JP2021044315A - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP2021044315A
JP2021044315A JP2019163798A JP2019163798A JP2021044315A JP 2021044315 A JP2021044315 A JP 2021044315A JP 2019163798 A JP2019163798 A JP 2019163798A JP 2019163798 A JP2019163798 A JP 2019163798A JP 2021044315 A JP2021044315 A JP 2021044315A
Authority
JP
Japan
Prior art keywords
storage device
semiconductor substrate
layer
conductive
semiconductor storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019163798A
Other languages
English (en)
Inventor
正一 渡辺
Shoichi Watanabe
正一 渡辺
野口 充宏
Mitsuhiro Noguchi
充宏 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2019163798A priority Critical patent/JP2021044315A/ja
Priority to CN202010112529.8A priority patent/CN112466367B/zh
Priority to US16/807,230 priority patent/US11239317B2/en
Priority to TW109107330A priority patent/TWI740407B/zh
Publication of JP2021044315A publication Critical patent/JP2021044315A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1044Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices with specific ECC/EDC distribution
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】半導体基板のリーク電流を抑制し、高信頼性の不揮発性半導体記憶装置を提供する。【解決手段】不揮発性半導体記憶装置20は、第1導電型を有し、裏面に破砕層30Rを備える半導体基板30と、半導体基板の破砕層に対向する表面上に配置されたメモリセルアレイ21と、半導体基板上に配置され、第1導電型のチャネルを備え、メモリセルアレイに高電圧を供給する第1導電型高電圧トランジスタHVPとを備える。第1導電型高電圧トランジスタは、半導体基板の表面に配置され、第1導電型と反対導電型の第2導電型を有するウェル領域NWと、ウェル領域に配置されたp+ソース領域及びp+ドレイン領域と、半導体基板の破砕層とウェル領域との間に配置され、半導体基板の不純物濃度よりも高濃度の第1導電型の第1高濃度層WT2とを備える。【選択図】図15

Description

本発明の実施形態は、不揮発性半導体記憶装置に関する。
不揮発性半導体記憶装置としての3次元(3D;3 Dimensional)NANDフラッシュメモリが知られている。3DNANDフラッシュメモリは世代が進むに従ってセルの積層数が増えるため、半導体基板上に形成されたNANDフラッシュメモリ素子の高さもそれに伴い高くなる。
米国特許第8716097号明細書
そこで、3DNANDフラッシュメモリチップ厚を規定の厚さにするために半導体基板を薄くすることが求められる。
実施の形態が解決しようとする課題は、半導体基板のリーク電流を抑制し、高信頼性の不揮発性半導体記憶装置を提供することにある。
実施の形態に係る不揮発性半導体記憶装置は、第1導電型を有し、裏面に破砕層を備える半導体基板と、半導体基板の破砕層に対向する表面上に配置されたメモリセルアレイと、半導体基板上に配置され、第1導電型のチャネルを備え、メモリセルアレイに高電圧を供給する第1導電型高電圧トランジスタとを備える。第1導電型高電圧トランジスタは、半導体基板の表面に配置され、第1導電型と反対導電型の第2導電型を有するウェル領域と、ウェル領域に配置された第1導電型のソース領域及びドレイン領域と、破砕層とウェル領域との間に配置され、半導体基板の不純物濃度よりも高濃度の第1導電型の第1高濃度層とを備える。
実施の形態に係る不揮発性半導体記憶装置を適用したメモリシステムのブロック構成例を示す図。 実施の形態に係る不揮発性半導体記憶装置のブロック構成例を示す図。 実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイの回路構成例を示す図。 実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイの断面構造例を示す図。 実施の形態に係る不揮発性半導体記憶装置のロウデコーダのブロック構成例を示す図。 実施の形態に係る不揮発性半導体記憶装置の消去動作に使用される回路構成例を示す図。 (a)実施の形態に係る不揮発性半導体記憶装置に適用されるレベルシフタの回路構成例を示す図、(b)実施の形態に係る不揮発性半導体記憶装置に適用されるレベルシフタの別の回路構成例を示す図。 (a)レベルシフタに適用されるHVNDの電圧関係例、(b)レベルシフタに適用されるHVPの電圧関係例、(c)図7(b)と等価な電圧関係例。 実施の形態に係る不揮発性半導体記憶装置において、(a)レベルシフタ53AのHVPの書き込み時、及び消去時に印加される電圧関係例、(b)レベルシフタ54のHVPの書き込み時、及び消去時に印加される電圧関係例。 (a)比較例に係る不揮発性半導体記憶装置において、裏面に鏡面を備える半導体基板の模式的断面構造図、(b)実施の形態に係る不揮発性半導体記憶装置において、裏面に破砕層を備える半導体基板の模式的断面構造図。 (a)中心線平均粗さRaの説明図、(b)最大高さRmaxの説明図。 比較例に係る不揮発性半導体記憶装置において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造図。 第1の実施の形態に係る不揮発性半導体記憶装置において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造図。 (a)比較例として、WT2を形成しない場合のHVP部分の空乏層の到達距離のシミュレーション結果の模式図、(b)第1の実施の形態に係る不揮発性半導体記憶装置において、HVP部分の空乏層の到達距離のシミュレーション結果の模式図。 比較例として、WT2を形成しない場合の消去時のレベルシフタ54のHVP部分及びセルアレイ部分の空乏層の広がる様子を説明する模式的断面構造図。 比較例として、WT2を形成しない場合の書込み時のレベルシフタ53AのHVP部分の空乏層の広がる様子を説明する模式的断面構造図。 第1の実施の形態に係る不揮発性半導体記憶装置において、レベルシフタ54のHVP部分及びセルアレイ部分にWT2を形成する場合の消去時の空乏層の広がる様子を説明する模式的断面構造図。 第1の実施の形態に係る不揮発性半導体記憶装置において、HVP部分にWT2を形成する場合のnウェルNW及びWT2の不純物密度プロファイル例。 第2の実施の形態に係る不揮発性半導体記憶装置において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造図。 第2の実施の形態に係る不揮発性半導体記憶装置において、レベルシフタ54のHVP部分及びセルアレイ部分にWT2及びWT1を形成する場合の消去時の空乏層の広がる様子を説明する模式的断面構造図。 第3の実施の形態に係る不揮発性半導体記憶装置において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造図。 第3の実施の形態に係る不揮発性半導体記憶装置において、(a)HVPの模式的平面パターン構成例、(b)HVPの別の模式的平面パターン構成例。 第4の実施の形態に係る不揮発性半導体記憶装置において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造図。 第5の実施の形態に係る不揮発性半導体記憶装置において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造図。 第6の実施の形態に係る不揮発性半導体記憶装置において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造図。
次に、図面を参照して、実施の形態について説明する。以下に説明する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、各構成部品の厚みと平面寸法との関係等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
また、以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の材質、形状、構造、配置等を特定するものではない。この実施の形態は、特許請求の範囲において、種々の変更を加えることができる。
以下の説明において、nチャネル高電圧MOSトランジスタHVN、pチャネル高電圧MOSトランジスタHVP、nチャネル低電圧MOSトランジスタLVN、pチャネル低電圧MOSトランジスタLVPは、表現を簡単化してnチャネル高電圧トランジスタHVN、pチャネル高電圧トランジスタHVP、nチャネル低電圧トランジスタLVN、pチャネル低電圧トランジスタLVPと表記する場合もある。また単純にHVN、HVP、LVN、LVPと表記する場合もある。
[実施の形態]
(メモリシステム)
実施の形態に係る不揮発性半導体記憶装置20を適用したメモリシステム1のブロック構成例は、図1に示すように表される。
メモリシステム1は、例えば、外部のホスト機器と通信する。メモリシステム1は、ホスト機器(図示せず)からのデータを保持し、また、データをホスト機器に読み出す。
メモリシステム1は、図1に示すように、コントローラ10及び不揮発性半導体記憶装置(NANDフラッシュメモリ)20を備える。コントローラ10は、ホスト機器から命令を受取り、受け取られた命令に基づいて不揮発性半導体記憶装置20を制御する。具体的には、コントローラ10は、ホスト機器から書込みを指示されたデータを不揮発性半導体記憶装置20に書込み、ホスト機器から読出しを指示されたデータを不揮発性半導体記憶装置20から読み出してホスト機器に送信する。コントローラ10は、NANDバスによって不揮発性半導体記憶装置20に接続される。不揮発性半導体記憶装置20は、複数のメモリセルを備え、データを不揮発に記憶する。
NANDバスは、NANDインタフェースに従った信号/CE、CLE、ALE、/WE、/RE、/WP、/RB、及びI/O<7:0>の各々について、個別の配線を介して送受信を行う。信号/CEは、不揮発性半導体記憶装置20をイネーブルにするための信号である。信号CLEは、信号CLEがH(High)レベルである間に不揮発性半導体記憶装置20に流れる信号I/O<7:0>がコマンドであることを不揮発性半導体記憶装置20に通知する。信号ALEは、信号ALEがHレベルである間に不揮発性半導体記憶装置20に流れる信号I/O<7:0>がアドレスであることを不揮発性半導体記憶装置20に通知する。信号/WEは、信号/WEがL(Low)レベルである間に不揮発性半導体記憶装置20に流れる信号I/O<7:0>を不揮発性半導体記憶装置20に取り込むことを指示する。信号/REは、不揮発性半導体記憶装置20に信号I/O<7:0>を出力することを指示する。信号/WPは、データ書込み及び消去の禁止を不揮発性半導体記憶装置20に指示する。信号/RBは、不揮発性半導体記憶装置20がレディ状態(外部からの命令を受け付ける状態)であるか、ビジー状態(外部からの命令を受け付けない状態)であるかを示す。信号I/O<7:0>は、例えば8ビットの信号である。信号I/O<7:0>は、不揮発性半導体記憶装置20とコントローラ10との間で送受信されるデータの実体であり、コマンドCMD、アドレスADD、及びデータDATを含む。データDATは、書込みデータ及び読出しデータを含む。
コントローラ10は、図1に示すように、プロセッサ(CPU:Central Processing U nit)11、内蔵メモリ(RAM:Random Access Memory)12、ECC(Error Check and Correction)回路13、NANDインタフェース回路14、バッファメモリ15、及びホストインタフェース回路16を備える。
プロセッサ11は、コントローラ10全体の動作を制御する。プロセッサ11は、例えば、ホスト機器から受信したデータの読出し命令に応答して、NANDインタフェースに基づく読出し命令を不揮発性半導体記憶装置20に対して発行する。この動作は、書込み及び消去の場合についても同様である。また、プロセッサ11は、不揮発性半導体記憶装置20からの読出しデータに対して、種々の演算を実行する機能を有する。
内蔵メモリ12は、例えば、DRAM(Dynamic RAM)等の半導体メモリであり、プロセッサ11の作業領域として使用される。内蔵メモリ12は、不揮発性半導体記憶装置20を管理するためのファームウェア、及び各種の管理テーブル等を保持する。
ECC回路13は、エラー検出及びエラー訂正処理を行う。より具体的には、データの書込み時には、ホスト機器から受信したデータに基づいて、或る数のデータの組毎にECC符号を生成する。また、データの読出し時には、ECC符号に基づいてECC復号し、エラーの有無を検出する。そしてエラーが検出された際には、そのビット位置を特定し、エラーを訂正する。
NANDインタフェース回路14は、NANDバスを介して不揮発性半導体記憶装置20と接続され、不揮発性半導体記憶装置20との通信を司る。NANDインタフェース回路14は、プロセッサ11の指示により、コマンドCMD、アドレスADD、及び書込みデータを不揮発性半導体記憶装置20に送信する。また、NANDインタフェース回路14は、不揮発性半導体記憶装置20から読出しデータを受信する。
バッファメモリ15は、コントローラ10が不揮発性半導体記憶装置20及びホスト機器から受信したデータ等を一時的に保持する。バッファメモリ15は、例えば、不揮発性半導体記憶装置20からの読出しデータ、及び読出しデータに対する演算結果等を一時的に保持する記憶領域としても使用される。
ホストインタフェース回路16は、ホスト機器と接続され、ホスト機器との通信を司る。ホストインタフェース回路16は、例えば、ホスト機器から受信した命令及びデータを、それぞれプロセッサ11及びバッファメモリ15に転送する。
(不揮発性半導体記憶装置の構成)
実施の形態に係る不揮発性半導体記憶装置20は、図2に示すように、メモリセルアレイ21、入出力回路22、ロジック制御回路23、レジスタ24、シーケンサ25、電圧生成回路26、ドライバセット27、ロウデコーダ28、及びセンスアンプモジュール29を備える。
メモリセルアレイ21は、複数のブロックBLK(BLK0、BLK1、…)を備える。ブロックBLKは、ワード線及びビット線に関連付けられた複数の不揮発性メモリセルトランジスタを含む。ブロックBLKは、例えばデータの消去単位となり、同一のブロックBLK内のデータは、一括して消去される。各ブロックBLKは、複数のストリングユニットSU(SU0、SU1、SU2、…)を備える。各ストリングユニットSUは、NANDストリングNSの集合である。NANDストリングNSは、複数のメモリセルトランジスタを含む。以下では、メモリセルトランジスタは、単に「セル」とも称する。なお、メモリセルアレイ21内のブロック数、1ブロックBLK内のストリングユニット数、及び1ストリングユニットSU内のNANDストリング数は、任意の数に設定可能である。
入出力回路22は、コントローラ10と信号I/O<7:0>を送受信する。入出力回路22は、信号I/O<7:0>内のコマンドCMD及びアドレスADDをレジスタ24に転送する。入出力回路22は、書き込みデータ及び読み出しデータをセンスアンプモジュール29と送受信する。
ロジック制御回路23は、コントローラ10から信号/CE、CLE、ALE、/WE、/RE、及び/WPを受信する。また、ロジック制御回路23は、信号/RBをコントローラ10に転送して不揮発性半導体記憶装置20の状態を外部に通知する。
レジスタ24は、コマンドCMD及びアドレスADDを保持する。レジスタ24は、アドレスADDをロウデコーダ28及びセンスアンプモジュール29に転送すると共に、コマンドCMDをシーケンサ25に転送する。
シーケンサ25は、コマンドCMDを受け取り、受け取ったコマンドCMDに基づくシーケンスに従って不揮発性半導体記憶装置20の全体を制御する。
電圧生成回路26は、シーケンサ25からの指示に基づき、データの書込み、読出し、及び消去等の動作に必要な電圧を生成する。電圧生成回路26は、生成した電圧をドライバセット27に供給する。
ドライバセット27は、複数のドライバを備え、レジスタ24からのアドレスに基づいて、電圧生成回路26からの種々の電圧をロウデコーダ28及びセンスアンプモジュール29に供給する。ドライバセット27は、例えば、アドレス中のロウアドレスに基づき、ロウデコーダ28に種々の電圧を供給する。
ロウデコーダ28は、レジスタ24からアドレスADD中のロウアドレスを受取り、ロウアドレス内のブロックアドレスに基づいてブロックBLK等を選択する。選択されたブロックBLKには、ロウデコーダ28を介してドライバセット27からの電圧が転送される。
センスアンプモジュール29は、データの読出し時には、メモリセルトランジスタからビット線に読み出された読出しデータをセンスし、センスした読出しデータを入出力回路22に転送する。センスアンプモジュール29は、データの書込み時には、ビット線を介して書込まれる書込みデータをメモリセルトランジスタに転送する。また、センスアンプモジュール29は、レジスタ24からアドレスADD中のカラムアドレスを受取り、カラムアドレスに基づくカラムのデータを出力する。
(メモリセルアレイの回路構成例)
実施の形態に係る不揮発性半導体記憶装置20のメモリセルアレイ21の回路構成例は、図3に示すように表される。NANDストリングNSの各々は、図3に示すように、例えば、i(iは自然数)個のメモリセルトランジスタMT(MT0〜MTi)と、選択トランジスタST1と、選択トランジスタST2とを備える。なお、メモリセルトランジスタMTの個数iは、例えば、8個、16個、32個、64個、96個、128個等であってもよく、その数は限定されるものではない。メモリセルトランジスタMTは、制御ゲートと電荷蓄積層とを含む積層ゲート構造を備える。また、メモリセルトランジスタMTは、制御ゲートとフローティングゲートとを含む積層ゲート構造を備えていても良い。各メモリセルトランジスタMTは、選択トランジスタST1及びST2の間に、直列接続される。なお、以下の説明では『接続』とは、間に別の導電可能な要素が介在する場合も含む。
或るブロックBLK内において、ストリングユニットSU0〜SU3の選択トランジスタST1のゲートは、それぞれ選択ゲート線SGD0〜SGD3に接続される。また、ブロックBLK内の全てのストリングユニットSUの選択トランジスタST2のゲートは、選択ゲート線SGSに共通接続される。同一のブロックBLK内のメモリセルトランジスタMT0〜 MTiの制御ゲートは、それぞれワード線WL0〜WLiに接続される。すなわち、同じアドレスのワード線WLは、同一のブロックBLK内の全てのストリングユニットSUに共通接続されており、選択ゲート線SGSは、同一のブロックBLK内の全てのストリングユニットSUに共通接続されている。一方、選択ゲート線SGDは、同一のブロックBLK内のストリングユニットSUの1つのみに接続される。
また、メモリセルアレイ21内でマトリクス状に配置されたNANDストリングNSのうち、同一行にあるNANDストリングNSの選択トランジスタST1の他端は、m本のビット線BL(BL0〜BL(m−1)(mは自然数))のいずれかに接続される。また、ビット線BLは、複数のブロックBLKにわたって、同一列のNANDストリングNSに共通接続される。
また、選択トランジスタST2の他端は、ソース線CELSRCに接続される。ソース線CELSRCは、複数のブロックBLKにわたって、複数のNANDストリングNSに共通接続される。
データの消去は、同一のブロックBLK内にあるメモリセルトランジスタMTに対して一括して行われる。これに対して、データの読出し及び書込みは、いずれかのブロックBLKのいずれかのストリングユニットSUにおける、いずれかのワード線WLに共通接続された複数のメモリセルトランジスタMTにつき、一括して行われる。1つのストリングユニットSU中でワード線WLを共有するメモリセルトランジスタMTの組は、セルユニットCUと称される。セルユニットCUは、一括して書込み、又は読み出し動作が実行され得るメモリセルトランジスタMTの組である。
なお、1つのメモリセルトランジスタMTは、例えば、複数のビットデータを保持可能である。同一のセルユニットCU内において、メモリセルトランジスタMTの各々が同位のビットにおいて保持する1ビットの集合を「ページ」と呼ぶ。「ページ」とは、同一のセルユニットCU内のメモリセルトランジスタMTの組に形成されるメモリ空間と定義される。
(メモリセルアレイの断面構造例)
実施の形態に係る不揮発性半導体記憶装置20のメモリセルアレイ21の断面構造例は、図4に示すように表される。図4は、1つのブロックBLK内の2つのストリングユニットSU0及びSU1に関する部分を示す。具体的には、図4は、2つのストリングユニットSU0及びSU1のそれぞれの2つのNANDストリングNSと、その周辺の部分と、を示している。そして、図4に示されるNANDストリングNSの構成が、X方向及びY方向に複数配列されており、例えばX方向及びY方向に並ぶ複数のNANDストリングNSの集合が1つのストリングユニットSUに相当する。
メモリセルアレイ21は、半導体基板30上に設けられる。半導体基板30の表面と平行な面をXY平面とし、XY平面に垂直な方向をZ方向とする。また、X方向とY方向は、互いに直交する。
半導体基板30の上部には、p型ウェル領域30pが配置される。p型ウェル領域30p上に、図4に示すように、複数のNANDストリングNSが配置される。すなわち、p型ウェル領域30p上には、例えば、選択ゲート線SGSとして機能する配線層31、ワード線WL0〜WLiとして機能するi+1層の配線層32(WL0〜WLi)、及び選択ゲート線SGDとして機能する配線層33が、順次積層される。配線層31及び33は、複数層積層されていてもよい。積層された配線層31〜33間には、図示せぬ絶縁膜が配置される。
配線層31は、例えば、1つのブロックBLK内の複数のNANDストリングNSの各々の選択トランジスタST2のゲートに共通接続される。配線層32は、各層毎に、1つのブロックBLK内の複数のNANDストリングNSの各々のメモリセルトランジスタMTの制御ゲートに共通接続される。配線層33は、1つのストリングユニットSU内の複数のNANDストリングNSの各々の選択トランジスタST1のゲートに共通接続される。
メモリホールMHは、配線層33、32、31を通過してp型ウェル領域30pに達するように配置される。メモリホールMHの側面上には、外側からブロック絶縁膜34、電荷蓄積層(絶縁膜)35、及びトンネル酸化膜36が順に配置される。メモリホールMH内には、半導体ピラー(導電膜)37が埋め込まれる。半導体ピラー37は、例えばノンドープのポリシリコンであり、NANDストリングNSの電流経路として機能する。半導体ピラー37の上端上には、ビット線BLとして機能する配線層38が配置される。
以上のように、p型ウェル領域30pの上方には、選択トランジスタST2、複数のメモリセルトランジスタMT、及び選択トランジスタST1が順に積層されており、1つのメモリホールMHが、1つのNANDストリングNSに対応している。
p型ウェル領域30pの上部には、n+型不純物拡散領域39及びp+型不純物拡散領域40が配置される。n+型不純物拡散領域39の上面上には、コンタクトプラグ41が配置される。コンタクトプラグ41の上面上には、ソース線CELSRCとして機能する配線層42が配置される。p+型不純物拡散領域40の上面上にはコンタクトプラグ43が配置される。コンタクトプラグ43の上面上には、ウェル線CPWELLとして機能する配線層44が配置される。
実施の形態に係る不揮発性半導体記憶装置20のメモリセルアレイ21及びその周辺回路を形成する半導体基板30の詳細構造については、第1〜第6の実施の形態において説明する。
(ロウデコーダの構成)
実施の形態に係る不揮発性半導体記憶装置のロウデコーダ28のブロック構成例は、図5Aに示すように表される。
ロウデコーダ28は、図5Aに示すように、複数の転送スイッチ群51(51A、51B、…)と、複数のブロックデコーダ52(52A、52B、…)とを備える。
1つの転送スイッチ群51及び1つのブロックデコーダ52は、例えば、1つのブロックBLKに割当てられる。図5Aの例では、転送スイッチ群51A及びブロックデコーダ52Aは、ブロックBLK0に割当てられ、転送スイッチ群51B及びブロックデコーダ52Bは、ブロックBLK1に割当てられる。以下の説明では、書込み、読出し、及び消去の対象となるブロックBLKを「選択ブロックBLK」と称し、選択ブロックBLK以外のブロックBLKを「非選択ブロックBLK」と称する。
また、以下の説明では、転送スイッチ群51A及びブロックデコーダ52Aに対応するノードと、転送スイッチ群51B及びブロックデコーダ52Bに対応するノードとを区別する場合、符号の末尾に_A及び_B等を付して区別する。例えば、転送スイッチ群51Aとブロックデコーダ52Aとの間を接続する選択ブロックノードBLKSELは選択ブロックノードBLKSEL_Aと言い、転送スイッチ群51Bとブロックデコーダ52Bとの間を接続する選択ブロックノードBLKSELは選択ブロックノードBLKSEL_Bと言う。なお、転送スイッチ群51A及びブロックデコーダ52Aに対応するノードと、転送スイッチ群51B及びブロックデコーダ52Bに対応するノードとを特に区別しない場合は、符号の末尾には_A及び_B等を付さない。
転送スイッチ群51は、例えば、(i+6)個の転送トランジスタTTr(TTr0〜TT(i+5))を備える。
転送トランジスタTTr0〜TTriはそれぞれ、ドライバセット27から配線CG(CG0〜CGi)に供給された電圧を、選択ブロックBLKのワード線WL0〜WLiに転送する。転送トランジスタTTr0〜TTriはそれぞれ、対応するブロックBLKのワード線WL0〜WLiに接続された第1端と、配線CG0〜CGiに接続された第2端と、ノードBLKSELに共通に接続されたゲートと、を備える。
転送トランジスタTTr(i+1)〜TTr(i+4)はそれぞれ、ドライバセット27から配線SGDL(SGDL0〜SGDL3)に供給された電圧を、選択ブロックBLKの選択ゲート線SGD0〜SGD3に転送する。転送トランジスタTTr(i+1)〜TTr(i+4)はそれぞれ、対応するブロックBLKの選択ゲート線SGD0〜SGD3に接続された第1端と、配線SGDL0〜SGDL3に接続された第2端と、選択ブロックノードBLKSELに共通に接続されたゲートと、を備える。
転送トランジスタTTr(i+5)は、ドライバセット27から配線SGSLに供給された電圧を、選択ブロックBLKの選択ゲート線SGSに転送する。転送トランジスタTTr(i+5)は、対応するブロックBLKの選択ゲート線SGSに接続された第1端と、配線SGSLに接続された第2端と、ノードBLKSELに接続されたゲートと、を備える。
ブロックデコーダ52は、データの書込み、読出し、及び消去の際に、レジスタ24から受信したブロックアドレス信号をデコードする。ブロックデコーダ52は、デコードの結果、ブロックデコーダ52に対応するブロックBLKが選択ブロックBLKであると判定した場合、Hレベルの信号を選択ブロックノードBLKSELに出力する。
また、ブロックデコーダ52は、対応するブロックBLKが選択ブロックBLKでないと判定した場合、Lレベルの信号を選択ブロックノードBLKSELに出力する。選択ブロックノードBLKSELに出力される信号は、転送トランジスタTTr0〜TTr(i+5)を、Hレベルでオン状態とし、Lレベルでオフ状態とする。
また、ブロックデコーダ52は、例えば、選択ブロックBLKに異常が発生している(バッドブロックである)場合、保持される情報に基づいて、選択ブロックノードBLKSELに出力される信号をLレベルにし得る。
したがって、例えば、選択ブロックBLKに対応する転送スイッチ群51では、選択ブロックBLKが正常である場合、転送トランジスタTTr0〜TTr(i+5)はオン状態となる。これにより、ワード線WL0〜WLiはそれぞれ配線CG0〜CGiに接続され、選択ゲート線SGD0〜SGD3はそれぞれ配線SGDL0〜SGDL3に接続され、選択ゲート線SGSは配線SGSLに接続される。
他方、選択ブロックBLKに対応する転送スイッチ群51では、選択ブロックBLKがバッドブロックである場合、転送トランジスタTTr0〜TTr(i+5)はオフ状態となる。これにより、ワード線WLは配線CGから電気的に切断され、選択ゲート線SGD及びSGSはそれぞれ、配線SGDL及びSGSLから電気的に切断される。
また、非選択ブロックBLKに対応する転送スイッチ群51では、非選択ブロックBLKがバッドブロックであるか否かによらず、転送トランジスタTTr0〜TTr(i+5)はオフ状態となる。これにより、ワード線WLは配線CGから電気的に切断され、選択ゲート線SGD及びSGSはそれぞれ、配線SGDL及びSGSLから電気的に切断される。
ドライバセット27は、レジスタ24から受信したアドレスADDに従って、配線CG、SGDL、及びSGSLに電圧を供給する。配線CG、SGDL、及びSGSLは、ドライバセット27から供給された各種電圧を、転送スイッチ群51A、51B、…の各々に対して転送する。つまり、ドライバセット27から供給される電圧は、選択ブロックBLKに対応する転送スイッチ群51内の転送トランジスタTTr0〜TTr(i+5)を介して、選択ブロックBLK内のワード線WL、選択ゲート線SGD及びSGSに転送される。
(レベルシフタ)
実施の形態に係る不揮発性半導体記憶装置に適用されるレベルシフタ53Aの回路構成例は、図6(a)に示すように表され、レベルシフタの別の回路構成例は、図6(b)に示すように表される。
実施の形態に係る不揮発性半導体記憶装置に適用されるレベルシフタ53Aは、図6(a)に示すように、pチャネル高電圧MOSトランジスタHVPと、HVPのソースS及びnウェルNWにソースが接続されるnチャネル高電圧MOSトランジスタHVND2と、HVPのドレインにソースが接続されるnチャネル高電圧MOSトランジスタHVN1とを備える。図6(b)の回路構成は、nチャネル高電圧MOSトランジスタHVN1に直列にnチャネル低電圧MOSトランジスタLVNDが接続されており、その他の構成は、図6(a)と同様である。HVPのゲートにはブロック選択時には電圧0V、非選択時にはVddが印加されるようになっている。
HVND2のドレインには、VRDECの高電圧が供給される。HVPのドレインは、HVND2のゲート及び選択ブロックノードBLKSEL_Aに接続される。同時にHVND1のソースも選択ブロックノードBLKSEL_Aに接続される。
HVND1及び若しくはLVNDのゲート信号BSTONによって、選択ブロックノードBLKSEL_Aに接続されるブロックBLK0が選択される。HVND2のドレインには、VRDECの高電圧が供給されると、HVND2及びHVPを介して、選択ブロックノードBLKSEL_Aに高電圧パルスが供給され、転送スイッチ群51Aの転送トランジスタTTr0〜TTr(i+5)のゲートが高電圧駆動される。
選択ブロックでは、以下の方法でワード線WLを選択する転送スイッチ群51Aの転送トランジスタTTr0〜TTr(i+5)のゲートに高電圧のプログラム電圧VPGMHが印加される。図6(b)を用いて、レベルシフタ動作(選択ブロックの書込み動作)を説明する。
(A)HVND1及びLVNDをオンさせて、選択ブロックノードBLKSEL_A(
y)を約2V程度にプリチャージする。
(B)HVND1及びLVNDをオフにする。
(C)HVND2はオン状態にあるので、ドレインに供給される電圧VRDECの内、VTD2をHVPのソース(Vx)に転送する。
(D)HVPのゲートは0Vで、ソースS/nウェルNWはVTD2であるので、HVPはオン状態になり、Vx電位VTD2をドレイン側(Vy)へ転送する。
(E)HVND2のゲートは約2Vから転送された電圧に昇圧されているので、更にHVPのソース(Vx)に高い電位を転送する。
(F)以下上述の動作を繰り返して、選択ブロックノードBLKSEL_A(Vy)をプログラム電圧VPGMHまで昇圧する。
また、レベルシフタ53Aに適用されるHVND2の電圧関係例は、図7(a)に示すように表され、レベルシフタ53Aに適用されるHVPの電圧関係例は、図7(b)に示すように表され、図7(b)と等価な電圧関係例は、図7(c)に示すように表される。
すなわち、図7(b)及び図7(c)に示すように、上記の(D)の時にHVPがオンすれば良いので、HVPの閾値電圧>−VTD2であれば良い。
次に、実施の形態に係る不揮発性半導体記憶装置の消去動作に使用される回路構成について図5Bを用いて模式的に説明する。
消去動作時には、p+型不純物拡散領域40に接続されたウェル線CPWELLに消去電圧VERAを印加する必要がある。消去電圧VERAは転送トランジスタTReraを介して、ウェル線CPWELLに印加されるようになっている。転送トランジスタTReraをオンにするためのゲート電圧はレベルシフタ53Aと同様の回路形式のレベルシフタ54により昇圧される。一方、書込み時にはウェル線CPWELLにはVSS(0V)近辺の電圧を印加する。このため、少なくとも高電圧は加わることはない。
図8(a)はレベルシフタ53A、図8(b)はレベルシフタ54のHVPトランジスタの書き込み、及び消去時に印加される電圧関係例である。
選択ブロックの書込み動作時においては、図8(a)に示すように、レベルシフタ53AのHVPのゲート電圧=0Vにおいて、ソースSの電圧は書込み電圧VPGMHレベル、選択ブロックノードBLKSELに接続されるドレインDの電圧も書込み電圧VPGMHレベルとなる。HVPのnウェルNWの電圧も書込み電圧VPGMHレベルとなる。ここで、書込み電圧VPGMHの値は例えば約30V程度である。
図8(b)に示すように、レベルシフタ54のHVPのゲート電圧=0Vにおいて、ソースSの電圧は例えば0から数V、転送トランジスタTReraのゲートに接続されるドレインDの電圧も例えば0から数Vレベルとなる。HVPのnウェルNWの電圧も例えば0から数Vレベルである。書き込み動作の時にはCPWELLに高電圧が印加されることはないからである。
選択ブロックの消去動作時においては、図8(a)に示すように、レベルシフタ53AのHVPのゲート電圧=0Vにおいて、ソースSの電圧は例えば0〜数V程度、選択ブロックノードBLKSELに接続されるドレインDの電圧も0〜数V程度レベルとなる。HVPのnウェルNWの電圧も0〜数V程度レベルとなる。消去動作時には、ワードラインに高電圧を印加する必要はないからである。
図8(b)に示すように、レベルシフタ54のHVPのゲート電圧=0Vにおいて、ソースSの電圧はVERAH、転送トランジスタTReraのゲートに接続されるドレインDの電圧もVERAHとなる。HVPのnウェルNWの電圧もVERAHである。消去動作の時には、ウェル線CPWELL(つまりソースライン)に転送トランジスタTReraのドレインから消去電圧VERAを印加する。なお、例えば消去電圧VERAHは30V程度である。
(基板構造)
比較例に係る不揮発性半導体記憶装置において、裏面に鏡面30mを備える半導体基板30の模式的断面構造は、図9(a)に示すように表され、実施の形態に係る不揮発性半導体記憶装置において、裏面に破砕層30Rを備える半導体基板30の模式的断面構造は、図9(b)に示すように表される。
半導体基板30の裏面に破砕層30Rを形成するプロセスとしては、例えばゲッタリングドライポリッシュ(GDP:Gettering Dry Polish)プロセスを適用可能である。破砕層30Rにおいて、中心線平均粗さRaは、図10(a)に示すように表され、最大高さRmaxは、図10(b)に示すように表される。中心線平均粗さRaは、図10(a)に示すように、粗さ曲線を中心線から折り返し、その粗さ曲線と中心線によって得られた面積を長さLで割った値をマイクロメートル(μm)で表した値である。また、最大高さRmaxは、断面曲線を基準長さLで抜き取った部分の最大高さを求めてマイクロメートル(μm)で表した値である。
実施の形態に係る不揮発性半導体記憶装置において、破砕層30Rの最大高さRmaxの値は、例えば、約数10nmである。また、中心線平均粗さRaの値は、例えば、約数nmである。
実施の形態に係る不揮発性半導体記憶装置においては、半導体基板30の裏面を破砕層仕上げにし、裏面から侵入する、例えばCuイオンなどの重金属のイオンをゲッタリングしてデバイスへの侵入を防いでいる。一方、裏面の破砕層30Rが空乏層に触れるまで半導体基板30を薄層化した場合、裏面の破砕層30Rでリークが発生する。
(比較例)
比較例に係る不揮発性半導体記憶装置において、周辺回路を構成するnチャネル高電圧MOSトランジスタHVN、pチャネル高電圧MOSトランジスタHVP、nチャネル低電圧MOSトランジスタLVN、pチャネル低電圧MOSトランジスタLVPの模式的断面構造は図11に示すように表される。
ここで、高電圧MOSトランジスタとは、例えば、電圧約15V〜35V程度の電圧範囲で動作可能なトランジスタをいう。また、低電圧MOSトランジスタとは、例えば、電圧約0V〜数V程度の電圧範囲で動作可能なトランジスタをいう。NANDフラッシュメモリの動作電圧で規定されるプログラム電圧VPGM、イレース電圧VERAなどは、例えば、電圧約15V〜35V程度の電圧範囲である。pチャネル及びnチャネル共に高電圧MOSトランジスタのゲート酸化膜の厚さは、例えば約40nm程度、低電圧MOSトランジスタのゲート酸化膜の厚さは、例えば約8nm程度である。
subはp型の半導体基板30を表す。比較例に係る不揮発性半導体記憶装置において、半導体基板30の裏面は、鏡面30mを備える。GPはHVP、LVPのゲートを表す。GNはHVN、LVNのゲートを表す。NW、PWはそれぞれnウェル、pウェルを表す。
HVPにおいて、NWに形成されたn+領域はNWのコンタクト領域であり、p+領域はHVPのソース領域及びドレイン領域を表す。HVNにおいて、NWに形成されたn+領域はNWのコンタクト領域であり、PWに形成されたp+領域はPWおよびPsubのコンタクト領域である。表面のn+領域はHVNのソース領域及びドレイン領域を表す。
LVPにおいて、NWに形成されたn+領域はNWのコンタクト領域であり、p+領域はHLVPのソース領域及びドレイン領域を表す。LVNにおいて、PWに形成されたp+領域はPWのコンタクト領域であり、PWに形成されたn+領域はLVNのソース領域及びドレイン領域を表す。また、HVP、HVN、LVP、LVNにおいて、各拡散領域やウェル領域間は、シャロートレンチアイソレーション(STI:Shallow Trench Isolation)などにより互いに絶縁分離されているが、図示は省略している。
以下の第1〜第6の実施の形態に係る不揮発性半導体記憶装置の説明においてもHVN、HVP、LVN、LVPにおいて、各拡散領域やウェル領域で比較例と共通部分は同一の表示を適用し、詳細説明は省略し、異なる構成部分について説明する。
(第1の実施の形態)
第1の実施の形態に係る不揮発性半導体記憶装置20において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造は、図12に示すように表される。
第1の実施の形態に係る不揮発性半導体記憶装置20は、図12に示すように、p型を有し、裏面に破砕層30Rを備える半導体基板30と、半導体基板30の破砕層30Rに対向する表面上に配置されたメモリセルアレイ21(図4)と、半導体基板30上に配置され、p型のチャネルを備え、メモリセルアレイ21に高電圧を供給するpチャネル高電圧MOSトランジスタHVPとを備える。ここで、メモリセルアレイ21は、図4に示したように、半導体基板30上に配置される。
pチャネル高電圧MOSトランジスタHVPは、半導体基板30の破砕層30Rに対向する表面に配置され、p型と反対導電型のn型を有するnウェル領域NWと、nウェル領域NWに配置されたp+ソース領域及びp+ドレイン領域と、破砕層30Rとnウェル領域NWとの間に配置され、半導体基板30の不純物濃度よりも高濃度のp型の第1高濃度層WT2とを備える。第1高濃度層WT2は電気的にフローティング状態になされている。
第1の実施の形態に係る不揮発性半導体記憶装置20は、図12に示すように、半導体基板30上に配置されたnチャネル高電圧MOSトランジスタHVNと、半導体基板30上に配置されたnチャネル低電圧MOSトランジスタLVNと、半導体基板30上に配置されたpチャネル低電圧MOSトランジスタLVPとを更に備える。
また、第1の実施の形態に係る不揮発性半導体記憶装置20は、選択ブロックノードBLKSELと、選択ブロックノードBLKSELを介してメモリセルアレイ21に接続されるレベルシフタ53とを備え、レベルシフタ53は、上述のpチャネル高電圧MOSトランジスタHVPを備える。レベルシフタ53については、図6(a)及び図6(b)において説明した通りである。
第1の実施の形態に係る不揮発性半導体記憶装置20においては、図12に示すように、例えば、3次元(3D)のNANDフラッシュメモリのレベルシフタを構成するHVPの半導体基板30中の比較的深い位置にボロンなどの不純物イオンをイオン注入して高濃度層WT2を形成する。
3DNANDフラッシュメモリチップをパッケージに搭載するにあたって、3DNANDフラッシュメモリチップは規定の厚さ以下に形成する必要がある。チップ厚は、シリコン基板、NANDフラッシュメモリ素子高さ、ポリイミド等のパッシベーション膜の合計厚となる。
3DNANDフラッシュメモリチップ厚を規定の厚さにするために半導体基板30を、例えば、約数μm〜10数μm程度まで薄層化する。半導体基板30の薄膜化については、半導体基板30の裏面を研削することで実現するが、ある厚さ以下にすると3DNANDフラッシュメモリチップが動作不良を起こしそれ以上の薄膜化を阻害している。その不良原因としては、レベルシフタ53を構成するHVPのnウェルNWからp型半導体基板30中に広がる空乏層が薄膜化した半導体基板30の底に到達し、HVPのリークを引き起こすためと考えられる。
レベルシフタ部のHVPはnウェルNW上に形成されるが、書込み動作や消去動作では、前述の図8(a)及び図8(b)に示したように、nウェルNWにプログラム電圧VPGMHやイレース電圧VERAHなどの高電圧がかかる。その際にp型半導体基板30中に空乏層が大きく伸びる。この空乏層の伸びを抑えるため、レベルシフタ部のHVPのp型半導体基板30中の比較的深い位置に、不純物(ボロン等)をイオン注入し、高濃度層WT2を形成する。それにより半導体基板30の薄膜化を実現することができる。
以上説明したように、第1の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の半導体基板中に広がる空乏層の伸びを抑制可能なため、半導体基板のリーク電流を抑制し、信頼性の高い不揮発性半導体記憶装置を提供することができる。
(シミュレーション結果)
比較例として、高濃度層WT2を形成しない場合のHVP部分の空乏層の到達距離のシミュレーション結果は、模式的に図13(a)に示すように表され、第1の実施の形態に係る不揮発性半導体記憶装置において、HVP部分の空乏層の到達距離のシミュレーション結果は、模式的に図13(b)に示すように表される。図13(a)及び図13(b)において横軸xは、約6μmの位置を中心にしたHVP部分の横方向の寸法を表し、縦軸yは、半導体基板30の深さ方向をマイナスの数値で表している。y=0近傍は半導体基板30の表面に対応し、マイナス10μmが裏面の破砕層30Rの位置である。すなわち、半導体基板30は薄層化されて約10μm厚さを有する場合のHVP部分の空乏層の到達距離のシミュレーション結果が示されている。
高濃度層WT2を形成しない場合、実線で示された空乏層は、図13(a)に示すように、破砕層30Rに到達している。一方、第1の実施の形態に係る不揮発性半導体記憶装置においては、高濃度層WT2を約2μmの位置に備えるため、実線で示された空乏層は、図13(b)に示すように、破砕層30Rには到達していない。
比較例として、WT2を形成しない場合の消去時のレベルシフタ54のHVP部分及びセルアレイ部分の空乏層の広がる様子を説明する模式的断面構造は、図14Aに示すように表される。また、比較例として、WT2を形成しない場合の書込み時のレベルシフタ53AのHVP部分の空乏層の広がる様子を説明する模式的断面構造は、図14Bに示すように表される。HVP部分、セルアレイ部分において、各拡散層やウェル領域間は、シャロートレンチアイソレーション(STI)により互いに絶縁分離されている。半導体基板30は、ウェハプロセスの最終工程において、矢印Eで示すようにGDPプロセスにより薄層化され、裏面には破砕層30Rが形成されている。
図14A、図14Bにおいて、CPWはメモリセルアレイ21の下部の半導体基板30に形成されたpウェルを表し、DNWはCPWの下部の半導体基板30の相対的に深い位置に形成されたnウェルを表す。nウェルDNWは隣接するnウェルNWに形成されたn+型不純物拡散領域39を介して電位を供給可能である。また、pウェルCPWに対してもp+型不純物拡散領域40を介して電位を供給可能である。n+型不純物拡散領域39、p+型不純物拡散領域40は、図4に同一の参照符号で示された各領域に対応している。
また、図14A、図14BにおいてHVPは、nウェル領域NWと、nウェル領域NWに配置されたp+ソース領域及びp+ドレイン領域と、nウェル領域NWに形成されたn+領域(NWのコンタクト領域)を備える。
図14Aで示す消去動作時において、セルアレイ部分のVERAで表記された電位は、消去電圧VERAとなる。また、レベルシフタ53A、レベルシフタ54のHVPの各部には、図8(a)、図8(b)に示された電圧が印加される。このため、消去動作時には、図14Aの破線で示すように、セルアレイ部分とレベルシフタ54のHVP部分の両方で空乏層が同じ程度伸びる。半導体基板30の厚さは、約10μm程度である。半導体基板30の裏面には破砕層30Rが形成されているため、この空乏層は破砕層30Rに到達する。一方、レベルシフタ53AのHVP部分では空乏層は伸びない。ワード線には、0〜0.5V程度の電圧が加わればよいからである。
図14Bで示す書き込み動作時において、レベルシフタ53A、レベルシフタ54のHVPの各部には、図8(a)、図8(b)に示された電圧が印加される。このため、書き込み動作時には、図14Bの破線で示すように、レベルシフタ53AのHVP部分で空乏層が伸びる。半導体基板30の厚さは、約10μm程度である。半導体基板30の裏面には破砕層30Rが形成されているため、この空乏層は破砕層30Rに到達する。レベルシフタ54のHVPとセルアレイ部分の空乏層は伸びない。書き込み時には、セルアレイ部分のウェル線CPWELLに高電圧が加わる必要はないからである。
一方、第1の実施の形態に係る不揮発性半導体記憶装置20において、レベルシフタ54のHVP部分及びセルアレイ部分に高濃度層WT2を形成する場合の消去時の空乏層の広がる様子を説明する模式的断面構造は、図15に示すように表される。図15においてはレベルシフタ54のHVPのみを示すが、以下の説明はレベルシフタ53AのHVPにも同様にあてはまる。
第1の実施の形態に係る不揮発性半導体記憶装置20は、図15に示すように、p型を有し、裏面に破砕層30Rを備える半導体基板30と、半導体基板30の表面上に配置されたメモリセルアレイ21と、半導体基板30上に配置され、p型のチャネルを備え、メモリセルアレイ21に高電圧を供給するpチャネル高電圧MOSトランジスタHVPとを備える。pチャネル高電圧MOSトランジスタHVPは、半導体基板30の表面に配置され、p型と反対導電型のn型を有するnウェル領域NWと、nウェル領域NWに配置されたp+ソース領域及びp+ドレイン領域と、半導体基板30の破砕層30Rとnウェル領域NW(及びDNW)との間に配置され、半導体基板30の不純物濃度よりも高濃度のp型の第1高濃度層WT2とを備える。
第1の実施の形態に係る不揮発性半導体記憶装置においては、高濃度層WT2を備えるため、図15に示すように、破線で示された空乏層は、破砕層30Rには到達しない。
(不純物密度プロファイル例)
第1の実施の形態に係る不揮発性半導体記憶装置において、HVP部分に高濃度層WT2を形成する場合のnウェルNW及び高濃度層WT2の不純物密度プロファイル例は、図16に示すように表される。図16に示すように、nウェルNWにおけるn型不純物濃度のピークレベルは、高濃度層WT2のp型不純物濃度のピークレベルよりも高い。また、nウェルNWにおけるn型不純物濃度のピークレベルの位置は、例えば、約0.5μm〜1μm程度の範囲にあり、高濃度層WT2のp型不純物濃度のピークレベルの位置は、例えば、約1.5μm〜2μm程度の範囲にある。
(第2の実施の形態)
第2の実施の形態に係る不揮発性半導体記憶装置20において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造は、図17に示すように表される。
第2の実施の形態に係る不揮発性半導体記憶装置20は、図17に示すように、半導体基板30の裏面の破砕層30Rと第1高濃度層WT2との間に配置され、n型の第2高濃度層WT1を備える。第2高濃度層WT1は電気的にフローティング状態である。その他の構成は、第1の実施の形態と同様である。
第2の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の半導体基板中に広がる空乏層の伸びを抑制可能なため、半導体基板のリーク電流を抑制し、信頼性の高い不揮発性半導体記憶装置を提供することができる。
第2の実施の形態に係る不揮発性半導体記憶装置において、レベルシフタ54のHVP部分及びセルアレイ部分に第1高濃度層WT2及び第2高濃度層WT1を形成する場合の消去時の空乏層の広がる様子を説明する模式的断面構造は、図18に示すように表される。
第2の実施の形態に係る不揮発性半導体記憶装置においても、高濃度層WT2を備えるため、図15に示すように、破線で示された空乏層は、破砕層30Rには到達しない。
(第3の実施の形態)
第3の実施の形態に係る不揮発性半導体記憶装置20において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造は、図19に示すように表される。
また、第3の実施の形態に係る不揮発性半導体記憶装置20において、HVPの模式的平面パターン構成例は、図20(a)に示すように表され、HVPの別の模式的平面パターン構成例は、図20(b)に示すように表される。図20(a)では、第3高濃度コンタクト層NWCは、平面視においてnウェル領域NWの周辺に配置され、図20(b)では、第3高濃度コンタクト層NWCは、平面視においてnウェル領域NWの周囲に配置されている。
第3の実施の形態に係る不揮発性半導体記憶装置20は、図20(a)に示すように、半導体基板30上においてnウェル領域NWの周辺に配置され、第2高濃度層WT1に電気的に接続されたn型の第3高濃度コンタクト層NWCを更に備える。
第3の実施の形態に係る不揮発性半導体記憶装置20は、図20(b)に示すように、半導体基板30上においてnウェル領域NWの周囲に配置され、第2高濃度層WT1に電気的に接続されたn型の第3高濃度コンタクト層NWCを更に備えていても良い。
ここで、第3高濃度コンタクト層NWCは、深いレベルに形成されたnウェルNWDと、nウェルNWと、nウェルNWに形成されたn+拡散領域からなる。第3高濃度コンタクト層NWCに一定の電位若しくは0電位を供給することで、第2高濃度層WT1の電位をクランプすることができる。その他の構成は、第2の実施の形態と同様である。
第3の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の半導体基板中に広がる空乏層の伸びを抑制可能なため、半導体基板のリーク電流を抑制し、信頼性の高い不揮発性半導体記憶装置を提供することができる。
(第4の実施の形態)
第4の実施の形態に係る不揮発性半導体記憶装置20において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造は、図21に示すように表される。
第4の実施の形態に係る不揮発性半導体記憶装置において、HVPは、第1の実施の形態(図12)と同様の構成を備える。
第4の実施の形態に係る不揮発性半導体記憶装置20は、図21に示すように、半導体基板30上に配置され、n型のチャネルを備える第2導電型高電圧MOSトランジスタHVNを更に備える。第2導電型高電圧MOSトランジスタHVNは、半導体基板30の裏面の破砕層30Rに対向する表面に配置されたn+ソース領域及びn+ドレイン領域と、裏面の破砕層30Rとn+ソース領域及びn+ドレイン領域との間に配置され、半導体基板30の不純物濃度よりも高濃度のp型の第3高濃度層WT4と、裏面の破砕層30Rと第3高濃度層WT4との間に配置されたn型の第4高濃度層WT3とを備える。
ここで、HVN部分のn型の第4高濃度層WT3は、深いレベルに形成されたnウェルNWDと、nウェルNWと、nウェルNWに形成されたn+拡散領域からなる高濃度コンタクト層に一定の電位若しくは0電位を供給することで、n型の第4高濃度層WT3の電位をクランプすることができる。その他の構成は、第1の実施の形態と同様である。
また、第4の実施の形態に係る不揮発性半導体記憶装置は、図21に示すように、HVN部分のnウェルNWに隣接してpウェルPWと、pウェルPWに形成されたp+拡散領域とを備える。ここで、図示は省略されているが、pウェルPWは、浅い位置に形成されるpウェルPWTと深い位置に形成されるpウェルPWDとの2層構造で形成される。結果として、第4の実施の形態に係る不揮発性半導体記憶装置において、HVNは、浅い位置に形成されるpウェルPWTと深い位置に形成されるpウェルPWDと、深いレベルに形成されたnウェルNWDとのトリプルウェル構造を備える。このようなトリプルウェル構造を備えるHVNは、例えば、レベルシフタ53Aを構成するHVND1(図6(a)及び図6(b)参照)や、転送スイッチ群51を構成する転送トランジスタTTr0〜TTr(i+5)(図5A、図5B参照)などに適用される。
第4の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の第1高濃度層WT2と、HVNの第3高濃度層WT4とを同時に形成可能である。すなわち、工程数の増加なしでHVPのnウェルNW下の第1高濃度層WT2を形成可能である。
第4の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の半導体基板中に広がる空乏層の伸びを抑制可能なため、半導体基板のリーク電流を抑制し、信頼性の高い不揮発性半導体記憶装置を提供することができる。
(第5の実施の形態)
第5の実施の形態に係る不揮発性半導体記憶装置20において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造は、図22に示すように表される。
第5の実施の形態に係る不揮発性半導体記憶装置20において、HVPは、第2の実施の形態(図17)と同様の構成を備える。また、HVNは、第4の実施の形態(図21)と同様の構成を備える。その他の構成は、第2の実施の形態と同様である。
第5の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の第1高濃度層WT2と、HVNの第3高濃度層WT4とを同時に形成可能である。また、HVPのnウェルNW下の第2高濃度層WT1と、HVNの第4高濃度層WT3とを同時に形成可能である。すなわち、工程数の増加なしでHVPのnウェルNW下の第1高濃度層WT2及び第2高濃度層WT1を形成可能である。
第5の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の半導体基板中に広がる空乏層の伸びを抑制可能なため、半導体基板のリーク電流を抑制し、信頼性の高い不揮発性半導体記憶装置を提供することができる。
(第6の実施の形態)
第6の実施の形態に係る不揮発性半導体記憶装置20において、周辺回路を構成するHVN、HVP、LVN、LVPの模式的断面構造は、図23に示すように表される。
第6の実施の形態に係る不揮発性半導体記憶装置20において、HVPは、第3の実施の形態(図19)と同様の構成を備える。また、HVNは、第4の実施の形態(図21)と同様の構成を備える。その他の構成は、第3の実施の形態と同様である。
第6の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の第1高濃度層WT2と、HVNの第3高濃度層WT4とを同時に形成可能である。また、HVPのnウェルNW下の第2高濃度層WT1と、HVNの第4高濃度層WT3とを同時に形成可能である。すなわち、工程数の増加なしでHVPのnウェルNW下の第1高濃度層WT2及び第2高濃度層WT1を形成可能である。
第6の実施の形態によれば、レベルシフタを構成するHVPのnウェルNW下の半導体基板中に広がる空乏層の伸びを抑制可能なため、半導体基板のリーク電流を抑制し、信頼性の高い不揮発性半導体記憶装置を提供することができる。
以上の実施の形態の説明において、第1導電型と第2導電型を反転して形成しても良い。その場合には、半導体基板、各拡散層やウェル構造の導電型も反対になる。
以上説明したように、実施の形態によれば、レベルシフタを構成するpチャネル高電圧MOSトランジスタHVPのnウェルNW下の裏面に破砕層を有する薄層化半導体基板中に広がる空乏層の伸びを抑制可能なため、半導体基板のリーク電流を抑制し、信頼性の高い不揮発性半導体記憶装置を提供することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…メモリシステム、10…コントローラ、11…プロセッサ、12…内蔵メモリ、13…ECC回路、14…NANDインタフェース回路、15…バッファメモリ、16…ホストインタフェース回路、20…不揮発性半導体記憶装置(NANDフラッシュメモリ)、21、30A…メモリセルアレイ、22…入出力回路、23…ロジック制御回路、24…レジスタ、25…シーケンサ、26…電圧生成回路、27…ドライバセット、28…ロウデコーダ、29…センスアンプモジュール、30…半導体基板、30p…p型ウェル領域、30R…破砕層、31、32、33、38、42、44…配線層、34…ブロック絶縁膜、35…電荷蓄積層(絶縁膜)、36…トンネル酸化膜、37…半導体ピラー、39…n+型不純物拡散領域、40…p+型不純物拡散領域、41、43…コンタクトプラグ、51、51A、51B…転送スイッチ群、52、52A、52B…ブロックデコーダ、53、53A、53B、54…レベルシフタ、HVP…pチャネル高電圧MOSトランジスタ、HVN…nチャネル高電圧MOSトランジスタ、LVN…nチャネル低電圧MOSトランジスタ、LVP…pチャネル低電圧MOSトランジスタ、BLKSEL…選択ブロックノード、WT1、WT2、WT3、WT4…高濃度層、NW、NWD、DNW…nウェル、PW、CPW…pウェル、NWC…高濃度コンタクト層

Claims (10)

  1. 第1導電型を有し、裏面に破砕層を備える半導体基板と、
    前記半導体基板の前記破砕層に対向する表面上に配置されたメモリセルアレイと、
    前記半導体基板上に配置され、第1導電型のチャネルを備え、前記メモリセルアレイに高電圧を供給する第1導電型高電圧トランジスタとを備え、
    前記第1導電型高電圧トランジスタは、
    前記表面に配置され、第1導電型と反対導電型の第2導電型を有するウェル領域と、
    前記ウェル領域に配置された第1導電型のソース領域及びドレイン領域と、
    前記破砕層と前記ウェル領域との間に配置され、前記半導体基板の不純物濃度よりも高濃度の第1導電型の第1高濃度層とを備える、不揮発性半導体記憶装置。
  2. 前記第1高濃度層は電気的にフローティング状態である、請求項1に記載の不揮発性半導体記憶装置。
  3. 前記ウェル領域における第2導電型不純物濃度のピークレベルは、前記第1高濃度層の第1導電型不純物濃度のピークレベルよりも高い、請求項1又は2に記載の不揮発性半導体記憶装置。
  4. 前記破砕層と前記第1高濃度層との間に配置され、第2導電型の第2高濃度層を更に備える、請求項1〜3のいずれか1項に記載の不揮発性半導体記憶装置。
  5. 前記第2高濃度層は電気的にフローティング状態である、請求項4に記載の不揮発性半導体記憶装置。
  6. 前記半導体基板上において、前記ウェル領域の周辺に配置され、前記第2高濃度層に電気的に接続された第2導電型の高濃度コンタクト層を更に備える、請求項4に記載の不揮発性半導体記憶装置。
  7. 前記半導体基板上に配置され、第2導電型のチャネルを備える第2導電型高電圧トランジスタを更に備え、
    前記第2導電型高電圧トランジスタは、
    前記表面に配置されたソース領域及びドレイン領域と、
    前記破砕層と前記ソース領域及び前記ドレイン領域との間に配置され、前記半導体基板の不純物濃度よりも高濃度の第1導電型の第3高濃度層と、
    前記破砕層と前記第3高濃度層との間に配置され、第2導電型の第4高濃度層とを備える、請求項1〜6のいずれか1項に記載の不揮発性半導体記憶装置。
  8. 前記半導体基板上に配置され、第2導電型のチャネルを備える第2導電型高電圧トランジスタと、
    前記半導体基板上に配置され、第2導電型のチャネルを備える第2導電型低電圧トランジスタと、
    前記半導体基板上に配置され、第1導電型のチャネルを備える第1導電型低電圧トランジスタとを更に備える、請求項1〜7のいずれか1項に記載の不揮発性半導体記憶装置。
  9. 選択ブロックノードと、
    前記選択ブロックノードを介して前記メモリセルアレイに高電圧を供給するレベルシフタとを備え、
    前記レベルシフタは、前記第1導電型高電圧トランジスタを備える、請求項1〜8のいずれか1項に記載の不揮発性半導体記憶装置。
  10. 前記レベルシフタは、
    前記第1導電型高電圧トランジスタのソース及び前記ウェル領域に接続されたソースと、高電圧を供給されるドレインと、前記第1導電型高電圧トランジスタのドレイン及び前記選択ブロックノードに接続されたゲートを有する第2の第2導電型高電圧トランジスタと、
    前記第1導電型高電圧トランジスタのドレイン及び前記選択ブロックノードに接続されたソースと、外部に接続されたドレインとを備え、前記第2の第2導電型高電圧トランジスタを駆動する第1の第2導電型高電圧トランジスタとを備える、請求項9に記載の不揮発性半導体記憶装置。
JP2019163798A 2019-09-09 2019-09-09 不揮発性半導体記憶装置 Pending JP2021044315A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019163798A JP2021044315A (ja) 2019-09-09 2019-09-09 不揮発性半導体記憶装置
CN202010112529.8A CN112466367B (zh) 2019-09-09 2020-02-24 非易失性半导体存储装置
US16/807,230 US11239317B2 (en) 2019-09-09 2020-03-03 Semiconductor memory device capable of suppressing leakage current
TW109107330A TWI740407B (zh) 2019-09-09 2020-03-05 非揮發性半導體記憶裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019163798A JP2021044315A (ja) 2019-09-09 2019-09-09 不揮発性半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2021044315A true JP2021044315A (ja) 2021-03-18

Family

ID=74832741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163798A Pending JP2021044315A (ja) 2019-09-09 2019-09-09 不揮発性半導体記憶装置

Country Status (4)

Country Link
US (1) US11239317B2 (ja)
JP (1) JP2021044315A (ja)
CN (1) CN112466367B (ja)
TW (1) TWI740407B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791391B1 (en) 2022-03-18 2023-10-17 Micron Technology, Inc. Inverters, and related memory devices and electronic systems

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251280A3 (en) * 1986-06-30 1989-11-23 Nec Corporation Method of gettering semiconductor wafers with a laser beam
JP2812719B2 (ja) * 1989-07-13 1998-10-22 シチズン時計株式会社 液晶表示パネル用薄膜ダイオードの製造方法
JP3634098B2 (ja) 1997-01-29 2005-03-30 沖電気工業株式会社 半導体装置およびその製造方法
JPH11168211A (ja) 1997-12-02 1999-06-22 Toyota Central Res & Dev Lab Inc 半導体装置
JP2003008007A (ja) * 2001-06-20 2003-01-10 Seiko Instruments Inc 半導体装置及びその製造方法
JP2003152192A (ja) * 2001-11-19 2003-05-23 Sony Corp 電界効果半導体装置及びその駆動方法
JP4156986B2 (ja) * 2003-06-30 2008-09-24 株式会社東芝 不揮発性半導体記憶装置
JP2005268621A (ja) * 2004-03-19 2005-09-29 Toshiba Corp 半導体集積回路装置
JP2006310562A (ja) * 2005-04-28 2006-11-09 Nec Electronics Corp 半導体記憶装置およびその製造方法
KR100830329B1 (ko) * 2006-11-20 2008-05-19 삼성에스디아이 주식회사 비휘발성 메모리 소자 및 그 제조방법과 이를 포함한메모리 장치
JP4791949B2 (ja) * 2006-12-22 2011-10-12 株式会社東芝 不揮発性半導体メモリ
US20110127562A1 (en) * 2009-07-23 2011-06-02 Chien-Min Sung Electronic Substrate Having Low Current Leakage and High Thermal Conductivity and Associated Methods
JP5729745B2 (ja) * 2009-09-15 2015-06-03 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US8642416B2 (en) * 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
KR101175885B1 (ko) * 2011-02-17 2012-08-21 에스케이하이닉스 주식회사 반도체 메모리 장치 및 이의 제조 방법
CN102693982A (zh) * 2011-03-23 2012-09-26 中芯国际集成电路制造(上海)有限公司 半导体器件结构及其制备方法
US9673102B2 (en) * 2011-04-01 2017-06-06 Micron Technology, Inc. Methods of forming vertical field-effect transistor with self-aligned contacts for memory devices with planar periphery/array and intermediate structures formed thereby
US8716097B2 (en) 2012-08-13 2014-05-06 Texas Instruments Incorporated MOS transistors having reduced leakage well-substrate junctions
JP2016162475A (ja) * 2015-03-04 2016-09-05 株式会社東芝 半導体記憶装置
KR102437779B1 (ko) * 2015-08-11 2022-08-30 삼성전자주식회사 3차원 반도체 메모리 장치
US9601577B1 (en) * 2015-10-08 2017-03-21 Samsung Electronics Co., Ltd. Three-dimensionally integrated circuit devices including oxidation suppression layers
SG11201802573UA (en) * 2016-01-13 2018-04-27 Toshiba Memory Corp Semiconductor memory device
US10283496B2 (en) * 2016-06-30 2019-05-07 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit filler and method thereof

Also Published As

Publication number Publication date
TWI740407B (zh) 2021-09-21
CN112466367A (zh) 2021-03-09
TW202123432A (zh) 2021-06-16
CN112466367B (zh) 2024-04-19
US20210074811A1 (en) 2021-03-11
US11239317B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US7505355B2 (en) Semiconductor memory device with MOS transistors each having floating gate and control gate
JP4381278B2 (ja) 不揮発性半導体記憶装置の制御方法
JP4427382B2 (ja) 不揮発性半導体記憶装置
US8659950B1 (en) Semiconductor memory device
JP4709523B2 (ja) 不揮発性半導体記憶装置
US7180789B2 (en) Semiconductor memory device with MOS transistors, each having a floating gate and a control gate, and memory card including the same
TWI707349B (zh) 半導體記憶裝置及記憶體系統
JP4939971B2 (ja) 不揮発性半導体メモリ
JP2006114137A (ja) 半導体記憶装置
TWI737394B (zh) 半導體記憶裝置
US9947620B2 (en) Semiconductor memory device
US10083756B2 (en) Semiconductor memory device
US10861865B2 (en) Semiconductor storage device
TWI621247B (zh) Semiconductor memory device
CN112466367B (zh) 非易失性半导体存储装置
US9466378B2 (en) Semiconductor memory device
JP4398845B2 (ja) 不揮発性半導体記憶装置
JP2003086720A (ja) 不揮発性半導体メモリ
US20240005997A1 (en) Semiconductor storage device
JP2013196750A (ja) 半導体記憶装置
JP2008084439A (ja) 半導体記憶装置
JP2023141465A (ja) 半導体記憶装置
TW202303597A (zh) 非揮發性半導體記憶裝置