JP2020123424A - 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 - Google Patents

磁気テープ、磁気テープカートリッジおよび磁気テープ装置 Download PDF

Info

Publication number
JP2020123424A
JP2020123424A JP2019016532A JP2019016532A JP2020123424A JP 2020123424 A JP2020123424 A JP 2020123424A JP 2019016532 A JP2019016532 A JP 2019016532A JP 2019016532 A JP2019016532 A JP 2019016532A JP 2020123424 A JP2020123424 A JP 2020123424A
Authority
JP
Japan
Prior art keywords
magnetic tape
magnetic
reading
track
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019016532A
Other languages
English (en)
Other versions
JP7003074B2 (ja
Inventor
栄貴 小沢
Eiki Ozawa
栄貴 小沢
成人 笠田
Naruto Kasada
成人 笠田
敦史 武者
Atsushi Musha
敦史 武者
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2019016532A priority Critical patent/JP7003074B2/ja
Priority to US16/777,418 priority patent/US11355142B2/en
Publication of JP2020123424A publication Critical patent/JP2020123424A/ja
Priority to US17/399,241 priority patent/US11423932B2/en
Priority to JP2021214244A priority patent/JP7189312B2/ja
Application granted granted Critical
Publication of JP7003074B2 publication Critical patent/JP7003074B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/50Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges
    • G11B23/502Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges of tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/02Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
    • G11B27/022Electronic editing of analogue information signals, e.g. audio or video signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • G11B5/7021Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent containing a polyurethane or a polyisocyanate
    • G11B5/7022Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent containing a polyurethane or a polyisocyanate containing mixtures of polyurethanes or polyisocyanates with other polymers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/7061Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys with a non-magnetic core
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • G11B5/70684Ferro-ferrioxydes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/708Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/7013Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dispersing agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/733Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the addition of non-magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Magnetic Record Carriers (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)

Abstract

【課題】複数の読取素子を利用する磁気テープ装置において良好な再生品質でのデータの再生が可能な磁気テープの提供。【解決手段】非磁性支持体と磁性層とを有し、磁性層はタイミングベースサーボパターンを有し、タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と累積分布関数0.1%の値L0.1との差分が180nm以下である形状であり、かつ磁性層の表面においてメチルエチルケトン洗浄後に光学干渉法により測定されるスペーシングSafterとメチルエチルケトン洗浄前に測定されるスペーシングSbeforeとの差分が0nm超15.0nm以下である磁気テープ。この磁気テープを含む磁気テープカートリッジおよび磁気テープ装置。【選択図】なし

Description

本発明は、磁気テープ、磁気テープカートリッジおよび磁気テープ装置に関する。
磁気記録媒体へのデータの記録および/または記録されたデータの読み取り(再生)を行う磁気記録再生装置は、磁気ディスク装置と磁気テープ装置に大別される。磁気ディスク装置の代表例はHDD(Hard Disk Drive)である。磁気ディスク装置では、磁気記録媒体として磁気ディスクが使用される。一方、磁気テープ装置では、磁気記録媒体として磁気テープが使用される。
磁気ディスク装置および磁気テープ装置のいずれにおいても、記録トラック幅を狭小化することは記録容量を高めるため(高容量化)に好ましい。他方、記録トラック幅を狭小化するほど、再生時に読取対象トラックの信号に隣接トラックの信号が混入し易くなるため、SNR(Signal−to−Noise Ratio)等の再生品質を維持することは困難になる。この点に関し、近年、複数の読取素子(「再生素子」とも呼ばれる。)によって記録トラックの信号を二次元的に読み取ることにより、再生品質の向上を図ることが提案されている(例えば特許文献1〜3参照)。こうして再生品質を向上できれば、記録トラック幅を狭小化しても再生品質を維持することができるため、記録トラック幅の狭小化により記録容量を高めることが可能となる。
特開2016−110680号公報 特開2011−134372号公報 米国特許第7755863号明細書
特許文献1および2では、磁気ディスク装置に関する検討が行われている。一方、磁気テープは、近年、大容量のデータを長期間保存するためのデータストレージメディアとして注目されている。しかし、磁気テープ装置は、一般に、磁気テープと読取素子とが接触し摺動することによってデータ読取(再生)が行われる摺動型の装置である。そのため、再生時に読取素子と読取対象トラックとの相対位置が変動し易く、再生品質の向上は、磁気ディスク装置と比べてより困難な傾向がある。特許文献3には、磁気テープ装置(テープドライブ)に関する記載はあるものの、磁気テープ装置における再生品質向上のための具体的な手段は示されていない。
本発明の一態様は、複数の読取素子(再生素子)を利用する磁気テープ装置において、良好な再生品質でのデータの再生が可能な磁気テープを提供することを目的とする。
本発明の一態様は、
非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する磁気テープであって、
上記磁性層は、タイミングベースサーボパターンを有し、
上記タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と上記累積分布関数0.1%の値L0.1との差分(L99.9−L0.1)が180nm以下である形状であり、かつ
上記磁性層の表面においてメチルエチルケトン洗浄後に光学干渉法により測定されるスペーシングSafterと、上記磁性層の表面においてメチルエチルケトン洗浄前に光学干渉法により測定されるスペーシングSbeforeとの差分(Safter−Sbefore)(以下、「メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)」または単に「差分(Safter−Sbefore)」とも記載する。)が0nm超15.0nm以下である、磁気テープ、
に関する。
一態様では、上記差分(Safter−Sbefore)は、2.0nm以上15.0nm以下であることができる。
一態様では、上記差分(Safter−Sbefore)は、3.0nm以上12.0nm以下であることができる。
一態様では、上記タイミングベースサーボパターンは、磁気テープの幅方向の一方から他方に向かって連続的に延び、かつ上記幅方向に対して角度αで傾斜した直線状サーボパターンであることができ、上記理想形状は、上記角度αの方向に延びる直線形状であることができる。
一態様では、上記差分(L99.9−L0.1)は、100nm以上180nm以下であることができる。
一態様では、上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有することができる。
一態様では、上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することができる。
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
本発明の一態様は、
磁気テープと、
読取素子ユニットと、
抽出部と、
を含み、
上記磁気テープは、上記の本発明の一態様にかかる磁気テープであり、
上記読取素子ユニットは、上記磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取る複数の読取素子を有し、
上記抽出部は、上記読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、上記読取結果から、上記読取対象トラックに由来するデータを抽出する、磁気テープ装置、
に関する。
一態様では、上記複数の読取素子は、磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータをリニアスキャン方式で各々読み取ることができる。
一態様では、上記波形等化処理は、上記磁気テープと上記読取素子ユニットとの位置のずれ量に応じた波形等化処理であることができる。
一態様では、上記波形等化処理は、上記ずれ量に応じて定められるタップ係数を用いて行われ得る。
一態様では、上記ずれ量は、上記磁気テープの磁性層のタイミングベースサーボパターンを上記サーボ素子が読み取ることにより得られた結果に応じて定められ得る。
一態様では、上記読取素子ユニットはサーボ素子を含むことができ、上記サーボ素子により行われる読取動作に同期して、上記読取素子ユニットの読取動作が行われ得る。
一態様では、上記複数の読取素子の互いの一部は、上記磁気テープの走行方向で重なっていることができる。
一態様では、上記特定トラック領域は、上記読取対象トラックと上記読取対象トラックに隣接している隣接トラックとを含む領域であることができ、上記複数の読取素子の各々は、上記磁気テープとの位置関係が変化した場合に、上記読取対象トラックおよび上記隣接トラックの双方に対して、共に跨っていることができる。
一態様では、上記複数の読取素子は、上記磁気テープの幅方向に、近接した状態で並べて配置されていることができる。
一態様では、上記磁気テープの幅方向において、上記複数の読取素子は、上記読取対象トラック内に収まっていることができる。
一態様では、上記複数の読取素子の各々について、上記読取対象トラックとの重複領域と上記読取対象トラックに隣接している隣接トラックとの重複領域との比が上記ずれ量から特定され得て、特定された上記比に応じて上記タップ係数が定められ得る。
一態様では、上記抽出部は、2次元FIR(Finite Impulse Response)フィルタを有することができ、上記2次元FIRフィルタは、上記読取素子毎の読取結果の各々に対して上記波形等化処理を施すことにより得られた各結果を合成することによって、上記読取結果から上記読取対象トラックに由来するデータを抽出することができる。
一態様では、上記複数の読取素子は一対の読取素子であることができる。
本発明の一態様によれば、複数の読取素子(再生素子)を利用する磁気テープ装置において、良好な再生品質でのデータの再生が可能な磁気テープを提供することができる。本発明の一態様によれば、かかる磁気テープを含む磁気テープカートリッジを提供することもできる。また、本発明の一態様によれば、かかる磁気テープおよび複数の読取素子(再生素子)を有する磁気テープ装置を提供することもできる。
磁気テープ装置の全体構成の一例を示す概略構成図である。 磁気テープ装置に含まれる読取ヘッドと磁気テープとの平面視の概略構成の一例を示す概略平面図である。 読取素子ユニットと磁気テープとの平面視の概略構成の一例を示す概略平面図である。 トラック領域と読取素子対との平面視の概略構成の一例を示す概略平面図である。 単一読取素子データと第1条件下での第1合成データとの各々に関するSNRとトラックオフセットとの相関の一例を示すグラフである。 単一読取素子データと第2条件下での第2合成データとの各々に関するSNRとトラックオフセットとの相関の一例を示すグラフである。 磁気テープ装置の電気系のハードウェアの要部構成の一例を示すブロック図である。 ずれ量の算出方法の説明に供する概念図である。 磁気テープ読取処理の流れの一例を示すフローチャートである。 抽出部の2次元FIRフィルタで行われる処理の説明に供する概念図である。 読取素子ユニットが読取対象トラックと第2のノイズ混入源トラックとに跨っている状態の一例を示す概略平面図である。 読取素子ユニットの第1の変形例を示す概略平面図である。 読取素子ユニットの第2の変形例を示す概略平面図である。 データバンドおよびサーボバンドの配置例を示す。 LTO(Linear−Tape−Open) Ultriumフォーマットテープのサーボパターン配置例を示す。 サーボパターンのエッジ形状に関する角度αの説明図である。 サーボパターンのエッジ形状に関する角度αの説明図である。 サーボパターンのエッジ形状の一例を示す。 サーボパターンの一例を示す。 サーボパターンの一例を示す。 サーボパターンの一例を示す。 第1の例の説明に供する概念図である。 第2の例の説明に供する概念図である。 単一読取素子から得られる再生信号の2次元像の一例を示す図である。
以下に、まず複数の読取素子(再生素子)を利用する磁気テープ装置の構成等について説明する。
磁気テープ装置は、磁気テープと、読取素子ユニットと、抽出部と、を含むことができる。磁気テープからのデータの読み取りに関して、図22に示す例では、長尺状の読取ヘッド200が、長手方向に沿って複数の読取素子202を備えている。磁気テープ204には、複数のトラック206が形成されている。読取ヘッド200は、長手方向が磁気テープ204の幅方向に一致するように配置されている。また、複数の読取素子202の各々は、複数のトラック206の各々に対して1対1の関係で割り当てられており、対向する位置のトラック206からデータを読み取る。
しかし、磁気テープ204は、通常、経時、環境、テンションの変動等に起因して伸縮する。磁気テープ204の幅方向に磁気テープが伸縮すると、読取ヘッド200において、長手方向の両端に配置された読取素子202の中心は、トラック206の中心からずれてしまう。磁気テープ204が幅方向に伸縮することにより変形すると、特に、複数の読取素子202のうち、読取ヘッド200の両端に近い読取素子202ほど、オフトラックの影響を大きく受けてしまう。オフトラックの影響を小さくするためには、例えば、トラック206の幅に余裕を持たせるという方法が考えられる。しかし、トラック206の幅を広げるほど、磁気テープ204の記録容量は小さくなってしまう。
また、一例として図23に示す例のように、読取ヘッド200には、通常、サーボ素子208が設けられている。磁気テープ204に対して、磁気テープ204の磁性層に形成されたサーボパターンが、サーボ素子208によって読み取られる。そして、サーボ素子208によってサーボパターンが読み取られて得られたサーボ信号から、制御装置(図示省略)によって、例えば、一定の時間間隔で、読取素子202が磁気テープ204上のどの位置を走行しているかが特定される。これにより、磁気テープ204の幅方向のPES(Position Error Signal)が制御装置によって検出される。
このように、制御装置により読取素子202の走行位置が特定されると、特定された走行位置に基づいて、制御装置により、読取ヘッド用のアクチュエータ(図示省略)に対して帰還制御が行われることにより、磁気テープ204の幅方向のトラッキングが実現される。
しかし、トラッキングが行われたとしても、急峻な振動およびジッタの高周波成分等は、PESが増大する要因となり、読取対象トラックから読み取られたデータの再生品質の低下に繋がってしまう。
これに対し、複数の読取素子を利用し、磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取り、かつ、読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、上記読取結果から上記読取対象トラックに由来するデータを抽出すれば、読取対象トラックから単一の読取素子のみによってデータが読み取られる場合に比べ、読取対象トラックから読み取られるデータの再生品質を高めることができる。その結果、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることができる。
ただし、読取素子と読取対象トラックとの相対位置の変動(以下、「相対位置変動」という。)が大きいと、複数の読取素子毎の読取結果の各々に対して施される波形等化処理が、必ずしも各読取結果に対する最適な波形等化処理とは言えない場合がある。例えば、2次元FIRフィルタにより施される波形等化処理が、必ずしも各読取結果に対する最適な波形等化処理とは言えない場合がある。これに対し、上記の相対位置変動を抑制することができれば、複数の読取素子により読み取られた読取結果の各々に対して、より適した波形等化処理を施すことが可能となる。その結果、上記の波形等化処理が施されて抽出された読取対象トラックに由来するデータについて良好な再生品質を確保できるずれ量の許容量を大きくすることができる。この点に関して、本発明の一態様にかかる磁気テープにおいて、上記のメチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)が0nm超15.0nm以下であることは、上記の相対位置変動を抑制することに寄与すると推察される。この点については更に後述する。
また、サーボパターンが設計形状(例えば、詳細を後述する理想形状)により近い形状で形成されているほど、読取素子が走行している位置を特定する精度はより高まる。このことも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることにつながる。この点に関して、上記差分(L99.9−L0.1)は、サーボパターン(タイミングベースサーボパターン)の形状に関する指標である。詳細は後述する。
以上のように、良好な再生品質を確保できるずれ量の許容量を大きくできることは、トラックマージン(記録トラック幅−再生素子幅)を小さくしても良好な再生品質(例えば高SNR、低エラーレート等)での再生を可能にすることに寄与し得る。そしてトラックマージンを小さくできることは、記録トラック幅を小さくして磁気テープの幅方向に配置可能な記録トラック数を増すこと、即ち高容量化に寄与し得る。
以下、本発明の一態様にかかる磁気テープ、磁気テープカートリッジおよび磁気テープ装置について、更に詳細に説明する。以下では、磁気テープ装置等について図面を参照して説明することがある。ただし本発明は、図面に示す態様に限定されるものではない。
[磁気テープ装置の構成および磁気テープ読取処理]
一例として図1に示すように、磁気テープ装置10は、磁気テープカートリッジ12、搬送装置14、読取ヘッド16、および制御装置18を備えている。
磁気テープ装置10は、磁気テープカートリッジ12から磁気テープMTを引き出し、引き出した磁気テープMTから読取ヘッド16を用いてデータをリニアスキャン方式で読み取る装置である。データの読み取りとは、データの再生とも言うことができる。
制御装置18は、磁気テープ装置10の全体を制御する。一態様では、制御装置18により行われる制御は、ASIC(Application Specific Integrated Circuit)によって実現され得る。また、一態様では、制御装置18により行われる制御は、FPGA(Field−Programmable Gate Array)によって実現され得る。また、制御装置18により行われる制御は、CPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)を含むコンピュータによって実現されてもよい。また、AISC、FPGA、およびコンピュータのうちの2つ以上の組み合わせにより、上記制御が実現されてもよい。
搬送装置14は、磁気テープMTを順方向および逆方向に選択的に搬送する装置であり、送出モータ20、巻取リール22、巻取モータ24、複数のガイドローラGR、および制御装置18を備えている。
磁気テープカートリッジ12内には、カートリッジリールCRが設けられている。カートリッジリールCRには磁気テープMTが巻き掛けられている。送出モータ20は、制御装置18の制御下で、磁気テープカートリッジ12内のカートリッジリールCRを回転駆動させる。制御装置18は、送出モータ20を制御することで、カートリッジリールCRの回転方向、回転速度、および回転トルク等を制御する。
磁気テープMTが巻取リール22によって巻き取られる場合には、制御装置18によって、磁気テープMTを順方向に走行させるように送出モータ20を回転させる。送出モータ20の回転速度および回転トルク等は、巻取リール22によって巻き取られる磁気テープMTの速度に応じて調整される。
巻取モータ24は、制御装置18の制御下で、巻取リール22を回転駆動させる。制御装置18は、巻取モータ24を制御することで、巻取リール22の回転方向、回転速度、および回転トルク等を制御する。
磁気テープMTが巻取リール22によって巻き取られる場合には、制御装置18によって、磁気テープMTを順方向に走行させるように巻取モータ24を回転させる。巻取モータ24の回転速度および回転トルク等は、巻取リール22によって巻き取られる磁気テープMTの速度に応じて調整される。
このようにして送出モータ20および巻取モータ24の各々の回転速度および回転トルク等が調整されることで、磁気テープMTに既定範囲内の張力が付与される。ここで、既定範囲内とは、例えば、磁気テープMTから読取ヘッド16によってデータが読取可能な張力の範囲として、コンピュータシミュレーションおよび/または実機試験等により得られた張力の範囲を指す。
磁気テープMTをカートリッジリールCRに巻き戻す場合には、制御装置18によって、磁気テープMTを逆方向に走行させるように送出モータ20および巻取モータ24を回転させる。
一態様では、送出モータ20および巻取モータ24の回転速度および回転トルク等が制御されることにより磁気テープMTの張力が制御されている。また、一態様では、磁気テープMTの張力は、ダンサローラを用いて制御されてもよいし、バキュームチャンバに磁気テープMTを引き込むことによって制御されてもよい。
複数のガイドローラGRの各々は、磁気テープMTを案内するローラである。磁気テープMTの走行経路は、複数のガイドローラGRが磁気テープカートリッジ12と巻取リール22との間において読取ヘッド16を跨ぐ位置に分けて配置されることによって定められている。
読取ヘッド16は、読取部26およびホルダ28を備えている。読取部26は、走行中の磁気テープMTに接触するようにホルダ28によって保持されている。
一例として図2に示すように、磁気テープMTは、トラック領域30およびサーボパターン32を備えている。サーボパターン32は、磁気テープMTに対する読取ヘッド16の位置の検出に用いられるパターンである。サーボパターン32は、テープ幅方向の両端部に、第1既定角度(例えば、95度)の第1斜線32Aと、第2既定角度(例えば、85度)の第2斜線32Bとが磁気テープMTの走行方向に沿って一定のピッチ(周期)で交互に配置されたパターンである。ここで言う「テープ幅方向」とは、磁気テープMTの幅方向を指す。
トラック領域30は、読取対象とされるデータが書き込まれた領域であり、磁気テープMTのテープ幅方向の中央部に形成されている。ここで言う「テープ幅方向の中央部」とは、例えば、磁気テープMTのテープ幅方向の一端部のサーボパターン32と他端部のサーボパターン32との間の領域を指す。以下では、説明の便宜上、「磁気テープMTの走行方向」を単に「走行方向」と称する。
読取部26は、サーボ素子対36および複数の読取素子ユニット38を備えている。ホルダ28は、テープ幅方向に長尺状に形成されており、ホルダ28の長手方向の全長は、磁気テープMTの幅よりも長い。サーボ素子対36は、ホルダ28の長手方向の両端部に配置されており、複数の読取素子ユニット38は、ホルダ28の長手方向の中央部に配置されている。
サーボ素子対36は、サーボ素子36Aおよび36Bを備えている。サーボ素子36Aは、磁気テープMTのテープ幅方向の一端部のサーボパターン32に対向する位置に配置されており、サーボ素子36Bは、磁気テープMTのテープ幅方向の他端部のサーボパターン32に対向する位置に配置されている。
ホルダ28において、サーボ素子36Aとサーボ素子36Bとの間には、複数の読取素子ユニット38がテープ幅方向に沿って配置されている。トラック領域30は、複数のトラックをテープ幅方向に等間隔に備えており、磁気テープ装置10がデフォルトの状態で、複数の読取素子ユニット38の各々がトラック領域30内の各トラックに対向して配置されている。
よって、読取部26と磁気テープMTとが磁気テープMTの長手方向に沿って直線状に相対移動することにより、トラック領域30内の各トラックのデータは、複数の読取素子ユニット38のうちの位置が対応する読取素子ユニット38の各々によってリニアスキャン方式で読み取られる。また、リニアスキャン方式では、読取素子ユニット38の読取動作と同期して、サーボ素子対36によってサーボパターン32が読み取られる。すなわち、リニアスキャン方式の一態様では、複数の読取素子ユニット38とサーボ素子対36によって磁気テープMTに対する読み取りが並行して行われる。
ここで、上記の「トラック領域30内の各トラック」とは、「磁気テープに含まれるトラック領域のうちの読取対象トラックを各々含む複数の特定トラック領域の各々」に含まれるトラックを指す。
上記の「磁気テープ装置10がデフォルトの状態」とは、磁気テープMTが変形することなく、かつ、磁気テープMTと読取ヘッド16との位置関係が正しい位置関係にある状態を指す。ここで、「正しい位置関係」とは、例えば、磁気テープMTのテープ幅方向の中心と読取ヘッド16の長手方向の中心とが一致する位置関係を指す。
一態様において、複数の読取素子ユニット38の各々は同じ構成である。以下では、説明の便宜上、複数の読取素子ユニット38のうちの1つを例に挙げて説明する。一例として図3に示すように、読取素子ユニット38は、一対の読取素子を備えている。図3に示す例において、「一対の読取素子」とは、第1読取素子40および第2読取素子42を指す。第1読取素子40および第2読取素子42の各々は、トラック領域30のうち読取対象トラック30Aを含む特定トラック領域31からデータを読み取る。
図3に示す例では、説明の便宜上、1つの特定トラック領域31を示している。実際には、通常、トラック領域30には、複数の特定トラック領域31が存在し、各々の特定トラック領域31に読取対象トラック30Aが含まれている。そして、複数の特定トラック領域31の各々に対して読取素子ユニット38が1つずつ割り当てられている。具体的には、複数の特定トラック領域31の各々の読取対象トラック30Aに対して読取素子ユニット38が1つずつ割り当てられている。
特定トラック領域31とは、隣接する3つのトラックを指す。隣接する3つのトラックのうちの1つ目のトラックは、トラック領域30のうちの読取対象トラック30Aである。隣接する3つのトラックのうちの2つ目のトラックは、読取対象トラック30Aに隣接する隣接トラックの1つである第1のノイズ混入源トラック30Bである。隣接する3つのトラックのうちの3つ目のトラックは、読取対象トラック30Aに隣接する隣接トラックの1つである第2のノイズ混入源トラック30Cである。読取対象トラック30Aは、トラック領域30において読取素子ユニット38に対向する位置のトラックである。すなわち、読取対象トラック30Aとは、換言すると、読取素子ユニット38のデータの読取対象とされたトラックを指す。
第1のノイズ混入源トラック30Bは、読取対象トラック30Aに対してテープ幅方向の一側方に隣接しており、読取対象トラック30Aから読み取られたデータに混入するノイズの混入源となるトラックである。第2のノイズ混入源トラック30Cは、読取対象トラック30Aに対してテープ幅方向の他側方に隣接しており、読取対象トラック30Aから読み取られたデータに混入するノイズの混入源となるトラックである。以下では、説明の便宜上、第1のノイズ混入源トラック30Bと第2のノイズ混入源トラック30Cとを区別して説明する必要がない場合、符号を付さずに「隣接トラック」と称する。
一態様では、トラック領域30内において、テープ幅方向に一定の間隔で複数の特定トラック領域31が配置されている。例えば、トラック領域30内において、テープ幅方向に一定の間隔で32個の特定トラック領域31が配置されており、各特定トラック領域31に対して読取素子ユニット38が1つずつ割り当てられている。
第1読取素子40と第2読取素子42とは、走行方向で近接した状態で、かつ、走行方向で一部が重なる位置に配置されている。磁気テープ装置10のデフォルトの状態で、第1読取素子40は、読取対象トラック30Aと第1のノイズ混入源トラック30Bとを跨ぐ位置に配置されている。磁気テープ装置10のデフォルトの状態で、第2読取素子42は、読取対象トラック30Aと第1のノイズ混入源トラック30Bとを跨ぐ位置に配置されている。
磁気テープ装置10のデフォルトの状態で、平面視において、第1読取素子40のうちの読取対象トラック30Aと対向している部分の面積は、第1読取素子40のうちの第1のノイズ混入源トラック30Bと対向している部分の面積よりも大きい。一方、磁気テープ装置10のデフォルトの状態で、平面視において、第2読取素子42のうちの第1のノイズ混入源トラック30Bと対向している部分の面積は、第1読取素子40のうちの読取対象トラック30Aと対向している部分の面積よりも大きい。
第1読取素子40によって読み取られたデータに対しては後述の第1等化器70(図7参照)によって波形等化処理が施される。第2読取素子42によって読み取られたデータに対しては後述の第2等化器72(図7参照)によって波形等化処理が施される。第1等化器70および第2等化器72の各々によって波形等化処理が施されて得られた各データは、加算器44によって加算されることで合成される。
図3では、読取素子ユニット38が第1読取素子40および第2読取素子42を有する態様を例に説明している。ただし、例えば、一対の読取素子のうちの1つの読取素子のみ(以下、単一読取素子とも称する)を用いても、読取素子ユニット38から得られる再生信号に相当する信号が得られる。
この場合、例えば、一例として図8に示すように、単一読取素子から得られる再生信号を、再生信号と同期してサーボ素子対36によって取得されたサーボ信号から算出されるトラック上の平面位置に割り当てる。そして、これをテープ幅方向に単一読取素子を移動させながら繰り返すことで、再生信号の2次元像(以下、単に「2次元像」と称する)を得る。ここで、2次元像、または、2次元像の一部を構成する再生信号(例えば、複数のトラックの位置に相当する再生信号)は、読取素子ユニット38から得られる再生信号に相当する信号である。
図24には、ループ状にした磁気テープMT(以下、「ループテープ」とも称する)について、ループテスタを用いて得た再生信号の2次元像の一例が示されている。ここで、ループテスタとは、例えば、ループテープを単一読取素子に対して繰り返し接触させた状態で搬送させる装置を指す。ループテスタと同様に2次元像を得るためには、リールテスタを用いてもよいし、実際のテープドライブを用いてもよい。ここで言う「リールテスタ」とは、例えば、磁気テープMTをリール形態で搬送させる装置を指す。
このように、近接した位置に複数の読取素子を搭載した読取素子ユニットを有しない磁気テープ用ヘッドを用いたとしても、本明細書に記載の技術に係る効果を定量的に評価することができる。本明細書に記載の技術に係る効果を定量的に評価するための指標の一例として、SNR、エラーレート等が挙げられる。
図4〜図6には、本発明者らが実験して得られた結果が示されている。一例として図4に示すように、トラック領域49上には読取素子対50が配置されている。トラック領域49は、テープ幅方向に隣接する第1トラック49A、第2トラック49B、および第3トラック49Cを含む。読取素子対50は、第1読取素子50Aおよび第2読取素子50Bからなる。第1読取素子50Aと第2読取素子50Bとは、テープ幅方向で近接する位置に配置されている。また、第1読取素子50Aは、読取対象トラックである第2トラック49Bに対向し、かつ、第2トラック49Bに収まるように配置されている。また、第2読取素子50Bは、第2トラック49Bの一側方に隣接する第1トラック49Aに対向し、かつ、第1トラック49Aに収まるように配置されている。
図5には、単一読取素子データと第1条件下での第1合成データとの各々に関するSNRとトラックオフセットとの相関の一例が示されている。また、図6には、単一読取素子データと第2条件下での第2合成データとの各々に関するSNRとトラックオフセットとの相関の一例が示されている。
ここで、単一読取素子データとは、図3に示す第1読取素子40と同様に、第1読取素子50Aによって読み取られたデータに対して波形等化処理が施されて得られたデータを指す。第1条件とは、読取素子ピッチが700nm(ナノメートル)との条件を指す。第2条件とは、読取素子ピッチが500nmとの条件を指す。読取素子ピッチとは、一例として図4に示すように、第1読取素子50Aと第2読取素子50Bとのテープ幅方向のピッチを指す。トラックオフセットとは、一例として図4に示すように、第2トラック49Bのテープ幅方向の中心と第1読取素子50Aのトラック幅方向の中心とのずれ量を指す。
第1合成データとは、第1条件下で各々得られた第1波形等化処理済みデータと第2波形等化処理済みデータとが加算されることで合成されたデータを指す。第1波形等化処理済みデータとは、図3に示す第1読取素子40と同様に、第1読取素子50Aによって読み取られたデータに対して波形等化処理が施されて得られたデータを指す。第2波形等化処理済みデータとは、図3に示す第2読取素子42と同様に、第2読取素子50Bによって読み取られたデータに対して波形等化処理が施されて得られたデータを指す。第2合成データとは、第2条件下で各々得られた第1波形等化処理済みデータと第2波形等化処理済みデータとが加算されることで合成されたデータを指す。
図5に示す第1合成データのSNRと図6に示す第2合成データのSNRとを比較すると、第1合成データのSNRは、トラックオフセットが−0.4μm(マイクロメートル)〜0.2μm辺りで急激に下落してグラフの途中で溝が生じているのに対し、第2合成データのSNRは、第1合成データのSNRのグラフのように途中で急激に下落することはない。第1合成データのSNRおよび第2合成データのSNRの各々は、単一読取素子データのSNRよりも高く、特に、第2合成データのSNRは、トラックオフセットの全範囲において、単一読取素子データのSNRよりも高い。
本発明者らは、図5および図6に示す実験結果から、第1読取素子50Aのみによりデータの読み取りが行われる場合に比べ、第1読取素子50Aと第2読取素子50Bとをテープ幅方向に近接させた状態でデータの読み取りを行わせることが好ましいことを知見した。ここで言う「近接させた状態」とは、例えば、第1読取素子50Aと第2読取素子50Bとが、接触することなく、トラックオフセットの全範囲において、単一読取素子データのSNRよりもSNRが高くなるようにテープ幅方向に並べて配置された状態を指す。
一態様では、一例として図3に示すように、読取素子ユニット38において、第1読取素子40と第2読取素子42とが走行方向に対して互いの一部をオーバーラップさせることで磁気テープMTに含まれるトラックの高密度化を実現している。
一例として図7に示すように、磁気テープ装置10は、アクチュエータ60、抽出部62、A/D(Analog/Digital)変換器64、66、68、復号部69、およびコンピュータ73を備えている。
制御装置18は、サーボ素子対36に対してA/D(Analog/Digital)変換器68を介して接続されている。A/D変換器68は、サーボ素子対36に含まれるサーボ素子36Aおよび36Bによってサーボパターン32が読み取られて得られたアナログ信号をデジタル信号に変換することで得たサーボ信号を制御装置18に出力する。
制御装置18は、アクチュエータ60に接続されている。アクチュエータ60は、読取ヘッド16に取り付けられており、制御装置18の制御下で、動力を読取ヘッド16に付与することにより、読取ヘッド16をテープ幅方向に変動させる。アクチュエータ60は、例えば、ボイスコイルモータを含んでおり、読取ヘッド16に付与される動力は、磁石のエネルギーを媒体として、コイルに流れる電流に基づく電気エネルギーが運動エネルギーに変換されることによって得られる動力である。
ここでは、アクチュエータ60にボイスコイルモータが搭載されている態様を挙げている。ただし、上記磁気テープ装置は、かかる態様に限定されず、例えば、ボイスコイルモータに代えて圧電素子を採用することも可能である。また、ボイスコイルモータおよび圧電素子を併用することも可能である。
一態様では、磁気テープMTと読取素子ユニット38との位置のずれ量が、サーボパターン32をサーボ素子対36が読み取って得た結果であるサーボ信号に応じて定められる。制御装置18は、アクチュエータ60を制御することにより、磁気テープMTと読取素子ユニット38との位置のずれ量に応じた動力を読取ヘッド16に付与することによって、読取ヘッド16をテープ幅方向に変動させ、読取ヘッド16の位置を正常な位置に調整する。ここで、正常な位置とは、例えば、図3に示すように、磁気テープ装置10がデフォルトの状態での読取ヘッド16の位置を指す。
ここでは、磁気テープMTと読取素子ユニット38との位置のずれ量を、サーボパターン32をサーボ素子対36が読み取って得た結果であるサーボ信号に応じて定める態様を例示している。ただし本発明の一態様にかかる磁気テープ装置は、そのような例示に限定されない。例えば、磁気テープMTと読取素子ユニット38との位置のずれ量として、サーボ素子36Aと磁気テープMTの予め定められた基準位置とのずれ量を採用してもよいし、読取ヘッド16の端面と磁気テープMTに含まれる特定のトラックの中心位置とのずれ量を採用してもよい。磁気テープMTと読取素子ユニット38との位置のずれ量は、このように、読取対象トラック30Aのテープ幅方向の中心と読取ヘッド16のテープ幅方向の中心とのずれ量に相当するずれ量であればよい。以下では、説明の便宜上、磁気テープMTと読取素子ユニット38との位置のずれ量を単に「ずれ量」と称する。
ずれ量は、例えば、図8に示すように、距離Bに対する距離Aの割合に基づいて算出される。距離Aとは、隣接する第1斜線32Aと第2斜線32Bとがサーボ素子36Aによって読み取られることで得た結果から算出された距離を指す。距離Bとは、隣接する2つの第1斜線32Aがサーボ素子36Aによって読み取られることで得た結果から算出された距離を指す。
抽出部62は、制御装置18および2次元FIRフィルタ71を備えている。2次元FIRフィルタ71は、加算器44、第1等化器70、および第2等化器72を備えている。
第1等化器70は、A/D変換器64を介して第1読取素子40に接続されている。また、第1等化器70は、制御装置18および加算器44の各々に接続されている。第1読取素子40によって特定トラック領域31から読み取られたデータはアナログ信号であり、A/D変換器64は、第1読取素子40によって特定トラック領域31から読み取られたデータをデジタル信号に変換することで得た第1読取信号を第1等化器70に出力する。
第2等化器72は、A/D変換器66を介して第2読取素子42に接続されている。また、第2等化器72は、制御装置18および加算器44の各々に接続されている。第2読取素子42によって特定トラック領域31から読み取られたデータはアナログ信号であり、A/D変換器66は、第2読取素子42によって特定トラック領域31から読み取られたデータをデジタル信号に変換することで得た第2読取信号を第2等化器72に出力する。なお、第1読取信号および第2読取信号は、「読取素子毎の読取結果」の一例である。
第1等化器70は、入力された第1読取信号に対して、波形等化処理を施す。例えば、第1等化器70は、入力された第1読取信号に対して、タップ係数を畳み込み演算し、演算処理後の信号である第1の演算処理済み信号を出力する。
第2等化器72は、入力された第2読取信号に対して、波形等化処理を施す。例えば、第2等化器72は、入力された第2読取信号に対して、タップ係数を畳み込み演算し、演算処理後の信号である第2の演算処理済み信号を出力する。
第1等化器70および第2等化器72の各々は、第1の演算処理済み信号および第2の演算処理済み信号を加算器44に出力する。加算器44は、第1等化器70から入力された第1の演算処理済み信号と、第2等化器72から入力された第2の演算処理済み信号とを加算することで合成し、合成して得た合成データを復号部69に出力する。
第1等化器70および第2等化器72の各々は、1次元FIRフィルタである。
一態様では、FIRフィルタ自体は、正負を含む実数値の系列であり、系列の行数はタップ数と称され、数値自体はタップ係数と称される。また、一態様では、波形等化とは、読取信号に対して、上記の実数値の系列、すなわち、タップ係数を畳み込み演算(積和算)する処理を指す。ここで言う「読取信号」とは、第1読取信号および第2読取信号の総称を指す。また、一態様では、等化器とは、読取信号またはその他の入力信号に対し、タップ係数を畳み込み演算し、演算処理後の信号を出力する処理を実行する回路を指す。また、一態様では、加算器とは、単純に2つの系列を加算する回路を指す。2つの系列の重み付けは、第1等化器70および第2等化器72で用いられるFIRフィルタの数値、すなわち、タップ係数に反映される。
制御装置18は、第1等化器70および第2等化器72の各々のFIRフィルタに対して、ずれ量に応じたタップ係数を設定することにより、第1等化器70および第2等化器72の各々に対して、ずれ量に応じた波形等化処理を実行させる。
制御装置18は、対応テーブル18Aを備えている。対応テーブル18Aでは、第1等化器70および第2等化器72の各々について、タップ係数とずれ量とが対応付けられている。タップ係数とずれ量との組み合わせは、例えば、実機の試験およびシミュレーションのうちの少なくとも一方が実施された結果に基づいて、加算器44によって最良の合成データが得られるタップ係数とずれ量との組み合わせとして予め得られた組み合わせである。ここで言う「最良の合成データ」とは、読取対象トラックデータに相当するデータを指す。
ここで、「読取対象トラックデータ」とは、「読取対象トラック30Aに由来するデータ」を指す。「読取対象トラック30Aに由来するデータ」とは、換言すると、読取対象トラック30Aに書き込まれているデータに相当するデータを指す。読取対象トラック30Aに書き込まれているデータに相当するデータの一例としては、読取対象トラック30Aから読み出されたデータであって、隣接トラックからのノイズ成分が混入されていないデータが挙げられる。
上記では、対応テーブル18Aを例示している。他の態様では、対応テーブル18Aに代えて、演算式を採用してもよい。ここで言う「演算式」とは、例えば、独立変数をずれ量とし、従属変数をタップ係数とした演算式を指す。
上記では、タップ係数とずれ量との組み合わせが規定された対応テーブル18Aからタップ係数が導出される態様が挙げられている。他の態様では、例えば、タップ係数と比との組み合わせが規定された対応テーブルまたは演算式からタップ係数が導出されてもよい。ここで言う「比」とは、第1読取素子40および第2読取素子42の各々についての、読取対象トラック30Aとの重複領域と隣接トラックとの重複領域との比を指す。比は、制御装置18により、ずれ量から算出されることで特定され、特定された比に応じて、タップ係数が定められる。または、一態様では、複数のタップ係数の系列を、例えば、予めキャリブレーション領域において複数の読取素子の各々がデータを読み取ることにより得られた複数の読取結果を用いて、等化目標となる基本波形(ターゲット)からの誤差を最小化するように定めることもできる。
復号部69は、加算器44から入力された合成データを復号し、復号して得た復号信号をコンピュータ73に出力する。コンピュータ73は、復号部69から入力された復号信号に対して各種処理を施す。
次に、抽出部62によって実行される磁気テープ読取処理について、図9を参照して説明する。以下では、説明の便宜上、サンプリングの時期が到来すると、サーボ信号が制御装置18に入力されることを前提として説明する。ここで、サンプリングとは、サーボ信号のサンプリングに限らず、読取信号のサンプリングも意味する。すなわち、一態様では、トラック領域30が走行方向に沿ってサーボパターン32と並行して形成されているので、サーボ素子対36の読取動作に同期して読取素子ユニット38の読取動作が行われる。
図9に示す処理では、先ず、ステップ100で、制御装置18は、サンプリングの時期が到来したか否かを判定する。ステップ100において、サンプリングの時期が到来した場合は、判定が肯定されて、磁気テープ読取処理はステップ102へ移行する。ステップ100において、サンプリングの時期が到来していない場合は、判定が否定されて、ステップ100の判定が再び行われる。
ステップ102で、第1等化器70は、第1読取信号を取得し、第2等化器72は、第2読取信号を取得し、その後、磁気テープ読取処理はステップ104へ移行する。
ステップ104で、制御装置18は、サーボ信号を取得し、取得したサーボ信号からずれ量を算出し、その後、磁気テープ読取処理はステップ106へ移行する。
ステップ106で、制御装置18は、第1等化器70および第2等化器72の各々の第1〜第3タップについて、ステップ104の処理で算出したずれ量に対応するタップ係数を対応テーブル18Aから導出する。すなわち、本ステップ106の処理が実行されることで、第1等化器70の一例である1次元FIRフィルタと第2等化器72の一例である1次元フィルタとの組み合わせとして最適な組み合わせが定められる。ここで言う「最適な組み合わせ」とは、例えば、後述のステップ112の処理が実行されることで出力される合成データを、読取対象トラックデータに相当するデータにする組み合わせを指す。
次のステップ108で、制御装置18は、ステップ106の処理で導出したタップ係数を第1等化器70および第2等化器72の各々に対して設定し、その後、磁気テープ読取処理はステップ110へ移行する。
ステップ110で、第1等化器70は、ステップ102の処理で取得した第1読取信号に対して波形等化処理を施すことで、第1の演算処理済み信号を生成する。第1等化器70は、生成した第1の演算処理済み信号を加算器44に出力する。第2等化器72は、ステップ102の処理で取得した第2読取信号に対して波形等化処理を施すことで、第2の演算処理済み信号を生成する。第2等化器72は、生成した第2の演算処理済み信号を加算器44に出力する。
次のステップ112で、加算器44は、一例として図10に示すように、第1等化器70から入力された第1の演算処理済み信号と、第2等化器72から入力された第2の演算処理済み信号とを加算することで合成する。そして、加算器44は、合成して得た合成データを復号部69に出力する。
図3に示す例のように読取素子ユニット38が特定トラック領域31上に配置されている場合、本ステップ112の処理が実行されることにより、合成データとして、第1のノイズ混入源トラック30Bからのノイズ成分が除去された読取対象トラックデータに相当するデータが出力される。つまり、ステップ102〜ステップ112の処理が実行されることにより、抽出部62によって、読取対象トラック30Aに由来するデータのみが抽出される。
磁気テープMTのテープ幅方向が伸縮したり、磁気テープMTおよび読取ヘッド16の少なくとも一方に対して振動が付与されたりした場合に、読取素子ユニット38が、一例として図3に示す位置から図11に示す位置に変位することがある。図11に示す例では、第1読取素子40と第2読取素子42とが、読取対象トラック30Aと第2のノイズ混入源トラック30Cとの双方に対して、共に跨る位置に配置される。この場合、ステップ102〜ステップ112の処理が実行されることで、第2のノイズ混入源トラック30Cからのノイズ成分が除去された読取対象トラックデータに相当するデータが合成データとして復号部69に出力される。
次のステップ114で、制御装置18は、磁気テープ読取処理を終了する条件(以下、「終了条件」と称する)を満たしたか否かを判定する。終了条件とは、例えば、磁気テープMTの全てが巻取リール22によって巻き取られたとの条件、磁気テープ読取処理を強制終了する指示が外部から与えられたとの条件等を指す。
ステップ114において、終了条件を満たしていない場合は、判定が否定されて、磁気テープ読取処理はステップ100へ移行する。ステップ114において、終了条件を満たした場合は、判定が肯定されて、磁気テープ読取処理が終了する。
以上説明したように、磁気テープ装置10の一態様では、近接した状態で配置された第1読取素子40および第2読取素子42により、特定トラック領域31からデータが各々読み取られる。そして、抽出部62により、第1読取素子40および第2読取素子42の各々に対して、ずれ量に応じた波形等化処理が施されることで、第1読取信号および第2読取信号から、読取対象トラック30Aに由来するデータが抽出される。従って、磁気テープ装置10は、読取対象トラック30Aからリニアスキャン方式で単一の読取素子のみによってデータが読み取られる場合に比べ、読取対象トラック30Aからリニアスキャン方式で読み取られるデータの再生品質の低下を抑制することができる。
また、磁気テープ装置10の一態様では、第1読取素子40および第2読取素子42の互いの一部が走行方向で重なっている。従って、磁気テープ装置10は、複数の読取素子の互いの全体が走行方向で重なっている場合に比べ、読取対象トラック30Aからリニアスキャン方式で読み取られるデータの再生品質を高めることができる。
また、磁気テープ装置10の一態様では、特定トラック領域31は、読取対象トラック30A、第1のノイズ混入源トラック30B、および第2のノイズ混入源トラック30Cを含み、第1読取素子40および第2読取素子42の各々は、磁気テープMTとの位置関係が変化した場合に、読取対象トラック30Aおよび隣接トラックの双方に対して、共に跨っている。従って、磁気テープ装置10は、読取対象トラック30Aから単一の読取素子のみによってデータが読み取られる場合に比べ、テープ幅方向において読取対象トラック30Aから隣接トラックに入り込むことにより第1読取素子40および第2読取素子42のうちの一方の読取素子で生じるノイズ成分を、テープ幅方向において読取対象トラック30Aから隣接トラックに入り込んでいる他方の読取素子の読取結果を利用して低減することができる。
また、磁気テープ装置10の一態様では、波形等化処理で用いられるタップ係数はずれ量に応じて定められる。ずれ量に応じてタップ係数を定めることにより、タップ係数がずれ量とは関連性のないパラメータに応じて定められる場合に比べ、テープ幅方向において隣接トラックから読取対象トラック30Aに入り込むことで生じるノイズ成分を、磁気テープMTと読取素子ユニット38との位置関係の変化に追従して即時的に低減することができる。
また、磁気テープ装置10の一態様では、第1読取素子40および第2読取素子42の各々について、読取対象トラック30Aとの重複領域と隣接トラックとの重複領域との比がずれ量から特定され、特定された比に応じてタップ係数が定められる。これにより、磁気テープ装置10は、複数の読取素子の各々についての読取対象トラック30Aとの重複領域と隣接トラックとの重複領域との比とは関連性のないパラメータに応じてタップ係数が定められる場合に比べ、磁気テープMTと読取素子ユニット38との位置関係が変化したとしても、ノイズ成分を正確に低減することができる。
また、磁気テープ装置10の一態様では、ずれ量は、サーボパターン32をサーボ素子対36が読み取ることで得た結果に応じて定められる。これにより、磁気テープ装置10は、磁気テープMTにサーボパターン32が付与されていない場合に比べ、容易にずれ量を定めることができる。
また、磁気テープ装置10の一態様では、サーボ素子対36の読取動作に同期して読取素子ユニット38の読取動作が行われる。これにより、磁気テープ装置10は、サーボパターンとデータとを同期して読み取ることができない磁気ディスクおよびヘリカルスキャン方式の磁気テープに比べ、磁気テープの幅方向において隣接トラックから読取対象トラックに入り込むことで生じるノイズ成分を即時的に低減することができる。
また、磁気テープ装置10の一態様では、抽出部62が2次元FIRフィルタ71を有している。そして、2次元FIRフィルタ71により、第1読取信号および第2読取信号の各々に対して波形等化処理が施されることで得られた各結果を合成することで、第1読取信号および第2読取信号から読取対象トラック30Aに由来するデータが抽出される。これにより、磁気テープ装置10は、1次元FIRフィルタのみを用いる場合に比べ、第1読取信号および第2読取信号から読取対象トラック30Aに由来するデータを迅速に抽出することができる。また、磁気テープ装置10は、行列演算を行う場合に比べ、より少ない演算量での演算を実現することができる。
また、磁気テープ装置10の一態様では、一対の読取素子として第1読取素子40および第2読取素子42が採用されている。これにより、磁気テープ装置10は、3つ以上の読取素子を用いる場合に比べ、読取素子ユニット38の小型化に寄与することができる。読取素子ユニット38が小型化されることにより、読取部26および読取ヘッド16も小型化可能となる。また、磁気テープ装置10は、隣接する読取素子ユニット38同士で接触するという事態の発生も抑制することができる。
更に、磁気テープ装置10の一態様では、複数の読取素子ユニット38の各々により、複数の特定トラック領域31の各々に含まれる対応する読取対象トラック30Aからリニアスキャン方式でデータが読み取られる。これにより、磁気テープ装置10は、複数の読取対象トラック30Aの各々から単一の読取素子ユニット38のみによってデータが読み取られる場合に比べ、複数の読取対象トラック30Aからのデータの読み取りを迅速に完遂することができる。
上記の態様では、磁気テープ装置10がデフォルトの状態で、第1読取素子40および第2読取素子42の各々が、読取対象トラック30Aおよび第1のノイズ混入源トラック30Bの双方に対して、共に跨るように設けられている、ただし、上記磁気テープ装置は、かかる態様に限定されない。図12に示す例では、上記で説明した読取素子ユニット38に代えて読取素子ユニット138が採用されている。読取素子ユニット138は、第1読取素子140および第2読取素子142を備えている。磁気テープ装置10がデフォルトの状態で、第1読取素子140のテープ幅方向の中心は、読取対象トラック30Aのテープ幅方向の中心CLと一致している。また、磁気テープ装置10がデフォルトの状態で、第1読取素子140および第2読取素子142は、第1のノイズ混入源トラック30Bおよび第2のノイズ混入源トラック30Cに食み出すことなく、読取対象トラック30Aに収まっている。更に、磁気テープ装置10がデフォルトの状態で、上記実施形態で説明した第1読取素子40および第2読取素子42と同様に、第1読取素子140および第2読取素子142の各々は、走行方向で互いの一部が重なるように設けられている。
一例として図12に示すように第1読取素子140および第2読取素子142が読取対象トラック30Aから食み出ることなく読取対象トラック30Aに対面している状態であっても、読取素子ユニット138と磁気テープMTとの位置関係が変化することがある。すなわち、読取素子ユニット138が読取対象トラック30Aと第1のノイズ混入源トラック30Bとに跨る場合と読取素子ユニット138が読取対象トラック30Aと第2のノイズ混入源トラック30Cとに跨る場合とがある。これらの場合であっても、上述したステップ102〜ステップ112の処理が実行されることにより、第1のノイズ混入源トラック30Bまたは第2のノイズ混入源トラック30Cからのノイズ成分が除去された読取対象トラックデータに相当するデータを得ることが可能となる。
また、第1読取素子140および第2読取素子142が走行方向で互いの一部が重なる位置に配置されているので、読取対象トラック30Aのうち、第1読取素子140では読み取ることができない部分から第2読取素子142がデータを読み出すことができる。この結果、第1読取素子140が単一で読取対象トラック30Aからデータを読み取る場合に比べ、読取対象トラックデータの信頼性を高めることができる。
また、一例として図11に示すように、磁気テープ装置10がデフォルトの状態で、第1読取素子40および第2読取素子42の各々が、読取対象トラック30Aおよび第2のノイズ混入源トラック30Cの双方に対して、共に跨る位置に配置されるようにしてもよい。
また、上記では、第1読取素子40および第2読取素子42を含む読取素子ユニット38を例示した。ただし上記磁気テープ装置は、かかる態様に限定されない。図13に示す例では、読取素子ユニット38に代えて読取素子ユニット238が採用されている。読取素子ユニット238は、読取素子ユニット38に比べ、第3読取素子244を有する点が異なる。磁気テープ装置10がデフォルトの状態で、第3読取素子244は、第1読取素子40との間で、走行方向で互いの一部が重なる位置に配置されている。また、磁気テープ装置10がデフォルトの状態で、第3読取素子244は、読取対象トラック30Aおよび第2のノイズ混入源トラック30Cに跨る位置に配置されている。
この場合、第1読取素子40に対して第1等化器70を割り当て、第2読取素子42に第2等化器72を割り当てた場合と同様に、第3読取素子244に対しても第3等化器(図示省略)を割り当てる。第3等化器も、上記で説明した第1等化器および第2等化器と同様の機能を有しており、第3読取素子244によって読み取られて得られた第3読取信号に対して波形等化処理を施す。そして、第3等化器は、第3読取信号に対して、例えばタップ係数を畳み込み演算し、演算処理後の信号である第3の演算処理済み信号を出力する。加算器44は、第1読取信号に対応する第1の演算処理済み信号と、第2読取信号に対応する第2の演算処理済み信号と、第3読取信号に対応する第3の演算処理済み信号とを加算することで合成し、合成して得た合成データを復号部69に出力する。
図13に示す例では、磁気テープ装置10がデフォルトの状態で、第3読取素子244が読取対象トラック30Aと第2のノイズ混入源トラック30Cとに跨った位置に配置されているが、本開示の技術はこれに限定されない。磁気テープ装置10がデフォルトの状態で、第3読取素子244が読取対象トラック30Aから食み出すことなく読取対象トラック30Aに対面する位置に配置されるようにしてもよい。
また、上記では、読取素子ユニット38を例示した。ただし上記磁気テープ装置は、かかる態様に限定されない。例えば、読取素子ユニット38に代えて、図4に示す読取素子対50が採用されてもよい。この場合、第1読取素子50Aおよび第2読取素子50Bは、テープ幅方向で近接する位置に配置されるようにする。また、第1読取素子50Aと第2読取素子50Bとが、接触することなく、一例として図6に示すように、トラックオフセットの全範囲において、単一読取素子データのSNRよりもSNRが高くなるようにテープ幅方向に並べて配置されるようにする。
図4に示す例では、例えば、第1読取素子50Aが平面視で第2トラック49B内に納まっており、第2読取素子50Bが平面視で第1トラック49A内に収まっている。
また、上記では、サーボ素子対36を例示した。ただし上記磁気テープ装置は、かかる態様に限定されない。例えば、サーボ素子対36に代えて、サーボ素子36Aおよび36Bのうちの1つを採用してもよい。
また、上記では、トラック領域30内において、複数の特定トラック領域31がテープ幅方向に一定の間隔で配列されている態様について説明した。ただし上記磁気テープ装置は、かかる態様に限定されない。例えば、複数の特定トラック領域31のうち、隣接する2つの特定トラック領域31において、一方の特定トラック領域31と他方の特定トラック領域31とがテープ幅方向において1トラック分だけ重複するようにテープ幅方向に配列させるようにしてもよい。この場合、一方の特定トラック領域31に含まれる一方の隣接トラック(例えば、第1のノイズ混入源トラック30B)が他方の特定トラック領域31では読取対象トラック30Aになる。また、一方の特定トラック領域31に含まれる読取対象トラック30Aは、他方の特定トラック領域31では隣接トラック領域(例えば、第2のノイズ混入源トラック30C)になる。
以上説明した磁気テープ装置の構成および磁気テープ読取処理はあくまでも例示である。従って、主旨を逸脱しない範囲内において、不要なステップの削除、新たなステップの追加、処理順序の入れ替え等が可能であることは言うまでもない。
また、上記磁気テープ装置は、磁気テープに記録されたデータの読み取り(再生)を行うことができ、更に、磁気テープへのデータの記録を行うための構成を有することもできる。
[磁気テープ]
次に、本発明の一態様にかかる磁気テープの詳細について説明する。
本発明の一態様にかかる磁気テープは、非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する。上記磁性層は、タイミングベースサーボパターンを有し、上記タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と上記累積分布関数0.1%の値L0.1との差分(L99.9−L0.1)が180nm以下である形状であり、かつ上記磁性層の表面においてメチルエチルケトン洗浄後に光学干渉法により測定されるスペーシングSafterと、上記磁性層の表面においてメチルエチルケトン洗浄前に光学干渉法により測定されるスペーシングSbeforeとの差分(Safter−Sbefore)が0nm超15.0nm以下である。
サーボ信号を利用するヘッドトラッキングサーボを用いたシステム(以下、「サーボシステム」と記載する。)としては、近年、タイミングベースサーボ方式が広く用いられている。タイミングベースサーボ方式のサーボシステム(以下、「タイミングベースサーボシステム」と記載する。)では、二種以上の異なる形状の複数のサーボパターンを磁性層に形成し、サーボ素子が、異なる形状の2つのサーボパターンを再生した(読み取った)時間間隔と、同種の形状の2つのサーボパターンを再生した時間間隔と、によりサーボ素子の位置を認識する。
本発明および本明細書における「タイミングベースサーボパターン」とは、タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンをいう。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンは、サーボパターンを形成するためのヘッドであるサーボライトヘッド(servo write head)により、磁性層に二種以上の異なる形状の複数のサーボパターンとして形成される。一例では、二種以上の異なる形状の複数のサーボパターンが、同種の形状の複数のサーボパターンごとに連続して一定の間隔をもって配置される。他の一例では、異なる種類のサーボパターンが交互に配置される。なおサーボパターンが同種の形状であることに関しては、サーボパターンのエッジ形状の位置ずれは不問とする。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンの形状およびサーボバンド上での配置は公知であり、具体的態様は後述する。以下、タイミングベースサーボパターンを、単にサーボパターンとも記載する。本発明および本明細書において、タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、データ(情報)を記録する際の磁気テープ走行方向(以下、単に「走行方向」とも記載する。)に対して下流側に位置するエッジ(端辺)の形状とする。
次に、本発明および本明細書における、タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状、このエッジ形状の磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と上記累積分布関数0.1%の値L0.1との差分(L99.9−L0.1)、および理想形状について説明する。
以下では、磁気テープの幅方向の一方から他方に向かって連続的に延び、磁気テープの幅方向に対して角度αで傾斜した直線状サーボパターンを主に例に取り説明する。上記の角度αとは、データ(情報)を記録する際の磁気テープの走行方向に対して下流側に位置するサーボパターンのエッジのテープ幅方向の端部2箇所を結ぶ線分と磁気テープの幅方向とのなす角度をいうものとする。この点を含め、以下に更に説明する。
例えば、磁気テープ装置の記録方式として広く用いられているリニアスキャン方式に適用される磁気テープには、通常、磁性層に、サーボパターンが形成された領域(「サーボバンド」と呼ばれる)が磁気テープの長手方向に沿って複数存在する。2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。情報(磁気信号)の記録はデータバンド上で行われ、各データバンドには複数のデータトラックが長手方向に沿って形成される。図14に、データバンドおよびサーボバンドの配置例を示す。図14中、磁気テープMTの磁性層には、複数のサーボバンド1が、ガイドバンド3に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域2が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば業界標準規格であるLTO Ultriumフォーマットテープには、磁気テープ製造時に、図15に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図15中、サーボバンド1上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図15中、符号A)およびBバースト(図15中、符号B)から構成される。AバーストはサーボパターンA1〜A5から構成され、BバーストはサーボパターンB1〜B5から構成される。一方、サーボサブフレーム2は、Cバースト(図15中、符号C)およびDバースト(図15中、符号D)から構成される。CバーストはサーボパターンC1〜C4から構成され、DバーストはサーボパターンD1〜D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図15には、1つのサーボフレームを示したが、各サーボバンドには、複数のサーボフレームが走行方向に配置される。図15中、矢印は走行方向を示している。矢印の進行方向側が上流側であり、反対側が下流側である。
図16および図17は、角度αの説明図である。図15に示すサーボパターンにおいて、サーボパターンA1〜A5、C1〜C4のように走行方向の上流側に向けて傾斜しているサーボパターンについては、下流側のエッジEの端部2箇所を結ぶ線分(図16中、破線L1)とテープ幅方向(図16中、破線L2)とのなす角度を角度αとする。一方、サーボパターンB1〜B5、D1〜D4のように走行方向の下流側に向けて傾斜しているサーボパターンについては、下流側のエッジEの端部2箇所を結ぶ線分(図17中、破線L1)とテープ幅方向(図17中、破線L2)とのなす角度を角度αとする。この角度αは、一般にアジマス角と呼ばれ、サーボバンド上に磁化領域(サーボパターン)を形成する際のサーボライトヘッドの設定により定められる。
サーボバンド上に磁化領域(サーボパターン)を形成する際、サーボパターンが理想的に形成されたならば、上記の磁気テープ幅方向に対して角度αで傾斜したサーボパターンのエッジ形状は、上記のエッジ端部2箇所を結ぶ線分(図16、図17中、破線L1)の形状と一致する。即ち直線になる。したがって、エッジ上の各箇所において、磁気テープの長手方向における理想形状からの位置ずれ幅(以下、単に「位置ずれ幅」とも記載する。)はゼロになる。他方、図18に一例を示すようにサーボパターンのエッジ形状が理想形状からずれてしまう場合がある。上記の差分(L99.9−L0.1)は、サーボパターンのエッジ各位置で理想形状からの位置ずれ幅が小さく、かつエッジ各箇所での位置ずれ幅の値のばらつきが小さいことの指標となり得る値である。差分(L99.9−L0.1)は、以下の方法により求められる値である。
サーボパターンが形成された磁気テープの磁性層表面を磁気力顕微鏡(MFM;Magnetic Force Microscope)で観察する。測定範囲は、サーボパターンが5本含まれる範囲とする。例えば、LTO Ultriumフォーマットテープでは、測定範囲を90μm×90μmとすることにより、AバーストまたはBバーストの5本のサーボパターンを観察することができる。測定範囲を100nmピッチで測定(粗測定)することによりサーボパターン(磁化領域)を抽出する。なお本発明および本明細書において、磁性層表面との語は、磁気テープの磁性層側表面と同義で用いるものとする。
その後、サーボパターンの、走行方向に対して下流側に位置するエッジにおいて磁化領域と非磁化領域との境界を検出するために、上記境界近傍において5nmピッチで測定を行い磁気プロファイルを得る。得られた磁気プロファイルが、磁気テープの幅方向に対して角度α傾斜している場合には、解析ソフトにより磁気テープ幅方向に沿うように(α=0°となるように)回転補正する。その後、解析ソフトにより、5nmピッチで測定された各プロファイルのピーク値の位置座標を算出する。このピーク値の位置座標は、磁化領域と非磁化領域との境界の位置を示している。位置座標は、例えば、走行方向をx座標、幅方向をy座標とするxy座標系により特定される。
理想形状が直線であって直線上のある位置の位置座標が(x,y)=(a,b)である場合を例に取ると、実際に求められたエッジ形状(上記境界の位置座標)が理想形状と一致していたならば、算出される位置座標は、(x,y)=(a,b)となる。この場合、位置ずれ幅はゼロである。これに対し、実際に求められたエッジ形状が理想形状からずれていたならば、上記境界のy=bの位置のx座標は、x=a+cまたはx=a―cとなる。x=a+cとは、例えば走行方向に対して上流側に幅cずれている場合であり、x=a−cとは、例えば走行方向に対して下流側に幅c(即ち上流側を基準にすると−c)ずれている場合である。ここでcが、位置ずれ幅である。即ち、理想形状からのx座標の位置ずれ幅の絶対値が、磁気テープの長手方向における理想形状からの位置ずれ幅である。こうして、5nmピッチでの測定により求められた走行方向の下流側のエッジ各箇所での位置ずれ幅を求める。
各サーボパターンについて得られた値から、解析ソフトにより累積分布関数を得る。得られた累積分布関数から、累積分布関数99.9%の値L99.9と0.1%の値L0.1とを求め、求められた値から各サーボパターンについて差分(L99.9−L0.1)を求める。
以上の測定を、異なる3箇所の測定範囲で行う(測定数N=3)。
各サーボパターンについて得られた差分(L99.9−L0.1)の算術平均を、磁気テープについての上記の差分(L99.9−L0.1)と定義する。
本発明および本明細書におけるサーボパターンのエッジ形状の「理想形状」とは、位置ずれなくサーボパターンが形成された場合のエッジ形状をいう。例えば、一態様では、上記サーボパターンは、磁気テープの幅方向の一方から他方に向かって連続的または不連続に延びる直線状サーボパターンである。なおサーボパターンについての「直線状」とは、エッジ形状の位置ずれは不問として、パターン形状として曲線部分を含まないことをいう。「連続的」とは、傾斜角度の変曲点なく、かつ途切れることなく、テープ幅方向の一方から他方に向かって延びることをいう。磁気テープの幅方向の一方から他方に向かって連続的に延びるサーボパターンの一例は、図15に示したサーボパターンである。これに対し、「不連続」とは、傾斜角度の変曲点が1つ以上あるか、および/または、1箇所以上で途切れて延びていることをいう。傾斜角度の変曲点はあるが途切れずに延びる形状は、いわゆる折れ線形状である。傾斜角度の変曲点が1つで途切れることなくテープ幅方向の一方から他方に向かって延びる不連続なサーボパターンの一例は、図19に示すサーボパターンである。一方、傾斜角度の変曲点なく1箇所で途切れてテープ幅方向の一方から他方に向かって延びる不連続なサーボパターンの一例は、図20に示すサーボパターンである。また、傾斜角度の変曲点が1つで、1箇所で途切れてテープ幅方向の一方から他方に向かって延びる不連続なサーボパターンの一例は、図21に示すサーボパターンである。
テープ幅方向の一方から他方に向かって連続的に延びる直線状サーボパターンについて、エッジ形状の「理想形状」とは、直線状のサーボパターンの走行方向の下流側のエッジの端部2箇所を結ぶ線分の形状(直線形状)である。例えば図15に示した直線状サーボパターンについては、図16または図17中のL1で示した直線の形状である。一方、不連続に延びる直線状サーボパターンについては、理想形状とは、傾斜角度の変曲点がある形状については、傾斜角度が同じ部分の一端から他端を結ぶ線分の形状(直線形状)である。また、1箇所以上で途切れて延びている形状については、連続的に延びている各部分のそれぞれの一端から他端を結ぶ線分の形状(直線形状)である。例えば、図19に示すサーボパターンについては、e1とe2とを結ぶ線分、およびe2とe3とを結ぶ線分である。図20に示すサーボパターンについては、e4とe5とを結ぶ線分、およびe6とe7とを結ぶ線分である。図21に示すサーボパターンについては、e8とe9とを結ぶ線分、およびe10とe11とを結ぶ線分である。
上記では、直線状サーボパターンを例に説明した。ただし、サーボパターンはエッジ形状の理想形状が曲線形状のサーボパターンであってもよい。例えば走行方向に対して下流側のエッジ形状が理想的には部分円弧形状のサーボパターンについては、この部分円弧の位置座標に対して、走行方向に対して下流側のエッジ形状の磁気力顕微鏡により求められる位置座標により求められる位置ずれ幅から、差分(L99.9−L0.1)を求めることができる。
以上の測定で用いる磁気力顕微鏡としては、市販の、または公知の構成の磁気力顕微鏡を周波数変調(FM:Frequency Modulation)モードで用いる。磁気力顕微鏡のプローブとしては、例えば、Nanoworld社製SSS−MFMR(公称曲率半径15nm)を用いることができる。磁気力顕微鏡観察時の磁性層表面とプローブ先端との間の距離は、20〜50nmの範囲とする。
また、上記解析ソフトとしては、市販の解析ソフト、または公知の演算式を組み込んだ解析ソフトを用いることができる。
次に、上記のメチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)の測定方法について説明する。本発明および本明細書において、「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。
本発明および本明細書において、「メチルエチルケトン洗浄」とは、磁気テープから切り出した試料片を液温20〜25℃のメチルエチルケトン(200g)に浸漬して100秒間超音波洗浄(超音波出力:40kHz)することをいうものとする。洗浄対象の磁気テープから長さ5cmの試料片を切り出してメチルエチルケトン洗浄に付す。磁気テープの幅および磁気テープから切り出される試料片の幅は、通常、1/2インチ(0.0127メートル)である。1/2インチ(0.0127メートル)幅以外の磁気テープについても、長さ5cmの試料片を切り出してメチルエチルケトン洗浄に付せばよい。以下に詳述するメチルエチルケトン洗浄後のスペーシングの測定は、メチルエチルケトン洗浄後の試料片を、温度23℃相対湿度50%の環境下に24時間放置した後に行うものとする。
本発明および本明細書において、磁気テープの磁性層表面において光学干渉法により測定されるスペーシングとは、以下の方法により測定される値とする。
磁気テープ(詳しくは上記の試料片。以下同様。)と透明な板状部材(例えばガラス板等)を、磁気テープの磁性層表面が透明な板状部材と対向するように重ね合わせた状態で、磁気テープの磁性層側とは反対側から0.5atmの圧力で押圧部材を押しつける。1atm=101325Pa(パスカル)である。この状態で、透明な板状部材を介して磁気テープの磁性層表面に光を照射し(照射領域:150000〜200000μm)、磁気テープの磁性層表面からの反射光と透明な板状部材の磁気テープ側表面からの反射光との光路差によって発生する干渉光の強度(例えば干渉縞画像のコントラスト)に基づき、磁気テープの磁性層表面と透明な板状部材の磁気テープ側表面との間のスペーシング(距離)を求める。ここで照射される光は特に限定されるものではない。照射される光が、複数波長の光を含む白色光のように、比較的広範な波長範囲にわたり発光波長を有する光の場合には、透明な板状部材と反射光を受光する受光部との間に、干渉フィルタ等の特定波長の光または特定波長域以外の光を選択的にカットする機能を有する部材を配置し、反射光の中の一部の波長の光または一部の波長域の光を選択的に受光部に入射させる。照射させる光が単一の発光ピークを有する光(いわゆる単色光)の場合には、上記の部材は用いなくてもよい。受光部に入射させる光の波長は、一例として、例えば500〜700nmの範囲にあることができる。ただし、受光部に入射させる光の波長は、上記範囲に限定されるものではない。また、透明な板状部材は、この部材を介して磁気記録媒体に光を照射し干渉光が得られる程度に、照射される光が透過する透明性を有する部材であればよい。
上記スペーシングの測定により得られる干渉縞画像を300000ポイントに分割して各ポイントのスペーシング(磁気テープの磁性層表面と透明な板状部材の磁気テープ側表面との間の距離)を求め、これをヒストグラムとし、このヒストグラムにおける最頻値を、スペーシングとする。差分(Safter−Sbefore)は、上記300000ポイントにおけるメチルエチルケトン洗浄後の最頻値からメチルエチルケトン洗浄前の最頻値を差し引いた値をいうものとする。
同じ磁気テープから2つの試料片を切り出し、一方をメチルエチルケトン洗浄なしで上記スペーシングの値Sbeforeを求め、他方をメチルエチルケトン洗浄に付した後に上記スペーシングの値Safterを求めることによって、差分(Safter−Sbefore)を求めてもよい。または、メチルエチルケトン洗浄前に上記スペーシングの値を求めた試料片を、その後にメチルエチルケトン洗浄に付した後に上記スペーシングの値を求めることによって差分(Safter−Sbefore)を求めてもよい。
以上の測定は、例えばMicro Physics社製Tape Spacing Analyzer等の市販のテープスペーシングアナライザー(Tape Spacing Analyzer;TSA)を用いて行うことができる。実施例におけるスペーシング測定は、Micro Physics社製Tape Spacing Analyzerを用いて実施した。
磁気テープからのデータの読み取りは、磁性層表面と読取素子とを接触させて摺動させることにより行われる。磁性層表面には、通常、磁性層表面と読取素子とが摺動する際に読取素子と主に接触(いわゆる真実接触)する部分(突起)と、この部分より低い部分(以下、「素地部分」と記載する。)とが存在する。先に説明したスペーシングは、磁性層表面と読取素子とが摺動する際の読取素子と素地部分との距離の指標になる値であると、本発明者らは考えている。ただし磁性層表面上に何らかの成分が存在していると、素地部分と読取素子との間に介在している上記成分の量が多いほど、スペーシングは狭くなると考えられる。他方、この成分がメチルエチルケトン洗浄によって除去されるとスペーシングが広がるため、メチルエチルケトン洗浄後のスペーシングSafterの値が、メチルエチルケトン洗浄前のスペーシングSbeforeの値より大きくなる。したがって、メチルエチルケトン洗浄前後のスペーシングの差分(Safter−Sbefore)は、素地部分と読取素子との間に介在する上記成分の量の指標とすることができると考えられる。
以上の点に関して本発明者らは、メチルエチルケトン洗浄によって除去される成分が磁性層表面上に存在することが、読取素子と読取対象トラックとの相対位置の変動(相対位置変動)の原因になると推察している。そのため、メチルエチルケトン洗浄前後の差分(Safter−Sbefore)を小さくすること、即ち上記成分量を低減することにより、上記の相対位置変動の発生を抑制することが可能になると推察される。このことが、複数の読取素子により得られた読取結果の各々に対して、より適した波形等化処理を施すことを可能にすることに寄与し、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることにつながると本発明者らは考えている。これに対し、本発明者らの検討によれば、メチルエチルケトン以外の溶媒、例えばn−ヘキサンによって洗浄する前と洗浄した後のスペーシングの差分の値と上記のトラックオフセット量の許容量との間には、相関は見られなかった。これは、n−ヘキサン洗浄では、上記成分を除去できないか十分に除去できないことによるものと推察される。上記成分の詳細は明らかではない。あくまでも推察として、本発明者らは、上記成分は、磁性層に添加剤として通常添加される有機化合物より分子量が大きい成分ではないかと考えている。この成分の一態様について、本発明者らは以下のように推察している。磁性層は、一態様では、強磁性粉末および結合剤に加えて、硬化剤を含む磁性層形成用組成物を非磁性支持体上に直接または他の層を介して塗布し、硬化処理を施し形成される。ここでの硬化処理により、結合剤と硬化剤とを硬化反応(架橋反応)させることができる。ただし、硬化剤と硬化反応しなかった結合剤または硬化剤との硬化反応が不十分であった結合剤は磁性層から遊離しやすく、磁性層表面上にも存在する場合があると考えられる。このような結合剤が磁性層表面上に存在することが、読取素子と読取対象トラックとの相対位置変動が発生する原因になるのではないかと本発明者らは推察している。
また、先に記載したように、サーボパターンが設計形状により近い形状で形成されていることも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることにつながると考えられる。この点に関して、上記の差分(L99.9−L0.1)は、サーボパターンの形状に関する指標であって、この差分(L99.9−L0.1)が180nm以下であることも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることに寄与すると本発明者らは考えている。磁性層に形成されるサーボパターンの形状については、サーボライトヘッドが磁場を印加して磁性層に形成しようとするサーボパターン(磁化領域)の形状と、実際に磁性層に形成されるサーボパターンの形状とのずれを抑制するための手段の1つとしては、サーボライトヘッドの能力を高めること、具体的には磁場(漏れ磁界)が大きなサーボライトヘッドを使用することが考えられる。また、サーボライトヘッドが磁性層表面と接触して摺動しながら磁性層に磁場を印加してサーボパターンを形成する際に、磁性層のサーボパターンを形成すべき位置とサーボライトヘッドとの相対位置の変動が生じることは、サーボライトヘッドが磁場を印加して磁性層に形成しようとするサーボパターン(磁化領域)の形状と、実際に磁性層に形成されるサーボパターンの形状とのずれが発生する原因になると、本発明者らは推察している。この点に関して、メチルエチルケトン洗浄によって除去される成分が磁性層表面上に存在することは、磁性層のサーボパターンを形成すべき位置とサーボライトヘッドとの相対位置の変動の原因にもなると考えられる。これに対し、メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)が0nm超15.0nm以下であることは、磁性層のサーボパターンを形成すべき位置とサーボライトヘッドとの相対位置の変動を抑制することにも寄与すると推察される。このことが、設計形状により近い形状のサーボパターンを形成すること、即ち、上記の差分(L99.9−L0.1)を180nm以下にすること、に寄与すると、本発明者らは考えている。
ただし、以上の推察に、本発明は限定されない。
以下、上記磁気テープについて、更に詳細に説明する。
<メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)>
上記磁気テープの磁性層表面において光学干渉法により測定されるメチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)は、0nm超15.0nm以下である。このことが、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることに寄与すると推察される。以上の観点からは、上記差分(Safter−Sbefore)は、14.0nm以下であることが好ましく、13.0nm以下であることがより好ましく、12.0nm以下であることが更に好ましく、11.0nm以下であることが一層好ましく、10.0nm以下であることがより一層好ましい。詳細を後述するように、上記差分(Safter−Sbefore)は、磁気テープの製造工程における磁性層の表面処理によって制御することができる。ただし、本発明者らの検討の結果、メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)が0nmになるほどまでは磁性層の表面処理を実施せずに差分(Safter−Sbefore)を0nm超とすることが、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることに寄与することも判明した。この理由は明らかではない。あくまでも推察として、メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)が0nmになるほど磁性層の表面処理を実施してしまうと、走行安定性の向上に寄与する成分(例えば潤滑剤)が磁気テープから過剰に除去されてしまうことが一因ではないかと、本発明者らは考えている。この点から、上記磁気テープのメチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)は0nm超であり、1.0nm以上であることが好ましく、2.0nm以上であることがより好ましく、3.0nm以上であることが更に好ましく、4.0nm以上であることが一層好ましい。
<差分(L99.9−L0.1)>
上記差分(L99.9−L0.1)は、180nm以下である。このことも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることに寄与すると推察される。以上の観点からは、上記差分(L99.9−L0.1)は、170nm以下であることが好ましく、160nm以下であることがより好ましく、150nm以下であることが更に好ましい。また、上記差分(L99.9−L0.1)は、例えば、50nm以上、60nm以上、70nm以上、80nm以上、90nm以上または100nm以上であることができる。ただし、上記差分(L99.9−L0.1)の値が小さいほど、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくするうえで好ましいと考えられるため、上記差分(L99.9−L0.1)は上記で例示した下限を下回ってもよい。
次に、上記磁気テープの磁性層等について、更に説明する。
<磁性層>
(強磁性粉末)
磁性層は、強磁性粉末および結合剤を含む。磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
−六方晶フェライト粉末−
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011−225417号公報の段落0012〜0030、特開2011−216149号公報の段落0134〜0136、特開2012−204726号公報の段落0013〜0030および特開2015−127985号公報の段落0029〜0084を参照できる。
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
以下に、六方晶フェライト粉末の一態様である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800〜1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁束計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10−1J/mである。
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s−1)、t:磁界反転時間(単位:s)]
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5〜5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一態様では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶フェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
六方晶フェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5〜5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5〜4.5原子%の範囲であることがより好ましく、1.0〜4.5原子%の範囲であることが更に好ましく、1.5〜4.5原子%の範囲であることが一層好ましい。
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015−91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10〜20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
磁気テープに記録された情報を再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一態様では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁束計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度1194kA/m(15kOe)で測定される値とする。
六方晶フェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0〜15.0原子%の範囲であることができる。一態様では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一態様では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05〜5.0原子%の範囲であることができる。
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一態様では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5〜10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0〜5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一態様では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一態様では、ビスマス原子(Bi)を含まないものであることができる。
−金属粉末−
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011−216149号公報の段落0137〜0141および特開2005−251351号公報の段落0009〜0023を参照できる。
−ε−酸化鉄粉末−
強磁性粉末の好ましい具体例としては、ε−酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε−酸化鉄粉末」とは、X線回折分析によって、主相としてε−酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε−酸化鉄型の結晶構造に帰属される場合、ε−酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε−酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε−酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280−S284、J. Mater. Chem. C, 2013, 1, pp.5200−5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε−酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε−酸化鉄粉末の活性化体積は、好ましくは300〜1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε−酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε−酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε−酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε−酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε−酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
磁気テープに記録された情報を再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一態様では、ε−酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε−酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H−9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS−400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H−9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS−400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語が、粉末を表すために用いられることもある。
粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011−048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。磁性層の強磁性粉末以外の成分は、少なくとも結合剤であり、任意に一種以上の更なる添加剤が含まれ得る。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤、硬化剤)
上記磁気テープは塗布型の磁気テープであって、磁性層に結合剤を含む。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010−24113号公報の段落0028〜0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011−048878号公報の段落0044〜0045を参照できる。
結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC−8120(東ソー社製)
カラム:TSK gel Multipore HXL−M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
一態様では、結合剤として、活性水素含有基を含む結合剤を用いることができる。本発明および本明細書における「活性水素含有基」とは、この基が硬化性官能基と硬化反応するとともにこの基に含まれる水素原子が脱離することによって架橋構造を形成可能な官能基をいう。活性水素含有基としては、ヒドロキシ基、アミノ基(好ましくは一級アミノ基または二級アミノ基)、メルカプト基、カルボキシ基等を挙げることができ、ヒドロキシ基、アミノ基およびメルカプト基が好ましく、ヒドロキシ基がより好ましい。活性水素含有基を含む結合剤において、活性水素含有基濃度は、0.10meq/g〜2.00meq/gの範囲であることが好ましい。なおeqは当量( equivalent)であり、SI単位に換算不可の単位である。また、活性水素含有基濃度は単位「mgKOH/g」により表示することもできる。一態様では、活性水素含有基を含む樹脂において、活性水素含有基濃度は、1〜20mgKOH/gの範囲であることが好ましい。
一態様では、結合剤として、酸性基を含む結合剤を用いることができる。本発明および本明細書における「酸性基」とは、水中または水を含む溶媒(水性溶媒)中でHを放出してアニオンに解離可能な基およびその塩の形態を包含する意味で用いるものとする。酸性基の具体例としては、例えば、スルホン酸基(−SOH)、硫酸基(−OSOH)、カルボキシ基、リン酸基、それらの塩の形態等を挙げることができる。例えば、スルホン酸基(−SOH)の塩の形態とは、−SOMで表され、Mが水中または水性溶媒中でカチオンになり得る原子(例えばアルカリ金属原子等)を表す基を意味する。この点は、上記の各種の基の塩の形態についても同様である。酸性基を含む結合剤の一例としては、例えば、スルホン酸基およびその塩からなる群から選ばれる少なくとも一種の酸性基を含む樹脂(例えばポリウレタン樹脂、塩化ビニル樹脂等)を挙げることができる。ただし、磁性層に含まれる樹脂は、これらの樹脂に限定されるものではない。また、酸性基を含む結合剤において、酸性基含有量は、例えば0.03〜0.50meq/gの範囲であることができる。樹脂に含まれる酸性基等の各種官能基の含有量は、官能基の種類に応じて公知の方法で求めることができる。結合剤は、磁性層形成用組成物中に、強磁性粉末100.0質量部に対して、例えば1.0〜30.0質量部の量で使用することができる。
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011−216149号公報の段落0124〜0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0〜80.0質量部、磁性層の強度向上の観点からは好ましくは50.0〜80.0質量部の量で使用することができる。
(その他の成分)
磁性層には、強磁性粉末および結合剤が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。
例えば潤滑剤としては、脂肪酸、脂肪酸エステルおよび脂肪酸アミドを挙げることができ、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上を用いて磁性層を形成することができる。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層に含まれていてもよい。
脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸アミドとしては、上記の各種脂肪酸のアミド、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
磁性層形成用組成物における脂肪酸含有量は、強磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは0.1〜10.0質量部であり、より好ましくは1.0〜7.0質量部である。磁性層形成用組成物における脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0.1〜10.0質量部であり、好ましくは1.0〜7.0質量部である。磁性層形成用組成物における脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0〜3.0質量部であり、好ましくは0〜2.0質量部であり、より好ましくは0〜1.0質量部である。
また、上記磁気テープが非磁性支持体と磁性層との間に非磁性層を有する場合、非磁性層形成用組成物における脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは1.0〜10.0質量部であり、より好ましくは1.0〜7.0質量部である。非磁性層形成用組成物における脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは0.1〜8.0質量部である。非磁性層形成用組成物における脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0〜3.0質量部であり、好ましくは0〜1.0質量部である。
本発明および本明細書において、特記しない限り、ある成分は、一種のみ用いてもよく二種以上用いてもよい。ある成分が二種以上用いられる場合の含有量とは、これら二種以上の合計含有量をいうものとする。
また、磁性層形成のために用いられる非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011−048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013−131285号公報の段落0012〜0022に記載の分散剤を、研磨剤の分散性を向上させるための分散剤として挙げることができる。強磁性粉末の分散性を向上させるための分散剤については、特開2017−016721号公報の段落0035を参照できる。また、分散剤については、特開2012−133837号公報の段落0061および0071も参照できる。磁性層の添加剤については、特開2016−51493号公報の段落0035〜0077も参照できる。
分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012−133837号公報の段落0061を参照できる。
各種添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
<非磁性層>
次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末および結合剤を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011−216149号公報の段落0146〜0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010−24113号公報の段落0040〜0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。
非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
上記磁気テープの非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006−331625号公報の段落0018〜0020および米国特許第7,029,774号明細書の第4欄65行目〜第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
非磁性支持体の厚みは、例えば3.0〜80.0μmの範囲であり、好ましくは3.0〜50.0μmの範囲であり、より好ましくは3.0〜10.0μmの範囲である。
磁性層の厚みは、近年求められている高密度記録化の観点からは、100nm以下であることが好ましい。磁性層の厚みは、より好ましくは10nm〜100nmの範囲であり、更に好ましくは20〜90nmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば50nm以上であり、好ましくは70nm以上であり、より好ましくは100nm以上である。一方、非磁性層の厚みは、800nm以下であることが好ましく、500nm以下であることがより好ましい。
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1〜0.7μmの範囲であることが更に好ましい。
磁気テープの各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気vの厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
<磁気テープの製造方法>
<<サーボパターンが形成される磁気テープの作製>>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の一種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。磁気テープの製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1−106338号公報および特開平1−79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、粒径(ビーズ径)と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01〜3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
(塗布工程)
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う態様では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010−24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010−231843号公報の段落0066を参照できる。
(その他の工程)
塗布工程後には、乾燥処理、表面平滑化処理(カレンダ処理)等の各種処理を行うことができる。各種工程については、特開2010−24113号公報の段落0052〜0057を参照できる。
磁性層形成用組成物の塗布工程後の任意の段階で、磁性層形成用組成物を塗布して形成された塗布層の加熱処理を行うことが好ましい。この加熱処理は、一例として、カレンダ処理の前および/または後に実施することができる。加熱処理は、例えば、上記磁性層形成用組成物の塗布層が形成された支持体を加熱雰囲気下に置くことにより実施することができる。加熱雰囲気は、雰囲気温度65〜90℃の雰囲気であることができ、雰囲気温度65〜75℃の雰囲気であることがより好ましい。この雰囲気は、例えば大気雰囲気であることができる。加熱雰囲気下での加熱処理は、例えば20〜50時間実施することができる。一態様では、この加熱処理により、硬化剤の硬化性官能基の硬化反応を進行させることができる。
(磁気テープの製造方法の一態様)
上記磁気テープの製造方法の一態様としては、磁性層表面を、好ましくは上記加熱処理の後に、メチルエチルケトンを浸潤させたワイピング材によって拭き取ること(以下、「メチルエチルケトン拭き取り処理」とも記載する。)を含む製造方法を挙げることができる。このメチルエチルケトン拭き取り処理によって除去可能な成分が磁性層表面上に存在することが、先に記載したように、読取素子と読取対象トラックとの相対位置変動の発生の原因になると考えられる。メチルエチルケトン拭き取り処理は、磁気記録媒体の製造工程において一般に実施される乾式拭き取り処理に準じて、乾式拭き取り処理で使用されるワイピング材に代えて、メチルエチルケトンを浸潤させたワイピング材を用いて実施することができる。例えば、磁気テープを磁気テープカートリッジに収容する幅にスリットした後またはスリットする前に、磁気テープを送り出しローラーと巻き取ローラーとの間で走行させ、走行中の磁気テープの磁性層表面にメチルエチルケトンを浸潤させたワイピング材(例えば布(例えば不織布)または紙(例えばティッシュペーパー))を押し付けることにより、磁性層表面のメチルエチルケトン拭き取り処理を行うことができる。上記走行における磁気テープの走行速度および磁性層表面の長手方向に与えられる張力(以下、単に「張力」と記載する。)は、磁気記録媒体の製造工程において一般に実施される乾式拭き取り処理で一般に採用されている処理条件と同様にすることができる。例えば、メチルエチルケトン拭き取り処理における磁気テープの走行速度は、60〜600m/分程度とすることができ、張力は、0.196〜3.920N(ニュートン)程度とすることができる。また、メチルエチルケトン拭き取り処理は、少なくとも1回行うことができる。先に記載したように、メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)が0nmになるほど磁性層の表面処理を実施することは好ましくないため、この点を考慮してメチルエチルケトン拭き取り処理の処理条件および処理回数を設定することが好ましい。
また、メチルエチルケトン拭き取り処理の前および/または後に、磁性層表面に、塗布型磁気記録媒体の製造工程において一般に実施される研磨処理および/または乾式拭き取り処理(以下、これらを「乾式表面処理」と記載する。)を1回以上行うこともできる。乾式表面処理によれば、例えばスリットにより発生した切り屑等の製造工程中で発生して磁性層表面に付着している異物を除去することができる。
<<サーボパターンの形成>>
上記磁気テープは、磁性層に、タイミングベースサーボパターンを有する。タイミングベースサーボパターンが形成された領域(サーボバンド)および2本のサーボバンドに挟まれた領域(データバンド)の配置例が、図14に示されている。タイミングベースサーボパターンの配置例は、図15に示されている。タイミングベースサーボパターンの形状の具体例は、図15〜図17および図19〜図21に示されている。ただし、各図面に示す配置例および/または形状は例示であって、磁気テープ装置(ドライブ)の方式に応じた形状および配置で、サーボパターン、サーボバンドおよびデータバンドを形成し配置すればよい。また、タイミングベースサーボパターンの形状および配置については、例えば、米国特許第5689384号のFIG.4、FIG.5、FIG.6、FIG.9、FIG.17、FIG.20等に例示された配置例等の公知技術を何ら制限なく適用することができる。
サーボパターンは、磁性層の特定の領域をサーボライターに搭載されたサーボライトヘッドにより磁化することによって形成することができる。タイミングベースサーボシステムでは、例えば、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対のサーボパターン(「サーボストライプ」とも呼ばれる。)がサーボ素子によって読み取られることにより、サーボ信号が得られる。
一態様では、特開2004−318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボパターンのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボパターンのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
なお、サーボバンドを一意に特定する方法には、ECMA(European Computer Manufacturers Association)―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対のサーボパターン(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボパターンの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボパターンの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボライトヘッドは、上記一対のサーボパターンに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。 各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1〜10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012−53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いたパターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いたパターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
以上説明した磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気テープ装置に装着される。
[磁気テープカートリッジ]
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへの情報(磁気信号)の記録および/または再生のために磁気テープ装置(ドライブ)に装着されると、磁気テープカートリッジから磁気テープが引き出されてドライブ側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)とドライブ側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、情報の記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。上記磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。上記磁気テープカートリッジは、本発明の一態様にかかる磁気テープを含むものであればよく、その他については公知技術を適用することができる。また、磁気テープカートリッジの一態様については、図1中の磁気テープカートリッジ12に関する先の記載を参照できる。
[磁気テープ装置]
本発明の一態様は、
上記磁気テープと、読取素子ユニットと、抽出部と、を含み、
上記読取素子ユニットは、上記磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取る複数の読取素子を有し、
上記抽出部は、上記読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、上記読取結果から、上記読取対象トラックに由来するデータを抽出する、磁気テープ装置
に関する。かかる磁気テープ装置については、先に詳述した通りである。
以下に、本発明を実施例に基づき説明する。但し、本発明は実施例に示す態様に限定されるものではない。特記しない限り、以下に記載の「部」および「%」は質量基準である。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。
表1中の活性化体積は、各強磁性粉末について、振動試料型磁束計(東英工業社製)を用いて、先に記載の方法により求められた値である。
[磁気テープの作製]
<実施例1>
<<磁性層形成用組成物の処方>>
(磁性液)
強磁性粉末:100.0部
(種類:六方晶バリウムフェライト粉末、活性化体積:表1参照)
オレイン酸:2.0部
塩化ビニル共重合体(カネカ社製MR−104):10.0部
(重量平均分子量:55000、活性水素含有基(ヒドロキシ基):0.33meq/g、OSOK基(硫酸基のカリウム塩):0.09meq/g)
SONa基含有ポリウレタン樹脂:4.0部
(重量平均分子量:70000、活性水素含有基(ヒドロキシ基):4〜6mgKOH/g、SONa基(スルホン酸基のナトリウム塩):0.07meq/g)
ポリアルキレンイミン系ポリマー(特開2016−51493号公報の段落0115〜0123に記載の方法により得られた合成品):6.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α−アルミナ(BET(Brunauer−Emmett−Teller)比表面積19m/g):6.0部
SONa基含有ポリウレタン樹脂:0.6部
(重量平均分子量70000、SONa基:0.1meq/g)
2,3−ジヒドロキシナフタレン:0.6部
シクロヘキサノン:23.0部
(突起形成剤液)
コロイダルシリカ(平均粒子サイズ120nm):2.0部
メチルエチルケトン:8.0部
(その他の成分)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
<<非磁性層形成用組成物の処方>>
非磁性無機粉末 α−酸化鉄(平均粒子サイズ10nm、BET比表面積75m/g):100.0部
カーボンブラック(平均粒子サイズ:20nm):25.0部
SONa基含有ポリウレタン樹脂(重量平均分子量70000、SONa基含有量0.2meq/g):18.0部
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
<<バックコート層形成用組成物の処方>>
非磁性無機粉末:α−酸化鉄(平均粒子サイズ:0.15μm、BET比表面積52m/g):80.0部
カーボンブラック(平均粒子サイズ:20nm):20.0部
塩化ビニル共重合体:13.0部
スルホン酸塩基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
<<磁性層形成用組成物の調製>>
磁性層形成用組成物を、以下の方法によって調製した。
上記磁性液の各種成分をバッチ式縦型サンドミルを用いて24時間分散(ビーズ分散)することにより、磁性液を調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。
研磨剤液は、上記の研磨剤液の各種成分を混合してビーズ径0.3mmのジルコニアビーズとともに横型ビーズミル分散機に入れ、研磨剤液体積とビーズ体積との合計に対するビーズ体積の割合が80%になるように調整し、120分間ビーズミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施した。こうして研磨剤液を調製した。
調製した磁性液および研磨剤液、ならびに上記の突起形成剤液およびその他の成分をディゾルバー攪拌機に導入し、周速10m/秒で30分間攪拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタでろ過して磁性層形成用組成物を調製した。
<<非磁性層形成用組成物の調製>>
上記の非磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの平均孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
<<バックコート層形成用組成物の調製>>
上記のバックコート層形成用組成物の各種成分のうち潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートおよび200.0部のシクロヘキサノンを除いた成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パス滞留時間を2分間とし、12パスの分散処理に供した。その後、上記の残りの成分を添加してディゾルバーで撹拌し、得られた分散液を1μmの平均孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
<<磁気テープの作製>>
厚み5.0μmの二軸延伸ポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが400nmになるように上記で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した後、非磁性層の表面上に乾燥後の厚みが70nmになるように上記で調製した磁性層形成用組成物を塗布して塗布層を形成した。この磁性層形成用組成物の塗布層が湿潤(未乾燥)状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加する垂直配向処理を施し、乾燥させた。その後、この支持体の反対面に乾燥後の厚みが0.4μmになるように上記で調製したバックコート層形成用組成物を塗布し、乾燥させた。こうして磁気テープ原反を作製した。
作製された磁気テープ原反に対し、金属ロールのみから構成されるカレンダにより、速度100m/min、線圧300kg/cm(294kN/m)、カレンダロールの表面温度100℃でカレンダ処理(表面平滑化処理)し、その後、表1に示す雰囲気温度の環境で表1に示す時間、加熱処理を施した。加熱処理後、磁気テープ原反を裁断機によりスリットし、1/2インチ(0.0127メートル)幅の磁気テープを得た。この磁気テープを送り出しローラーと巻き取りローラーとの間で走行させながら(走行速度120m/分、張力:表1参照)、磁性層表面のブレード研磨、乾式拭き取り処理およびメチルエチルケトン拭き取り処理をこの順で実施した。具体的には、上記2つのローラーの間にサファイアブレード、乾いたワイピング材(東レ社製トレシー(登録商標))およびメチルエチルケトンを浸潤させたワイピング材(東レ社製トレシー(登録商標))を配置し、上記2つのローラー間で走行している磁気テープの磁性層表面にサファイアブレードを押し当ててブレード研磨し、その後に上記の乾いたワイピング材により磁性層表面の乾式拭き取り処理を行い、その後に上記のメチルエチルケトンを浸潤させたワイピング材により磁性層表面のメチルエチルケトン拭き取り処理を行った。以上により、ブレード研磨、乾式拭き取り処理およびメチルエチルケトン拭き取り処理がそれぞれ1回磁性層表面に施された。
こうして得られた磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッド(漏れ磁界:247kA/m)によって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する実施例1の磁気テープを得た。
<実施例2、3、比較例1〜4>
表1に示すように各種条件を変更した点以外、実施例1と同様の方法で磁気テープを作製した。
<比較例5>
強磁性粉末として表1に示す活性化体積を有する六方晶バリウムフェライト粉末を使用し、表1に示すように各種条件を変更し、かつサーボライトヘッドとして漏れ磁界366kA/mのサーボライトヘッドを使用した点以外、実施例1と同様の方法で磁気テープを作製した。
[物性評価]
(1)メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore
TSA(Tape Spacing Analyzer(Micro Physics社製))を用いて、以下の方法により、メチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)を求めた。
実施例および比較例の各磁気テープから長さ5cmの試料片を2つ切り出し、一方の試料片についてはメチルエチルケトン洗浄を行わずに、以下の方法によりスペーシング(Sbefore)を求めた。他方の試料片については先に記載した方法によりメチルエチルケトン洗浄を行った後に、以下の方法によりスペーシング(Safter)を求めた。
磁気テープ(詳しくは上記試料片)の磁性層表面上に、TSAに備えられたガラス板(Thorlabs,Inc.社製ガラス板(型番:WG10530))を配置した状態で、押圧部材としてTSAに備えられているウレタン製の半球を用いて、この半球を磁気テープのバックコート層表面に、0.5atmの圧力で押しつけた。この状態で、TSAに備えられているストロボスコープから白色光を、ガラス板を通して磁気テープの磁性層表面の一定領域(150000〜200000μm)に照射し、得られる反射光を、干渉フィルタ(波長633nmの光を選択的に透過させるフィルタ)を通してCCD(Charge−Coupled Device)で受光することで、この領域の凹凸で生じた干渉縞画像を得た。
この画像を300000ポイントに分割して各ポイントのガラス板の磁気テープ側の表面から磁気テープの磁性層表面までの距離(スペーシング)を求めこれをヒストグラムとし、メチルエチルケトン洗浄後の試料片について得られたヒストグラムの最頻値Safterから、メチルエチルケトン洗浄なしの試料片について得られたヒストグラムの最頻値Sbeforeを差し引いて、差分(Safter−Sbefore)を求めた。
(2)n−ヘキサン洗浄前後のスペーシング差分(Sreference−Sbefore)(参考値)
実施例および比較例の各磁気テープから長さ5cmの試料片を更に1つ切り出し、メチルエチルケトンに代えてn−ヘキサンを用いた点以外は上記と同様に洗浄した後に上記と同様にn−ヘキサン洗浄後のスペーシングを求めた。参考値として、ここで求められたスペーシングSreferenceと上記(1)で求めた洗浄なしの試料片について得られたスペーシングSbeforeの差分(Sreference−Sbefore)を求めた。
(3)差分(L99.9−L0.1
実施例および比較例の各磁気テープについて、以下の方法により差分(L99.9−L0.1)を求めた。
磁気力顕微鏡としてBruker製Dimension 3100を周波数変調モードで使用し、プローブとしてNanoworld社製SSS−MFMR(公称曲率半径15nm)を使用して、サーボパターンを形成した磁気テープの磁性層表面の90μm×90μmの測定範囲で、100nmピッチで粗測定を行いサーボパターン(磁化領域)を抽出した。磁気力顕微鏡観察時の磁性層表面とプローブ先端との間の距離は、20nmとした。上記測定範囲には、LTO Ultriumフォーマットにしたがい形成されたAバーストの5本のサーボパターンが含まれるため、これら5本のサーボパターンが抽出された。
上記磁気力顕微鏡およびプローブを用いて、各サーボパターンの走行方向に対して下流側のエッジについて、磁化領域と非磁化領域との境界近傍を5nmピッチで測定し磁気プロファイルを得た。得られた磁気プロファイルは、角度α=12°で傾斜していたため、解析ソフトにより角度α=0°となるように回転補正を行った。
測定は、磁性層表面の異なる3箇所で行った。各測定範囲には、それぞれAバーストの5本のサーボパターンが含まれていた。
その後、解析ソフトを用いて先に記載した方法により差分(L99.9−L0.1)を求めた。解析ソフトとしては、MathWorks製MATLABを使用した。こうして求められた差分(L99.9−L0.1)を、表1に示す。
[性能評価]
(1)実施例および比較例の各磁気テープの磁性層に対して、IBM社製TS1155テープドライブに搭載されている記録再生ヘッドを用いて、速度:6m/s、線記録密度:600kbpi(255bitPRBS)およびトラックピッチ:2μmの記録条件にて、データの記録を行った。上記の単位kbpiは、線記録密度の単位(SI単位系に換算不可)である。上記のPRBSは、Pseudo Random Bit Sequenceの略称である。
上記記録により、各磁気テープの磁性層に、2つの隣接トラックの間、即ち第1のノイズ混入源トラックと第2のノイズ混入源トラックとの間に、読取対象トラックが位置する特定トラック領域が形成される。
(2)近接した状態で配置された2つの読取素子を有する読取素子ユニットを用いてデータ読取を行うモデル実験として、以下のデータ読取を行った。以下のモデル実験では、磁性層表面と読取素子とが接触し摺動することによってデータ読取が行われた。
単一の読取素子を有する磁気ヘッドを、読取対象トラックのテープ幅方向の中心と読取素子のトラック幅方向の中心とが一致するように配置した状態で読取を開始し、1回目のデータ読取を行った。この1回目のデータ読取中、サーボ素子によってサーボパターンを読み取り、タイミングベースサーボ方式のトラッキングも行った。また、サーボパターン読取動作に同期して読取素子によりデータ読取動作が行われた。
次いで同一の磁気ヘッドをテープ幅方向(一方の隣接トラック側)に500nmずらして、2回目のデータ読取を1回目のデータ読取と同様に行った。上記の2回のデータ読取は、それぞれ再生素子幅:0.2μm、速度:4m/s、サンプリングレート:ビットレートの1.25倍の読取条件で行った。
1回目のデータ読取で得られた読取信号を等化器に入力し、1回目のデータ読取における磁気テープと磁気ヘッド(読取素子)との位置のずれ量に応じた波形等化処理を施した。この波形等化処理は、次のように行われる処理である。一定周期で形成されているサーボパターンをサーボ素子によって読み取ることにより得られた位置のずれ量から、読取素子と読取対象トラックとの重複領域と、読取素子と隣接トラックとの重複領域との比を特定する。この特定された比から演算式を用いて導出されたタップ係数を読取信号に対して畳み込み演算することにより、波形等化処理を行う。上記演算式は、EPR4(Extended Partial Response class4)を基本波形(ターゲット)とする演算式である。2回目のデータ読取で得られた読取信号についても、同様に波形等化処理を施した。
上記の波形等化処理が施された2つの読取信号の位相合わせ処理(2次元信号処理)を行うことにより、近接した状態で配置された2つの読取素子(読取素子ピッチ=500nm)を有する読取素子ユニットにより得られるであろう読取信号を得た。こうして得られた読取信号について、信号検出点でのSNRを算出した。
(3)上記の(2)を、1回目のデータ読取開始時の読取素子の位置を、読取対象トラックのテープ幅方向の中心から0.1μm間隔で第1のノイズ混入源トラック側および第2のノイズ混入源トラック側にそれぞれトラックオフセットさせながら繰り返し、トラック位置に対するSNRのエンベロープを得た。
実施例および比較例のそれぞれについて、上記の1回目のデータ読取結果のみ(即ち単一素子のみでのデータ読取結果)に関しても、SNRのエンベロープを得た。
(4)単一素子のみでのデータ読取結果に関して得られたSNRのエンベロープを参照エンベロープとし、参照エンベロープにおけるトラックセンターのSNRからSNRが−3dB低下したところを、SNR下限値として設定した。各エンベロープにおいて、この下限値以上で最大のトラックオフセット量を、許容可能トラックオフセット量とした。実施例および比較例のそれぞれについて、単一素子のみでの許容可能トラックオフセット量に対する許容可能トラックオフセット量の増加率を、「許容可能トラックオフセット量増加率」として求めた。
以上の結果を、表1(表1−1および表1−2)に示す。
表1に示すように、実施例によれば、20%以上の許容可能トラックオフセット量増加率を実現することができた。
上記方法により求められる許容可能トラックオフセット量が大きいことは、トラックマージンを小さくしても良好な再生品質での再生を可能にするうえで有利である。この点から、許容トラックオフセット量増加率が20%以上であることは好ましい。
なお表1に示すように、n−ヘキサン洗浄前後のスペーシング差分(Sreference−Sbefore)の値とメチルエチルケトン洗浄前後のスペーシング差分(Safter−Sbefore)の値との間には相関は見られなかった。
本発明の一態様は、高密度記録されたデータを良好な再生品質で再生することが望まれる磁気記録用途において有用である。

Claims (9)

  1. 非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する磁気テープであって、
    前記磁性層は、タイミングベースサーボパターンを有し、
    前記タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と前記累積分布関数0.1%の値L0.1との差分、L99.9−L0.1、が180nm以下である形状であり、かつ
    前記磁性層の表面においてメチルエチルケトン洗浄後に光学干渉法により測定されるスペーシングSafterと、前記磁性層の表面においてメチルエチルケトン洗浄前に光学干渉法により測定されるスペーシングSbeforeとの差分、Safter−Sbefore、が0nm超15.0nm以下である、磁気テープ。
  2. 前記差分、Safter−Sbefore、が2.0nm以上15.0nm以下である、請求項1に記載の磁気テープ。
  3. 前記差分、Safter−Sbefore、が3.0nm以上12.0nm以下である、請求項1または2に記載の磁気テープ。
  4. 前記タイミングベースサーボパターンは、磁気テープの幅方向の一方から他方に向かって連続的に延び、かつ前記幅方向に対して角度αで傾斜した直線状サーボパターンであり、かつ
    前記理想形状は、前記角度αの方向に延びる直線形状である、請求項1〜3のいずれか1項に記載の磁気テープ。
  5. 前記差分、L99.9−L0.1、が100nm以上180nm以下である、請求項1〜4のいずれか1項に記載の磁気テープ。
  6. 前記非磁性支持体と前記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する、請求項1〜5のいずれか1項に記載の磁気テープ。
  7. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有する、請求項1〜6のいずれか1項に記載の磁気テープ。
  8. 請求項1〜7のいずれか1項に記載の磁気テープを含む磁気テープカートリッジ。
  9. 磁気テープと、
    読取素子ユニットと、
    抽出部と、
    を含み、
    前記磁気テープは、請求項1〜7のいずれか1項に記載の磁気テープであり、
    前記読取素子ユニットは、前記磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取る複数の読取素子を有し、
    前記抽出部は、前記読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、前記読取結果から、前記読取対象トラックに由来するデータを抽出する、磁気テープ装置。
JP2019016532A 2019-01-31 2019-01-31 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 Active JP7003074B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019016532A JP7003074B2 (ja) 2019-01-31 2019-01-31 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US16/777,418 US11355142B2 (en) 2019-01-31 2020-01-30 Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US17/399,241 US11423932B2 (en) 2019-01-31 2021-08-11 Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP2021214244A JP7189312B2 (ja) 2019-01-31 2021-12-28 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019016532A JP7003074B2 (ja) 2019-01-31 2019-01-31 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021214244A Division JP7189312B2 (ja) 2019-01-31 2021-12-28 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Publications (2)

Publication Number Publication Date
JP2020123424A true JP2020123424A (ja) 2020-08-13
JP7003074B2 JP7003074B2 (ja) 2022-01-20

Family

ID=71836228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019016532A Active JP7003074B2 (ja) 2019-01-31 2019-01-31 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Country Status (2)

Country Link
US (2) US11355142B2 (ja)
JP (1) JP7003074B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175535A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2020123420A (ja) * 2019-01-31 2020-08-13 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2021015662A (ja) * 2018-03-29 2021-02-12 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2022043267A (ja) * 2019-01-31 2022-03-15 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367460B2 (en) 2018-03-29 2022-06-21 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11514940B2 (en) 2018-09-14 2022-11-29 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
JP7003074B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6972051B2 (ja) * 2019-02-26 2021-11-24 富士フイルム株式会社 磁気テープ読取装置、磁気テープカートリッジ及び磁気テープ読取方法
JP7166042B2 (ja) * 2019-02-27 2022-11-07 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7117258B2 (ja) * 2019-02-28 2022-08-12 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7098562B2 (ja) * 2019-03-22 2022-07-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7105211B2 (ja) 2019-03-28 2022-07-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7128147B2 (ja) * 2019-04-26 2022-08-30 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6778787B1 (ja) 2019-05-15 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7247128B2 (ja) * 2020-01-31 2023-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176900A (ja) * 1997-09-04 1999-03-23 Fuji Photo Film Co Ltd ウェブ洗浄及び除電装置
JP2007287222A (ja) * 2006-04-14 2007-11-01 Sony Corp 磁気記録再生装置及び磁気記録再生方法
JP2010192065A (ja) * 2009-02-20 2010-09-02 Hitachi Maxell Ltd 磁気テープ表層における潤滑剤層の厚み評価方法
JP2012043495A (ja) * 2010-08-17 2012-03-01 Hitachi Maxell Ltd 磁気記録媒体
JP2014199706A (ja) * 2013-03-15 2014-10-23 ソニー株式会社 磁気記録媒体、サーボ信号記録装置及び磁気記録媒体の製造方法
JP2017117505A (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP2017228335A (ja) * 2016-06-23 2017-12-28 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP2020123420A (ja) * 2019-01-31 2020-08-13 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185621A (ja) 1984-10-04 1986-05-01 Fuji Photo Film Co Ltd 磁気記録媒体
US5671211A (en) 1994-11-24 1997-09-23 Fuji Xerox Co., Ltd. Data recording medium
JP2000057565A (ja) * 1998-08-11 2000-02-25 Kao Corp 磁気記録媒体の製造方法及び装置
US6798617B2 (en) 2000-09-13 2004-09-28 Hitachi Maxell, Ltd. Cleaning tape for magnetic head system with magnetoresistance effect head
US6780531B2 (en) 2000-10-31 2004-08-24 Hitachi Maxell, Ltd. Magnetic recording medium comprising a magnetic layer having specific surface roughness and protrusions
JP3706947B2 (ja) 2001-03-12 2005-10-19 日立マクセル株式会社 磁気テープカートリッジ
JP2003022520A (ja) 2001-07-03 2003-01-24 Hitachi Maxell Ltd 磁気テープ
JP2004005795A (ja) 2002-05-30 2004-01-08 Fuji Photo Film Co Ltd 磁気記録テープ
JP2004022103A (ja) 2002-06-18 2004-01-22 Fuji Photo Film Co Ltd 磁気記録テープ
JP2004055137A (ja) 2002-07-18 2004-02-19 Hitachi Maxell Ltd 磁気テープおよび磁気テープカートリッジ
JP2004127435A (ja) 2002-10-03 2004-04-22 Fuji Photo Film Co Ltd テープクリーナ
JP2004213828A (ja) 2003-01-08 2004-07-29 Fuji Photo Film Co Ltd 磁気記録媒体
JP4702051B2 (ja) 2003-03-05 2011-06-15 東レ株式会社 芳香族高分子、フィルム、電解質膜およびセパレーター
JP2005085305A (ja) 2003-09-04 2005-03-31 Fuji Photo Film Co Ltd 磁気記録媒体
JP2005276285A (ja) 2004-03-24 2005-10-06 Fuji Photo Film Co Ltd 磁気記録媒体
JP2006079691A (ja) 2004-09-08 2006-03-23 Fuji Photo Film Co Ltd 磁気記録媒体
JP2006099920A (ja) 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd 磁気抵抗効果型ヘッド用クリーニングテープ
US7755863B2 (en) 2006-03-14 2010-07-13 Quantum Corporation Adjacent track readers
WO2007114394A1 (ja) 2006-03-30 2007-10-11 Fujifilm Corporation 磁気記録媒体、リニア磁気記録再生システムおよび磁気記録再生方法
JP2007299500A (ja) 2006-05-08 2007-11-15 Fujifilm Corp テープ貼付装置、テープ貼付方法、テープカートリッジの製造装置及びテープカートリッジの製造方法
JP2009087468A (ja) 2007-09-28 2009-04-23 Fujifilm Corp 磁気記録媒体、磁気信号再生方法および磁気信号再生システム
JP2010264683A (ja) 2009-05-15 2010-11-25 Teijin Ltd 支持体
JP2011048878A (ja) 2009-08-27 2011-03-10 Fujifilm Corp 磁気記録媒体およびその製造方法
JP5410919B2 (ja) 2009-10-19 2014-02-05 帝人デュポンフィルム株式会社 二軸配向多層積層フィルムおよび積層体
JP2011134372A (ja) 2009-12-22 2011-07-07 Samsung Electronics Co Ltd 磁気信号再生装置および磁気信号再生方法
JP5208148B2 (ja) 2010-03-10 2013-06-12 富士フイルム株式会社 磁気記録媒体
US9101966B2 (en) 2010-08-23 2015-08-11 International Business Machines Corporation Cleaning magnetic tape
JP2016110680A (ja) 2014-12-10 2016-06-20 株式会社東芝 磁気ヘッド、これを備える磁気ディスク装置、および磁気ヘッドを用いる再生方法
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP6465823B2 (ja) 2016-02-03 2019-02-06 富士フイルム株式会社 磁気テープおよびその製造方法
JP6785167B2 (ja) 2016-03-14 2020-11-18 マクセルホールディングス株式会社 磁気記録媒体
JP6498154B2 (ja) 2016-06-23 2019-04-10 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6649234B2 (ja) 2016-11-30 2020-02-19 富士フイルム株式会社 ε−酸化鉄型強磁性粉末および磁気記録媒体
JP6615815B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6626031B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6626032B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6909619B2 (ja) 2017-04-20 2021-07-28 マクセルホールディングス株式会社 高記録密度用磁気記録媒体及びその記録再生機構
JP6707060B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気テープ
WO2019159466A1 (ja) 2018-02-16 2019-08-22 ソニー株式会社 磁気記録媒体
US10741208B2 (en) * 2018-03-29 2020-08-11 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11367460B2 (en) * 2018-03-29 2022-06-21 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11211087B2 (en) 2018-03-29 2021-12-28 Fujifilm Corporation Magnetic tape having characterized back coating layer, magnetic recording medium and magnetic recording and reproducing device
US10679657B2 (en) 2018-03-29 2020-06-09 Fujifilm Corporation Magnetic tape and magnetic recording and reproducing device
US11514940B2 (en) 2018-09-14 2022-11-29 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
JP7003074B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US10811048B2 (en) 2019-01-31 2020-10-20 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP7117258B2 (ja) 2019-02-28 2022-08-12 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7098562B2 (ja) 2019-03-22 2022-07-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7105211B2 (ja) 2019-03-28 2022-07-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7128148B2 (ja) 2019-04-26 2022-08-30 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7128147B2 (ja) 2019-04-26 2022-08-30 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6778787B1 (ja) 2019-05-15 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6788069B2 (ja) 2019-05-15 2020-11-18 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176900A (ja) * 1997-09-04 1999-03-23 Fuji Photo Film Co Ltd ウェブ洗浄及び除電装置
JP2007287222A (ja) * 2006-04-14 2007-11-01 Sony Corp 磁気記録再生装置及び磁気記録再生方法
JP2010192065A (ja) * 2009-02-20 2010-09-02 Hitachi Maxell Ltd 磁気テープ表層における潤滑剤層の厚み評価方法
JP2012043495A (ja) * 2010-08-17 2012-03-01 Hitachi Maxell Ltd 磁気記録媒体
JP2014199706A (ja) * 2013-03-15 2014-10-23 ソニー株式会社 磁気記録媒体、サーボ信号記録装置及び磁気記録媒体の製造方法
JP2017117505A (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP2017228335A (ja) * 2016-06-23 2017-12-28 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP2020123420A (ja) * 2019-01-31 2020-08-13 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217766B2 (ja) 2018-03-29 2023-02-03 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2021015662A (ja) * 2018-03-29 2021-02-12 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2021015661A (ja) * 2018-03-29 2021-02-12 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2021093238A (ja) * 2018-03-29 2021-06-17 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2021101402A (ja) * 2018-03-29 2021-07-08 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2019175535A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7236482B2 (ja) 2018-03-29 2023-03-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2023054370A (ja) * 2018-03-29 2023-04-13 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP7406662B2 (ja) 2018-03-29 2023-12-27 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2020123420A (ja) * 2019-01-31 2020-08-13 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003072B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2022043267A (ja) * 2019-01-31 2022-03-15 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7189313B2 (ja) 2019-01-31 2022-12-13 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Also Published As

Publication number Publication date
US20210375311A1 (en) 2021-12-02
US11355142B2 (en) 2022-06-07
US11423932B2 (en) 2022-08-23
US20200251136A1 (en) 2020-08-06
JP7003074B2 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
JP7003072B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003074B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US10811048B2 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP7003073B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7097834B2 (ja) 磁気テープ装置
JP7097833B2 (ja) 磁気テープ装置
JP7105211B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
US10692528B2 (en) Magnetic tape apparatus
JP7009415B2 (ja) 磁気テープ装置
JP2019175536A (ja) 磁気テープおよび磁気記録再生装置
JP7012064B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7009414B2 (ja) 磁気テープ装置
JP7009417B2 (ja) 磁気テープ装置
JP7009416B2 (ja) 磁気テープ装置
JP6898962B2 (ja) 磁気テープ装置
JP7189312B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7189313B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7190020B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7357752B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7009413B2 (ja) 磁気テープ装置
JP6898963B2 (ja) 磁気テープ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7003074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150