるが、この熱処理による軟化域は、応力集中部から離れた位置に移動されることにより、構造上問題とならなくすることが可能である。しかし、望ましくは熱処理を溶接部材全体で行い軟化域を完全に無くすことが好ましい。
【0020】
第2は、溶接金属部の性能の改善である。
前記の方法で、溶接熱影響部を母材と同等の水準に回復させたにしても、高Crフェライト系耐熱鋼に、これまで用いられてきた溶接材料で溶接した場合には、溶接部の焼きならし−焼戻し処理を行うと、溶接金属のクリープ破断強度は母材よりも低下してしまう可能性がある。
【0021】
これを改善するには、焼きならし−焼き戻し処理において、優れた高温強度を有する溶接材料が必要であるが、一方、高温強度を確保するために、合金成分を多く含有する溶接材料は、溶接時の高温割れが発生しやすくなる。これの解決方法としては、溶接材料中のCr含有量を適切な量に抑えつつ、Mo、W、NbおよびVの含有が有効である。
【0022】
以上の知見に基づき、本発明者らは、高Crフェライト系耐熱鋼母材の溶接において、所定量のMo,W,Nb,及びVを含有し、かつMo等量(Mo+1/2W)を一定範囲内に調整した溶接材料を用いて溶接した後、溶接部部材全体もしくは溶接部近傍を所定の温度域で焼きならし−焼戻し処理するようにして、溶接熱影響部の硬さ及びクリープ破断強度を母材並に回復させて、溶接部全体として母材と同等のクリープ破断強度が得られる、高Crフェライト系耐熱鋼の溶接方法を見出し、本発明を完成させた。
すなわち、本発明は、溶接金属の鋼組成及び溶接部の溶接後の熱処理条件を下記範囲に限定することにより、溶接継手部のクリープ破断強度および靭性を母材並に向上させることが可能な、高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法を提供することができる。
【0023】
以下に、本発明の溶接金属の成分添加理由、成分限定理由、及び溶接部の溶接後の熱処理条件及び溶接鋼管の製造条件の限定理由について、説明する。
(1)成分組成範囲
(1−1)溶接金属の成分組成範囲
C:0.2%以下
Cは、強度を確保するために必要な元素であるが、過剰に含有すると、溶接金属の靭性を損なうため、その上限は0.2%である。
Si:0.9%以下
Siは、溶接金属部の強度を向上するとともに、脱酸にも寄与するために必要な元素であるが、過剰に含有すると、溶接金属部の靭性を損なうので、その上限は0.9%である。
Mn:1.5%以下
Mnは、溶接金属部の強度及び靭性を向上する必須の元素であるが、過剰に含有すると、高温強度及び靭性が劣化するので、その上限は1.5%である。
Cr:8〜13%
Crは、クリープ強度及びクリープ破断強度を含めた高温強度を高め、また、耐酸化性あるいは耐水蒸気酸化性の点でも好ましい元素であるが、焼きならし−焼き戻し処理を前提とした高温強度の確保の観点から、8%以上含有する。また過剰に含有すると溶接金属部の割れ感受性が高まるため、上限は13%である。
【0024】
Mo:0.05〜1.2%
Moは、高温強度を高める効果的な元素であるが、0.05%未満では高温強度確保の点で十分ではなく、また過剰に添加すると靭性を低下させるので、適切な含有量として0.05〜1.2%である。
【0025】
W:0.3〜3%
Wは、クリープ特性向上の点で極めて好ましい元素である。しかし、0.3%未満では、その効果が十分とはいえず、また過剰に添加すると靭性を低下させるので、経済性の点で上限は3%である。
(Mo+1/2W):0.5〜2%
Mo及びWは、いずれも固溶強化あるいは炭化物を形成することにより強化に寄与する元素であり、Wの含有の効果はMoの1/2であることから、前記Mo、Wの含有量の範囲において、Mo等量(Mo+1/2W)は0.5〜2%の範囲である。これは、0.5%未満では高温強度の向上に不十分であり、また2%を超えると靭性を低下させるからである。
【0026】
Nb:0.02〜0.15%
NbはC、Nと微細炭窒化析出物を形成して高温強度、特にクリープ強度およびクリープ破断強度の向上に寄与する。このNbの効果は0.02%未満では明瞭でない。一方、過剰に添加した場合には、溶接性および靭性を劣化させるので、上限は0.15%である。
V:0.1〜0.4%
VもC、Nと微細炭窒化析出物を形成して高温強度、特にクリープ強度およびクリープ破断強度の向上に寄与する。このVの効果は0.1%未満では明瞭でない。一方、過剰に添加すると、溶接性および靭性を劣化させるので、上限は0.4%である。
なお、本発明の溶接金属では上記成分の他に、Cu、Ni、Co、Nの各成分を以下の範囲(即ち、本発明の効果を阻害しない範囲)で含有してもよい。
【0027】
Cu≦3%、Ni≦2%、Co≦3%、N:0.01〜0.1%
(1−2)母材の成分組成範囲
C:0.2%以下、Si:0.9%以下、Mn:1.5%以下、Cr:8〜13%、Mo:0.05〜1.2%、W:0.3〜3%、(Mo%+1/2W%):0.5〜2%、Nb:0.02〜0.15%、V:0.1〜0.4%。
【0028】
溶接金属の限定理由と同様。
Cu:2%以下
Cuはオーステナイト生成元素であり、靭性を劣化させるδフェライトの生成を抑制し、マルテンサイト単相の組織を得るために、必要量添加する。しかし、2%を超えると熱間加工性が低下し、かつ経済性の点で不利であるので2%以下である。
Ni:1%以下
Niはオーステナイト生成元素であり、靭性を劣化させるδフェライトの生成を抑制し、マルテンサイト単相の組織を得るために、必要に応じて添加する。しかし、1%を超えると、Ac 変態点が大きく下がるとともに、クリープ破断強度が低下するため、その上限は1%である。
Co:3%以下
Coはオーステナイト生成元素であり、靭性を劣化させるδフェライトの生成を抑制し、マルテンサイト単相の組織を得るために、必要に応じて添加する。しかし、3%を超えて添加すると経済性を損なうため、その上限は3%である。
N:0.02〜0.15%
Nはクリープ破断強度の確保のため0.02%以上添加されるが、0.15%を超えて添加すると逆にクリープ破断強度の低下をまねくので、その上限は0.15%である。
【0029】
B:0.001〜0.01%
Bはクリープ破断強度の改善に有効な元素であるが、0.001%未満ではその効果が認められず、一方、0.01%を超えて添加すると靭性及び熱間加工性の劣化をまねく。従って、B量は0.001〜0.01%である。
【0030】
Ca:0.005%以下
Caは、硫化物系介在物の形状を制御することにより、靭性を向上する元素であるが、0.005%を超えて添加すると、鋼の材質に悪影響を及ぼすため、その添加量は0.005%以下である。
上記の溶接金属の成分組成範囲に調整することにより、溶接熱影響部の硬さ及びクリープ破断強度を母材(高Crフェライト系耐熱鋼)並に回復させて、溶接部全体として母材と同等のクリープ破断強度を得ることが可能となる。
【0031】
このような溶接部の特性を有する鋼及び鋼管は、以下の熱処理方法及び製造方法により製造することができる。
(2)溶接部の熱処理工程及び鋼管の製造工程
(2−1)溶接部の熱処理条件
(熱処理方法)
上記(1−1)の組成を有する溶接金属となる溶接材料を用いて、上記(1−2)の組成を有する母材を溶接した後に、溶接部部材全体もしくは溶接部近傍に対し、1000〜1150℃の温度で焼きならし及び700℃〜Ac 変態点の温度で焼き戻しの熱処理を施す。その後に、さらに応力除去焼鈍を目的とした熱処理を700〜760℃の温度で行ってもよい。
【0032】
a.焼きならし処理
焼きならし処理は、溶接前の母材と同等の性能を確保するために、1000〜1150℃の温度で行う。1000℃未満では、焼きならしによる組織の均一化とNb,Vの固溶が十分ではなく、また、1150℃を超えると、結晶粒が粗大化して靭性が劣化するためである。
b.焼戻し処理
焼戻し処理は、700℃〜Ac 変態点の温度で行う。炭化物を十分に生成させるためには700℃以上の温度が必要であり、また、高温すぎると、部分的にフェライト−オーステナイト変態が生じ、靭性に好ましくない組織が生成するために、その上限はAc 変態点である。
c.応力除去焼鈍処理
応力除去焼鈍処理は700〜760℃の温度で行う。応力除去焼鈍は、冷間加工等による歪みや溶接残留応力を除去するためのものである。焼きならし−焼き戻し処理で得られた鋼板あるいは溶接部の所定の機械的性質を損なわないためには、焼き戻し処理温度と同温度以下で行う必要があるため、上記温度範囲である。 また、上記の熱処理を溶接部部材全体もしくは溶接部近傍に対して施す理由は、前述したように、熱処理による軟化域の生成を防止して溶接構造物全体において、母材及び熱影響部の性能を同等にするためである。
【0033】
(2−2)鋼管の製造条件
(製造方法)
上記(1−2)の組成を有する母材の鋼板を用いて管状部材を製造する方法において、前記母材鋼板を熱間または冷間曲げ加工により管状(直管または曲管)に成形し、上記(1−1)の組成を有する溶接金属となる溶接材料を用いて、継目部を溶接した後に、この鋼材に対して、下記(1)、(2)、(3)から選択された熱処理を含む工程を施す。その後、さらに応力除去焼鈍処理を700〜760℃の温度で行ってもよい。
前記鋼材(直管または曲管)の溶接部部材全体もしくは溶接部近傍に対し焼きならし処理を1000〜1150℃の温度で行い、焼戻し処理を700℃〜Ac 変態点の温度で行う工程 …(1)
前記鋼材(直管)に対し、熱間曲げ加工を1000〜1150℃の温度で行い曲管となし、次いで溶接部部材全体もしくは溶接部近傍に対し、焼きならし処理を1000〜1150℃の温度で行い、焼戻し処理を700℃〜Ac 変態点の温度で行う工程 …(2)
前記鋼材(直管)に対し、さらに熱間曲げ加工を1000〜1150℃の温度で行い曲管となし、次いで溶接部部材全体もしくは溶接部近傍に対し、焼戻し処理を700℃〜Ac 変態点の温度で行う工程 …(3)
a.熱間曲げ加工温度
本発明では、溶接後の焼きならし処理を、部材の熱間加工と兼ねて行うことが可能である。すなわち、鋼板を熱間または冷間曲げ加工により管状(直管)に成形した状態で縦シームを溶接後、「熱間曲げ加工(曲管となす)−焼戻し」または「熱間曲げ加工(曲管となす)−焼ならし−焼戻し」を行うことにより、厚肉の板巻き溶接鋼管を製造することができる。この場合、焼ならし処理と同温度(1000〜1050℃)に加熱したのち、熱間曲げ加工を行えば、溶接部の性能は母材と同等となる。
【0034】
また、本発明では鋼板を熱間または冷間曲げ加工により管状(直管または曲管)に成形した状態で縦シームを溶接後、焼きならし−焼き戻しを行うことにより、厚肉の板巻き溶接鋼管を製造してもよい。
b.焼きならし処理
溶接部の熱処理条件と同様。
【0035】
c.焼戻し処理
溶接部の熱処理条件と同様。
d.応力除去焼鈍処理
溶接部の熱処理条件と同様。
以下に本発明の実施例を挙げ、本発明の効果を立証する。
【0036】
【実施例】
表1及び表2に、溶製した高Crフェライト系耐熱鋼板(母材)の化学成分とその製造方法を示す。鋼A〜鋼Dは、熱間圧延後の焼ならし−焼戻しを施した鋼板であり、また鋼Eは鋼板の焼ならし処理の省略を目的として、仕上げ温度を制御して圧延した鋼である。
これらの鋼を用いて、表4で示す溶接金属部の化学成分を有する溶接継手を作成した。
ここで、溶接材料1,2,2’,2”,3,4が、本発明の溶接材料(本発明例)である(溶接材料5〜7:比較例)。
溶接方法は、火力発電プラントの施工方法として一般的に用いられている、サブマージアーク溶接(以下「SAW」という。)及びガスシールド非消耗電極式アーク溶接法であるティグ溶接(以下「TIG」という。)の2種類の溶接方法を用いた。表3に、SAWおよびTIGの溶接条件を示す。
【0037】
これらの高Crフェライト系耐熱鋼について、溶接方法、溶接材料を変化させて溶接継手を作製し、溶接継手部から試験片を採取して、溶接継手部の継手強度、溶接継手部のクリープ破断試験及び溶接金属の衝撃試験を行った。なお、溶接継手部のクリープ試験では、試験片に母材、溶接熱影響部及び溶接金属の全てを、一の試験片に含むものである。結果を表5に示す(本発明例:No.2,4,6,8,10,11,16、比較例:No.1,3,5,7,9,12,13,14,15)。
比較例No.1,3,5,7,9は、鋼A〜Dの焼きならし−焼き戻し材母材を用いてSAW継手またはTIG継手を作製し、応力除去焼鈍(以下「PWHT」という。)を施した従来の溶接方法である。継手引張試験では破断位置は母材(BM)であり十分な強度が得られているが、溶接金属の靭性が低く、また、溶接継手のクリープ破断試験では溶接熱影響部(以下「HAZ」という)で破断しておりクリープ破断強度は比較的低い。
本発明例No.2,4,6,8,10は、同じく鋼A〜Dの焼きならし−焼き戻し材母材を用いてSAW継手またはTIG継手を作製し、溶接後焼きならし−焼き戻しを実施しており、溶接後PWHTを施したもの(比較例No.1,3,5,7,9)と比較して、溶接金属の靭性が向上しており、また、溶接継手のクリープ破断試験において破断位置がHAZから母材(BM)に変わるとともにクリープ破断時間の大幅な向上が認められる。
【0038】
本発明例No.11は、本発明例No.10をさらにPWHT処理したものであるが、PWHTによる強度およびクリープ破断時間の低下は小さく、十分な強度、クリープ破断強度および溶接金属靭性を有している。
【0039】
比較例No.12、13、14は、鋼Dの焼きならし−焼き戻し材母材を用いてSAW継手を作製し、溶接後焼きならし−焼き戻しを実施したものであるが、溶接金属の成分の中で、比較例No.12はMo等量(Mo+1/2W)が低いため、比較例No.13はNb、比較例No.14はVの添加量が低いために、継手強度および溶接金属の靭性は十分であるが、溶授継手のクリープ破断試験において溶接金属(WM)で破断しており、その破断時間は短い。
比較例No.15は、鋼Eの仕上げ温度を制御して圧延した鋼を用いてSAW継手を作製し、PWHTを施した溶接方法であるが、継手強度は十分であるが、溶接金属の靭性が低く、溶接継手のクリープ破断試験ではHAZで破断しておりクリープ破断強度は比較的低い。
【0040】
本発明例No.16は、同じく鋼Eの仕上げ温度を制御して圧延した鋼を用いてSAW継手を作製した後、焼きならし−焼き戻しを実施しているが、焼きならし−焼き戻し材と同様に、溶接後PWHTを施したもの(比較例No.15)と比較して、溶接金属の靭性が向上しており、また、溶接継手のクリープ破断試験において破断位置がHAZから母材(BM)に変わるとともにクリープ破断時間の大幅な向上が認められる。
【0041】
【表1】
Figure 0003552517
【0042】
【表2】
Figure 0003552517
【0043】
【表3】
Figure 0003552517
【0044】
【表4】
Figure 0003552517
【0045】
【表5】
Figure 0003552517
【0046】
【発明の効果】
以上説明したように、高Crフェライト系耐熱鋼に関して、鋼組成を特定した溶接金属となる溶接材料にて溶接した後、焼きならし−焼き戻し熱処理を行うことで、従来得られなかった高い継手のクリープ強度を実現することが可能である。また、継手クリープ試験の破断位置は、局部的な溶接金属部あるいは熱影響部を回避して、母材部で破断しており、溶接構造物としての安全性が高くなる。さらに、本熱処理後に、更に応力除去焼鈍(PWHT)を行っても、継手のクリープ破断強度にはなんら影響を与えず、実際の施工での信頼性が高いと言える。加えて、ここではSAWおよびTIG溶接についての実施例を示したが、その他の溶接方法、例えば、被覆アーク溶接(SMAW)等についても溶接金属がこの成分範囲となれば同様の性能が得られると考えられる。
【0047】
一方、本発明では、溶接後の焼きならし処理を部材の熱間加工と兼ねて行うことにより、溶接鋼管を製造することができる。
以上のことから、本発明の方法によれば、特に火力発電プラントの再熱蒸気管や管寄せ用の高温大径厚肉溶接鋼管等として使用される高Crフェライト系耐熱鋼において、一般的に母材の鋼よりも脆弱と考えられる溶接継手部においても、高いクリープ破断強度が得られるので、構造物の信頼性向上に寄与するのみならず、建設コストの低減に貢献するものといえる。

Claims (6)

  1. 質量%で、C:0.2%以下と、Si:0.9%以下と、Mn: 1.5%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%と、Cu:2%以下と、Ni:1%以下と、Co:3%以下と、N:0.02〜0.15%と、B:0.001〜0.01%と、Ca:0.005%以下とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たし、残部Fe及び不可避的不純物からなる母材を溶接する方法において、質量%で、C:0.2%以下と、Si:0.9%以下と、Mn:1.05%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たす溶接金属となる溶接材料を用いて、前記母材を溶接した後に、溶接部部材全体もしくは溶接部近傍に対し、焼きならし及び焼き戻しの熱処理を施すことを特徴とする、溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法。
  2. 前記熱処理後に、さらに応力除去焼鈍の熱処理を行うことを特徴とする、請求項1に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法。
  3. 前記焼きならし処理は1000〜1150℃の温度で行い、前記焼き戻し処理は700℃〜Ac1変態点の温度で行うことを特徴とする、請求項1または2に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法。
  4. 前記応力除去焼鈍処理は700〜760℃の温度で行うことを特徴とする、請求項2または3に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱鋼の溶接方法。
  5. 質量%で、C:0.2%以下と、Si:0.9%以下と、Mn: 1.5%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%と、Cu:2%以下と、Ni:1%以下と、Co:3%以下と、N:0.02〜0.15%と、B:0.001〜0.01%と、Ca:0.005%以下とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たし、残部Fe及び不可避的不純物からなる母材の鋼板を用いて管状部材を製造する方法において、前記母材鋼板を熱間または冷間曲げ加工により管状に成形し、質量%で、C:0.2%以下と、Si:0.9%以下と、Mn:1.05%以下と、Cr:8〜13%と、Mo:0.05〜1.2%と、W:0.3〜3%と、Nb:0.02〜0.15%と、V:0.1〜0.4%とを含有し、かつ、(Mo%+1/2W%):0.5〜2%を満たす溶接金属となる溶接材料を用いて、継目部を溶接した後に、この鋼材に対して、下記(a)、(b)、(c)から選択された熱処理を含む工程を施すことを特徴とする、溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱溶接鋼管の製造方法。
    前記鋼材の溶接部部材全体もしくは溶接部近傍に対し焼きならし処理を1000〜1150℃の温度で行い、焼戻し処理を700℃〜Ac変態点の温度で行う工程…(a)
    前記鋼材に対し、熱間曲げ加工を1000〜1150℃の温度で行い、次いで溶接部部材全体もしくは溶接部近傍に対し、焼きならし処理を1000〜1150℃の温度で行い、焼戻し処理を700℃〜Ac変態点の温度で行う工程 …(b)
    前記鋼材に対し、熱間曲げ加工を1000〜1150℃の温度で行い、次いで溶接部部材全体もしくは溶接部近傍に対し、焼戻し処理を700℃〜Ac変態点の温度で行う工程 …(c)
  6. 前記熱処理後に、さらに応力除去焼鈍処理を700〜760℃の温度で行うことを特徴とする、請求項5に記載の溶接部のクリープ破断特性および靭性に優れた高Crフェライト系耐熱溶接鋼管の製造方法。
JP03136798A 1998-02-13 1998-02-13 高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法 Expired - Fee Related JP3552517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03136798A JP3552517B2 (ja) 1998-02-13 1998-02-13 高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03136798A JP3552517B2 (ja) 1998-02-13 1998-02-13 高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法

Publications (2)

Publication Number Publication Date
JPH11226738A JPH11226738A (ja) 1999-08-24
JP3552517B2 true JP3552517B2 (ja) 2004-08-11

Family

ID=12329286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03136798A Expired - Fee Related JP3552517B2 (ja) 1998-02-13 1998-02-13 高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法

Country Status (1)

Country Link
JP (1) JP3552517B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426039B2 (en) * 2000-07-04 2002-07-30 Kawasaki Steel Corporation Ferritic stainless steel
JP5055736B2 (ja) * 2004-12-02 2012-10-24 Jfeスチール株式会社 溶接熱影響部靭性に優れた高強度蒸気配管用鋼板の製造方法
DE102011054718B4 (de) 2011-10-21 2014-02-13 Hitachi Power Europe Gmbh Verfahren zur Erzeugung einer Spannungsverminderung in errichteten Rohrwänden eines Dampferzeugers
CN103215519A (zh) * 2013-04-10 2013-07-24 内蒙古包钢钢联股份有限公司 一种火电超超临界机组用主蒸汽管道
JP2017159350A (ja) * 2016-03-11 2017-09-14 株式会社神戸製鋼所 溶接金属、および該溶接金属を含む溶接構造体
CN106392252A (zh) * 2016-06-29 2017-02-15 无锡新大力电机有限公司 一种外转子铁心的焊接工艺
CN106425157A (zh) * 2016-10-28 2017-02-22 四川大西洋焊接材料股份有限公司 蒸汽温度超超临界火电机组用钢的tig焊焊丝及其制备方法
CN111014339A (zh) * 2019-12-27 2020-04-17 临清市东华轴承钢管有限责任公司 一种轴承钢管的热加工生产工艺

Also Published As

Publication number Publication date
JPH11226738A (ja) 1999-08-24

Similar Documents

Publication Publication Date Title
JP4369612B2 (ja) 靱性に優れた低焼入れまたは焼ならし型低合金ボイラ鋼管用鋼板およびそれを用いた鋼管の製造方法
JP3322097B2 (ja) 溶接施工性に優れた高強度、高耐食フェライト鋼用溶接材料
JP3745567B2 (ja) 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP3552517B2 (ja) 高Crフェライト系耐熱鋼の溶接方法及びその溶接鋼管の製造方法
JP4377869B2 (ja) 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP4193308B2 (ja) 耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管
JP3582463B2 (ja) 低合金耐熱鋼用溶接材料および溶接金属
JP4542361B2 (ja) 耐溶接部再熱割れ性に優れたフェライト系電縫ボイラ鋼管および製造法
JP2000015447A (ja) マルテンサイト系ステンレス鋼の溶接方法
JP3319222B2 (ja) 溶接継手のクリープ特性に優れた高クロムフェライト鋼の製造方法
JPH10323794A (ja) 9%Cr−1%Mo鋼溶接鋼管の製造方法
JP3567603B2 (ja) Pwht後の、靭性、溶接継手のクリープ特性および熱間加工性に優れた高クロムフェライト鋼
JP2594265B2 (ja) 9Cr−Mo系鋼用TIG溶接用ワイヤ
JPH11193448A (ja) クラッド鋼管
JP2002069588A (ja) フェライト系耐熱鋼
JP3387145B2 (ja) 高温延性および高温強度に優れた高Crフェライト鋼
JPH08134585A (ja) 高温強度及び耐酸化性に優れたフェライト系耐熱鋼及びその製造方法
JP3705161B2 (ja) 高張力鋼板
JPH04365838A (ja) 熱間加工性ならびに高温強度に優れたフェライト系耐熱鋼
JPH10323793A (ja) 9%Cr−1%Mo鋼用の溶接材料及びその溶接方法
JP2002363709A (ja) 高Crフェライト系耐熱鋼
JP2551511B2 (ja) 高Crフェライト系耐熱鋼用溶接材料
JP2001234276A (ja) 高靭性かつ耐再熱割れ性に優れたCr−Mo鋼
JP2004250761A (ja) エンジン排ガス経路下流部材
JPH0825055B2 (ja) 高Crフェライト鋼用溶接材料

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees