JP2020194620A - 全固体電池用積層体 - Google Patents

全固体電池用積層体 Download PDF

Info

Publication number
JP2020194620A
JP2020194620A JP2019097606A JP2019097606A JP2020194620A JP 2020194620 A JP2020194620 A JP 2020194620A JP 2019097606 A JP2019097606 A JP 2019097606A JP 2019097606 A JP2019097606 A JP 2019097606A JP 2020194620 A JP2020194620 A JP 2020194620A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
active material
electrode active
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019097606A
Other languages
English (en)
Other versions
JP7180537B2 (ja
Inventor
英輝 萩原
Hideki Hagiwara
英輝 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019097606A priority Critical patent/JP7180537B2/ja
Publication of JP2020194620A publication Critical patent/JP2020194620A/ja
Application granted granted Critical
Publication of JP7180537B2 publication Critical patent/JP7180537B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】複数の層が積層された積層構造を構成する層同士の接着性の低下を抑制し、且つ、前記負極活物質層上に積層した固体電解質層の割れやひびの発生を抑制できる、全固体電池用積層体を提供する。【解決手段】負極集電体と、第一の層と第二の層とが直接接して積層された積層構造を有する負極活物質層と、固体電解質層とがこの順に積層されており、前記結着剤はポリフッ化ビニリデンを含み、前記負極活物質層におけるポリフッ化ビニリデンの含有割合は2.5〜4.0質量%であり、前記第一の層と前記第二の層との境界線上の領域(A)内に、径が47〜63μmである凝集体を5個以上有しており、且つ前記領域(A)内に含まれる、径が63μmを超える凝集体の数が3個未満であり、前記境界線及びその近傍の領域(β)における、結着剤と負極活物質との存在比率が、前記積層構造全体の領域(α)と比較して高い、ことを特徴とする全固体電池用積層体。【選択図】図1

Description

本開示は、全固体電池用積層体に関する。
負極集電体と、負極活物質を含有する負極活物質層と、固体電解質層とを順次積層した積層体を有する全固体電池が知られている。
このような、複数の層を積層して構成される積層体を含む電池においては、各層間の接着性が不十分となることがあった。この場合、例えば積層体を構成する層の一部が剥離する等により、電池性能が低下したり、製造効率が低下したりするという問題があった。
このため、積層体を含む電池においては、当該積層体における各層間の接着性の低下を抑制することが求められている。
例えば特許文献1には、集電体上に活物質層が形成された正極及び負極がセパレータを介して捲回された電池であって、前記活物質層の集電体との界面にはバインダーを多く存在させ、当該活物質層の集電体との界面から外側に向かってバインダーの量を少なくすることで、高容量化を図り、且つ活物質層と集電体との剥離の抑制を図った捲回型の電池が開示されている。
また、特許文献2には、基材層と、前記基材層上に配置されたアンダーコート層と、前記アンダーコート層上に配置された活物質層とを有する蓄電素子において、前記アンダーコート層端部及び正極活物質層端部を覆うように、当該正極活物質層よりもバインダー量比率の高い保護層を形成することで、基材層からの正極活物質層の剥離又は脱落の抑制を図った蓄電素子の例が開示されている。
また、特許文献3には、負極集電体と、負極集電体上に設けられた負極活物質層と、を有する負極を備えたリチウム二次電池において、前記負極活物質層の、前記負極集電体とは反対側の表層における負極導電材粒子の濃度を、前記負極活物質層の中央部における濃度よりも高くすることが開示されている。
特許文献3の実施例1には、負極活物質層の中央部(T2)と比較して、当該負極活物質層の前記負極集電体とは反対側の表層(T1)に、負極バインダーのみならず負極導電剤粒子を偏在させたリチウム二次電池の例が開示されている。
特開平09−147834号公報 特開2016−225310号公報 国際公開第2012/132958号
全固体電池においては、近年、高容量化が求められており、当該全固体電池に備える活物質層の膜厚を厚くすることが求められている。
活物質層を所望の膜厚に形成するための手法として、一方の支持体上に形成した活物質層用組成物の塗膜と、他方の支持体上に形成した活物質層用組成物の塗膜とを重ね合わせて両塗膜の積層体を形成することにより、複数の層が積層した積層構造を有する活物質層を形成することが行われている。
このように、複数の層が積層した積層構造を有する活物質層を備えた全固体電池用積層体においては、当該積層構造を構成する層同士の接着性が不十分となり易かった。
また、このように、複数の層が積層した積層構造を有する活物質層を備えた全固体電池用積層体においては、当該活物質層上に積層した固体電解質層に、割れやひびが生じ易いという問題があった。
本開示は、上記実情に鑑み、複数の層が積層された積層構造を有する負極活物質層を備えた全固体電池用積層体において、前記積層構造を構成する層同士の接着性の低下を抑制し、且つ、前記負極活物質層上に積層した固体電解質層の割れやひびの発生を抑制できる、全固体電池用積層体を提供することを目的とする。
本開示の全固体電池用積層体は、負極集電体と、各々が負極活物質及び結着剤を含む第一の層と第二の層とが直接接して積層された積層構造を有する負極活物質層と、固体電解質層とが、この順に積層されている全固体電池用積層体であって、前記結着剤は、ポリフッ化ビニリデンを含み、前記負極活物質層におけるポリフッ化ビニリデンの含有割合は、2.5質量%以上4.0質量%以下であり、前記負極活物質層は、前記積層体の積層方向の断面における前記第一の層と前記第二の層との境界線上の任意の位置での、当該境界線に沿う方向の長さ10mmの領域(A)内に、前記断面における前記境界線上の位置での径が47〜63μmである凝集体を5個以上有しており、且つ、前記領域(A)内に含まれる、前記断面における前記境界線上の位置での径が63μmを超える凝集体の数が3個未満であり、前記積層体の積層方向の断面において前記第一の層と前記第二の層とが直接接して積層された積層構造全体の領域(α)に現れる前記結着剤の断面が占める面積(D1)と当該領域(α)に現れる前記負極活物質の断面が占める面積(N1)との比((D1)/(N1))に対する、当該積層体の積層方向の断面において前記境界線及びその近傍の領域(β)に現れる前記結着剤の断面が占める面積(D2)と当該領域(β)に現れる前記負極活物質の断面が占める面積(N2)との比((D2)/(N2))の割合(((D2)/(N2))/((D1)/(N1)))が、1.1以上である、ことを特徴とする。
本開示によれば、複数の層が積層された積層構造を有する負極活物質層を備えた全固体電池用積層体において、前記積層構造を構成する層同士の接着性の低下を抑制し、且つ、前記負極活物質層上に積層した固体電解質層の割れやひびの発生を抑制できる、全固体電池用積層体を提供することができる。
本開示の全固体電池用積層体の一例を示す断面模式図である。 図1に示す全固体電池用積層体の積層方向の断面における第一の層と第二の層との境界線及びその近傍の領域の一部Pを拡大して示す図である。 図3(a)は、図1に示す全固体電池用積層体を接合界面Rに沿って切断したときの、第二の層側の切断片を示す斜視図であり、図3(b)は、図3(a)に示す領域(B)内の一部の領域Qを拡大して示す図である。 本開示の全固体電池用積層体の製造方法の一例について、その過程を概略的に説明する断面図である。 本開示の全固体電池用積層体の製造方法の一例について、その過程を概略的に説明する断面図である。 従来の全固体電池用積層体を製造する工程を説明するための概略図である。 従来の全固体電池用積層体を製造する工程を説明するための概略図である。
本開示の全固体電池用積層体は、負極集電体と、各々が負極活物質及び結着剤を含む第一の層と第二の層とが直接接して積層された積層構造を有する負極活物質層と、固体電解質層とが、この順に積層されている全固体電池用積層体であって、前記結着剤は、ポリフッ化ビニリデンを含み、前記負極活物質層におけるポリフッ化ビニリデンの含有割合は、2.5質量%以上4.0質量%以下であり、前記負極活物質層は、前記積層体の積層方向の断面における前記第一の層と前記第二の層との境界線上の任意の位置での、当該境界線に沿う方向の長さ10mmの領域(A)内に、前記断面における前記境界線上の位置での径が47〜63μmである凝集体を5個以上有しており、且つ、前記領域(A)内に含まれる、前記断面における前記境界線上の位置での径が63μmを超える凝集体の数が3個未満であり、前記積層体の積層方向の断面において前記第一の層と前記第二の層とが直接接して積層された積層構造全体の領域(α)に現れる前記結着剤の断面が占める面積(D1)と当該領域(α)に現れる前記負極活物質の断面が占める面積(N1)との比((D1)/(N1))に対する、当該積層体の積層方向の断面において前記境界線及びその近傍の領域(β)に現れる前記結着剤の断面が占める面積(D2)と当該領域(β)に現れる前記負極活物質の断面が占める面積(N2)との比((D2)/(N2))の割合(((D2)/(N2))/((D1)/(N1)))が、1.1以上である、ことを特徴とする。
負極活物質層は、通常、負極活物質に加えて、結着剤や導電材等の成分を含んで構成されており、これらの構成成分の複数種が凝集することにより形成された凝集体が、負極活物質層中に含まれることがある。
本研究者は、第一の層と第二の層とが直接接して積層された積層構造を有する負極活物質層を備えた全固体電池用の積層体において、第一の層と第二の層との接着性が低下する原因、及び、当該負極活物質層上に積層された固体電解質層において割れやひびが発生する原因について検討した結果、第一の層と第二の層との界面及びその近傍の領域における前記凝集体の存在状態や、前記積層構造内における結着剤の分布状態に起因して、上記した問題が生じることを知見した。
第一の層と第二の層とが直接接して積層された積層構造を有する負極活物質層を備えた、全固体電池用の積層体において、前記負極活物質層上に積層された固体電解質層に割れやひびが発生するメカニズムは以下の通りであると推定される。
図6〜図7は、従来の全固体電池用積層体を製造する工程を説明するための概略図である。
まず、ニッケル箔50の両面に負極活物質層用組成物の塗膜を形成して、第一の層51−ニッケル箔50−第一の層51の積層体52を形成する(図6(a)参照)。また、アルミ箔55の表面に負極活物質層用組成物の塗膜を形成して、アルミ箔55−第二の層56の積層体57を形成する(図6(a)参照)。
次いで、積層体52の第一の層51と積層体57の第二の層56とを重ね合わせて、積層体52と積層体57とを積層し、押圧する(図6(b)参照)。
このとき、第一の層51と第二の層56との接合界面Rに、過度に粒径の大きい凝集体54が存在すると、押圧力によっても当該凝集体54を潰しきれないことがある。この場合、第一の層51と第二の層56との接合界面Rに粒径の大きい凝集体54が残存するため、積層体52と積層体57との積層体からアルミ箔55を剥離して露出させた第二の層56の表面には、凸形状60が生じている(図7(c)参照)。
このような第二の層56上に、アルミ箔61上に形成した固体電解質層62を積層して押圧すると、第二の層56の表面に発生した凸形状60を起点として、固体電解質層62に割れCが発生する(図7(d)参照)。
本研究者は、第一の層と第二の層とが直接接して積層された積層構造を有する負極活物質層を備えた全固体電池用積層体における、第一の層と第二の層との接着性の低下を抑制し、且つ、当該負極活物質層上に積層された固体電解質層における割れやひびの発生を抑制する手段についてさらに検討した結果、第一の層と第二の層との接合界面に存在する凝集体の径及び個数を所定の範囲に調整し、かつ、前記接合界面及びその近傍の領域における結着剤と負極活物質との存在比率を、前記積層構造全体における、結着剤と負極活物質との存在比率に対して所定の範囲となるように調整することで、上記課題を解決できることを知見した。
以下に、本開示の全固体電池用積層体について説明する。
図1は、本開示の全固体電池用積層体の一例を示す断面模式図である。図1は、本開示の全固体電池用積層体を積層方向に切断した断面を示したものである。
本開示の全固体電池用の積層体100は、負極集電体10と、負極活物質層11と、固体電解質層12と、剥離シート(アルミ箔)16とが、この順に積層されている。
負極活物質層11は、負極活物質及び結着剤を含む第一の層11aと、負極活物質及び結着剤を含む第二の層11bとが直接接して積層された積層構造11cを有している。
負極活物質層11は、積層体100の積層方向の断面における第一の層11aと第二の層11bとの境界線L上に、凝集体20を有している。
凝集体20としては、例えば、負極活物質と結着剤とが凝集して形成されたものが挙げられる。なお、凝集体20としては、負極活物質又は結着剤を単独で含むものであってもよい。また、凝集体20としては、後述する導電材や固体電解質等の、負極活物質及び結着剤以外の負極活物質層の構成材料を含むものであってもよい。
即ち、凝集体20は、負極活物質、結着剤、導電材及び固体電解質からなる群から選択される少なくとも一種が、凝集して形成されたものであればよい。
図2は、図1に示す積層体100の積層方向の断面における第一の層11aと第二の層11bとの境界線L及びその近傍の領域の一部Pを拡大して示す図である。
図2に示すように、負極活物質層11は、積層体100の積層方向の断面における第一の層11aと第二の層11bとの境界線L上の任意の位置での、当該境界線Lに沿う方向の長さ10mmの領域(A)内に、前記断面における境界線L上の位置での径20d(凝集体20の断面における境界線Lとの重なり幅)が47〜63μmである凝集体20を5個以上有している。
ここで、凝集体20についての、「積層体100の積層方向の断面における境界線L上の位置での径20d」とは、積層体100の積層方向の断面において、第一の層11aと第二の層11bとの境界線Lに重なって現れている、凝集体20の断面の径であり、具体的には、積層体100の積層方向の断面において、凝集体20の断面と重なっている境界線Lの長さをいう。
以下の説明において、「積層体の積層方向の断面における前記境界線上の位置での凝集体の径」を、単に、「積層体の積層方向の断面における凝集体の径」という。
なお、「積層体の積層方向の断面における凝集体の径」、即ち、積層体100の積層方向の断面において、凝集体20の断面と重なっている境界線Lの長さは、例えば、前述した積層体の断面のSEMによる観察画像において測定することができる。
積層体100の積層方向の断面における径20dが47〜63μmである凝集体20は、第一の層11aと第二の層11bとの接合界面Rにおいて、第一の層11a及び第二の層11bに対するアンカーとしての機能を発揮すると推定される。
このため、負極活物質層11が、積層体100の積層方向の断面において、前記領域(A)内に、積層体100の積層方向の断面における径20dが47〜63μmである凝集体20を5個以上有することによって、第一の層11aと第二の層11bとの間で、良好な接着性を得ることができる。
前記領域(A)内に存在する、積層体100の積層方向の断面における径20dが47〜63μmである凝集体20の数が、5個未満であると、第一の層11aと第二の層11bとの間で、十分な接着性を得られない虞がある。
前記領域(A)内に存在する、積層体100の積層方向の断面における径20dが47〜63μmである凝集体20の数は、5個以上であることがよく、6個以上であることがよい。
但し、積層体100の積層方向の断面において前述した領域(A)内に存在する、積層体100の積層方向の断面における径20dが47〜63μmである凝集体20の数が多過ぎると、第一の層11aと第二の層11bとの接着性を、必ずしも十分に高められない可能性がある。
なお、積層体100の積層方向の断面における境界線L上には、積層体100の積層方向の断面における径20dが47μm未満である凝集体20が存在してもよいが、積層体100の積層方向の断面における径20dが47μm未満である凝集体20は、第一の層11aと第二の層11bとの間におけるアンカーとしての機能は、必ずしも発揮しないと推定される。
一方、固体電解質層12における割れやひびの発生を抑制する点から、積層体100の積層方向の断面における境界線L上には、積層体100の積層方向の断面における径20dが63μmを超える凝集体20は、可能な限り存在しないことがよい。
積層体100の積層方向の断面において、前述した領域(A)内に含まれる、積層体100の積層方向の断面における径20dが63μmを超える凝集体20の数は、3個未満である。
より好ましくは、積層体100の積層方向の断面において、前述した領域(A)内には、積層体100の積層方向の断面における径20dが63μmを超える凝集体20は含まれないことがよい。
積層体100の積層方向の断面において、前述した領域(A)内に含まれる、積層体100の積層方向の断面における径20dが63μmを超える凝集体20の数が3個以上であると、負極活物質層11上に積層した固体電解質12が、割れやひびを有するものとなる虞がある。
負極活物質層11は、第一の層11aと第二の層11bとの接合界面Rの位置で、当該接合界面Rに沿って切断した、積層体100の断面Sの任意の位置における、面積10mmの領域(B)内に、当該積層体100の断面Sに現れている断面の長径20eが60〜80μmである凝集体20を、25個以上有していることが好ましい(図3参照)。
図3(a)は、図1に示す積層体100を、接合界面Rの位置で、接合界面Rに沿って切断したときの、第二の層11b側の切断片を示す斜視図であり、図3(b)は、図3(a)に示す領域(B)内の一部の領域Qを拡大して示す図である。なお、図3(a)において、剥離シート(アルミ箔)16は省略している。
以下の説明において、第一の層11aと第二の層11bとを、これらの接合界面Rの位置で当該接合界面Rに沿って切断した積層体100の断面Sを、「積層体の接合界面での断面」という。
また、以下の説明において、積層体100の接合界面Rでの断面Sに現れている凝集体20の断面の長径20eを、単に、「積層体の接合界面での断面における凝集体の径」という。
本開示において、凝集体20の断面の長径20eとは、積層体100の接合界面Rでの断面Sに現れている凝集体20の断面において、径が最大となる長さをいう。
なお、「積層体の接合界面での断面における凝集体の径」、即ち、積層体100の接合界面Rでの断面Sに現れている凝集20の断面の長径20eは、例えば、前述した積層体の断面のSEMによる観察画像において測定することができる。
なお、積層体100の接合界面Rでの断面Sにおける径20eが60〜80μmである凝集体20は、第一の層11aと第二の層11bとの接合界面Rにおいて、第一の層11a及び第二の層11bに対するアンカーとしての機能を発揮すると推定される。
このため、負極活物質層11が、前述した領域(B)内に、積層体100の接合界面Rでの断面Sにおける径20eが60〜80μmである凝集体20を25個以上有することによって、第一の層11aと第二の層11bとの間で、良好な接着性を得ることができる。
前述した領域(B)内に存在する、積層体100の接合界面Rでの断面Sにおける径20eが60〜80μmである凝集体20の数が25個未満であると、第一の層11aと第二の層11bとの間で、十分な接着性を得られない虞がある。
但し、前述した領域(B)内に存在する、積層体100の接合界面Rでの断面Sにおける径20eが60〜80μmである凝集体20の数が多過ぎると、第一の層11aと第二の層11bとの接着性を、必ずしも十分に高められない可能性がある。
なお、積層体100の接合界面Rでの断面Sには、当該積層体100の接合界面Rでの断面Sにおける径20eが60μm未満である凝集体20が存在してもよいが、積層体100の接合界面Rでの断面Sにおける径20eが60μm未満である凝集体20は、第一の層11aと第二の層11bとの間におけるアンカーとしての機能は、必ずしも発揮しないと推定される。
一方、固体電解質層12における割れやひびの発生を抑制する点から、前述した領域(B)内に存在する、積層体100の接合界面Rでの断面Sにおける径20eが80μmを超える凝集体20の数は、10個未満であることが好ましい。
前述した領域(B)内に存在する、積層体100の接合界面Rでの断面Sにおける径20eが80μmを超える凝集体20の数が10個以上であると、負極活物質層11上に積層した固体電解質12が、割れやひびを有するものとなる虞がある。
負極活物質層12は、積層体100の積層方向の断面において、第一の層11aと第二の層11bとが直接接して積層された積層構造11c全体の領域(α)に現れる結着剤の断面が占める面積(D1)と、当該領域(α)に現れる負極活物質の断面が占める面積(N1)との比((D1)/(N1))に対する、当該積層体100の積層方向の断面において境界線L及びその近傍の領域(β)に現れる結着剤の断面が占める面積(D2)と、当該領域(β)に現れる負極活物質の断面が占める面積(N2)との比((D2)/(N2))の割合(((D2)/(N2))/((D1)/(N1)))が、1.1以上である。
なお、本開示において、「境界線の近傍の領域」とは、境界線から35μmの領域を意味する。
負極活物質層11は、積層体100の積層方向の断面において、前記領域(α)に現れる結着剤の断面が占める面積(D1)と、当該領域(α)に現れる負極活物質の断面が占める面積(N1)との比((D1)/(N1))に対する、前記領域(β)に現れる結着剤の断面が占める面積(D2)と、当該領域(β)に現れる負極活物質の断面が占める面積(N2)との比((D2)/(N2))の割合(((D2)/(N2))/((D1)/(N1)))が、1.1以上であることによって、境界線L及びその近傍の領域(β)において、負極活物質に対する結着剤の存在比率が、積層構造11c全体の領域(α)と比較して高くなるため、第一の層11aと第二の層11bとの間で、良好な接着性を得ることができる。
負極活物質層11における、(((D2)/(N2))/((D1)/(N1)))は、好ましくは1.1以上である。
但し、(((D2)/(N2))/((D1)/(N1)))の値が大き過ぎると、第一の層11aと第二の層11bとの境界線L上に、前述した、積層体100の積層方向の断面における径20dが47〜63μmである凝集体20が、十分に存在しないものとなる可能性がある。この場合、第一の層11aと第二の層11bとの間の接着性が十分に高められない可能性がある。
以下に、本開示の全固体電池用の積層体の材料について詳述する。
(1)負極活物質層
負極活物質層を構成する第一の層及び第二の層は、少なくとも負極活物質及び結着剤を含み、必要に応じ、固体電解質、及び、導電材等の他の成分を含む。
負極活物質としては、例えば、カーボン活物質(炭素材料)、酸化物活物質及び金属活物質等が挙げられる。
カーボン活物質(炭素材料)としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)等のグラファイト、ハードカーボン、ソフトカーボン等が挙げられる。
酸化物活物質としては、例えばNb、LiTi12、SiO等が挙げられる。金属活物質としては、例えばIn、Al、Si及びSn等が挙げられる。
Siは、Si単体であってもよく、Si合金であってもよい。
負極活物質の形状としては、例えば粒子状が挙げられる。
負極活物質粒子の一次粒子径(体積分布のメディアン径D50)は、通常10nm以上50μm以下の範囲内、さらに50nm以上5μm以下の範囲内である。粒子の平均粒径が小さすぎると、取り扱い性が悪くなる可能性があり、粒子の平均粒径が大きすぎると、平坦な負極活物質層を得るのが困難になる場合がある。負極活物質粒子同士の接触性を十分に高くする観点から、負極活物質粒子の平均粒径は、1μm以下であることが好ましい。
本開示において、一次粒子径(体積分布のメディアン径D50は、特記しない限り、レーザー回折・散乱式粒子径分布測定により測定される、粒子の粒径を小さい順に並べた場合に、粒子の累積体積が全体の体積の半分(50%)となる径(体積平均径)である。
レーザー回折・散乱式粒子径分布測定は、例えば、レーザー回折・散乱式粒子径分布測定装置LA−920(堀場製作所製)を用いて行うことができる。
負極活物質層中の負極活物質の割合は、特に限定されるものではないが、例えば40質量%以上99質量%以下であり、60質量%以上80質量%以下の範囲内であることが好ましい。
負極活物質層中の前記固体電解質としては、結晶質固体電解質、非晶質固体電解質、固体電解質ガラスセラミックスのいずれであってもよく、後述する固体電解質層に用いられる固体電解質と同様のものを用いることができる。
負極活物質層中の固体電解質の割合は、特に限定されるものではないが、例えば10質量%以上70質量%以下の範囲内であることが好ましく、15質量%以上50質量%以下の範囲内であることがより好ましい。
負極活物質層は、他の成分として導電材を含んでいてもよい。
導電材としては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック等のカーボンブラック、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種の炭素材料を挙げることができる。
例えば、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種の炭素材料であってもよく、当該カーボンナノチューブ、及び、カーボンナノファイバーはVGCF(気相法炭素繊維)であってもよい。
負極活物質層における導電材の含有割合は、1.0質量%以上であってもよく、1.0質量%〜12.0質量%の範囲内であってもよく、1.5質量%〜10.0質量%の範囲内であってもよい。
導電材として、例えば、VGCF(気相法炭素繊維)等の、繊維状炭素材料を用いる場合、平均繊維径は、例えば、0.1〜1.0μmであってもよい。
結着剤としては、ポリフッ化ビニリデン(PVdF)を含む。
負極活物質層の第一の層及び第二の層に含まれる結着剤として、ポリフッ化ビニリデン(PVdF)を用いることにより、当該第一の層と当該第二の層との間で、良好な接着性を得ることができる。
また、第一の層及び第二の層に含まれる結着剤としてポリフッ化ビニリデン(PVdF)を用いることにより、当該第一の層及び第二の層を有する負極活物質層において、適度な可撓性を得られるため、当該負極活物質層の上に積層された固体電解質層における、割れやひびの発生を抑制することができる。
結着剤としては、ポリフッ化ビニリデン(PVdF)以外の樹脂を適宜用いてもよい。
ポリフッ化ビニリデン(PVdF)以外の結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ポリビニルブチラール(PVB)、アクリル樹脂等を用いることができる。
負極活物質層におけるポリフッ化ビニリデン(PVdF)の含有割合は、2.5質量%以上4.0質量%以下である。
負極活物質層におけるポリフッ化ビニリデン(PVdF)の含有割合が2.5質量%未満であると、負極活物質層の第一の層と第二の層との間で十分な接着性を得られない虞がある。
負極活物質層におけるポリフッ化ビニリデン(PVdF)の含有割合が4.0質量%を超えると、負極活物質層において、可撓性が過度に高くなり、剛性が不足し、当該負極活物質層の上に積層した固体電解質層に割れやひびが発生し易くなる虞がある。
負極活物質層の厚さは、特に限定されないが、例えば、20〜150μm、中でも30〜120μmであってもよい。
負極集電体としては、例えば、銅及び銅合金、ニッケル及びニッケル合金などが挙げられ、銅にNi、Cr、Cなどをめっき、蒸着したもの、ニッケルにCr、Cなどをめっき、蒸着したものも使用できる。また、負極集電体の形状としては、例えば、箔状、板状、メッシュ状等を挙げることができる。
(2)固体電解質層
固体電解質層は、固体電解質を含み、必要に応じ、結着剤等の他の成分を含む。
固体電解質としては、従来公知の材料を用いることができる。固体電解質としては、Liイオンの伝導度が高い酸化物系固体電解質、及び硫化物系固体電解質が好ましく用いられる。
前記酸化物系固体電解質としては、例えばLi6.25LaZrAl0.2512、LiPO、LiPON等が挙げられる。
また、その他の酸化物系固体電解質としては、アルミナ、ジルコニアなどの絶縁セラミックス、あるいは、LiO−B−P、LiO−SiOなどの酸化物系非晶質固体電解質、LiI、LiN、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)Nw(w<1)、Li3.6Si0.60.4などの酸化物系結晶質固体電解質・酸窒化物系結晶質固体電解質等が挙げられる。
前記硫化物系固体電解質としては、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P等の硫化物系非晶質固体電解質、Li11、Li3.250.75等のガラスセラミックス、或いはLi3.240.24Ge0.76等のthio−LISIO系結晶等の硫化物系結晶質固体電解質等が挙げられる。
固体電解質として、粉末状の固体電解質を用いても良い。その場合に粉末を構成する固体電解質粒子の一次粒子径(体積分布のメディアン径D50)は、例えば1nm以上100μm以下の範囲内、さらに10nm以上30μm以下の範囲内である。
固体電解質層に用いられる結着剤は、上述した負極活物質層に用いるものと同様のものを用いることができる。
前記固体電解質は、1種単独で、又は2種以上のものを用いることができる。また、2種以上の固体電解質を用いる場合、2種以上の固体電解質を混合してもよく、又は2層以上の固体電解質それぞれの層を形成して多層構造としてもよい。
固体電解質層中の固体電解質の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であることが好ましく、70質量%以上100質量%以下の範囲内であることがより好ましい。
固体電解質層に含まれる他の成分としては、結着剤、可塑剤、分散剤等が挙げられる。
[製造方法]
次に、本開示の全固体電池用積層体を製造する方法について説明する。
図4〜図5は、図1に示す本開示の全固体電池用積層体の製造方法の一例について、その過程を概略的に説明する断面図である。
本開示の全固体電池用積層体を製造する方法は、(1)第一の層及び第二の層準備工程、(2)負極活物質層形成工程、(3)固体電解質層積層工程と、を有する。
図4〜図5を参照しつつ、本開示の全固体電池用積層体の製造方法について説明する。
(1)第一の層及び第二の層準備工程
先ず、第一の層11a及び第二の層11bを準備する準備工程を行う。
具体的には、先ず、負極集電体(例えば、ニッケル箔)10の両面に、第一の層11aを形成して、積層体25(第一の層11a−負極集電体10−第一の層11a)を作製する(図4(a)参照)。
また、剥離シート(例えば、アルミ箔)14上に、第二の層11bを形成して、積層体26(剥離シート14−第二の層11b)を作製する(図4(a)参照)。
第一の層11a及び第二の層11bを形成する具体的な方法としては、例えば、以下の方法が挙げられる。
先ず、負極活物質、結着剤及び必要に応じて固体電解質、導電材を含む負極活物質層形成用組成物を、除去可能な分散媒に分散させた、凝集体20を含む分散液(スラリー)を、負極集電体10の両面に塗布して乾燥させて、負極集電体10の両面に、第一の層11aを形成する(図4(a)参照)。
同様に、負極活物質、結着剤及び必要に応じて固体電解質、導電材を含む負極活物質層形成用組成物を、除去可能な分散媒に分散させた、凝集体20を含む分散液(スラリー)を、剥離シート14上に塗布して乾燥させて、剥離シート14上に、第二の層11bを形成する(図4(a)参照)。
負極活物質層形成用組成物に含まれる、負極活物質、固体電解質、結着剤及び導電材としては、負極活物質層の材料として前述した材料を、好適に用いることができる。
なお、少なくとも、負極集電体10の両面に塗布する分散液(スラリー)、又は剥離シート14上に塗布する分散液(スラリー)の少なくとも一方に、凝集体20が含まれていればよく、必ずしも両方に含まれていなくてもよい。
負極活物質層形成用組成物を含む分散液(スラリー)を形成する方法としては、特に限定されないが、先ず、分散媒中に、固体電解質及び導電材を添加して中間分散液(スラリー)を調製した後、当該中間分散液(スラリー)中に、負極活物質及び結着剤をさらに添加して分散させることにより、負極活物質及び結着剤が凝集した凝集体が形成される。これにより、例えば数十μm以上の粒径を有する凝集体を含む分散液(スラリー)を得ることができる。負極活物質及び結着剤を添加する際には、固体電解質及び導電材を含む分散液を、適宜攪拌してもよい。
負極活物質層形成用組成物を含む分散液(スラリー)に含まれる凝集体20の一次粒子径(体積分布のメディアン径D50)は、特に限定されない。
負極活物質層形成用組成物を含む分散液(スラリー)に含まれる凝集体20の一次粒子径(体積分布のメディアン径D50)が大き過ぎる場合、又は小さ過ぎる場合には、最終的に得られる積層体100を、前記領域(A)内に存在する、積層体100の積層方向の断面における径20dが47〜63μmである凝集体20の数を5個以上とし、且つ、前記領域(A)内に存在する、積層体100の積層方向の断面における径20dが63μmを超える凝集体20の数を3個未満とすることが、困難となる虞がある。
負極活物質層形成用組成物を含む分散液(スラリー)における凝集体20の含有割合は、特に限定されない。
負極活物質層形成用組成物を含む分散液(スラリー)における凝集体20の含有割合が、多過ぎる場合、又は少な過ぎる場合には、最終的に得られる積層体100を、前記領域(A)内に存在する、積層体100の積層方向の断面における径20dが47〜63μmである凝集体20の数を5個以上とし、且つ、前記領域(A)内に存在する、積層体100の積層方向の断面における径20dが63μmを超える凝集体20の数を3個未満とすることが、困難となる虞がある。
負極活物質層形成用組成物を含む分散液(スラリー)における凝集体20の含有割合、及びその一次粒子径(体積分布のメディアン径D50)は、例えば、固体電解質及び導電材を含む中間分散液に、負極活物質及び結着剤を添加する添加速度を調整する、又は、負極活物質及び結着剤を添加する際の、固体電解質及び導電材を含む中間分散液の攪拌速度を調整することにより、所望の含有割合及び所望の一次粒子径(体積分布のメディアン径D50)に調整することができる。
負極集電体10上及び剥離シート14上に形成された負極活物質層形成用組成物の塗膜を乾燥する際の乾燥温度は、特に限定されないが、例えば100〜300℃であってもよく、100〜200℃であってもよい。
乾燥温度が100℃未満である場合、又は300℃を超える場合には、最終的に得られる積層体の積層方向の断面において第一の層11aと第二の層11bとが直接接して積層された積層構造11c全体の領域(α)に現れる前記結着剤の断面が占める面積(D1)と当該領域(α)に現れる負極活物質の断面が占める面積(N1)との比((D1)/(N1))に対する、当該断面において境界線L及びその近傍の領域(β)に現れる結着剤の断面が占める面積(D2)と当該領域(β)に現れる負極活物質の断面が占める面積(N2)との比((D2)/(N2))の割合(((D2)/(N2))/((D1)/(N1)))を、1.1以上とすることが困難となる虞がある。
また、負極活物質層形成用組成物の塗膜を乾燥する際の乾燥時間は、特に限定されない。
負極集電体10上及び剥離シート14上に形成された負極活物質層形成用組成物の塗膜を乾燥する方法は、特に限定されないが、例えば、所定の温度に設定した熱風恒温槽内に、積層体25(第一の層11a−負極集電体10−第一の層11a)及び積層体26(剥離シート14−第二の層11b)を投入して所定時間放置することにより、行うことができる。
(2)負極活物質層形成工程
次いで、負極集電体10上に形成された第一の層11aと、剥離シート14上に形成された第二の層11bとを重ね合わせて、積層体25と積層体26とを積層する(図4(b)参照)。
次いで、積層体25と積層体26とを積層して得られた積層体27を、積層方向に加圧する(図4(b)参照)。これにより、負極集電体10上に、第一の層11aと第二の層11bとが直接接して積層された積層構造11cを有する負極活物質層11が形成される。
この際、第一の層11a及び第二の層11bに含まれる凝集体20は、加圧方向、即ち積層体27の積層方向に圧縮される。
積層体27を加圧する加圧方法としては、例えば機械加圧、ガス加圧が挙げられる。
積層体27を加圧する際の温度は特に限定されないが、例えば20〜100℃であってもよい。積層体27を加圧する際の圧力は特に限定されないが、例えば0.5t/cm〜5t/cmであってもよい。
(3)固体電解質層積層工程
次いで、積層体27の第二の層11b上の剥離シート14を剥離し(図5(c)参照)、第二の層11b上に固体電解質層12を積層する(図5(d)参照)。
固体電解質層12を積層する方法としては、例えば、固体電解質を含み必要に応じて結着剤を含む固体電解質層形成用組成物を除去可能な分散媒に分散させた分散液(スラリー)を、剥離シート(例えば、アルミ箔)16上に塗布して乾燥させることにより、積層体28(剥離シート16−固体電解質層12)を作製した後、積層体28の固体電解質層12を、積層体27の第二の層11bに重ね合わせて、積層体28と積層体27とを積層することにより、行う方法が挙げられる。
次いで、積層体28と積層体27とを積層して得られた積層体29を、積層方向に加圧する。
加圧方法及び加圧条件は、積層体27を加圧する際の加圧方法及び加圧条件と同様の方法及び同様の条件であってよい。
以上説明した工程により、本開示の全固体電池用積層体100(図1参照)を作製することができる。
なお、図1においては、第一の層11aと第二の層11bとが直接接して積層された積層構造11cからなる負極活物質層11を備えた全固体電池用積層体100の構成を示したが、本開示の全固体電池用積層体は、このような構成には限られず、例えば、三層以上の層を有して構成される負極活物質層11を備えていてもよい。
以下に、実施例を挙げて、本開示を更に具体的に説明するが、本開示は、この実施例のみに限定されるものではない。
1.積層体の製造
(実施例1)
(1)負極活物質層形成用組成物を含む分散液の調製工程
以下に示す、負極活物質層形成用組成物を含む分散液の各原料を準備した。なお、以下に示す質量%は、固形分換算で、分散液全体を100質量%としたときの、各成分の含有割合を示す。
・負極活物質粒子:チタン酸リチウム(LTO)(一次粒子径0.8μm) 71.0質量%
・固体電解質:硫化リンリチウム(一次粒子径0.5μm) 23.9質量%
・導電材:炭素繊維(繊維径0.15μm) 1.7質量%
・結着剤:PVdF 3.3質量%
・分散媒:酪酸ブチル 負極活物質、固体電解質、導電材及び結着剤の合計質量を100質量部として、89質量部
先ず、ポリプロピレン製容器に分散媒を投入し、その中に、固体電解質及び導電材を加えた。容器中の混合物を、超音波分散装置(エスエムテー社製、UH−50)により所定時間攪拌し、中間分散液を得た。次に、得られた中間分散液中に、所定の添加速度で負極活物質を加え、次いで所定の添加速度で結着剤を投入した後、超音波分散装置により所定の攪拌速度で所定時間撹拌した。
次に、容器を振とう器(柴田科学株式会社製、TTM−1)で30分間振とうさせ、負極活物質層形成用組成物を調製した。
(2)第一の層及び第二の層準備工程
アプリケーターを用いてブレード法により負極活物質層形成用組成物の分散液をニッケル箔(負極集電体、厚さ18μm)10の両面に塗工して負極活物質層形成用組成物の塗膜を形成した。
次いで、炉内温度を150℃に設定した熱風恒温槽内に、両面に負極活物質層形成用組成物の塗膜を形成したニッケル箔(負極集電体)10を入れ、所定時間乾燥させることにより、第一の層11a−ニッケル箔10−第一の層11aの積層体25を作製した(図4(a)参照)。第一の層11aの厚さは65μmであった。
次に、アプリケーターを用いてブレード法により負極活物質層形成用組成物の分散液をアルミ箔(剥離シート、厚さ15μm)14の片面に塗工して、負極活物質層形成用組成物の塗膜を形成した。
次いで、炉内温度を150℃に設定した熱風恒温槽内に、片面に負極活物質層形成用組成物の塗膜を形成したアルミ箔(剥離シート)14を入れ、所定時間乾燥させることにより、アルミ箔14−第二の層11bの積層体26を作製した(図4(a)参照)。第二の層11bの厚さは65μmであった。
(3)負極活物質層形成工程
第一の層11a−ニッケル箔10−第一の層11aの積層体25の第一の層11aと、アルミ箔14−第二の層11bの積層体26の第二の層11bとを重ね合わせて、積層体25と積層体26とを積層し、積層体27を得た(図4(b)参照)。
次いで、積層体27を、25℃の条件下で、荷重1ton/cmでプレス成形した後(図4(b)参照)、第二の層11bからアルミ箔(剥離シート)14を剥離した(図5(c)参照)。これにより、第一の層11a−ニッケル箔10−第一の層11a−第二の層11bの積層体27、即ち、第一の層11a−第二の層11bからなる負極活物質層11を有する積層体27を得た。
プレス成形後の積層体27における、第一の層11a−第二の層11bからなる積層構造11cの厚さは、103μmであった。
(4)固体電解質層形成工程
ポリプロピレン製容器に下記固体電解質層を形成するための固体電解質層形成用組成物の各原料を加えた。なお、以下に示す質量%は、固形分換算で、固体電解質層形成用組成物全体を100質量%としたときの、各成分の含有割合を示す。
・固体電解質:硫化リンリチウム(一次粒子径2.0μm) 99.0質量%
・結着剤:PVdF 1.0質量%
・分散媒:酪酸ブチル 固体電解質及び結着剤の合計質量を100質量部として、75.4質量部
容器中の混合物を、超音波分散装置(エスエムテー社製、UH−50)により30秒間攪拌した。次に、容器を振とう器(柴田科学株式会社製、TTM−1)で30分間振とうさせ、固体電解質層用組成物を調製した。
アプリケーターを用いてブレード法により固体電解質層用組成物を剥離シート(アルミ箔)16上に塗工し、固体電解質層12を形成した。この固体電解質層12を、100℃のホットプレート上で30分間乾燥させた。
固体電解質層形成工程において得られた固体電解質層12−剥離シート(アルミ箔)16の積層体28の、固体電解質層12側の表面を、負極活物質層形成工程において得られた、第一の層11a−ニッケル箔10−第一の層11a−第二の層11bの積層体27の第二の層11b側の表面に重ね合わせて積層し、積層体29を得た(図5(d)参照)。
次いで、得られた積層体29を、25℃の条件下で、荷重1ton/cmでプレス成形した。
これにより、積層体1(第一の層11a−ニッケル箔10−第一の層11a−第二の層11b−固体電解質層12−剥離シート(アルミ箔)16)を得た。
(実施例2)〜(実施例5)
表1に示す結果を得られるように、各々の製造条件を変更したこと以外は、実施例1と同様にして、積層体1を得た。
(実施例6)
「(1)負極活物質層形成用組成物を含む分散液の調製工程」において、負極活物質層形成用組成物における、結着剤の含有割合を、3.3質量%から2.5質量%に変更したこと以外は、実施例1と同様にして積層体1を得た。
(実施例7)
「(1)負極活物質層形成用組成物を含む分散液の調製工程」において、負極活物質層形成用組成物における、結着剤の含有割合を、3.3質量%から4.0質量%に変更したこと以外は、実施例1と同様にして積層体1を得た。
(比較例1)〜(比較例14)
表1に示す結果を得られるように、各々の製造条件を変更したこと以外は、実施例1と同様にして、積層体1を得た。
(比較例15)
「(1)負極活物質層形成用組成物を含む分散液の調製工程」において、負極活物質層形成用組成物に配合する結着剤の種類を、PVdFからアクリル樹脂に変更したこと以外は、実施例1と同様にして、積層体1を得た。
(比較例16)
「(1)負極活物質層形成用組成物を含む分散液の調製工程」において、負極活物質層形成用組成物に配合する結着剤の種類を、PVdFからSBR樹脂に変更したこと以外は、実施例1と同様にして、積層体1を得た。
(比較例17)
「(1)負極活物質層形成用組成物を含む分散液の調製工程」において、負極活物質層形成用組成物における、結着剤の含有割合を、3.3質量%から1.5質量%に変更したこと以外は、実施例1と同様にして積層体1を得た。
(比較例18)
「(1)負極活物質層形成用組成物を含む分散液の調製工程」において、負極活物質層形成用組成物における、結着剤の含有割合を、3.3質量%から5.5質量%に変更したこと以外は、実施例1と同様にして積層体1を得た。
2.評価
(i)積層体の積層方向の断面における凝集体の径(20d)の測定
実施例1〜7及び比較例1〜18について得られた積層体1について、レーザー照射により積層方向に切断し、切断面をSEMにより観察した。
そして、SEMの断面画像において、第一の層11aと第二の層11bとの境界線L上の任意の位置での、当該境界線Lに沿う方向の長さ10mmの領域(A)内において、境界線Lと重なって現れている凝集体20について、積層体1の積層方向の断面における径20dを測定した。
積層体1の積層方向の断面における凝集体20の径20dは、具体的には、SEMの断面画像に現れている凝集体20の断面と重なっている、境界線Lの長さを測定した。
そして、領域(A)内に含まれる、積層体1の積層方向の断面における径20dが47〜63μmである凝集体20の数を計測した。また、領域(A)内に含まれる、積層体1の積層方向の断面における径20dが47〜63μmである凝集体20について、これらの径20dの平均値を算出した。
実施例1〜7及び比較例1〜18の各積層体1について、径20dが47〜63μmである凝集体20の数、及び、これらの径20dの平均値を、表1に示す。
(ii)積層体の接合界面での断面における凝集体の径(20e)の測定
実施例1〜7及び比較例1〜18の「1.積層体の製造」における、「(3)負極活物質層形成工程」において、第一の層11a−ニッケル箔10−第一の層11aの積層体25と、アルミ箔14−第二の層11bの積層体26との積層を行う前の、第一の層11aの第二の層11bとの重ね合わせ面又は第二の層11bの第一の層11aとの重ね合わせ面を、それぞれ、インライン式の製造装置内に配置した検査装置により観察した。
そして、観察面の任意の位置における、10mmの面積の領域(B)内において、当該観察面(第一の層11aの第二の層11bとの重ね合わせ面又は第二の層11bの第一の層11aとの重ね合わせ面)に現れている凝集体の断面について、当該凝集体の断面の長径(凝集体の断面において径が最大となる長さ)を測定し、これを便宜的に、「積層体1の接合界面Rでの断面Sにおける凝集体の径(20e)」とした。
そして、領域(B)内に含まれる、積層体1の接合界面Rでの断面Sにおける径20eが60〜80μmである凝集体20の数を計測した。また領域(B)内に含まれる、積層体1の接合界面Rでの断面Sにおける径20eが60〜80μmである凝集体20について、これらの径20eの平均値を算出した。
実施例1〜7及び比較例1〜18の各積層体1について、径20eが60〜80μmである凝集体20の数、及び、これらの径20eの平均値を、表1に示す。
(iii)((D2)/(N2))/((D1)/(N1))の算出
実施例1〜7及び比較例1〜18の各積層体1について、前述した「(i)積層体の積層方向の断面における凝集体の径(20d)の測定」において、積層方向に切断した切断面について、エネルギー分散型X線分光法(EDX;Energy Dispersive X−ray Spectroscopy)を用いて各元素の分布のマッピングを行った。
実施例1〜7及び比較例1〜14、比較例17〜18については、F元素のマッピング及びTi元素のマッピングを行い、F元素のマッピングにより結着剤(PVdF)の断面が占める領域を把握し、Ti元素のマッピングにより負極活物質(チタン酸リチウム)の断面が占める領域を把握した。
また、比較例15〜16についても、実施例1〜7及び比較例1〜14、比較例17〜18で行った方法に準じて、結着剤(PVdF)の断面が占める領域、及び負極活物質(チタン酸リチウム)の断面が占める領域を把握した。
そして、EDXマッピングにより把握した、結着剤(PVdF)の断面が占める領域及び負極活物質(チタン酸リチウム)の断面が占める領域から、積層体1の積層方向の断面における、第一の層11aと第二の層11bとが直接接して積層された積層構造11c全体の領域(α)に現れる結着剤の断面が占める面積(D1)と当該領域(α)に現れる負極活物質の断面が占める面積(N1)との比((D1)/(N1))、及び、当該断面における、第一の層11aと第二の層11bとの境界線L及びその近傍の領域(β)に現れる結着剤の断面が占める面積(D2)と当該領域(β)に現れる負極活物質の断面が占める面積(N2)との比((D2)/(N2))を算出し、これらの比(((D2)/(N2))/((D1)/(N1)))を算出した。
実施例1〜7及び比較例1〜18の各積層体1の積層方向の断面における、(((D2)/(N2))/((D1)/(N1)))の値を、表1に示す。
なお、「(iii)((D2)/(N2))/((D1)/(N1))の算出」において、領域(β)の「境界線の近傍の領域」とは、境界線から35μmまでの領域とした。
(iv)割れ評価試験
実施例1〜7及び比較例1〜18について、「1.積層体の製造」を5回行い、各積層体1を5個ずつ作製した。得られた5個の積層体1について、それぞれ固体電解質層12の表面をSEMにて観察し、ひび及び割れの発生の有無を評価した。
5個中、1個でもひび又は割れの発生が確認された場合を「×」とし、ひびの発生及び割れの発生のいずれについても、1個も確認されなかった場合を「○」とした。
実施例1〜7及び比較例1〜18の各積層体1についての、割れ評価試験の評価結果を、表1に示す。
(v)接着性試験
前述した「(iv)割れ評価試験」において、それぞれ5個ずつ作製した、実施例1〜7及び比較例1〜18の積層体1を目視で観察し、第一の層11aと第二の層11bとの接着不良の有無を判定した。
第一の層11aと第二の層11bとの間で接着不良が1個でも発生した場合を「×」とし、第一の層11aと第二の層11bとの間で接着不良が1個も発生しなかった場合を「○」とした。
接着性試験においては、第一の層11a−第二の層11b間の一部又は全部において、剥離が生じていることを目視で確認できる場合を、「接着不良有り」とした。
実施例1〜7及び比較例1〜18の各積層体1についての、接着性試験の評価結果を、表1に示す。
3.考察
実施例1〜7の積層体1では、負極活物質層の結着剤として、ポリフッ化ビニリデンを用いており、負極活物質層11におけるポリフッ化ビニリデンの含有割合が、2.5質量%以上4.0質量%以下であり、且つ、積層体1の積層方向の断面において、前記領域(A)内に、積層体1の積層方向の断面における径20dが47〜63μmである凝集体20を5個以上有しており、且つ、前記領域(A)内に含まれる、積層体1の積層方向の断面における径20dが63μmを超える凝集体20の数が3個未満であり、また、積層体1の積層方向の断面における、((D2)/(N2))/((D1)/(N1))が1.1以上であるため、第一の層11aと第二の層11bとの接着性に優れており、また、固体電解質層12表面における、ひびや割れの発生が抑制されていた。
一方、比較例1〜4、比較例5、比較例9では、積層体1の積層方向の断面において、前記領域(A)内に含まれる、積層体1の積層方向の断面における径20dが47〜63μmである凝集体20の数が5個未満であるため、第一の層11aと第二の層11bとの接着性を十分に得られなかった。
一方、比較例6〜8、比較例10〜12では、前記領域(A)内に含まれる、積層体1の積層方向の断面における径20dが63μmを超える凝集体の数が3個以上であるため、積層体1の固体電解質層に、割れやヒビが生じていた。
一方、比較例13〜14では、積層体1の積層方向の断面における、((D2)/(N2))/((D1)/(N1))が1.1未満であるため、第一の層11aと第二の層11bとの接着性に劣っており、特に、((D2)/(N2))/((D1)/(N1))が0.7と低い比較例13では、固体電解質層12における割れも生じていた。
また、比較例15では、負極活物質層11の結着剤として、PVdF(ポリフッ化ビニリデン)に代えて、アクリル樹脂を用いており、比較例16では、負極活物質層の結着剤として、PVdF(ポリフッ化ビニリデン)に代えて、SBR樹脂(スチレン・ブタジエンゴム)を用いているため、第一の層11aと第二の層11bとの接着性に劣っており、また、固体電解質層12における割れやヒビも生じていた。
また、比較例17では、負極活物質層11におけるPVdF(ポリフッ化ビニリデン)の含有割合が2.5質量%未満であるため、第一の層11aと第二の層11bとの接着性に劣っており、また、固体電解質層12の表面に、割れやひびが生じていた。
一方、比較例18では、負極活物質層11におけるポリフッ化ビニリデン(結着剤)の含有割合が、4.0質量%を超えているため、第一の層11aと第二の層11bとの接着性には優れていたものの、固体電解質層12の表面に、割れ又はヒビが生じていた。
10 負極集電体
11 負極活物質層
11a 第一の層
11b 第二の層
11c 積層構造
12 固体電解質層
14、16 剥離シート
20 凝集体
20d 積層方向の断面における凝集体の径
20e 接合界面での断面における凝集体の径
25、26、27、28、29 積層体
100 積層体
L 境界線
R 接合界面
S 断面

Claims (1)

  1. 負極集電体と、
    各々が負極活物質及び結着剤を含む第一の層と第二の層とが直接接して積層された積層構造を有する負極活物質層と、
    固体電解質層とが、この順に積層されている全固体電池用積層体であって、
    前記結着剤は、ポリフッ化ビニリデンを含み、
    前記負極活物質層におけるポリフッ化ビニリデンの含有割合は、2.5質量%以上4.0質量%以下であり、
    前記負極活物質層は、前記積層体の積層方向の断面における前記第一の層と前記第二の層との境界線上の任意の位置での、当該境界線に沿う方向の長さ10mmの領域(A)内に、前記断面における前記境界線上の位置での径が47〜63μmである凝集体を5個以上有しており、且つ、前記領域(A)内に含まれる、前記断面における前記境界線上の位置での径が63μmを超える凝集体の数が3個未満であり、
    前記積層体の積層方向の断面において前記第一の層と前記第二の層とが直接接して積層された積層構造全体の領域(α)に現れる前記結着剤の断面が占める面積(D1)と当該領域(α)に現れる前記負極活物質の断面が占める面積(N1)との比((D1)/(N1))に対する、当該積層体の積層方向の断面において前記境界線及びその近傍の領域(β)に現れる前記結着剤の断面が占める面積(D2)と当該領域(β)に現れる前記負極活物質の断面が占める面積(N2)との比((D2)/(N2))の割合(((D2)/(N2))/((D1)/(N1)))が、1.1以上である、ことを特徴とする全固体電池用積層体。
JP2019097606A 2019-05-24 2019-05-24 全固体電池用積層体 Active JP7180537B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019097606A JP7180537B2 (ja) 2019-05-24 2019-05-24 全固体電池用積層体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019097606A JP7180537B2 (ja) 2019-05-24 2019-05-24 全固体電池用積層体

Publications (2)

Publication Number Publication Date
JP2020194620A true JP2020194620A (ja) 2020-12-03
JP7180537B2 JP7180537B2 (ja) 2022-11-30

Family

ID=73546457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097606A Active JP7180537B2 (ja) 2019-05-24 2019-05-24 全固体電池用積層体

Country Status (1)

Country Link
JP (1) JP7180537B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448506B2 (ja) 2021-04-20 2024-03-12 トヨタ自動車株式会社 電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256446A (ja) * 2011-06-07 2012-12-27 Sumitomo Electric Ind Ltd 固体電解質電池用電極とその製造方法および固体電解質電池
JP2014191917A (ja) * 2013-03-26 2014-10-06 Idemitsu Kosan Co Ltd 全固体電池
JP2015153658A (ja) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 非水電解質二次電池および該電池用の負極

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256446A (ja) * 2011-06-07 2012-12-27 Sumitomo Electric Ind Ltd 固体電解質電池用電極とその製造方法および固体電解質電池
JP2014191917A (ja) * 2013-03-26 2014-10-06 Idemitsu Kosan Co Ltd 全固体電池
JP2015153658A (ja) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 非水電解質二次電池および該電池用の負極

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448506B2 (ja) 2021-04-20 2024-03-12 トヨタ自動車株式会社 電池

Also Published As

Publication number Publication date
JP7180537B2 (ja) 2022-11-30

Similar Documents

Publication Publication Date Title
JP2020021674A (ja) 全固体電池およびその製造方法
JP6597701B2 (ja) 負極合材、当該負極合材を含む負極、及び、当該負極を備える全固体リチウムイオン二次電池
JP5850154B2 (ja) 全固体電池の製造方法
TW201448337A (zh) 全固態電池及其製造方法
JP2015005398A (ja) 全固体リチウムイオン電池用正極
JP6296030B2 (ja) 電極積層体及び全固体電池の製造方法
JP6776994B2 (ja) 全固体リチウムイオン二次電池の製造方法
JP2014216131A (ja) 全固体電池およびその製造方法
JP6927292B2 (ja) 全固体リチウムイオン二次電池
JP7243249B2 (ja) 全固体電池
US11923510B2 (en) Solid-state battery and method of manufacture thereof
JP7156095B2 (ja) 正極スラリーの製造方法、正極の製造方法及び全固体電池の製造方法、並びに、正極及び全固体電池
JP6943208B2 (ja) 全固体電池の製造方法および全固体電池
JP2015153647A (ja) 固体電池の製造方法
KR102475775B1 (ko) 전고체전지의 제조방법 및 전고체전지
JP2013115022A (ja) 固体電池用電極の製造方法
JP2020107414A (ja) 積層体
JP7180537B2 (ja) 全固体電池用積層体
JP7156263B2 (ja) 全固体電池および全固体電池の製造方法
JP6183464B2 (ja) 非水電解質電池およびその製造方法
JP2020068142A (ja) 全固体電池の製造方法
JP2023009988A (ja) 全固体電池及び全固体電池の製造方法
JP2022085523A (ja) 全固体電池用負極
JP2022044461A (ja) 全固体二次電池、積層全固体二次電池及びこれらの製造方法
JP2020161471A (ja) 全固体電池の製造方法及び全固体電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R151 Written notification of patent or utility model registration

Ref document number: 7180537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151