JP2022109950A - 在庫管理 - Google Patents
在庫管理 Download PDFInfo
- Publication number
- JP2022109950A JP2022109950A JP2022068799A JP2022068799A JP2022109950A JP 2022109950 A JP2022109950 A JP 2022109950A JP 2022068799 A JP2022068799 A JP 2022068799A JP 2022068799 A JP2022068799 A JP 2022068799A JP 2022109950 A JP2022109950 A JP 2022109950A
- Authority
- JP
- Japan
- Prior art keywords
- warehouse
- robotic
- item
- robotic device
- camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000000007 visual effect Effects 0.000 description 96
- 238000000034 method Methods 0.000 description 51
- 230000009471 action Effects 0.000 description 26
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 22
- 238000003860 storage Methods 0.000 description 22
- 230000006870 function Effects 0.000 description 16
- 230000033001 locomotion Effects 0.000 description 16
- 238000007726 management method Methods 0.000 description 16
- 238000013439 planning Methods 0.000 description 13
- 238000012384 transportation and delivery Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 208000031968 Cadaver Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0014—Image feed-back for automatic industrial control, e.g. robot with camera
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/0492—Storage devices mechanical with cars adapted to travel in storage aisles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
- B25J19/023—Optical sensing devices including video camera means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/007—Manipulators mounted on wheels or on carriages mounted on wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
- B65G1/1373—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/087—Inventory or stock management, e.g. order filling, procurement or balancing against orders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2201/00—Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
- B65G2201/02—Articles
- B65G2201/0267—Pallets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2203/00—Indexing code relating to control or detection of the articles or the load carriers during conveying
- B65G2203/02—Control or detection
- B65G2203/0208—Control or detection relating to the transported articles
- B65G2203/0216—Codes or marks on the article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2203/00—Indexing code relating to control or detection of the articles or the load carriers during conveying
- B65G2203/04—Detection means
- B65G2203/041—Camera
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/01—Mobile robot
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Robotics (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- General Business, Economics & Management (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Human Resources & Organizations (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Quality & Reliability (AREA)
- Accounting & Taxation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Warehouses Or Storage Devices (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
【課題】倉庫環境に置かれたパレット、箱、棚、ロボット装置、および他の物品の正確な在庫表を構築および維持するシステムを提供する。【解決手段】複数の在庫物品を保管する倉庫環境内に配備され、画像データをキャプチャするカメラを装備したロボット装置と、キャプチャされた画像データを受信するコンピューティングシステムにより構成される。コンピューティングシステムは、受信した画像データに基づいてロボット装置の航行のための航行指示を生成し、1つまたは複数の在庫物品に対応する1つまたは複数の物品上の視覚的識別子を検出するために受信した画像データを分析する。検出された視覚的識別子ごとに対応する在庫物品の倉庫位置を決定し、決定された倉庫位置を予想位置と比較し、比較に基づいて動作を開始する。【選択図】図6
Description
[0001] 1つまたは複数のロボット装置および/または他の動作主体は、物品の保管および出荷に関連する動作を実行するために、保管環境全体に移動することができる。1つの例示的な保管環境は倉庫であり、倉庫は物品が保管され得る保管ラックの列を有する密閉された建物であり得る。場合によっては、物品はパレット上に格納されることもあり、パレットは垂直に積み重ねられ得る。倉庫はまた、配送トラックまたは他のタイプの車両に物品およびパレットを積み込むおよび/またはそれから降ろすために使用される積み込みドックを含み得る。
[0002] パレットは、パレットを識別するバーコードを含むことができる。集中システムは、パレット上の物品の数、物品の種類、および倉庫内のパレットの位置など、バーコードに対応する情報を記憶することができる。集中システムは、倉庫に含まれるすべてのパレットに関する同様の情報を含むことができ、その結果、集中システムは倉庫の在庫を含む。
[0003] 例示的なシステム、方法、および装置は、倉庫環境に置かれたパレット、箱、棚、ロボット装置、および他の物品の正確な在庫表を構築および維持する一助となり得る。システム、方法、および装置は、カメラを使用して倉庫内を航行することができるロボット装置を含むことができる。カメラは、1つまたは複数の物体がロボット装置の移動を妨げ得るかどうかを判断するために使用することができる画像データをキャプチャすることができる。次いで、この画像データを使用して、ロボット装置のための航行指示を生成することができる。航行指示を生成するために使用される同じ画像データを使用して、本明細書に記載されるシステム、方法、および装置は、倉庫環境内の1つまたは複数の物品に配置されたバーコードまたはそれに類するものなどの1つまたは複数の物品上の視覚的識別子を検出することができる。これらの検出された視覚的識別子は、その後、正確な在庫表を構築および/または維持するために使用することができる。したがって、カメラは、航行と、倉庫内の物品に関連する情報のキャプチャとの両方を可能にすることによって、場合によっては同時に、またはほぼ同時に、二重の目的を果たすことができる。ロボット装置が倉庫環境全体を航行するにつれて、より多くの物品上の視覚的識別子を検出することができ、これにより、より包括的な在庫表を構築および/または維持することが可能になる。
[0004] 1つの例において、方法が開示される。この方法は、倉庫環境を通るロボット装置の航行中に、ロボット装置に取り付けられたカメラによってキャプチャされた画像データを受信することを含み、ここで複数の在庫物品が倉庫環境内に配置されている。この方法はまた、受信した画像データに基づいて、倉庫環境内でのロボット装置の航行のための航行指示を生成することを含む。この方法はさらに、在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、受信した画像データを分析することを含む。この方法はなおもさらに、検出された視覚的識別子ごとに、(i)検出された視覚的識別子に対応する在庫物品の倉庫位置を決定するための基礎として画像データを使用し、(ii)対応する在庫物品の決定された倉庫位置を対応する在庫物品の予想位置と比較し、(iii)決定された倉庫位置と予想位置との比較に基づいて動作を開始することを含む。
[0005] 別の例において、システムが開示される。このシステムは、倉庫環境内に配備されたロボット装置を含み、ここで複数の在庫物品が倉庫環境内に配置されている。システムはまた、ロボット装置に取り付けられたカメラを含み、カメラは画像データをキャプチャするように構成される。システムはまた、キャプチャされた画像データを受信するように構成されたコンピューティングシステムも含む。コンピューティングシステムはさらに、受信した画像データに基づいて、倉庫環境内のロボット装置の航行のための航行指示を生成するように構成される。コンピューティングシステムは、在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、受信した画像データを分析するように、なおもさらに構成されている。コンピューティングシステムは、検出された視覚的識別子ごとに、(i)検出された視覚的識別子に対応する在庫物品の倉庫位置を決定するための基礎として画像データを使用し、(ii)対応する在庫物品の決定された倉庫位置を対応する在庫物品の予想位置と比較し、(iii)決定された倉庫位置と予想位置との比較に基づいて動作を開始するようになおもさらに構成される。
[0006] 第3の例において、ロボット装置が開示される。ロボット装置は倉庫環境内に配備され、ここで複数の在庫物品が倉庫環境内に配置されている。ロボット装置は、画像データをキャプチャするように構成されたカメラを含む。ロボット装置はまた、キャプチャされた画像データを受信するように構成されたコンピューティングシステムも含む。コンピューティングシステムはまた、受信した画像データに基づいて、倉庫環境内のロボット装置の航行のための航行指示を生成するように構成される。コンピュータシステムはまた、在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、受信した画像データを分析するように構成される。コンピューティングシステムは、検出された視覚的識別子ごとに、(i)検出された視覚的識別子に対応する在庫物品の倉庫位置を決定するための基礎として画像データを使用し、(ii)対応する在庫物品の決定された倉庫位置を対応する在庫物品の予想位置と比較し、(iii)決定された倉庫位置と予想位置との比較に基づいて動作を開始するようにさらに構成される。
[0007] 別の例において、制御システムが記載される。制御システムは、ロボット装置に取り付けられたカメラによってキャプチャされた画像データを受信する手段を含み、ロボット装置は倉庫環境内に配備され、ここで複数の在庫物品が倉庫環境内に配置されている。制御システムはまた、受信した画像データに基づいて、倉庫環境内のロボット装置の航行のための航行指示を生成するための手段を含む。制御システムは、在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、受信した画像データを分析する手段をさらに含む。制御システムは、検出された視覚的識別子ごとに、(i)検出された視覚的識別子に対応する在庫物品の倉庫位置を決定するための基礎として画像データを使用し、(ii)対応する在庫物品の決定された倉庫位置を対応する在庫物品の予想位置と比較し、(iii)決定された倉庫位置と予想位置との比較に基づいて動作を開始するための手段をなおもさらに含む。
[0008] 前述の概要は説明のためのものに過ぎず、決して限定することを意図するものではない。上記の説明に役立つ態様、実施形態、および特徴に加えて、さらなる態様、実施形態、および特徴が、図面および以下の詳細な記載および添付図面を参照することによって明らかになるであろう。
本発明は、例えば、以下の項目を提供する。
(項目1)
倉庫環境を通るロボット装置の航行中に、前記ロボット装置に結合されたカメラによってキャプチャされた画像データを受信すること、
前記受信した画像データに基づいて、前記倉庫環境内での前記ロボット装置の航行のための航行指示を生成すること、
前記倉庫環境内に配置されている複数の在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析することであって、前記航行指示の生成は、前記1つまたは複数の物品上の視覚的識別子の検出に依存しないものである、前記受信した画像データを分析すること、および
検出された視覚的識別子ごとに、
前記検出された視覚的識別子に対応する在庫物品の倉庫位置を決定するための基礎として前記画像データを使用し、
前記在庫物品の前記決定された倉庫位置を前記在庫物品の予想位置と比較し、
前記決定された倉庫位置と前記予想位置との比較に基づいて動作を開始すること
を含む方法。
(項目2)
前記ロボット装置に結合された前記カメラがステレオカメラである、項目1に記載の方法。
(項目3)
前記ロボット装置が自律型誘導車両(AGV)である、項目1に記載の方法。
(項目4)
前記受信した画像データに基づいて前記航行指示を生成することおよび1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析することが同時に起こる、項目1に記載の方法。
(項目5)
前記動作がオペレータを前記決定された倉庫位置に差し向けることを含む、項目1に記載の方法。
(項目6)
前記ロボット装置が第1のロボット装置であり、前記動作が第2のロボット装置を前記決定された倉庫位置へ差し向けることを含む、項目1に記載の方法。
(項目7)
前記ロボット装置を移動させるための標的位置に対応する標的視覚的識別子を有する標的在庫物品を決定することであって、前記航行指示を生成することが前記ロボット装置を前記標的位置へ移動させる指示を生成することを含む、前記標的在庫物品を決定すること、
前記ロボット装置を前記標的位置へ移動させること、および
前記カメラによって前記標的視覚的識別子をキャプチャすること
をさらに含む、項目1に記載の方法。
(項目8)
前記ロボット装置に取り付けられた前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記選択される位置の前記カメラによってキャプチャされる1つまたは複数の視覚的識別子の価値に基づいて決定される、項目1に記載の方法。
(項目9)
前記ロボット装置に取り付けられた前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記カメラが前記選択される位置にあるときの前記ロボット装置の航行の精度に基づいて決定される、項目1に記載の方法。
(項目10)
前記航行指示が、第1の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第1の航行指示を含む、項目1に記載の方法。
(項目11)
第2の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第2の航行指示を生成することであって、視覚的識別子の前記第2の数が視覚的識別子の前記第1の数よりも大きい、前記第2の航行指示を生成すること、および
前記第2の航行指示を実行すること
をさらに含む、項目10に記載の方法。
(項目12)
倉庫環境内に配備されたロボット装置であって、複数の在庫物品が前記倉庫環境内に配置されている、ロボット装置と、
前記ロボット装置に結合されたカメラであって、画像データをキャプチャするように構成されているカメラと、
コンピューティングシステムであって、
前記キャプチャされた画像データを受信し、
前記受信した画像データに基づいて、前記倉庫環境内での前記ロボット装置の航行のための航行指示を生成し、
前記在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、前記受信した画像データを分析し、ここで、前記航行指示の生成は、前記1つまたは複数の物品上の視覚的識別子の検出に依存しないものであり、
検出された視覚的識別子ごとに、
前記検出された視覚的識別子に対応する在庫物品の倉庫位置を決定し、
前記在庫物品の前記決定された倉庫位置を前記在庫物品の予想位置と比較し、
前記決定された倉庫位置と前記予想位置との前記比較に基づいて動作を開始する
ように構成されたコンピューティングシステムと
を備えたシステム。
(項目13)
前記ロボット装置に結合された前記カメラがステレオカメラである、項目12に記載のシステム。
(項目14)
前記ロボット装置が自律型誘導車両(AGV)である、項目12に記載のシステム。
(項目15)
前記コンピューティングシステムが、前記受信した画像データに基づいて前記航行指示を生成し、同時に、1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析するようにさらに構成される、項目12に記載のシステム。
(項目16)
前記動作がオペレータを前記決定された倉庫位置に差し向けることを含む、項目12に記載のシステム。
(項目17)
前記ロボット装置が第1のロボット装置であり、前記動作が第2のロボット装置を前記決定された倉庫位置へ差し向けることを含む、項目12に記載のシステム。
(項目18)
前記コンピューティングシステムが、前記ロボット装置を移動させるための標的位置に対応する標的視覚的識別子を有する標的在庫物品を決定するようにさらに構成され、前記航行指示を生成することが前記ロボット装置を前記標的位置へ移動させる指示を生成することを含み、
前記ロボット装置が前記標的位置へ移動するように構成され、および
前記カメラが前記標的視覚的識別子をキャプチャするようにさらに構成される、
項目12に記載のシステム。
(項目19)
前記ロボット装置に結合された前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記選択される位置の前記カメラによってキャプチャされる1つまたは複数の視覚的識別子の価値に基づいて決定される、項目12に記載のシステム。
(項目20)
前記ロボット装置に結合された前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記カメラが前記選択される位置にあるときの前記ロボット装置の航行の精度に基づいて決定される、項目12に記載のシステム。
(項目21)
前記航行指示が、第1の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第1の航行指示を含む、項目12に記載のシステム。
(項目22)
前記コンピューティングシステムが、第2の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第2の航行指示を生成するようにさらに構成され、視覚的識別子の前記第2の数が視覚的識別子の前記第1の数よりも大きく、
前記ロボット装置が前記第2の航行指示を実行するように構成される、
項目21に記載のシステム。
(項目23)
倉庫環境内に配備されたロボット装置であって、複数の在庫物品が前記倉庫環境内に配置されており、前記ロボット装置が、
画像データをキャプチャするように構成されたカメラと、
コンピューティングシステムであって、
前記キャプチャされた画像データを受信し、
前記受信した画像データに基づいて、前記倉庫環境内での前記ロボット装置の航行のための航行指示を生成し、
前記在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、前記受信した画像データを分析し、ここで、前記航行指示の生成は、前記1つまたは複数の物品上の視覚的識別子の検出に依存しないものであり、
検出された視覚的識別子ごとに、
前記検出された視覚的識別子に対応する在庫物品の倉庫位置を決定し、
前記在庫物品の前記決定された倉庫位置を前記在庫物品の予想位置と比較し、
前記決定された倉庫位置と前記予想位置との比較に基づいて動作を開始する
ように構成されたコンピューティングシステムと
を備えるロボット装置。
(項目24)
前記コンピューティングシステムが、前記受信した画像データに基づいて前記航行指示を生成し、同時に、1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析するようにさらに構成される、項目23に記載のロボット装置。
(項目25)
前記コンピューティングシステムが、前記ロボット装置を移動させるための標的位置に対応する標的視覚的識別子を有する標的在庫物品を決定するようにさらに構成され、前記航行指示を生成することが前記ロボット装置を前記標的位置へ移動させる航行指示を生成することを含み、
前記ロボット装置が前記標的位置へ移動するように構成され、および
前記カメラが前記標的視覚的識別子をキャプチャするようにさらに構成される、
項目23に記載のロボット装置。
(項目26)
前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記選択される位置の前記カメラによってキャプチャされる1つまたは複数の視覚的識別子の価値に基づいて決定される、項目23に記載のロボット装置。
(項目27)
前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記カメラが前記選択される位置にあるときの前記ロボット装置の航行の精度に基づいて決定される、項目23に記載のロボット装置。
本発明は、例えば、以下の項目を提供する。
(項目1)
倉庫環境を通るロボット装置の航行中に、前記ロボット装置に結合されたカメラによってキャプチャされた画像データを受信すること、
前記受信した画像データに基づいて、前記倉庫環境内での前記ロボット装置の航行のための航行指示を生成すること、
前記倉庫環境内に配置されている複数の在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析することであって、前記航行指示の生成は、前記1つまたは複数の物品上の視覚的識別子の検出に依存しないものである、前記受信した画像データを分析すること、および
検出された視覚的識別子ごとに、
前記検出された視覚的識別子に対応する在庫物品の倉庫位置を決定するための基礎として前記画像データを使用し、
前記在庫物品の前記決定された倉庫位置を前記在庫物品の予想位置と比較し、
前記決定された倉庫位置と前記予想位置との比較に基づいて動作を開始すること
を含む方法。
(項目2)
前記ロボット装置に結合された前記カメラがステレオカメラである、項目1に記載の方法。
(項目3)
前記ロボット装置が自律型誘導車両(AGV)である、項目1に記載の方法。
(項目4)
前記受信した画像データに基づいて前記航行指示を生成することおよび1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析することが同時に起こる、項目1に記載の方法。
(項目5)
前記動作がオペレータを前記決定された倉庫位置に差し向けることを含む、項目1に記載の方法。
(項目6)
前記ロボット装置が第1のロボット装置であり、前記動作が第2のロボット装置を前記決定された倉庫位置へ差し向けることを含む、項目1に記載の方法。
(項目7)
前記ロボット装置を移動させるための標的位置に対応する標的視覚的識別子を有する標的在庫物品を決定することであって、前記航行指示を生成することが前記ロボット装置を前記標的位置へ移動させる指示を生成することを含む、前記標的在庫物品を決定すること、
前記ロボット装置を前記標的位置へ移動させること、および
前記カメラによって前記標的視覚的識別子をキャプチャすること
をさらに含む、項目1に記載の方法。
(項目8)
前記ロボット装置に取り付けられた前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記選択される位置の前記カメラによってキャプチャされる1つまたは複数の視覚的識別子の価値に基づいて決定される、項目1に記載の方法。
(項目9)
前記ロボット装置に取り付けられた前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記カメラが前記選択される位置にあるときの前記ロボット装置の航行の精度に基づいて決定される、項目1に記載の方法。
(項目10)
前記航行指示が、第1の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第1の航行指示を含む、項目1に記載の方法。
(項目11)
第2の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第2の航行指示を生成することであって、視覚的識別子の前記第2の数が視覚的識別子の前記第1の数よりも大きい、前記第2の航行指示を生成すること、および
前記第2の航行指示を実行すること
をさらに含む、項目10に記載の方法。
(項目12)
倉庫環境内に配備されたロボット装置であって、複数の在庫物品が前記倉庫環境内に配置されている、ロボット装置と、
前記ロボット装置に結合されたカメラであって、画像データをキャプチャするように構成されているカメラと、
コンピューティングシステムであって、
前記キャプチャされた画像データを受信し、
前記受信した画像データに基づいて、前記倉庫環境内での前記ロボット装置の航行のための航行指示を生成し、
前記在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、前記受信した画像データを分析し、ここで、前記航行指示の生成は、前記1つまたは複数の物品上の視覚的識別子の検出に依存しないものであり、
検出された視覚的識別子ごとに、
前記検出された視覚的識別子に対応する在庫物品の倉庫位置を決定し、
前記在庫物品の前記決定された倉庫位置を前記在庫物品の予想位置と比較し、
前記決定された倉庫位置と前記予想位置との前記比較に基づいて動作を開始する
ように構成されたコンピューティングシステムと
を備えたシステム。
(項目13)
前記ロボット装置に結合された前記カメラがステレオカメラである、項目12に記載のシステム。
(項目14)
前記ロボット装置が自律型誘導車両(AGV)である、項目12に記載のシステム。
(項目15)
前記コンピューティングシステムが、前記受信した画像データに基づいて前記航行指示を生成し、同時に、1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析するようにさらに構成される、項目12に記載のシステム。
(項目16)
前記動作がオペレータを前記決定された倉庫位置に差し向けることを含む、項目12に記載のシステム。
(項目17)
前記ロボット装置が第1のロボット装置であり、前記動作が第2のロボット装置を前記決定された倉庫位置へ差し向けることを含む、項目12に記載のシステム。
(項目18)
前記コンピューティングシステムが、前記ロボット装置を移動させるための標的位置に対応する標的視覚的識別子を有する標的在庫物品を決定するようにさらに構成され、前記航行指示を生成することが前記ロボット装置を前記標的位置へ移動させる指示を生成することを含み、
前記ロボット装置が前記標的位置へ移動するように構成され、および
前記カメラが前記標的視覚的識別子をキャプチャするようにさらに構成される、
項目12に記載のシステム。
(項目19)
前記ロボット装置に結合された前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記選択される位置の前記カメラによってキャプチャされる1つまたは複数の視覚的識別子の価値に基づいて決定される、項目12に記載のシステム。
(項目20)
前記ロボット装置に結合された前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記カメラが前記選択される位置にあるときの前記ロボット装置の航行の精度に基づいて決定される、項目12に記載のシステム。
(項目21)
前記航行指示が、第1の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第1の航行指示を含む、項目12に記載のシステム。
(項目22)
前記コンピューティングシステムが、第2の数の視覚的識別子を含む画像データを前記カメラにキャプチャさせる第2の航行指示を生成するようにさらに構成され、視覚的識別子の前記第2の数が視覚的識別子の前記第1の数よりも大きく、
前記ロボット装置が前記第2の航行指示を実行するように構成される、
項目21に記載のシステム。
(項目23)
倉庫環境内に配備されたロボット装置であって、複数の在庫物品が前記倉庫環境内に配置されており、前記ロボット装置が、
画像データをキャプチャするように構成されたカメラと、
コンピューティングシステムであって、
前記キャプチャされた画像データを受信し、
前記受信した画像データに基づいて、前記倉庫環境内での前記ロボット装置の航行のための航行指示を生成し、
前記在庫物品の1つまたは複数に対応する1つまたは複数の物品上の視覚的識別子を検出するために、前記受信した画像データを分析し、ここで、前記航行指示の生成は、前記1つまたは複数の物品上の視覚的識別子の検出に依存しないものであり、
検出された視覚的識別子ごとに、
前記検出された視覚的識別子に対応する在庫物品の倉庫位置を決定し、
前記在庫物品の前記決定された倉庫位置を前記在庫物品の予想位置と比較し、
前記決定された倉庫位置と前記予想位置との比較に基づいて動作を開始する
ように構成されたコンピューティングシステムと
を備えるロボット装置。
(項目24)
前記コンピューティングシステムが、前記受信した画像データに基づいて前記航行指示を生成し、同時に、1つまたは複数の物品上の視覚的識別子を検出するために前記受信した画像データを分析するようにさらに構成される、項目23に記載のロボット装置。
(項目25)
前記コンピューティングシステムが、前記ロボット装置を移動させるための標的位置に対応する標的視覚的識別子を有する標的在庫物品を決定するようにさらに構成され、前記航行指示を生成することが前記ロボット装置を前記標的位置へ移動させる航行指示を生成することを含み、
前記ロボット装置が前記標的位置へ移動するように構成され、および
前記カメラが前記標的視覚的識別子をキャプチャするようにさらに構成される、
項目23に記載のロボット装置。
(項目26)
前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記選択される位置の前記カメラによってキャプチャされる1つまたは複数の視覚的識別子の価値に基づいて決定される、項目23に記載のロボット装置。
(項目27)
前記カメラが位置決め可能であり、前記カメラの選択される位置が、前記カメラが前記選択される位置にあるときの前記ロボット装置の航行の精度に基づいて決定される、項目23に記載のロボット装置。
[0019] 例示的な方法、システム、および装置が、本明細書に記載される。本明細書に記載されるいずれの例示的な実施形態および特徴は、他の実施形態または特徴よりも好ましいとも有利であるとも解釈されるべきではない。本明細書に記載される例示的な実施形態は、限定を意味するものではない。開示されるシステムおよび方法の特定の態様は、多種多様な異なる構成で配置および組み合わせることができ、そのすべてが本明細書中で検討されることは容易に理解されるであろう。
[0020] さらに、図に示される特定の構成は限定的であると見なされるべきではない。他の実施形態は、与えられる図に示される各要素のより多くのまたはより少ない数を含み得ることを理解されたい。さらに、示された要素のいくつかは、組み合わせられても、省略されてもよい。なおもさらに、例示的な実施形態は、図に示されていない要素を含むことができる。
I.概要
[0021] 倉庫の標準的または典型的な稼動中、パレットおよび物品は、パレットジャッキなどのロボット装置によってある場所から別の場所に日常的に移動される。本明細書内で、「パレットジャッキ」という用語は、あらゆる適用可能なロボット装置の代用として使用することができ、パレットジャッキのいずれの記載も、倉庫環境内で動作する1つまたは複数の他のタイプのロボット装置を指すことができる。このように、パレットジャッキの動き、機能、および動作は、パレタイジングされた物体およびパレタイジングされていない物体の両方との相互作用を含むことができる。
[0021] 倉庫の標準的または典型的な稼動中、パレットおよび物品は、パレットジャッキなどのロボット装置によってある場所から別の場所に日常的に移動される。本明細書内で、「パレットジャッキ」という用語は、あらゆる適用可能なロボット装置の代用として使用することができ、パレットジャッキのいずれの記載も、倉庫環境内で動作する1つまたは複数の他のタイプのロボット装置を指すことができる。このように、パレットジャッキの動き、機能、および動作は、パレタイジングされた物体およびパレタイジングされていない物体の両方との相互作用を含むことができる。
[0022] いくつかの倉庫システムでは、パレットジャッキは、物品またはパレットを識別する本明細書に記載するようなバーコードまたは他の識別子を読み取ることができるカメラまたはセンサを含むことができる。しかしながら、場合によっては、識別子は、覆い隠されている、誤って配置されている、または他にパレットジャッキが読み取ることが難しいことがある。これは、パレットジャッキ自体が運搬している物品の場合に特にそうである。それというのも、そのカメラまたは他のセンサが、本明細書で説明するように、パレットジャッキの環境をキャプチャするために外側に向けられることがあるからである。このように、パレットジャッキが運搬している物品は、パレットジャッキセンサの視野の外にある可能性がある。さらに、ある場所から他の場所への移動中に、1つまたは複数の物品がパレットから落ちる可能性がある。その結果、所与のパレットジャッキがある場所から別の場所に移送する正しいパレットを決定すること、またはパレットが正しい数の物品を含むかどうかを決定することが難しい場合がある。パレットジャッキが自律型または半自律型の車両であり、人間がパレットジャッキによって実行されるすべての物品および動きを観察することができない環境では、上記の問題が顕著であり得る。さらに、場合によっては、倉庫内の所与のパレットの位置が、ロボット装置および/または集中システムによって記憶されたパレットの位置と異なる場合がある。これは、パレットの意図しない移動、情報の更新ミス、パレットまたはパレットの位置の誤ったラベル貼り、あるいは他のエラーが原因である可能性がある。その結果、倉庫の在庫のある割合が消えるまたは誤って配置されることがあり、これにより、顧客への物品の出荷が遅れ、消えた物品または誤って配置された物品を見つけるために人員が必要になることがある。本明細書に記載される例示的な実施形態は、そのような問題に対処する一助となり得る。
[0023] 例示的な倉庫は、商品が選択され、仕分けられ、顧客への出荷のために包装されるフルフィルメント倉庫であり得る。物品は、顧客要求、製品サイズ、重量、形状、または他の特性に基づいてこのプロセスの効率を改善するために倉庫内で整理または編成することができる。物品は、パレット上に保管されてもよく、パレットは互いに積み重ねられてもよく、および/または上方に延びる棚(例えば、複数レベルの棚)の上に積み重ねられてもよい。さらに、各物品、パレット、および/または棚は、物品、パレット、および/または棚を識別するバーコードまたはクイックレスポンス(QR)コードなどの視覚的識別子を含むことができる。
[0024] コンピュータベースの倉庫管理システム(WMS:warehouse management system)が倉庫用に実装されてもよい。WMSは、物品、パレット、および棚、ならびに倉庫内で動作する1つまたは複数の動作主体に関する情報を記憶するためのデータベースを含むことができる。例えば、WMSは、各物品、パレット、棚、および/または動作主体の位置に関する情報を含むことができる。この情報は、動作主体が顧客の注文を履行するなど1つまたは複数の機能を実行することを可能にするように動作主体を調整するために使用されてもよい。それはまた、倉庫の在庫を構築および/または維持するために使用されてもよい。
[0025] 倉庫内で動作する動作主体は、自律型誘導車両(AGV:autonomou
s guided vehicle)などのロボット装置を含むことができる。例示的なAGVには、パレットジャッキ、フォークトラック、トラックローダ/アンローダ、および他の装置が含まれ得る。各装置は、自律型でも部分的に自律型でもよい。人間が操作する装置も可能である。さらに、各装置はカメラを有する視覚システムを含むことができ、その結果、装置は倉庫内を航行できる。
s guided vehicle)などのロボット装置を含むことができる。例示的なAGVには、パレットジャッキ、フォークトラック、トラックローダ/アンローダ、および他の装置が含まれ得る。各装置は、自律型でも部分的に自律型でもよい。人間が操作する装置も可能である。さらに、各装置はカメラを有する視覚システムを含むことができ、その結果、装置は倉庫内を航行できる。
A.多目的カメラ
[0026] 有利なことに、例示的なロボット装置は倉庫環境内に配備され、航行および在庫管理の両方のためにその既存のカメラシステムを使用することができる。具体的には、パレットジャッキは、ステレオビジョンカメラシステム(例えば、ステレオカメラペア)を予め装備されていてもよく、パレットジャッキはその環境を感知し、倉庫内を航行するためにそれを使用することができる。航行目的のためにキャプチャされた画像データは、環境内のパレット、他のパレットジャッキまたは装置、および他の物体の画像を含み得る。このように、パレット上のバーコードは画像データ内で検出され、場所情報と組み合わされて倉庫内のパレットの位置を決定することができる。多数のパレットジャッキが倉庫内を移動しているとき、WMSは倉庫内のパレットの在庫管理を改善するためにパレットジャッキからのそのような情報を組み合わせることができる。
[0026] 有利なことに、例示的なロボット装置は倉庫環境内に配備され、航行および在庫管理の両方のためにその既存のカメラシステムを使用することができる。具体的には、パレットジャッキは、ステレオビジョンカメラシステム(例えば、ステレオカメラペア)を予め装備されていてもよく、パレットジャッキはその環境を感知し、倉庫内を航行するためにそれを使用することができる。航行目的のためにキャプチャされた画像データは、環境内のパレット、他のパレットジャッキまたは装置、および他の物体の画像を含み得る。このように、パレット上のバーコードは画像データ内で検出され、場所情報と組み合わされて倉庫内のパレットの位置を決定することができる。多数のパレットジャッキが倉庫内を移動しているとき、WMSは倉庫内のパレットの在庫管理を改善するためにパレットジャッキからのそのような情報を組み合わせることができる。
[0027] 一例では、倉庫内で動作するロボット装置は、自律型パレットジャッキであってもよい。自律型パレットジャッキは、自律型パレットジャッキを倉庫内で誘導するために使用される誘導システムを含むことができる。誘導システムは、カメラ、GPS受信機、および/または他の装置またはシステムを含むことができる。カメラは、パレットジャッキ上の固定位置に取り付けられてもよく、またはジンバルまたはスイベル機構など2次元または3次元で回転または照準できるように取り付けられてもよい。カメラは、自律型フォークリフトの周囲に関する視覚的データを受信するように構成されてもよい。受信した視覚データに基づいて、自律型パレットジャッキは、倉庫内のその位置および向きを決定できるかもしれず、途中の障害物を回避しながらある場所から別の場所に移動できるかもしれない。
[0028] 誘導システムカメラは、誘導任務のために特別に構成されてもよい。例えば、カメラは、より正確な奥行き認識およびより良い位置および方位測定ならびにより良い物体回避を可能にし得る2つの光学受信機(すなわち、ステレオカメラ)を含むことができる。誘導システムカメラは、物体が自律型フォークリフトを妨げる可能性がより高い地面に向かって下向きに傾斜していてもよい。
[0029] いくつかの例では、自律型フォークリフトは、誘導に加えて他の目的のために誘導システムカメラを使用することができる。例えば、自律型フォークリフトが物品、パレット、または棚の近くにあるとき、誘導システムカメラは、物品、パレット、または棚に対応するバーコードの画像をキャプチャすることができる。パレットに関連付けられたバーコードがキャプチャされると、バーコードをキャプチャした誘導システムカメラの位置に基づいて、倉庫内のパレットの位置が決定されてもよい。バーコード、パレットの位置、自律型フォークリフトの位置、および/または他の情報は、パレットの予想される位置と比較することができるWMSに送信することができる。不一致がある場合、WMSは、作業員の差し向け、警告の生成および/または送信、誤って配置されたパレットのリストへのそのパレットの追加、または別の措置を講じることによって、問題を解決する措置を講じることができる。
[0030] いくつかの例では、誘導システムカメラは、その視野内にある各物品、パレット、および/または棚のバーコードをキャプチャすることができる。倉庫内の物品、パレット、および棚の位置を連続的にチェックするために、データをWMSに常時または一定の間隔で送信することができる。さらに、いくつかの例は、倉庫環境内で動作する複数のロボット装置の誘導システムカメラを含むことができ、その結果、各ロボット装置がWMSにデータを送信し、不断のまたは定期的な在庫位置チェックが実行されるようにする。
[0031] さらなる例では、AGVの動きおよび/またはAGV上の誘導システムカメラの向きは、より多くの物品在庫データを得るために積極的に操作されてもよい。例えば、誘導システムカメラは、AGVの上および横に(通路に沿って配置された棚の上などに)配置された物品のバーコードのキャプチャを試みるために、倉庫を通って移動する間にAGVの上方および/または横に傾けられてもよい。さらに、AGVおよび/またはカメラは、最近更新されていない物品に向けて操作され、WMSにこれらの物品に関する最新の情報を提供することができる。たとえば、通路内の棚の北側に、最近スキャンもチェックもされていない物品が含まれている場合がある。AGVがこの通路を移動するとき、誘導カメラは、WMS内の情報を更新するために、そこに保管された物品のバーコードをキャプチャするために棚の北側の方に傾けることができる。
[0032] なおもさらなる例は、在庫更新の必要性と、ロボット装置の安全で正確な航行の必要性とのバランスを取ることを含み得る。これには、物品をスキャンするために誘導カメラを使用することによって得られ得る情報の価値または重要度を、ロボット装置の航行の正確さの予想される低下に対して重み付けすることが含まれ得る。AGV上の誘導カメラは、より上方の棚に保管された物品に関する情報をキャプチャするために上方に傾けられてもよい。しかし、この情報は、カメラが地面上の障害物を容易に見ることができない可能性があるため、コストがかかる可能性がある。このトレードオフは、特にカメラを上に傾けて得られる物品情報が価値のあるものであり、障害物に遭遇する可能性が小さい場合に有益であり得る。
[0033] いくつかの実施形態では、特別に作製されたロボット装置を使用して、倉庫内の物品、パレット、棚およびロボット装置の位置に関するデータを収集することができる。特別に作製されたロボット装置は、その視界に入る物品、パレット、棚、および/またはロボット装置のバーコードをキャプチャするために使用できるスタンドアロンカメラを含むことができる。スタンドアロンカメラは、広角レンズを有することができ、および/またはバーコードがより正確かつ容易に取り込まれるようにラスタライズする能力を含むことができる。
B.複数のセンサの使用
[0034] 物品およびパレットは、倉庫内のある場所から別の場所に搬送されてもよい。一例では、自律型パレットジャッキは、物品のパレットを第1の場所から第2の場所に移動させる任務を課されてもよい。この任務を実行するために、いくつかのステップを実行することができる。第1に、パレットジャッキは、移動しようとするパレットの位置を決定することができる。次に、その位置に移動し、近くのバーコードを読み取り、探していたパレットを特定するなどして、パレットを見つけることができる。次いで、パレットジャッキは、パレットを第1の位置から第2の位置に搬送することができる。
[0034] 物品およびパレットは、倉庫内のある場所から別の場所に搬送されてもよい。一例では、自律型パレットジャッキは、物品のパレットを第1の場所から第2の場所に移動させる任務を課されてもよい。この任務を実行するために、いくつかのステップを実行することができる。第1に、パレットジャッキは、移動しようとするパレットの位置を決定することができる。次に、その位置に移動し、近くのバーコードを読み取り、探していたパレットを特定するなどして、パレットを見つけることができる。次いで、パレットジャッキは、パレットを第1の位置から第2の位置に搬送することができる。
[0035] パレットジャッキがこの任務を実行しようとすると、いくつかの問題が生じることがある。第1にパレットの位置が正しくない可能性がある。これは、他の理由の中でもとりわけ、間違った情報または間違って配置されたパレットによるものであり得る。第2に、パレットを識別するバーコードは、覆い隠されている、パレット上に誤って配置されている、またはパレットジャッキが読み取ることが困難または不可能な場合がある。例えば、パレットは、パレットジャッキが配置されている通路の反対側のパレットの側にバーコードが置かれた状態で棚に置かれている可能性がある。第3に、第1の場所から第2の場所への移送中に、1つまたは複数の品物がパレットから落ちる可能性がある。
[0036] これらの問題および他の問題を解決するために、例示的なシステムは、倉庫管理システム(WMS)とおよび/または相互に情報を収集および共有する複数のパレットジャッキを利用することができる。場合によっては、パレットジャッキは、物品、パレット、および棚に関連する在庫情報を記憶するWMSに、および倉庫内で動作するパレットジャッキおよび他のロボット装置に接続されてもよい。WMSは、物品、パレット、棚およびロボット装置の位置および他の特性のリストを更新し続けるために、パレットジャッキとの間で連係してもよい。他の場合には、パレットジャッキは、物品、パレット、棚、および互いの関連する情報を記憶および更新するために互いに通信するピアツーピアネットワークを形成することができる。
[0037] 一例では、第1のパレットジャッキは、倉庫内のある場所から別の場所にパレットを運んでいてもよい。また、倉庫には、第2のパレットジャッキおよび倉庫を管理するためのWMSが含まれていてもよい。第1のパレットジャッキがパレットを運んでいる間、どのパレットを運んでいるか、および/またはパレットの内容を確認することができない可能性がある。これは、第1のパレットジャッキのカメラの位置と視野に起因する可能性がある。第1のパレットジャッキは異なる視野を得るためにパレットを下に置くことができるが、他の手段を介してパレットの識別情報および/または内容を確認することが有利であり得る。第1のパレットジャッキおよび/またはWMSは、パレットの識別情報および/または内容の確認を要求するメッセージを第2のパレットジャッキに送信することができる。第2のパレットジャッキは、パレットのより良好な視野を有するカメラを有するかもしれず、また、バーコードをスキャンする、またはパレットの内容を識別することができるかもしれない。この情報は次にWMSおよび/または第1のパレットジャッキと共有することができる。このようにして、第2のパレットジャッキは第1のパレットジャッキのための「ミラー」として機能し得、第1のパレットジャッキが、通常はできないであろうそれが運んでいるパレットについての情報を集めることを可能にする。したがって、第1のパレットジャッキは、第2のパレットジャッキのリソースを利用することによって、それ自体を「見る」ことができるかもしれない。
[0038] いくつかの例では、この「ミラーリング」は、第1のパレットジャッキからの明示的な要求なしに実行されてもよい。複数のパレットジャッキを含む倉庫では、各パレットジャッキは、通常の動作または任務の実行中に互いに通過し合うときにまたは互いに近くを移動するときに、1つまたは複数の他のパレットジャッキの内容を確認することができる。なおもさらに、WMSは、1つまたは複数のパレットジャッキが互いに通過し合い互いに確認を実行するように、それらの経路または位置を調整することができる。
[0039] いくつかの例は、運んでいるパレットの重量を測定することができるパレットジャッキを含むことができる。測定された重量は、第1のパレットジャッキが第2のパレットジャッキに第1のパレットジャッキの内容を確認することを要求すべきであるというインジケータとして使用することができる。パレットの予想重量は、WMSによって記憶されてもよい。パレットジャッキは、実際の重量を決定するためにパレットを計量することができる。予想重量と実際の重量との間の相違が検出されると、パレットジャッキおよび/またはWMSは動作を起こす可能性がある。この動作は、パレットおよび/またはパレットの内容を確認するために第2のパレットジャッキを差し向けることを含むことができる。それはまた、1つまたは複数のカメラまたは他の装置がパレットおよび/またはパレットの内容を確認することができるように、パレットジャッキにパレットを所定の位置までまたは所定の経路に沿って運ばせることを含むこともできる。
[0040] 典型的な倉庫作業の間、パレットおよび物品は、パレットジャッキなどのロボット装置によって、ある場所から別の場所に日常的に移動される。本明細書内で、「パレットジャッキ」という用語は、あらゆる適用可能なロボット装置の代用として使用することができ、パレットジャッキのいずれの記載も、倉庫環境内で動作する1つまたは複数の他のタイプのロボット装置を指すことができる。このように、パレットジャッキの動き、機能、および動作は、パレタイジングされた物体およびパレタイジングされていない物体の両方との相互作用を含むことができる。
II.例示的な環境
[0041] ここで、様々な実施形態について詳細に参照し、その例を添付図面に示す。以下の詳細な記載において、本開示および記載された実施形態の完全な理解を提供するために、多数の特定の詳細が示される。しかしながら、本開示は、これらの特定の詳細なしに実施されてもよい。他の例では、周知の方法、手順、構成要素、および回路は、実施形態の態様を不必要に不明瞭にしないように詳細には記載されていない。
[0041] ここで、様々な実施形態について詳細に参照し、その例を添付図面に示す。以下の詳細な記載において、本開示および記載された実施形態の完全な理解を提供するために、多数の特定の詳細が示される。しかしながら、本開示は、これらの特定の詳細なしに実施されてもよい。他の例では、周知の方法、手順、構成要素、および回路は、実施形態の態様を不必要に不明瞭にしないように詳細には記載されていない。
[0042] 例示的な実施形態は、倉庫環境内に配備されるロボット隊を含むことができる。より具体的には、箱、小包、または他のタイプの物体の自動処理を容易にするために、固定構成要素と可動構成要素との組み合わせを環境内に配備することができる。例示的なシステムは、箱および/または他の物体の、保管コンテナまたは配送車両などへの、自動積み降ろしを伴い得る。いくつかの例示的な実施形態では、箱または物体を自動的に編成し、パレット上に配置することができる。例の中で、トラックの積み降ろしプロセスを、および/または倉庫内での保管をより容易にするためにおよび/または倉庫へのおよび倉庫からの搬送のために物体からパレットを形成するプロセスを自動化することは、多くの産業上およびビジネス上の利点をもたらし得る。
[0043] 様々な実施形態によれば、倉庫での配送トラックの積み降ろしプロセスおよび/またはパレット形成プロセスを自動化することは、物体を移動させるためまたは他の機能を実行するための1つまたは複数の異なるタイプのロボット装置の配備を含み得る。いくつかの実施形態では、ロボット装置の一部は、車輪付きベース、ホロノミックベース(例えば、任意の方向に動くことができるベース)、または天井、壁、または床上のレールと結合することによって移動可能にすることができる。さらなる実施形態では、ロボット装置の一部は、環境内に固定されてもよい。例えば、ロボットマニピュレータは、倉庫内の異なる選択された位置で上昇したベース上に配置することができる。
[0044] 本明細書で使用される場合、「倉庫」という用語は、箱または物体をロボット装置によって操作、処理、および/または保管することができるどのような物理的環境も指すことができる。いくつかの例では、倉庫は、パレットラックまたは物品のパレットを保管するための棚など、特定の固定構成要素をさらに含むことができる単一の物理的建物または構造物であってもよい。他の例では、いくつかの固定構成要素は、物体を処理する前または間に環境内に設置するか、または別の方法で配置することができる。さらなる例では、倉庫は、複数の別個の物理的構造物を含むことができ、および/または物理的構造物によって覆われない物理的空間を含むこともできる。
[0045] さらに、「箱」という用語は、パレット上に置くことができ、またはトラックまたはコンテナに積み込むまたはそれから降ろすことができるどのような物体または物品も指すことができる。例えば、直方体に加えて、「箱」は、缶、ドラム、タイヤまたはいずれかの他の「シンプルな」形状の幾何学的な物品を指すことができる。さらに、「箱」は、トートバッグ、ビン、または搬送または保管のための1つまたは複数の物品を含むことができる他のタイプの容器を指してもよい。例えば、プラスチック製保管トートバッグ、ファイバーグラストレイ、またはスチールビンは、倉庫内のロボットによって移動されるか、または別の方法で操作され得る。本明細書における例は、箱以外の物体にも、および様々なサイズおよび形状の物体に適用することができる。さらに、「積み込み」および「荷下ろし」はそれぞれ、他のものを暗示するために使用することができる。例えば、ある例がトラックに積み込む方法を記載する場合、実質的に同じ方法をトラックの荷下ろしにも使用できることを理解されたい。本明細書で使用される場合「パレタイジング」とは、パレット上に箱を載せ、パレット上の箱をパレット上で保管または搬送できるような方法で箱を積み重ねるかまたは配置することを指す。さらに、「パレタイジング」および「デパレタイジング」という用語はそれぞれ、他を暗示するために使用することもできる。
[0046] 例の中で、異種の倉庫ロボット隊が、多数の異なる用途に使用されてもよい。1つの可能な用途は、(例えば、個々の顧客のための)注文履行を含み、その際、ケースを開封し、個々の注文を履行するためにケースからの個々の物品を箱の中で包装することができる。別の可能な用途には、(例えば、店舗または他の倉庫への)分配が含まれ、この際、店舗に出荷する異なるタイプの製品群を含む混合パレットを構成することができる。さらなる可能な用途は、クロスドッキングを含み、これはいかなるものも保管せずに出荷用コンテナ間で搬送することを伴い得る(例えば、物品は、4台の40フィートトレーラーから移動され、3台のより軽いトラクタートレーラーに積み込まれ、パレタイジングされてもよい)。多数の他の用途も可能である。
[0047] ここで図を参照すると、図1Aは例示的な実施形態による倉庫設定内のロボット隊を示す。より具体的には、異なるタイプのロボット装置が、倉庫環境内の物品、物体、または箱の処理に関連する任務を実行するために協働するように制御され得る異種ロボット隊100を形成することができる。特定の例示的なタイプおよび数の異なるロボット装置が説明のためにここに示されているが、ロボット隊100はより多くのまたはより少ないロボット装置を使用してもよく、ここに示される特定のタイプを省略してもよく、明示的に示されていない他のタイプのロボット装置を含んでもよい。さらに、特定のタイプの固定構成要素および構造を備えた倉庫環境がここに示されているが、固定構成要素および構造の他のタイプ、数、および配置が他の例で同様に使用されてもよい。
[0048] ロボット隊100内に示されるロボット装置の1つの例示的なタイプは、自律型誘導車両(AGV)112であり、それは個々の小包、ケース、またはトートバッグを倉庫内のある場所から別の場所へ搬送するように機能することができる比較的小型の車輪付き移動装置であり得る。ロボット装置の別の例示的なタイプは、自律型フォークトラック114であり、それは箱のパレットを搬送するためにおよび/または箱のパレットを持
ち上げるために(例えば、保管のためにパレットをラックに置くために)使用することができるフォークリフトを備えた移動装置である。ロボット装置の追加的な例示的なタイプは、ロボット式トラックローダ/アンローダ116であり、それはロボットマニピュレータ、ならびにトラックまたは他の車両への箱の積み込みおよび/またはそれからの荷下ろ
しを容易にするための光学センサなどの他の構成要素を備えた移動装置である。例えば、ロボット式トラックアンローダ116を使用して、倉庫に隣接して駐車することができる配送トラック118に箱を積み込むことができる。いくつかの例では、(例えば、小包を別の倉庫に配送するための)配送トラック118の動きを、ロボット隊内のロボット装置と調整することもできる。
ち上げるために(例えば、保管のためにパレットをラックに置くために)使用することができるフォークリフトを備えた移動装置である。ロボット装置の追加的な例示的なタイプは、ロボット式トラックローダ/アンローダ116であり、それはロボットマニピュレータ、ならびにトラックまたは他の車両への箱の積み込みおよび/またはそれからの荷下ろ
しを容易にするための光学センサなどの他の構成要素を備えた移動装置である。例えば、ロボット式トラックアンローダ116を使用して、倉庫に隣接して駐車することができる配送トラック118に箱を積み込むことができる。いくつかの例では、(例えば、小包を別の倉庫に配送するための)配送トラック118の動きを、ロボット隊内のロボット装置と調整することもできる。
[0049] ここに示されたもの以外の他のタイプの移動装置がさらにまたは代わりに含まれてもよい。いくつかの例では、1つまたは複数のロボット装置は、地面に接する車輪に加えて異なる搬送モードを使用することができる。例えば、1つまたは複数のロボット装置は、空中浮揚型(例えば、クワッドコプター)であってもよく、物体を移動させるまたは環境のセンサデータを収集するなどの任務のために使用されてもよい。
[0050] さらなる例では、ロボット隊100は、倉庫内に配置することができる様々な固定構成要素を含むこともできる。いくつかの例では、1つまたは複数の固定式ロボット装置を使用して、箱を移動させるか処理することができる。例えば、ペデスタルロボット122は、倉庫内の1階に固定されたペデスタル上で上昇されるロボットアームを含むことができる。ペデスタルロボット122は、他のロボット間で箱を分配し、および/また
は箱のパレットを積み重ねおよび取り下ろすように制御することができる。例えば、ペデスタルロボット122は、近くのパレット140から箱をピックアップして移動させ、箱を倉庫内の他の場所に搬送するために個々のAGV112に分配することができる。
は箱のパレットを積み重ねおよび取り下ろすように制御することができる。例えば、ペデスタルロボット122は、近くのパレット140から箱をピックアップして移動させ、箱を倉庫内の他の場所に搬送するために個々のAGV112に分配することができる。
[0051] 追加の例では、ロボット隊100は、倉庫空間内に配置された追加の固定構成要素を使用することができる。例えば、高密度保管ラック124を使用して、倉庫内にパレットおよび/または物体を保管することができる。保管ラック124は、自律型フォークトラック114などのロボット隊内の1つまたは複数のロボット装置との相互作用を容易にするように設計および配置されてもよい。さらなる例では、パレットまたは箱の同様のまたは代わりの保管のために特定の地上空間が選択され、使用されてもよい。例えば、パレット130は、ロボット装置の1つまたは複数によってパレットをピックアップ、分配、または他の方法で処理することができるように、特定の期間、選択された場所で倉庫環境内に配置することができる。
[0052] 図1Bは、例示的な実施形態による、ロボット倉庫隊100の構成要素を示す機能ブロック図である。ロボット隊100は、AGV112、自律型フォークトラック114、ロボットトラックローダ/アンローダ116、および配送トラック118など、1つまたは複数の様々な移動構成要素を含むことができる。ロボット隊100は、ペデスタルロボット122、高密度保管コンテナ124、およびバッテリ交換/充電ステーション126など、倉庫または他の環境内に配置された1つまたは複数の固定構成要素を含むことができる。さらなる例では、図1Bに示される構成要素の異なる数およびタイプが隊内に含まれてもよく、特定のタイプは省略されてもよく、追加の機能的および/または物理的構成要素が図1Aおよび図1Bに示される例に追加されてもよい。別個の構成要素の動作を調整するために、リモートクラウドベースサーバシステムなどの倉庫管理システム150が、システム構成要素の一部または全部と、および/または個々の構成要素の別個のローカル制御システムと(例えば無線通信を介して)通信することができる。
[0053] 例の中で、特定の固定構成要素120は、ロボット隊100の残りを配備する前に設置されてもよい。いくつかの例では、ペデスタルロボット122またはバッテリ交換ステーション126などの特定の固定構成要素120の配置を決定する前に、1つまたは複数の移動ロボットを持ち込んで空間のマップを描くことができる。マップ情報が利用可能になると、システムは、利用可能な空間内で固定構成要素をどのようにレイアウトするかを(例えば、シミュレーションを実行することによって)決定することができる。特定の場合には、必要とされる固定構成要素の数および/またはこれらの構成要素によって使用される空間の量を最小限に抑えるようにレイアウトを選択することができる。固定構成要素120および移動構成要素110は、別々の段階で、またはすべてを一度に配備することができる。追加の例では、特定の移動構成要素110は、特定の期間中にまたは特定の任務を完了するためだけに持ち込まれてもよい。
[0054] いくつかの例では、倉庫管理システム150は、隊100内の異なるロボット装置に任務を割り当てる中央計画システムを含むことができる。中央計画システムは、どの装置がどの時点でどの任務を完了するかを決定するために、様々なスケジューリングアルゴリズムを採用することができる。例えば、個々のロボットが異なるタスクに入札するオークション型システムが使用されてもよく、中央計画システムは全体のコストを最小限に抑えるようにロボットに任務を割り当てることができる。追加の例では、中央計画システムは、時間、空間、またはエネルギー使用率などの1つまたは複数の異なるリソースを横切って最適化することができる。さらなる例では、計画またはスケジューリングシステムは、箱の選別、包装または保管の幾何形状および物理的現象の特定の態様を組み込んでもよい。
[0055] 計画制御は、個々のシステム構成要素にわたって分散させることもできる。例えば、倉庫管理システム150は、グローバルシステム計画に従って指示を発することができ、個々のシステム構成要素は、別個のローカル計画に従って動作することもできる。さらに、異なるレベルの詳細がグローバル計画内に含まれてもよく、他の態様は個々のロボット装置が局所的に計画するために残される。例えば、移動ロボット装置は、グローバルプランナによって標的の宛先に割り当てられることができるが、それらの標的の宛先に到達するための完全な経路は局所的に計画または変更されてもよい。
[0056] 追加の例では、中央計画システムは、ロボット隊100内のロボットの機能を調整するために、個々のロボット装置のローカルビジョンと組み合わせて使用することができる。例えば、中央計画システムを使用して、ロボットをそれらが行く必要がある場所に比較的近づけるように使用することができる。しかしながら、ロボットがレールにボルト止めされない限り、または他の測定された構成要素がロボットの位置を正確に制御するために使用されない限り、中央計画システムがミリメートル精度でロボットに指示することは困難である。したがって、個々のロボット装置のローカルビジョンおよび計画を使用して、異なるロボット装置間の融通性を可能にすることができる。全体的なプランナを使用してロボットを標的位置に近づけることができ、その地点でロボットのローカルビジョンは引き継ぐことができる。いくつかの例では、ほとんどのロボット機能は、ロボットを標的位置に比較的近づけるように位置制御され、次いで、ビジョンおよびハンドシェイクがローカル制御に必要なときに使用され得る。
[0057] さらなる例において、視覚的ハンドシェイクは、2つのロボットがバーコード、QRコード(登録商標)、拡張現実タグ(ARタグ)、または他の特性によって互いに識別し合い、隊100内で協同作業を実行することを可能にすることができる。追加の例において、物品(例えば出荷される小包)に視覚的タグをさらにまたは代わりに設けてもよく、視覚的タグはロボット装置がローカルビジョン制御を用いて物品に対して作業を行うために使用してもよい。特に、タグは、ロボット装置による物品の操作を容易にするために使用されてもよい。例えば、パレット上の特定の場所の1つまたは複数のタグを使用して、フォークリフトにパレットを持ち上げる場所または方法を知らせることができる。
[0058] さらなる例では、固定および/または移動構成要素の配備および/または計画ストラテジは、時間の経過とともに最適化されてもよい。例えば、クラウドベースサーバシステムは、隊内の個々のロボットからおよび/または外部ソースからデータおよび情報を組み込むことができる。その後、ストラテジは、隊がより少ない空間、より少ない時間、より少ないパワー、より少ない電気を使用すること、または他の変数を横切って最適化することを可能にするために、時間の経過とともに洗練することができる。いくつかの例では、最適化は、場合によってはロボット隊を備える他の倉庫および/または従来型倉庫を含む多数の倉庫に及ぶこともできる。例えば、グローバル制御システム150は、施設間の配送車両および通過時間に関する情報を中央計画に組み込むことができる。
[0059] いくつかの例では、倉庫管理システムは、ロボットが動かなくなった場合または小包がある場所に落ちて紛失した場合など、時々障害が発生することがある。したがって、ローカルロボットのビジョンは、倉庫管理システムの一部に障害が発生したケースに対処するために冗長性を導入することで堅牢性を提供し得る。例えば、自動パレットジャッキが物体を通過し識別するとき、パレットジャッキは、リモートクラウドベースサーバシステムに情報を送信することができる。このような情報は、中央計画のエラーを修正するために、ロボット装置をローカライズすることを支援するために、または紛失した物体を識別するために使用されてもよい。
[0060] さらなる例では、倉庫管理システムは、ロボット隊100およびロボット装置による処理を受けている物体を含む物理的環境のマップを動的に更新することができる。いくつかの例では、マップは、動的な物体(例えば、移動ロボットおよびロボットによって移動される小包)に関する情報を用いて継続的に更新することができる。追加の例では、動的マップは、倉庫内の(または複数の倉庫にまたがる)構成要素の現在の構成または配置の情報、および近い将来に予測されることに関する情報を含むことができる。例えば、マップは、移動ロボットの現在の位置および将来の予定されるロボットの位置を示すことができ、これはロボット間の活動を調整するために使用され得る。また、マップは、処理中の物品の現在の位置および物品の将来の予想される位置(例えば、物品が現在ある場所、および物品が出荷されることが予想される時)を示すこともできる。さらに、マップは、倉庫内の(または複数の倉庫にまたがる)すべての物品の現在の位置を示すことができる。
[0061] 追加の例では、ロボットの一部または全部が、プロセス内の異なる時点で物体上のラベルをスキャンすることができる。スキャンは、構成要素および物品の探索または追跡を容易にするために個々の構成要素または特定の物品に適用される視覚的タグを探すために使用されてもよい。このスキャンは、物品がロボットによって操作されるまたは搬送されるにつれて絶えず動き回る物品の軌跡をもたらし得る。潜在的な利点は、サプライヤ側と消費者側の両方で透明性が高まることである。サプライヤ側では、在庫の現在の位置に関する情報を使用して、過剰在庫を回避すること、および/または物品または物品のパレットを異なる場所または倉庫に移動して需要を予測することができる。消費者側では、特定の物品の現在の位置に関する情報を使用して、特定の小包が配達される時を改善された正確さで決定することができる。
[0062] いくつかの例では、ロボット隊100内の移動構成要素110の一部または全部が、複数のバッテリ充電器を備えたバッテリ交換ステーション126から充電済みバッテリを定期的に受け取ることができる。特に、ステーション126は、移動ロボットの古いバッテリを充電済みバッテリで置き換えることができ、これによりロボットが着座してバッテリが充電されるのを待たなければならない状況を回避することができる。バッテリ交換ステーション126は、ロボットアームなどのロボットマニピュレータを備えることができる。ロボットマニピュレータは、個々の移動ロボットからバッテリを取り出し、利用可能なバッテリ充電器にバッテリを取り付けることができる。次いで、ロボットマニピュレータは、ステーション126に位置する充電済みバッテリを移動ロボットに移動させて、取り外されたバッテリを交換することができる。例えば、少残量バッテリを有するAGV112は、バッテリ交換ステーション126に移動するように制御することができ、ステーションでロボットアームはAGV112からバッテリを引き出し、バッテリを充電器に入れ、AGV112に新しいバッテリを与える。
[0063] さらなる例では、バッテリ交換は倉庫管理システムによって予定に組み込まれてもよい。例えば、個々の移動ロボットは、バッテリ充電状態を監視するように構成されてもよい。ロボットは定期的に倉庫管理システムにバッテリの状態を示す情報を送ることができる。この情報は、必要時または都合のよい時に隊内の個々のロボットのバッテリ交換を予定に組み込むために倉庫管理システムによって使用されることができる。
[0064] いくつかの例では、隊100は、異なるタイプのバッテリを使用する多数の異なるタイプの移動構成要素110を含むことができる。したがって、バッテリ交換ステーション126は、異なるタイプのバッテリおよび/または移動ロボット用の異なるタイプのバッテリ充電器を備えることができる。バッテリ交換ステーション126はまた、異なるタイプのロボット用のバッテリを交換することができるロボットマニピュレータを備えることができる。いくつかの例では、移動ロボットは、複数のバッテリを含むバッテリ容器を有することができる。例えば、パレットジャッキなどの自律型フォークトラック114は、3つまたは4つのバッテリを有するスチールバケットを有してもよい。ステーション126のロボットアームは、バッテリのバケット全体を持ち上げて、ステーション126の棚のバッテリ充電器に個々のバッテリを取り付けるように構成することができる。次に、ロボットアームは、古いバッテリを交換するために充電済みバッテリを見つけて、これらのバッテリをバケットに戻した後、バケットをパレットジャッキに再挿入することができる。
[0065] さらなる例では、倉庫管理システム150および/またはバッテリ交換ステーション126の別個の制御システムは、バッテリ管理ストラテジを自動化することもできる。例えば、各バッテリは、システムが個々のバッテリを識別できるように、バーコードまたは他の識別マークを有することができる。バッテリ交換ステーション126の制御システムは、個々のバッテリが何回充電されたかを(例えば、水または空のバッテリをいつ完全に交換するかを決定するために)カウントしてもよい。制御システムはまた、どのバッテリがどのロボット装置内で時間を費やしたか、過去にステーション126でバッテリを充電した時間、および効率的なバッテリ管理のための他の関連特性を記録することもできる。このバッテリ使用情報は、ロボットマニピュレータが特定の移動ロボットに与えるバッテリを選択するために制御システムによって使用されてもよい。
[0066] 追加の例では、バッテリ交換ステーション126は、場合によっては人間の作業員を伴うことができる。例えば、ステーション126は、人々が手動バッテリ交換を安全に実行することができるあるいは必要に応じて隊100に配備するためにステーションに新しいバッテリを届けることができる施設を含むことができる。
[0067] 図2A~2Dは、ロボット倉庫隊内に含まれ得るロボット装置のいくつかの例を示す。ここに示されているものと形態が異なる他のロボット装置ならびに他のタイプのロボット装置を含めることもできる。
[0068] 図2Aは、例示的な実施形態による、ロボットトラックアンローダを示す。いくつかの例では、ロボットトラックアンローダは、1つまたは複数のセンサ、1つまたは複数のコンピュータ、および1つまたは複数のロボットアームを含むことができる。センサは、視覚データおよび/または3次元(3D)深度情報を捉えるために、1つまたは複数の物体を含む環境をスキャンすることができる。スキャンからのデータは、その後、デジタル環境再構成を提供するために、より大きな領域の表現に統合することができる。さらなる例において、再構成された環境は、ピックアップするべき物体を識別するため、物体のピック位置を決定するため、および/または1つまたは複数のロボットアームおよび/または移動ベースのための衝突のない軌道を計画するために使用され得る。
[0069] ロボットトラックアンローダ200は、環境内の物体を掴むためのグリッパ構成要素204を備えたロボットアーム202を含むことができる。ロボットアーム202は、グリッパ構成要素204を使用して、トラックまたは他のコンテナに積み込むまたはそれから荷下ろしするために箱をピックアップして配置することができる。トラックアンローダ200はまた、移動のための車輪214を備えた移動カート212を含むことができる。車輪214は、カート212を2自由度で移動させるホロノミックホイールであってもよい。さらに、ラップアラウンド型フロントコンベヤベルト210が、ホロノミックカート212に含まれてもよい。いくつかの例では、ラップアラウンド型フロントコンベヤベルトは、トラックローダ200が、グリッパ構成要素204を回転させることなく箱をトラックコンテナまたはパレットから荷下ろしするまたはトラックコンテナまたはパレットへ積み込むことを可能にし得る。
[0070] さらなる例では、ロボットトラックアンローダ200の感知システムは、ロボットアーム202が動くにつれて環境に関する情報を感知する2次元(2D)センサおよび/または3D深度センサであり得るセンサ206およびセンサ208などのロボットアーム202に取り付けられた1つまたは複数のセンサを使用することができる。感知システムは、箱を効率的に取り上げて移動するために制御システム(例えば、モーション計画ソフトウェアを実行するコンピュータ)によって使用可能な環境についての情報を判定することができる。制御システムは、装置上に配置されてもよく、または装置と遠隔通信してもよい。さらなる例では、航行センサ216、安全センサ218などの移動ベース上の固定マウントを有する1つまたは複数の2Dまたは3Dセンサからの、およびセンサ206およびセンサ208などのロボットアームに取り付けられた1つまたは複数のセンサからのスキャンは、サイド、床、天井、および/またはトラックまたは他のコンテナの前壁を含む、環境のデジタルモデルを構築するために統合されてもよい。この情報を使用して、制御システムは、移動ベースを荷下ろしまたは積み込みのための位置に航行させることができる。
[0071] さらなる例では、ロボットアーム202は、デジタル吸引グリッドグリッパなどのグリッパ204を備えることができる。そのような実施形態では、グリッパは、リモート感知または単一点距離測定によって、および/または吸引が達成されたかどうかを検出することによって、オンまたはオフにすることができる1つまたは複数の吸引バルブを含むことができる。さらなる例では、デジタル吸引グリッドグリッパは、関節式伸長部を含むことができる。いくつかの実施形態では、レオロジー流体または粉末で吸引グリッパを作動させる可能性は、高い曲率を有する物体を余分に掴むことを可能にし得る。
[0072] トラックアンローダ200はモータをさらに含んでもよく、モータは、電力によって動力を供給される電気モータであってもよく、またはガスベース燃料または太陽光発電など、多数の異なるエネルギー源によって動力供給されてもよい。さらに、モータは、動力源から動力を受け取るように構成されてもよい。動力源は、ロボットシステムの様々な構成要素に動力を供給することができ、例えば、充電式リチウムイオンまたは鉛蓄電池を意味することができる。例示的な実施形態では、そのようなバッテリの1つまたは複数の群が電力を供給するように構成されることができる。他の動力源材料およびタイプも可能である。
[0073] 図2Bは、例示的な実施形態による、ペデスタル上のロボットアームを示す。より具体的には、ペデスタルロボット220は、倉庫環境などの環境内に配置されてもよく、手の届く範囲内の物体をピックアップし、移動し、および/または他の方法で操作するために使用されてもよい。いくつかの例では、ペデスタルロボット220は、動作するためにバッテリを必要としない過酷な持上げに特化してもよい。ペデスタルロボット220は、エンドエフェクタ装着グリッパ224を備えたロボットアーム222を含むことができ、それらはロボットトラックアンローダ200に関して記載したロボットマニピュレータ202およびグリッパ204と同じタイプのものであってもよい。ロボットアーム222は、ペデスタル226上に取り付けられてもよく、ペデスタル226は、ロボットアーム222が、異なる移動ロボット間で小包を分配するためなど、近くの小包を容易にピックアップして移動することを可能にし得る。いくつかの例では、ロボットアーム222は、箱のパレットを構築するおよび/またはばらすように動作可能であってもよい。さらなる例では、ペデスタル226は、制御システムがロボットアーム222の高さを変えることを可能にするためにアクチュエータを含むことができる。
[0074] さらなる例では、ペデスタルロボット220の底面は、パレット状の構造であってもよい。例えば、底面は、倉庫内の物体の搬送または保管に使用される他のパレットとほぼ同等の寸法および形状を有することができる。ペデスタルロボット220の底部をパレットとして成形することにより、ペデスタルロボット220はピックアップされ、パレットジャッキまたは異なるタイプの自律型フォークトラックによって倉庫環境内の異なる位置に移動されることができる。例えば、配送トラックが倉庫の特定のドッキングポートに到着すると、ペデスタルロボット220は、配送トラックに出入りする箱をより効率的に処理するために、ピックアップされ、配送トラックにより近い場所に移動されることができる。
[0075] 追加の例では、ペデスタルロボット220は、ペデスタルロボット220の近傍内の箱および/または他のロボット装置を識別するための1つまたは複数の視覚センサを含むこともできる。例えば、ペデスタルロボット220の制御システムまたはグローバル制御システムは、ペデスタルロボット220上のセンサからのセンサデータを使用して、ペデスタルロボット220のロボットアーム222およびグリッパ224がピックアップまたは操作するための箱を識別することができる。さらなる例では、センサデータは、個々の箱を分配する場所を判断するために移動ロボット装置を識別するために使用されてもよい。他の種類のロボット固定型操作ステーションもまた、異種ロボット隊内で使用されてもよい。
[0076] 図2Cは、例示的な実施形態による自律型誘導車両(AGV)を示す。より具体的には、AGV240は、個々の箱またはケースを搬送することができる比較的小型の移動ロボット装置であってもよい。AGV240は、倉庫環境内での移動を可能にする車輪242を含むことができる。さらに、AGV240の上面244を使用して、搬送のために箱または他の物体を配置することができる。いくつかの例では、上面244は、AGV240にまたはそれから物体を移動する回転コンベヤを含むことができる。追加の例では、AGV240は、バッテリ充電ステーションで迅速に充電可能な1つまたは複数のバッテリによって動力供給されてもよく、および/またはバッテリ交換ステーションで新しいバッテリと交換されてもよい。さらなる例では、AGV240は、航行用のセンサなど、ここで特に特定されない他の構成要素をさらに含むことができる。場合によっては倉庫によって処理される小包のタイプに応じて、異なる形状およびサイズのAGVが、ロボット倉庫隊に含められてもよい。
[0077] 図2Dは、例示的な実施形態による自律型フォークトラックを示す。より具体的には、自律型フォークトラック260は、箱または他のより大きな材料のパレットを持ち上げおよび/または移動するためのフォークリフト262を含むことができる。いくつかの例では、フォークリフト262を上昇させて、倉庫内の保管ラックまたは他の固定保管構造の異なるラックに到達させることができる。自律型フォークトラック260は、倉庫内でパレットを搬送するために移動用の車輪264をさらに含むことができる。追加の例では、自律型フォークトラックは、ロボットラックアンローダ200に関して記載したものなど、モータおよび動力源ならびに感知システムを含むことができる。自律型フォークトラック260は、図2Dに示すものとサイズまたは形状が変化してもよい。
[0078] 図3は、例示的な実践形態によるシステム300を示す。システム300は、倉庫環境に配備され得るロボット装置302と、コンピューティングシステム310とを含み得る。
[0079] ロボット装置302は、AGVであってもよいし、図2A~Dに示すものなどの1つまたは複数の他のロボット装置の形態をとってもよい。他の形態も可能である。ロボット装置302は、ロボット装置302に取り付けられた1つまたは複数のセンサによって収集された情報に基づいて倉庫環境全体に移動するように構成することができる。例えば、ロボット装置302の移動ルートまたは経路を生成するために使用され得るその環境の完全または部分3Dモデルを構築することができるように、1つまたは複数のセンサがロボット装置302に配置されてもよい。代替的に、ロボット装置302は、ロボット装置302に通信可能に結合されたコンピュータシステムからの指示に基づいて移動することができる。例えば、ロボット装置に配置されるまたは倉庫環境内に配置される1つまたは複数のセンサは、ロボット装置302のためのルート、経路、または他の航行指示を生成し得るコンピューティングシステム(例えば、倉庫管理システム)にデータを送信することができる。追加の例では、ロボット装置302は、ローカル感知情報とコンピューティングシステムからの集中型指示との両方の組み合わせに基づいて倉庫環境を移動および/または航行することができる。
[0080] ロボット装置302は、図1Aに示す倉庫環境などの倉庫環境内に配備されることができる。上述のように、倉庫環境は、単一または複数の部屋構造、および/または積み込みドックエリアなどの覆われたまたは覆われていないエリアを含むことができる。倉庫環境は、パレット、箱、棚、または他の物品などの複数の在庫物品を含むことができる。これらの在庫物品は、倉庫環境内の通路に編成された棚に配置して保管することができる。この編成は、ロボット装置が通路を通って航行して1つまたは複数の在庫物品にアクセスすることを可能にし得る。倉庫環境は、ロボット装置の航行に使用することができる1つまたは複数のタグ、基準マーカ、視覚的識別子、ビーコン、マーキング、または他のインジケータを含むこともできる。
[0081] いくつかの例では、各在庫物品は、コンピューティングシステムによって記憶された場所を有することができる。場所は、記憶された在庫表に基づく物品の予想される場所であってもよい。予想される場所は、例えば物品が移動されたときなど、いつでもコンピューティングシステム内で更新されてもよい。倉庫の通常の使用中、在庫物品は1つまたは複数の目的のために選択され、ある場所から別の場所に移動されてもよい。これにより、物品の真のすなわち実際の場所が変更され得る。しかしながら、コンピューティングシステムは、常に正確におよびタイムリーに更新されるわけではなく、真の位置と予想される位置との間に不一致が生じる可能性がある。このように、コンピューティングシステムは、常に正確で最新の情報を有するとは限らない。
[0082] コンピューティングシステムはまた、物品の内容、サイズ、重量、色、物品に関連付けられた履歴、および様々な他の特性など、予想される場所に加えて他の情報を記憶してもよい。この情報は、在庫物品を追跡するために使用できる仮想倉庫を構築するために使用できる。
[0083] いくつかの例では、倉庫環境内の各在庫物品は、センサが検出できる識別子を含み、センサおよび/または接続されたコンピューティング装置が物品を識別することを可能にする。識別子は、バーコード、QRコード、RFIDチップ、または物品上または物品内に配置することができる他の識別子であってもよい。他の例では、在庫物品の形状、サイズ、色、質感、または物品自体の他の特性を使用して物品を識別することができる。
[0084] いくつかの例では、バーコードは、各在庫物品に関連付けられた視覚的識別子として使用されてもよい。各バーコードは、包装材料またはラッピング材料の上など在庫物品の外側に配置することができる。ロボット装置が識別子をより速く確実に見つけることができるように、1つの面の右上隅部になど物品の同じまたは同様の位置で識別子を各物品に配置することが有益であり得る。他の例では、RFIDタグ識別子または他のタグを物品包装材料自体の内側に配置することができる。
[0085] ロボット装置302は、画像データをキャプチャするように構成され得るカメラ304を含むことができる。キャプチャされた画像データは、航行、障害物回避、物品識別、およびロボット装置識別など、本明細書で考察される1つまたは複数の目的のために使用されてもよい。カメラ304は、例えば、サイズ、形状、深さ、質感、および色などの視覚情報をキャプチャするように構成された1つまたは複数の光学センサを含むことができる。一実施形態では、カメラ304は、カメラの視野の3D画像を提供するために連動して動作し得るステレオレンズペアを含むことができる。カメラ304は、同様にまたは代替的に、1つまたは複数のレンズ、RADARセンサ、LIDARセンサ、3Dセンサ、または他のタイプの感知装置を含むこともできる。より多いまたは少ないレンズも同様に使用することができる。
[0086] カメラ304は、複数の異なる視野を有するように配置されることができるように、ロボット装置302に取り付けられてもよい。例えば、カメラ304は、ロボット装置302の正面に(すなわち、図3に示すように、ロボット装置302が移動するときにカメラが正面に向くように)取り付けられてもよい。カメラ304はまた、旋回できるように、左右におよび/または上下に回転できるように、またはロボット装置302上での位置を変えることができるように取り付けられてもよい。カメラ304は、ロボット装置上で位置を移動できるように、制御可能なロボットアーム上に、または軌道上に取り付けられてもよい。このようにして、カメラ304は、複数の異なる視野を有するように配置することができる。
[0087] カメラ304の視野は、コンピューティングシステム310によって制御され得るカメラ304の位置および向きに依存し得る。以下にさらに詳細に記載する図4は、カメラ404の例示的な視野406を示す。このように、視界は1つまたは複数の境界を含むことができる。そのように、カメラによってキャプチャされた画像データは、視野の境界によって制限される場合がある。
[0088] いくつかの例では、カメラ304は、ロボット装置302の航行を支援する視覚システムとして使用されてもよい。航行を支援することは、カメラ304の主目的であってもよい。カメラ304は、ロボット装置302の周囲に関する画像データをキャプチャし、これは航行指示を生成するためにコンピューティングシステム310によって使用されてもよい。航行を支援する際に使用できる順番キャプチャ画像データにおいて、カメラ304は、視野がロボット装置302の周りのおよび前方の地面を含むように配置されてもよい。この位置で、カメラ304によってキャプチャされた画像データは、ロボット装置302の前進移動を妨げる物体および/または障害物を含むことができる。航行指示を生成する目的でキャプチャされた画像データはまた、視界内に位置する棚、在庫物品、他のロボット装置、および他の物体を含むことができる。
[0089] システム300はまた、本明細書に記載の1つまたは複数の機能を実行するように構成され得るコンピューティングシステム310を含むことができる。図3に示すように、コンピューティングシステム310は、ロボット装置302とは別個であってもよく、無線接続を介してロボット装置302に通信可能に結合されてもよい。あるいは、いくつかの例では、コンピューティングシステム310は、有線接続を介してロボット装置302に結合されてもよく、および/またはロボット装置302自体の構成要素であってもよい。他の例では、コンピューティングシステム310は、ロボット装置302および他の場所の両方に配置された構成要素を含んでもよく、その結果、本明細書に記載されるコンピューティング装置310の機能の実行は、ロボット装置302上の構成要素、中央コンピューティング装置、またはそれらの組み合わせによって実行されてもよい。さらに他の例では、コンピューティングシステム310は、コンピューティングシステムを含むロボット装置のピアツーピアネットワークが形成されるように、2つ以上のロボット装置に分散されてもよい。
[0090] コンピューティングシステム310は、キャプチャされた画像データを受信するように構成されてもよい。いくつかの例では、画像データは、カメラ304によってキャプチャされてもよく、他の例では、ロボット装置302に取り付けられた、または倉庫環境内に配置された1つまたは複数の他のセンサ(例えば、倉庫全体の複数の位置に配置されたカメラまたはセンサ)に由来してもよい。受信した画像データに基づいて、コンピューティングシステム310は、ロボット装置302の航行指示を生成してもよい。ロボット装置302の航行指示を生成することは、ロボット装置302の経路を妨げ得る物体、障害物、在庫物品および他のロボット装置を検出するために受信した画像データを分析することを含み得る。同じく航行指示を生成することは、1つまたは複数の標的在庫物品、ロボット装置、または他の物品の場所または予想される場所などの情報を取得することも含み得る。
[0091] いくつかの例では、ロボット装置のための航行指示は、大規模指示と小規模指示の両方を含むことができる。大規模指示には、「南へ2つの通路をおよび西へ3つの列を移動せよ」など、ロボット装置を倉庫内のある場所から別の場所に移動するために必要な幅広い指示が含まれ得る。一方、小規模の指示には、ロボット装置が大規模な指示を実行しながら障害物にぶつかることを回避するために必要な指示を含み得る。ロボット装置が適切に動作するためには、大規模指示および小規模指示の両方が必要とされ得る。
[0092] コンピューティングシステム310はまた、受け取った画像データを分析して、1つまたは複数の在庫物品に対応する1つまたは複数の視覚的識別子を検出するように構成されてもよい。視覚的識別子は、上述したように、バーコード、QRコードまたはそれらに類するものなど、物品上の視覚的識別子であってもよい。いくつかの例では、識別子を検出することは、バーコードおよび/またはバーコードのように見える物体の画像データをスキャンまたはサーチすることを含み得る。次いで、バーコードを抽出または「読み取る」ことができ、対応する在庫物品を決定することができる。いくつかの例では、航行指示を生成するために使用されるカメラ304によってキャプチャされた同じ画像データを分析して、1つまたは複数の物品上の視覚的識別子を検出することもできる。このように、画像データは、航行指示の生成および視覚的識別子の検出が、コンピューティングシステム310によって同時に実行され得るという点で、二重目的であり得る。
[0093] 1つまたは複数の物品上の視覚的識別子を検出した後、コンピューティングシステム310は、検出された視覚的識別子に対応する在庫物品を識別し、それに応答して1つまたは複数の動作を実行することができる。以下に記載する動作は、検出された各視覚的識別子に対して実行されてもよい。
[0094] 1つまたは複数の視覚的識別子の検出に応答して実行される第1の動作は、コンピューティングシステム301が在庫物品の倉庫位置(すなわち、物品の真のすなわち実際の位置)を決定するための基準として画像データを使用することを含むことができる。いくつかの例では、在庫物品の倉庫位置は、画像データがキャプチャされた時点のまたはその時に近いロボット装置302のおよび/またはカメラ304の既知の場所に基づいて判定されてもよい。他の例では、カメラ304によってキャプチャされ、コンピュータシステム310によって分析される画像データは、ロボット装置302の位置および/または画像データに含まれる1つまたは複数の物品の位置に関する埋め込まれた情報を含むことができる。
[0095] 1つまたは複数の視覚的識別子の検出に応答して実行される第2の動作は、コンピューティングシステム310が在庫物品の予想される位置を決定することを含むことができる。予想される位置を決定することは、メモリから記憶された位置を取得すること、または1つまたは複数のコンピューティング装置と通信して、予想される位置を受信することを含むことができる。
[0096] 第3の動作は、コンピューティングシステム310が倉庫の場所を予想される場所と比較することができる。いくつかの例では、この比較は、倉庫の場所が予想される場所からの閾値距離内にあるかどうかを判断することを含み得る。この比較は、識別された在庫物品が予想される場所にあるか、または在庫物品が誤って配置されているかを示すことができる。
[0097] 第4の動作は、倉庫の場所と予想される場所との間の比較に基づいて、または倉庫の場所と予想される場所との間の比較に応答して、コンピュータシステム310がさらなる動作を開始することを含むことができる。いくつかの例では、これは、ロボット装置に、在庫物品をピックアップして別の場所に移動するように指示することを含み得る。それは、同様にまたは代わりに、倉庫の場所または在庫物品の予想される場所に行くように第2のロボット装置または人間のオペレータを差し向けることを含み得る。他の例では、さらなる動作は、在庫物品を誤って配置された物品のリストまたは列に追加することを含み得、それは後で適切に移動または処理することができる。さらに他の例では、コンピューティング装置310は、在庫物品の予想される場所を更新して、倉庫の場所と予想される場所との間のあらゆるエラーまたは差異を修正することができる。
[0098] 図4は、例示的な実践形態による例示的な倉庫通路400を示す。通路400は、高さが複数のレベルであり、その上に保管された1つまたは複数の在庫物品412を有することができる1つまたは複数の棚410を含むことができる。各在庫物品412は、物品上の視覚的識別子414を含むことができ、これは、在庫物品を互いに区別し、どの在庫物品であるかを識別するために使用することができる。
[0099] 自律型誘導車両(AGV)402などのロボット装置は、通路400内に配置することができる。ロボット装置402は、1つまたは複数の点でロボット装置302と同様または同一であってもよい。ロボット装置402は、視野406を有することができるカメラ404を含むことができる。視界406は、カメラ404の位置および向きに応じて変化し得る。ロボット装置402はまた、航行指示の生成、画像データの解析、その他など、1つまたは複数の機能を実行することができるコンピューティングシステム(図示せず)を含んでもよく、またはそのようなコンピューティングシステムに通信可能に結合されてもよい。
[0100] いくつかの例では、コンピューティングシステムは、標的位置に配置された標的在庫物品を決定し、標的位置にロボット装置402を差し向けることができる。コンピューティングシステムは、標的物品の標的(または予想される)位置を取得し、ロボット装置402が標的位置へ移動するための経路を生成することができる。ロボット装置402が標的位置に配置されると、それはカメラ404を使用して標的在庫物品に対応する視覚的識別子を含む画像データをキャプチャするように構成することができる。
[0101] ロボット装置402が移動している間、カメラ404は、新しい指示であり得る航行指示を生成するためにコンピューティング装置によって使用され得る画像データをキャプチャしてもよく、または以前の指示を更新または変更してもよい。例えば、図4のロボット装置402は航行指示を受信して通路400の端部に移動することができる。カメラ404は、ロボット装置402の正面の地面を含む視野を有する画像データをキャプチャするために、第1の位置で下方に傾けられてもよい。カメラ404はこの第1の位置で障害物420を含む画像データをキャプチャし得る。これに応答して、コンピューティング装置は、障害物420を回避するようにロボット装置402の移動方向を変更させる航行指示を生成することができる。
[0102] 図5は、図4を参照して記載した倉庫通路400を示している。しかしながら、図5では、ロボット装置402のカメラ404は第2の位置にあり、上方に傾けられ、その結果、視野506は視野406よりも高い。視野506は、第1のレベルに位置する視覚的識別子に加えて、第2のレベルの棚410上に位置する在庫物品に対応する視覚的識別子を含むことができる。しかしながら、第2の位置にあるカメラは、ロボット装置402の前方の地面の視認性が低下しているか、地面を全く見ることができない可能性がある。このように、カメラ404の位置決めおよび結果として生じる視野は、航行のために地面または障害物をキャプチャすることと、追加の視覚的識別子をキャプチャすることとの間のトレードオフを含み得る。
[0103] このトレードオフを念頭において、いくつかの例は、航行および視覚的識別子の検出に関して、各位置の利点および欠点に基づいてカメラ404の位置を決定することを含むことができる。例えば、カメラ404の位置は、(1)選択された位置でカメラ404によってキャプチャされ得る1つまたは複数の視覚的識別子の価値、および(2)カメラが選択された位置にあるときのロボット装置402の航行の精度に基づいて決定することができる。1つまたは複数の視覚的識別子の価値は、視覚的識別子が最近スキャンされたかどうか、カメラが第2の位置と比較して第1の位置にあるときにスキャンされ得る視覚的識別子の追加の数、1つまたは複数の視覚的識別子および/または在庫物品に関連する優先度、1つまたは複数の視覚的識別子および/または在庫物品の重要度(人気物品または高額物品など)、または任意の他の尺度に基づくことができる。さらに、ロボット装置402の航行の精度は、障害物にぶつかる可能性、カメラが第2の位置と比較して第1の位置にあるときの航行精度の低下、または他の尺度に基づくことができる。
[0104] いくつかの例では、カメラ404の位置は動的に変化し得る。例えば、ロボット装置402は、カメラ404が第1の位置にあるときにキャプチャされた画像データに基づいて決定された航行指示を実行している間、カメラ404は、追加の視覚的識別子をキャプチャするための第2の位置に置くことができる。カメラ404は、最初に図4に示すように下方に傾けられてもよく、コンピューティングシステムは、ロボット装置402は障害物420を回避するために右に1フィート移動しなければならず、次に前方への経路は20フィートにわたって物がないと判断してもよい。次いで、ロボット装置402は、これらの航行指示を実行するように前進することができる。しかし、これらの航行指示の実行前または実行中に、カメラ404は、図5に示す上向きの角度など、第1の位置のカメラ404では見えない視覚的識別子を含み得る第2の位置に置くことができる。あるいは、カメラ404は、ロボット装置402の移動中に、またはロボット装置402が静止している間に、前後、上下にスキャンすることができ、または他の方法でその視野を変更することができる。
[0105] 図6は、例示的な実施形態による例示的な方法600のフローチャートを示す。方法600は、図2A~2D、3、4、および5に示されるロボット装置および/または本明細書に記載のコンピューティングシステムなど、本明細書に記載された装置またはシステムのいずれかによって実行されてもよい。
[0106] さらに、以下のことが注記される、すなわち、本明細書に記載されるフローチャートに関連して記載された機能は、特別の機能および/または構成される汎用機能ハードウェアモジュール、図6に示されるフローチャートに関連して記載される特定の論理機能、決定および/またはステップを達成するためにプロセッサによって実行されるプログラムコードの部分として実行することができる。使用される場合、プログラムコードは、例えばディスクまたはハードドライブを含むストレージデバイスなどの任意のタイプのコンピュータ可読媒体に格納することができる。方法
[0107] さらに、図6に示されるフローチャートの各ブロックは、プロセス内の特定の論理機能を実行するように接続された回路を表すことができる。特に示されていない限り、図6に示されたフローチャート中の機能は、記載された方法の全体的な機能性が維持される限り、含まれる機能性に依存して、別々に記載された機能の実質的に同時の実行を含めて示されているまたは考察されている順序と違う順序で実行されてもよく、またはいくつかの例では逆の順序で実行されてもよい。
[0108] 図6のブロック602において、方法600は、ロボット装置に取り付けられたカメラによってキャプチャされた画像データを受信することを含むことができる。カメラは、奥行き情報をキャプチャすることができるステレオカメラであってもよい。上述のように、ロボット装置は、複数の在庫物品を含む倉庫環境内に配備されてもよい。受信された画像データは、カメラの視野を網羅することができ、1つまたは複数の障害物、在庫物品、視覚的識別子、または他の物体を含むことができる。
[0109] ブロック604において、方法600は、航行指示を生成することを含むことができる。航行指示は、受信した画像データに基づいて生成することができ、倉庫環境内のロボット装置の航行に使用することができる。
[0110] ブロック606において、方法600は、物品上の視覚的識別子を検出することを含むことができる。ブロック604で航行指示を生成するために使用された受信された画像データは、1つまたは複数の物品上の視覚的識別子を検出するために分析されてもよい。物品上の視覚的識別子は、倉庫環境内に位置する1つまたは複数の在庫物品に対応することができる。いくつかの例では、航行指示を生成するために使用される画像データは、物品上の視覚的識別子を検出するために分析されてもよく、その結果、航行指示は物品上の視覚的識別子の検出と同時に生成される。
[0111] ブロック608において、方法600は、検出された物品上の視覚的識別子ごとに、(i)対応する在庫物品の倉庫位置を決定し、(ii)決定された倉庫位置を予想位置と比較し、そして(iii)比較に基づいて動作を開始することを含むことができる。対応する在庫物品の倉庫位置を決定することは、在庫物品、画像データをキャプチャしたカメラ、ロボット装置、および/または別の物体に対応するGPS位置データおよび/または他の位置データを受信することを含むことができる。決定された倉庫位置を予想位置と比較することは、在庫物品の予想位置を取得し、予想位置と倉庫位置との間の差異を決定することを含むことができる。この比較に基づいて、動作が実行されてもよい。これらの動作は、例えば、人間のオペレータの差し向け、予想位置または倉庫位置の更新、在庫物品の移動、または在庫物品のリストへの追加など、本明細書に記載されるいずれかの動作であり得る。
[0112] いくつかの例では、方法600は、標的の物品上の視覚的識別子を有しかつ標的位置に対応する標的在庫物品を決定することを含むこともできる。これらの例における航行指示の生成は、ロボット装置を標的位置に移動させるための航行指示を生成することを含むことができる。次いで、この方法は、ロボット装置を標的位置に移動させ、標的の物品上の視覚的識別子をキャプチャすることを含むことができる。
[0113] 方法600を実行する際、ロボット装置に取り付けられたカメラは位置決め可能であってもよい。カメラの位置は変更可能であり、(1)選択された位置のカメラによってキャプチャされる1つまたは複数の視覚的識別子の価値、および(2)カメラが選択された位置にあるときのロボット装置の航行の精度、を含む上記の1つまたは複数の要因に基づいて決定することができる。他の考慮事項も可能である。
III.例示的な変形
[0114] いくつかの例では、航行指示の生成は、ロボット装置がとる結果のルートの考慮を含むことができる。通常、ロボット装置は移動時間を短縮するためにより直接的なルートをとることが有益であり得る。しかしながら、いくつかの例では、ロボット装置はより多くの在庫物品および視覚的識別子にさらされるため、ロボット装置は循環的またはより直接的でないルートをとることが有益であり得る。これにより、より多くの視覚的識別子を検出することができ、したがってより正確で最新の在庫表を維持することができる。
[0114] いくつかの例では、航行指示の生成は、ロボット装置がとる結果のルートの考慮を含むことができる。通常、ロボット装置は移動時間を短縮するためにより直接的なルートをとることが有益であり得る。しかしながら、いくつかの例では、ロボット装置はより多くの在庫物品および視覚的識別子にさらされるため、ロボット装置は循環的またはより直接的でないルートをとることが有益であり得る。これにより、より多くの視覚的識別子を検出することができ、したがってより正確で最新の在庫表を維持することができる。
[0115] ロボット装置を第1の場所から第2の場所に移動させるために、航行指示の第1のセットを生成することができる。ロボット装置がこの第1のルートに沿ってさらされ得る視覚的識別子の数が決定されてもよい。航行指示の第2のセット、ならびにロボット装置がさらされ得る視覚的識別子の第2の数が決定されてもよい。第2のルートがロボット装置によって実行されるために選択されてもよい。それというのも、航行指示の第2のセットを実行する際に、ロボット装置はそのルートに沿って在庫物品に関する価値のある情報を得ることができるからである。他の例では、特定の航行指示が他の理由で同様に選択されてもよい。
[0116] 本開示は、本出願に記載された特定の実施形態に関して限定されるものではなく、本出願に記載された特定の実施形態は様々な態様の説明として意図される。当業者には明らかであるように、その趣旨および範囲から逸脱することなく、多くの修正および変更が可能である。本明細書に列挙したものに加えて、本開示の範囲内の機能的に等価な方法および装置は、先行の記載から当業者には明らかであろう。そのような修正および変更は、添付の特許請求の範囲内に含まれることが意図される。
[0117] 上の詳細な記載は、開示されたシステム、装置、および方法の様々な特徴および機能を、添付の図面を参照して記載する。図面中、類似の符号は、文脈が別途指示しない限り、典型的には同様の構成要素を特定する。本明細書および図面に記載された例示的な実施形態は、限定を意味するものではない。本明細書に提示される主題の趣旨および範囲から逸脱することなく、他の実施形態を利用することができ、他の変更を行うことができる。本明細書に概略的に記載され、図に示されている本開示の態様は、広範囲の異なる構成で配置、置換、組み合わせ、分離、および設計することができ、これらのすべてが本明細書に明示的に企図されていることは容易に理解されるであろう。
[0118] 情報の処理を表すブロックは、本明細書に記載の方法または技術の特定の論理機能を実行するように構成することができる回路に対応することができる。代替的または追加的に、情報の処理を表すブロックは、モジュール、セグメント、またはプログラムコードの一部(関連データを含む)に対応することができる。プログラムコードは、方法または技術において特定の論理機能または動作を実施するためにプロセッサによって実行可能な1つまたは複数の指示を含むことができる。プログラムコードおよび/または関連するデータは、ディスクまたはハードドライブまたは他の記憶媒体を含む記憶装置などの任意のタイプのコンピュータ可読媒体に格納することができる。
[0119] コンピュータ可読媒体はまた、レジスタメモリ、プロセッサキャッシュ、およびランダムアクセスメモリ(RAM)のようなデータを短時間記憶するコンピュータ可読媒体などの非一時的なコンピュータ可読媒体を含むことができる。コンピュータ可読媒体はまた、例えば、読出し専用メモリ(ROM)、光学ディスクまたは磁気ディスク、コンパクトディスク読出し専用メモリ(CD-ROM)のような第2のまたは永続的な長期記憶など、プログラムコードおよび/またはデータをより長い期間記憶する非一時的なコンピュータ可読媒体を含むこともできる。コンピュータ可読媒体は、任意の他の揮発性または不揮発性ストレージシステムであってもよい。コンピュータ可読媒体は、例えば、コンピュータ可読記憶媒体、または有形記憶装置と考えることができる。
[0120] さらに、1つまたは複数の情報伝送を表すブロックは、同じ物理的装置内のソフトウェアおよび/またはハードウェアモジュール間の情報伝送に対応することができる。しかしながら、他の情報伝送が、異なる物理的装置内のソフトウェアモジュールおよび/またはハードウェアモジュール間にあってもよい。
[0121] 図面に示される特定の配置は、限定的であると見なすべきではない。他の実施形態は所与の図に示される各要素のより多いまたは少ない数を含むことができることを理解されたい。さらに、図示された要素のいくつかは、組み合わせることができる、または省略することができる。なおもさらに、例示的な実施形態は、図に示されていない要素を含むことができる。
[0122] 様々な態様および実施形態が本明細書に開示されているが、他の態様および実施形態は当業者には明らかであろう。本明細書に開示された様々な態様および実施形態は説明のためのものであり限定する意図はなく、真の範囲は以下の特許請求の範囲によって示されている。
Claims (1)
- 本明細書に記載の発明。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/222,606 US10071856B2 (en) | 2016-07-28 | 2016-07-28 | Inventory management |
US15/222,606 | 2016-07-28 | ||
JP2020195128A JP7118123B2 (ja) | 2016-07-28 | 2020-11-25 | 在庫管理 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020195128A Division JP7118123B2 (ja) | 2016-07-28 | 2020-11-25 | 在庫管理 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022109950A true JP2022109950A (ja) | 2022-07-28 |
Family
ID=61011491
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018560997A Active JP6801008B2 (ja) | 2016-07-28 | 2017-07-05 | 在庫管理 |
JP2020195128A Active JP7118123B2 (ja) | 2016-07-28 | 2020-11-25 | 在庫管理 |
JP2022068799A Withdrawn JP2022109950A (ja) | 2016-07-28 | 2022-04-19 | 在庫管理 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018560997A Active JP6801008B2 (ja) | 2016-07-28 | 2017-07-05 | 在庫管理 |
JP2020195128A Active JP7118123B2 (ja) | 2016-07-28 | 2020-11-25 | 在庫管理 |
Country Status (7)
Country | Link |
---|---|
US (3) | US10071856B2 (ja) |
EP (1) | EP3491477A4 (ja) |
JP (3) | JP6801008B2 (ja) |
KR (1) | KR102130457B1 (ja) |
CN (1) | CN109154825A (ja) |
AU (2) | AU2017301538B2 (ja) |
WO (1) | WO2018022265A1 (ja) |
Families Citing this family (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9139363B2 (en) * | 2013-03-15 | 2015-09-22 | John Lert | Automated system for transporting payloads |
WO2016130856A1 (en) * | 2015-02-12 | 2016-08-18 | Melonee Wise | System and method using robots to assist humans in order fulfillment |
DE102015004087B3 (de) * | 2015-03-31 | 2016-12-29 | gomtec GmbH | Fahrbarer Roboter mit Kollisionserkennung |
US10435241B2 (en) | 2015-06-02 | 2019-10-08 | Alert Innovation Inc. | Storage and retrieval system |
US11203486B2 (en) | 2015-06-02 | 2021-12-21 | Alert Innovation Inc. | Order fulfillment system |
US11142398B2 (en) | 2015-06-02 | 2021-10-12 | Alert Innovation Inc. | Order fulfillment system |
JP6292217B2 (ja) * | 2015-12-18 | 2018-03-14 | 日本精工株式会社 | 生産ライン及び製品の生産方法 |
US11164149B1 (en) * | 2016-08-31 | 2021-11-02 | Corvus Robotics, Inc. | Method and system for warehouse inventory management using drones |
US20180075386A1 (en) * | 2016-09-15 | 2018-03-15 | Bext Holdings, LLC | Systems and methods of use for commodities analysis, collection, resource-allocation, and tracking |
US10346797B2 (en) | 2016-09-26 | 2019-07-09 | Cybernet Systems, Inc. | Path and load localization and operations supporting automated warehousing using robotic forklifts or other material handling vehicles |
US10769581B1 (en) * | 2016-09-28 | 2020-09-08 | Amazon Technologies, Inc. | Overhanging item background subtraction |
US10339656B1 (en) * | 2016-09-29 | 2019-07-02 | Amazon Technologies, Inc. | Inferring count of items using image |
US11042161B2 (en) | 2016-11-16 | 2021-06-22 | Symbol Technologies, Llc | Navigation control method and apparatus in a mobile automation system |
AU2017362508A1 (en) | 2016-11-17 | 2019-06-20 | Walmart Apollo, Llc | Automated-service retail system and method |
MX2019005988A (es) | 2016-11-29 | 2019-10-14 | Alert Innovation Inc | Sistema automatizado de gestion de inventario y cadena de abastecimiento de minoristas. |
EP3568363A1 (en) | 2017-01-10 | 2019-11-20 | Alert Innovation Inc. | Automated store with interchangeable automated mobile robots |
US10196210B2 (en) * | 2017-01-16 | 2019-02-05 | Locus Robotics Corp. | Display for improved efficiency in robot assisted order-fulfillment operations |
US20180231973A1 (en) * | 2017-02-16 | 2018-08-16 | Wal-Mart Stores, Inc. | System and Methods for a Virtual Reality Showroom with Autonomous Storage and Retrieval |
JP7478320B2 (ja) * | 2017-02-24 | 2024-05-07 | ウォルマート アポロ リミテッド ライアビリティ カンパニー | 在庫管理システムおよび方法 |
US10723554B2 (en) * | 2017-04-03 | 2020-07-28 | Walmart Apollo, Llc | Systems and methods for intake and transport of physical objects in a facility |
US11449059B2 (en) | 2017-05-01 | 2022-09-20 | Symbol Technologies, Llc | Obstacle detection for a mobile automation apparatus |
WO2018204308A1 (en) | 2017-05-01 | 2018-11-08 | Symbol Technologies, Llc | Method and apparatus for object status detection |
US11093896B2 (en) | 2017-05-01 | 2021-08-17 | Symbol Technologies, Llc | Product status detection system |
WO2018201423A1 (en) | 2017-05-05 | 2018-11-08 | Symbol Technologies, Llc | Method and apparatus for detecting and interpreting price label text |
CN107139161A (zh) * | 2017-06-09 | 2017-09-08 | 杭州亚美利嘉科技有限公司 | 悬挂式机器人导轨、悬挂式机器人及其运行系统 |
US10860750B2 (en) * | 2017-06-15 | 2020-12-08 | Sap Se | Model driven layout design for robotics warehouse |
US10909650B2 (en) | 2017-06-23 | 2021-02-02 | Cloud 9 Perception, LP | System and method for sensing and computing of perceptual data in industrial environments |
JP2019059004A (ja) * | 2017-09-28 | 2019-04-18 | セイコーエプソン株式会社 | ロボットシステム |
AU2018368406B2 (en) * | 2017-11-14 | 2022-02-17 | Hai Robotics Co., Ltd. | Automated guided vehicle designed for warehouse |
CN109829665B (zh) | 2017-11-23 | 2023-11-07 | 菜鸟智能物流控股有限公司 | 物品拣选调度请求的处理方法及相关设备 |
FR3075189B1 (fr) * | 2017-12-15 | 2022-06-24 | Solystic | Procede de palettisation centralisee d'objets en sortie de lignes de production |
US20200034790A1 (en) * | 2018-01-05 | 2020-01-30 | Walmart Apollo, Llc | Systems and methods for dynamically re-allocating storage containers |
JP6924326B2 (ja) * | 2018-03-23 | 2021-08-25 | 本田技研工業株式会社 | 設置位置通知システム |
US10678228B2 (en) * | 2018-04-04 | 2020-06-09 | Invia Robotics, Inc. | Autonomous robots performing concerted operation based on shared sensory access and holistic flow of information |
CN111902832B (zh) * | 2018-04-19 | 2024-07-26 | 米其林集团总公司 | 用于处理回收再利用产品的体系 |
JP7057214B2 (ja) * | 2018-05-18 | 2022-04-19 | トヨタ自動車株式会社 | 把持装置、タグが付された容器、対象物把持プログラムおよび対象物把持方法 |
JP2019204195A (ja) * | 2018-05-22 | 2019-11-28 | 本田技研工業株式会社 | 搬送台車の誘導路 |
US10242273B1 (en) * | 2018-05-30 | 2019-03-26 | Lineage Logistics, LLC | Tracking vehicles in a warehouse environment |
US10769587B2 (en) * | 2018-07-02 | 2020-09-08 | Walmart Apollo, Llc | Systems and methods of storing and retrieving retail store product inventory |
DE102018116834A1 (de) * | 2018-07-11 | 2020-01-16 | Sick Ag | Automatisierungssystem für ein Warenlager |
CN109508926A (zh) * | 2018-07-12 | 2019-03-22 | 中外运化工国际物流有限公司 | 一种危险品中转仓库的物流系统及工作方法 |
US11292678B2 (en) | 2018-07-31 | 2022-04-05 | Uatc, Llc | Palette system for cargo transport |
US11192719B2 (en) * | 2018-08-02 | 2021-12-07 | Alert Innovation Inc. | Automated decant system |
CN109079738B (zh) * | 2018-08-24 | 2022-05-06 | 北京密塔网络科技有限公司 | 一种自适应agv机器人及自适应导航方法 |
WO2020047792A1 (en) * | 2018-09-06 | 2020-03-12 | Lingdong Technology (Beijing) Co. Ltd | Slef-driving vehicle system with retractable sensor head |
US11010920B2 (en) | 2018-10-05 | 2021-05-18 | Zebra Technologies Corporation | Method, system and apparatus for object detection in point clouds |
US11506483B2 (en) | 2018-10-05 | 2022-11-22 | Zebra Technologies Corporation | Method, system and apparatus for support structure depth determination |
KR102200579B1 (ko) * | 2018-10-25 | 2021-01-11 | 한국로봇융합연구원 | 상품 자동 진열 시스템 및 그 방법 |
US11090811B2 (en) | 2018-11-13 | 2021-08-17 | Zebra Technologies Corporation | Method and apparatus for labeling of support structures |
US11003188B2 (en) | 2018-11-13 | 2021-05-11 | Zebra Technologies Corporation | Method, system and apparatus for obstacle handling in navigational path generation |
EP3656702A1 (en) * | 2018-11-21 | 2020-05-27 | Mobile Industrial Robots A/S | Mobile industrial robot with security system for pallet docketing |
US11416000B2 (en) | 2018-12-07 | 2022-08-16 | Zebra Technologies Corporation | Method and apparatus for navigational ray tracing |
US11079240B2 (en) | 2018-12-07 | 2021-08-03 | Zebra Technologies Corporation | Method, system and apparatus for adaptive particle filter localization |
WO2020132535A1 (en) * | 2018-12-21 | 2020-06-25 | Motion2Ai | Warehouse management method and system |
CA3028708A1 (en) | 2018-12-28 | 2020-06-28 | Zih Corp. | Method, system and apparatus for dynamic loop closure in mapping trajectories |
US11078019B2 (en) * | 2019-01-30 | 2021-08-03 | Locus Robotics Corp. | Tote induction in warehouse order fulfillment operations |
US10994933B2 (en) * | 2019-01-30 | 2021-05-04 | Locus Robotics Corp. | Optimized tote recommendation process in warehouse order fulfillment operations |
US11724395B2 (en) | 2019-02-01 | 2023-08-15 | Locus Robotics Corp. | Robot congestion management |
CN109849008A (zh) * | 2019-02-21 | 2019-06-07 | 广州高新兴机器人有限公司 | 一种基于金库的机器人盘点方法及系统 |
US11046519B2 (en) | 2019-02-25 | 2021-06-29 | Rehrig Pacific Company | Delivery system |
US11613018B2 (en) | 2019-03-08 | 2023-03-28 | Abb Schweiz Ag | Robotic manipulation intelligence systems and methods for automatic restocking of items in retail store environments |
US11279042B2 (en) * | 2019-03-12 | 2022-03-22 | Bear Robotics, Inc. | Robots for serving food and/or drinks |
CN111689118B (zh) * | 2019-03-14 | 2022-01-07 | 比亚迪股份有限公司 | 物料控制方法、装置、计算机设备及存储介质 |
US10929811B2 (en) * | 2019-03-26 | 2021-02-23 | Abb Schweiz Ag | Systems and methods for mapping locations of cartons in pallets and containers |
US20220184664A1 (en) * | 2019-03-28 | 2022-06-16 | Aquabot Ltd. | Sorting system |
US10583560B1 (en) * | 2019-04-03 | 2020-03-10 | Mujin, Inc. | Robotic system with object identification and handling mechanism and method of operation thereof |
JP7024167B2 (ja) * | 2019-04-04 | 2022-02-24 | シャンハイ クイックトロン インテリジェント テクノロジー カンパニー リミテッド | ナビゲーション制御方法、スマート倉庫システム及び無人搬送車 |
NZ788259A (en) * | 2019-04-08 | 2024-07-26 | Lineage Logistics Llc | Automatic transportation of pallets of goods |
CN110026962A (zh) * | 2019-04-12 | 2019-07-19 | 云南电力试验研究院(集团)有限公司 | 一种智能无损检测系统 |
CN110210805A (zh) * | 2019-04-30 | 2019-09-06 | 安徽四创电子股份有限公司 | 一种仓储信息管理系统及管理方法 |
CN111421546B (zh) * | 2019-05-31 | 2021-05-28 | 牧今科技 | 机器人系统的控制装置以及控制方法 |
US11120594B2 (en) * | 2019-06-03 | 2021-09-14 | International Business Machines Corporation | Floor planning and placement of objects in a loading space |
US11080566B2 (en) | 2019-06-03 | 2021-08-03 | Zebra Technologies Corporation | Method, system and apparatus for gap detection in support structures with peg regions |
US11960286B2 (en) | 2019-06-03 | 2024-04-16 | Zebra Technologies Corporation | Method, system and apparatus for dynamic task sequencing |
US11402846B2 (en) | 2019-06-03 | 2022-08-02 | Zebra Technologies Corporation | Method, system and apparatus for mitigating data capture light leakage |
US11341663B2 (en) * | 2019-06-03 | 2022-05-24 | Zebra Technologies Corporation | Method, system and apparatus for detecting support structure obstructions |
US11151743B2 (en) | 2019-06-03 | 2021-10-19 | Zebra Technologies Corporation | Method, system and apparatus for end of aisle detection |
US11662739B2 (en) | 2019-06-03 | 2023-05-30 | Zebra Technologies Corporation | Method, system and apparatus for adaptive ceiling-based localization |
US11200677B2 (en) | 2019-06-03 | 2021-12-14 | Zebra Technologies Corporation | Method, system and apparatus for shelf edge detection |
CN110223212B (zh) * | 2019-06-20 | 2021-05-18 | 上海智蕙林医疗科技有限公司 | 一种运输机器人的调度控制方法和系统 |
US11069073B2 (en) | 2019-07-23 | 2021-07-20 | Advanced New Technologies Co., Ltd. | On-shelf commodity detection method and system |
US11377104B2 (en) * | 2019-07-24 | 2022-07-05 | Robotic Research Opco, Llc | Autonomous waste collection truck |
US11724880B2 (en) | 2019-07-29 | 2023-08-15 | Nimble Robotics, Inc. | Storage systems and methods for robotic picking |
US11738447B2 (en) * | 2019-07-29 | 2023-08-29 | Nimble Robotics, Inc. | Storage systems and methods for robotic picking |
US11338996B2 (en) * | 2019-08-07 | 2022-05-24 | Hangzhou Huicang Information Technology Company Limited | Rack apparatus, two-wheel drive carriage and automated storage and distribution system |
US11554917B2 (en) * | 2019-08-14 | 2023-01-17 | Opex Corporation | Systems and methods for dynamically managing the location of inventory items in an inventory management facility |
JP2021050069A (ja) * | 2019-09-25 | 2021-04-01 | 日本電産株式会社 | 物品搬送管理システム |
US10846812B1 (en) * | 2019-09-25 | 2020-11-24 | Coupang Corp. | Computer-implemented systems and methods for centralized logistics monitoring |
US10984378B1 (en) * | 2019-10-31 | 2021-04-20 | Lineage Logistics, LLC | Profiling pallets and goods in a warehouse environment |
CN111003396A (zh) * | 2019-12-02 | 2020-04-14 | 深圳光韵达光电科技股份有限公司 | 一种智能仓储系统及其控制方法 |
US11507103B2 (en) | 2019-12-04 | 2022-11-22 | Zebra Technologies Corporation | Method, system and apparatus for localization-based historical obstacle handling |
US20210171294A1 (en) * | 2019-12-04 | 2021-06-10 | Black-I Robotics, Inc. | Robotic arm system |
KR102108549B1 (ko) * | 2019-12-06 | 2020-05-07 | 최원일 | 타일 및 위생 도기의 유통 관리 방법 및 장치 |
US11107238B2 (en) | 2019-12-13 | 2021-08-31 | Zebra Technologies Corporation | Method, system and apparatus for detecting item facings |
FR3105098B1 (fr) * | 2019-12-20 | 2021-12-03 | Michelin & Cie | procede de suivi de pneumatiques de plus de 30 pouces par des moyens videos |
JP7369626B2 (ja) * | 2020-01-10 | 2023-10-26 | 三菱重工業株式会社 | ビークルの制御システム、ビークルの制御方法及びプログラム |
US11461890B2 (en) | 2020-02-05 | 2022-10-04 | Fulpruf Technology Corporation | Vehicle supply chain damage tracking system |
CN111260299B (zh) * | 2020-02-18 | 2023-07-18 | 中国联合网络通信集团有限公司 | 货品盘点及管理方法、装置、电子设备及存储介质 |
WO2021194413A1 (en) * | 2020-03-27 | 2021-09-30 | Ascent Solutions Pte Ltd | Asset monitoring system |
US11822333B2 (en) | 2020-03-30 | 2023-11-21 | Zebra Technologies Corporation | Method, system and apparatus for data capture illumination control |
CA3115442A1 (en) | 2020-04-20 | 2021-10-20 | Rehrig Pacific Company | Camera enabled portal |
JP7335621B2 (ja) * | 2020-05-19 | 2023-08-30 | 株式会社ヤハタホールディングス | 搬送システム |
US12118499B2 (en) | 2020-05-20 | 2024-10-15 | Hand Held Products, Inc. | Apparatuses, computer-implemented methods, and computer program products for automatic item searching and verification |
EP4158463A4 (en) * | 2020-05-27 | 2024-06-12 | Vimaan Robotics, Inc. | REAL-TIME EVENT TRACKING AND DIGITALIZATION FOR WAREHOUSE INVENTORY MANAGEMENT |
CN111606060A (zh) * | 2020-05-28 | 2020-09-01 | 广西我的科技有限公司 | 一种板材发板系统及方法 |
US11593931B2 (en) | 2020-06-09 | 2023-02-28 | Howmedica Osteonics Corp. | Surgical kit inspection systems and methods for inspecting surgical kits having parts of different types |
CN114044298A (zh) * | 2020-06-12 | 2022-02-15 | 深圳市海柔创新科技有限公司 | 仓储机器人的控制方法、装置、设备及可读存储介质 |
CN113264303A (zh) * | 2020-06-12 | 2021-08-17 | 深圳市海柔创新科技有限公司 | 取货控制的方法、系统、搬运机器人及存储介质 |
CN113264312A (zh) * | 2020-06-12 | 2021-08-17 | 深圳市海柔创新科技有限公司 | 货箱的提取方法、装置、系统、机器人和存储介质 |
CA3123055A1 (en) * | 2020-06-25 | 2021-12-25 | Rehrig Pacific Company | Pallet sled and delivery system |
WO2021259550A1 (en) * | 2020-06-26 | 2021-12-30 | Keonn Technologies S.L. | Movable platform for taking inventory and/or performing other actions on objects |
CN111767972A (zh) * | 2020-07-02 | 2020-10-13 | 深圳市海柔创新科技有限公司 | 物料盘点方法、装置、仓储机器人和仓储系统 |
US11450024B2 (en) | 2020-07-17 | 2022-09-20 | Zebra Technologies Corporation | Mixed depth object detection |
CN112278674B (zh) * | 2020-07-22 | 2022-09-06 | 北京京东乾石科技有限公司 | 调度方法、装置、设备及存储介质 |
WO2022027000A1 (en) * | 2020-07-29 | 2022-02-03 | Walmart Apollo, Llc | Systems and methods for transferring items using multiple robotic devices |
US11323624B2 (en) | 2020-09-01 | 2022-05-03 | Lineage Logistics, LLC | Image sensing assembly |
US11479414B2 (en) | 2020-09-11 | 2022-10-25 | Locus Robotics Corp. | Dynamic item putaway management using mobile robots |
US11741564B2 (en) | 2020-09-11 | 2023-08-29 | Locus Robotics Corp. | Sequence adjustment for executing functions on hems in an order |
US11724883B2 (en) * | 2020-09-11 | 2023-08-15 | Locus Robotics Corp. | Presort system for executing robot-assisted putaway tasks |
CN112180860B (zh) * | 2020-09-24 | 2022-05-31 | 深圳市海柔创新科技有限公司 | 任务处理方法、控制终端、机器人、仓储系统及存储介质 |
CN112150072A (zh) * | 2020-09-27 | 2020-12-29 | 北京海益同展信息科技有限公司 | 基于智能机器人的资产盘点方法、装置、电子设备及介质 |
US12038538B2 (en) * | 2020-10-08 | 2024-07-16 | Intelligrated Headquarters, Llc | LiDAR based monitoring in material handling environment |
US11858741B2 (en) | 2020-10-19 | 2024-01-02 | Gideon Brothers d.o.o. | Safety mode toggling by autonomous robots in a facility context |
US11593915B2 (en) | 2020-10-21 | 2023-02-28 | Zebra Technologies Corporation | Parallax-tolerant panoramic image generation |
US11392891B2 (en) | 2020-11-03 | 2022-07-19 | Zebra Technologies Corporation | Item placement detection and optimization in material handling systems |
CN112286201A (zh) * | 2020-11-09 | 2021-01-29 | 苏州罗伯特木牛流马物流技术有限公司 | Agv导航控制系统及方法 |
CN112340339A (zh) * | 2020-11-09 | 2021-02-09 | 苏州罗伯特木牛流马物流技术有限公司 | 叉式agv搬运穿梭车精确放置巷道的控制系统及方法 |
US11847832B2 (en) | 2020-11-11 | 2023-12-19 | Zebra Technologies Corporation | Object classification for autonomous navigation systems |
US11906980B2 (en) * | 2020-11-19 | 2024-02-20 | 6 River Systems, Llc | Systems and methods for autonomous vehicle operation |
CN112484730B (zh) * | 2020-11-19 | 2023-03-10 | 苏州超集信息科技有限公司 | 基于slam实现室内物料寻址导航的方法及系统 |
CN112651297A (zh) * | 2020-11-23 | 2021-04-13 | 北京旷视机器人技术有限公司 | 入库管理方法、装置、仓库管理系统和电子系统 |
CN112607280A (zh) * | 2020-12-16 | 2021-04-06 | 中能锐赫科技(北京)股份有限公司 | 基于对象检测的物资自动盘点系统 |
US11932129B2 (en) | 2020-12-21 | 2024-03-19 | Nimble Robotics, Inc. | Mobile robot having pneumatic charging system |
WO2022152407A1 (de) * | 2021-01-12 | 2022-07-21 | Premium Robotics Gmbh | Anordnung zum kommissionieren von gebinden |
DE102021103052A1 (de) * | 2021-02-10 | 2022-08-11 | Jungheinrich Aktiengesellschaft | System zum führen eines flurförderzeugs |
US20240127471A1 (en) * | 2021-02-25 | 2024-04-18 | Toshihiro Okamoto | Information processing apparatus, information processing system, information processing method, and recording medium |
US12049361B2 (en) * | 2021-04-19 | 2024-07-30 | Lineage Logistics, LLC | Automated pallet profiling |
EP4140935A1 (de) * | 2021-04-22 | 2023-03-01 | STILL GmbH | Verfahren zum betreiben eines autonomen flurförderzeugs |
US11691649B2 (en) * | 2021-05-21 | 2023-07-04 | 6 River Systems, Llc | Systems and methods for dynamically limiting alternate pick location attempts before shorting |
US20220397912A1 (en) * | 2021-06-11 | 2022-12-15 | 6 River Systems, Llc | Systems and methods for dynamic routing autonomous vehicles |
US11954882B2 (en) | 2021-06-17 | 2024-04-09 | Zebra Technologies Corporation | Feature-based georegistration for mobile computing devices |
CN113459119B (zh) * | 2021-06-18 | 2022-06-21 | 广东海洋大学 | 一种物流工程专用搬运机器人 |
US20220414375A1 (en) * | 2021-06-29 | 2022-12-29 | 7-Eleven, Inc. | Image cropping using depth information |
CN113493085A (zh) * | 2021-07-22 | 2021-10-12 | 意欧斯物流科技(上海)有限公司 | 一种叉车式agv对接生产线的自动装运方法及系统 |
CN113525987A (zh) * | 2021-07-29 | 2021-10-22 | 华清科盛(北京)信息技术有限公司 | 一种基于物联网技术的轻量级物流货物分拣运送方法、装置及电子设备 |
KR102397249B1 (ko) | 2021-07-30 | 2022-05-13 | 쿠팡 주식회사 | 서비스 관련 정보 제공을 위한 동작 방법 및 이를 지원하는 전자 장치 |
NO20210960A1 (ja) * | 2021-08-04 | 2023-02-06 | Pickr As | |
EP4129862A1 (en) * | 2021-08-05 | 2023-02-08 | Fameccanica.Data S.p.A. | A plant and a method for forming compound pallet units |
US11823440B2 (en) | 2021-08-19 | 2023-11-21 | Rehrig Pacific Company | Imaging system with unsupervised learning |
US20230139490A1 (en) * | 2021-10-29 | 2023-05-04 | Zebra Technologies Corporation | Automatic training data sample collection |
US11783606B2 (en) | 2021-11-01 | 2023-10-10 | Rehrig Pacific Company | Delivery system |
CN114435827A (zh) * | 2021-12-24 | 2022-05-06 | 北京无线电测量研究所 | 一种智慧仓储系统 |
WO2023154421A1 (en) * | 2022-02-09 | 2023-08-17 | Rehrig Pacific Company | Store delivery vision system |
GB2619002A (en) * | 2022-05-16 | 2023-11-29 | Botsandus Ltd | A warehouse management system and a method of operating such a system |
WO2023248477A1 (ja) * | 2022-06-24 | 2023-12-28 | 日本電気株式会社 | 処理装置、処理システム、処理方法、および記録媒体 |
US20240010431A1 (en) * | 2022-07-06 | 2024-01-11 | Rehrig Pacific Company | Automated mobile robots for automated delivery and assisted delivery |
US20240040539A1 (en) * | 2022-07-28 | 2024-02-01 | Zebra Technologies Corporation | System and Method for Automated and Dynamic Location Tracking |
CN115860642B (zh) * | 2023-02-02 | 2023-05-05 | 上海仙工智能科技有限公司 | 一种基于视觉识别的出入库管理方法及系统 |
CN117993828B (zh) * | 2024-04-03 | 2024-07-02 | 深圳市普拉托科技有限公司 | 基于智能仓储的问题托盘查找方法及系统 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02261701A (ja) * | 1989-04-03 | 1990-10-24 | Toshiba Corp | 立体自動倉庫システム |
JP2001163417A (ja) * | 1999-12-14 | 2001-06-19 | Matsushita Electric Ind Co Ltd | 蔵書管理システム |
JP2001287814A (ja) * | 2000-02-03 | 2001-10-16 | Pfu Ltd | 荷物管理装置および記録媒体 |
US7693757B2 (en) * | 2006-09-21 | 2010-04-06 | International Business Machines Corporation | System and method for performing inventory using a mobile inventory robot |
JP5047709B2 (ja) * | 2007-07-04 | 2012-10-10 | 株式会社日立製作所 | 移動装置、システム、移動方法及び移動プログラム |
US8162213B2 (en) | 2008-07-25 | 2012-04-24 | G&K Services, Inc. | Article identification system with faraday screens |
CA2639239A1 (en) * | 2008-08-29 | 2010-02-28 | Pcas Patient Care Automation Services Inc. | Automated modular apparatus for dispensing medicaments |
JP5236398B2 (ja) * | 2008-08-29 | 2013-07-17 | 株式会社竹中工務店 | 電波発信器の位置認識装置及び位置認識システム |
JP2010083674A (ja) * | 2008-10-03 | 2010-04-15 | Toshiba Corp | 物流管理システム及び物流管理方法 |
US8561897B2 (en) * | 2010-11-18 | 2013-10-22 | Sky-Trax, Inc. | Load tracking utilizing load identifying indicia and spatial discrimination |
ES2716927T3 (es) | 2011-06-24 | 2019-06-18 | Seegrid Corp | Vehículo automático guiado para la selección de pedidos |
SG11201400966UA (en) * | 2012-01-25 | 2014-04-28 | Adept Technology Inc | Positive and negative obstacle avoidance system for a mobile robot |
DK2791748T3 (da) * | 2012-02-08 | 2020-11-09 | Omron Robotics And Safety Tech Inc | Opgavestyringssystem for en flåde af autonome mobile robotter |
US8965561B2 (en) | 2013-03-15 | 2015-02-24 | Cybernet Systems Corporation | Automated warehousing using robotic forklifts |
US9280757B2 (en) * | 2013-05-14 | 2016-03-08 | DecisionGPS, LLC | Automated inventory management |
US10187616B2 (en) | 2013-06-04 | 2019-01-22 | James W. Shondel | Unmanned aerial vehicle inventory system |
US20170183157A9 (en) | 2013-06-18 | 2017-06-29 | Hdt Robotics, Inc. | Robotic manipulator for warehouses |
US9785911B2 (en) | 2013-07-25 | 2017-10-10 | I AM Robotics, LLC | System and method for piece-picking or put-away with a mobile manipulation robot |
ES2938229T3 (es) * | 2013-09-09 | 2023-04-05 | Dematic Corp | Preparación de pedidos móvil y autónoma |
WO2015055224A1 (en) * | 2013-10-14 | 2015-04-23 | Keonn Technologies S.L. | Automated inventory taking moveable platform |
JP6439327B2 (ja) * | 2014-09-02 | 2018-12-19 | 村田機械株式会社 | 搬送車システム |
US9969337B2 (en) | 2014-09-03 | 2018-05-15 | Sharp Laboratories Of America, Inc. | Methods and systems for mobile-agent navigation |
CN105292892A (zh) * | 2015-11-11 | 2016-02-03 | 江苏汇博机器人技术有限公司 | 一种工业机器人自动化仓储系统 |
CN105607635B (zh) * | 2016-01-05 | 2018-12-14 | 东莞市松迪智能机器人科技有限公司 | 自动导引车全景光学视觉导航控制系统及全向自动导引车 |
US9908702B2 (en) * | 2016-02-05 | 2018-03-06 | Invia Robotics, Inc. | Robotic navigation and mapping |
US20170278047A1 (en) * | 2016-03-25 | 2017-09-28 | Locus Robotics Corporation | Dynamic task interleaving in robot assisted order-fulfillment operations |
-
2016
- 2016-07-28 US US15/222,606 patent/US10071856B2/en active Active
-
2017
- 2017-07-05 KR KR1020187033612A patent/KR102130457B1/ko active IP Right Grant
- 2017-07-05 EP EP17834937.9A patent/EP3491477A4/en not_active Ceased
- 2017-07-05 WO PCT/US2017/040767 patent/WO2018022265A1/en unknown
- 2017-07-05 CN CN201780031399.1A patent/CN109154825A/zh active Pending
- 2017-07-05 JP JP2018560997A patent/JP6801008B2/ja active Active
- 2017-07-05 AU AU2017301538A patent/AU2017301538B2/en active Active
-
2018
- 2018-08-07 US US16/056,919 patent/US10518973B2/en active Active
-
2019
- 2019-11-19 US US16/688,541 patent/US10759599B2/en active Active
-
2020
- 2020-03-03 AU AU2020201566A patent/AU2020201566B2/en active Active
- 2020-11-25 JP JP2020195128A patent/JP7118123B2/ja active Active
-
2022
- 2022-04-19 JP JP2022068799A patent/JP2022109950A/ja not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
KR102130457B1 (ko) | 2020-07-08 |
CN109154825A (zh) | 2019-01-04 |
US20200087068A1 (en) | 2020-03-19 |
JP2019527172A (ja) | 2019-09-26 |
JP2021042080A (ja) | 2021-03-18 |
AU2020201566B2 (en) | 2021-01-14 |
JP7118123B2 (ja) | 2022-08-15 |
US20180029797A1 (en) | 2018-02-01 |
JP6801008B2 (ja) | 2020-12-16 |
WO2018022265A1 (en) | 2018-02-01 |
US20180370727A1 (en) | 2018-12-27 |
AU2017301538A1 (en) | 2018-12-06 |
AU2020201566A1 (en) | 2020-03-19 |
AU2017301538B2 (en) | 2019-12-19 |
US10759599B2 (en) | 2020-09-01 |
US10518973B2 (en) | 2019-12-31 |
KR20180127534A (ko) | 2018-11-28 |
EP3491477A4 (en) | 2020-02-12 |
US10071856B2 (en) | 2018-09-11 |
EP3491477A1 (en) | 2019-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7118123B2 (ja) | 在庫管理 | |
JP7269291B2 (ja) | 協調的在庫監視 | |
AU2017330339B2 (en) | Identification information for warehouse navigation | |
US10122995B2 (en) | Systems and methods for generating and displaying a 3D model of items in a warehouse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220419 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20220803 |