JP7190020B2 - 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 - Google Patents
磁気テープ、磁気テープカートリッジおよび磁気テープ装置 Download PDFInfo
- Publication number
- JP7190020B2 JP7190020B2 JP2021214243A JP2021214243A JP7190020B2 JP 7190020 B2 JP7190020 B2 JP 7190020B2 JP 2021214243 A JP2021214243 A JP 2021214243A JP 2021214243 A JP2021214243 A JP 2021214243A JP 7190020 B2 JP7190020 B2 JP 7190020B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic tape
- read
- magnetic layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Magnetic Record Carriers (AREA)
- Magnetic Heads (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
Description
非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する磁気テープであって、
上記磁性層は、タイミングベースサーボパターンを有し、
上記タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と上記累積分布関数0.1%の値L0.1との差分(L99.9-L0.1)が180nm以下である形状であり、かつ
上記磁性層の面内方向について測定される屈折率Nxyと上記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔN(以下、「(磁性層の)ΔN」とも記載する。)が0.25以上0.40以下である、磁気テープ、
に関する。
磁気テープと、
読取素子ユニットと、
抽出部と、
を含み、
上記磁気テープは、上記の本発明の一態様にかかる磁気テープであり、
上記読取素子ユニットは、
上記磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取る複数の読取素子を有し、
上記抽出部は、上記読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、上記読取結果から、上記読取対象トラックに由来するデータを抽出する、磁気テープ装置、
に関する。
これに対し、複数の読取素子を利用し、磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取り、かつ、読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、上記読取結果から上記読取対象トラックに由来するデータを抽出すれば、読取対象トラックから単一の読取素子のみによってデータが読み取られる場合に比べ、読取対象トラックから読み取られるデータの再生品質を高めることができる。その結果、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることができる。
ただし、読取素子と読取対象トラックとの相対位置の変動(以下、「相対位置変動」という。)が大きいと、複数の読取素子毎の読取結果の各々に対して施される波形等化処理が、必ずしも各読取結果に対する最適な波形等化処理とは言えない場合がある。例えば、サーボパターンの読取結果に応じて定められる2次元FIRフィルタにより施される波形等化処理が、必ずしも各読取結果に対する最適な波形等化処理とは言えない場合がある。これに対し、上記の相対位置変動を抑制することができれば、複数の読取素子により読み取られた読取結果の各々に対して、より適した波形等化処理を施すことが可能となる。その結果、上記の波形等化処理が施されて抽出された読取対象トラックに由来するデータについて良好な再生品質を確保できるずれ量の許容量を大きくすることができる。この点に関して、本発明の一態様にかかる磁気テープにおいて、磁性層のΔNが0.25以上0.40以下であることは、磁気テープと読取素子との接触状態を安定化させることにつながると考えられる。このことが、上記の相対位置変動を抑制することに寄与すると推察される。この点については更に後述する。
また、サーボパターンが設計形状(例えば、詳細を後述する理想形状)により近い形状で形成されているほど、読取素子が走行している位置を特定する精度はより高まる。このことも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることにつながる。この点に関して、上記差分(L99.9-L0.1)は、サーボパターン(タイミングベースサーボパターン)の形状に関する指標である。詳細は後述する。
以上のように、良好な再生品質を確保できるずれ量の許容量を大きくできることは、トラックマージン(記録トラック幅-再生素子幅)を小さくしても良好な再生品質(例えば高SNR、低エラーレート等)での再生を可能にすることに寄与し得る。そしてトラックマージンを小さくできることは、記録トラック幅を小さくして磁気テープの幅方向に配置可能な記録トラック数を増すこと、即ち高容量化に寄与し得る。
一例として図1に示すように、磁気テープ装置10は、磁気テープカートリッジ12、搬送装置14、読取ヘッド16、および制御装置18を備えている。
また、上記磁気テープ装置は、磁気テープに記録されたデータの読み取り(再生)を行うことができ、更に、磁気テープへのデータの記録を行うための構成を有することもできる。
次に、本発明の一態様にかかる磁気テープの詳細について説明する。
本発明および本明細書における「タイミングベースサーボパターン」とは、タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンをいう。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンは、サーボパターンを形成するためのヘッドであるサーボライトヘッド(servo write head)により、磁性層に二種以上の異なる形状の複数のサーボパターンとして形成される。一例では、二種以上の異なる形状の複数のサーボパターンが、同種の形状の複数のサーボパターンごとに連続して一定の間隔をもって配置される。他の一例では、異なる種類のサーボパターンが交互に配置される。なおサーボパターンが同種の形状であることに関しては、サーボパターンのエッジ形状の位置ずれは不問とする。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンの形状およびサーボバンド上での配置は公知であり、具体的態様は後述する。以下、タイミングベースサーボパターンを、単にサーボパターンとも記載する。本発明および本明細書において、タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、データ(情報)を記録する際の磁気テープ走行方向(以下、単に「走行方向」とも記載する。)に対して下流側に位置するエッジ(端辺)の形状とする。
以下では、磁気テープの幅方向の一方から他方に向かって連続的に延び、磁気テープの幅方向に対して角度αで傾斜した直線状サーボパターンを主に例に取り説明する。上記の角度αとは、データ(情報)を記録する際の磁気テープの走行方向に対して下流側に位置するサーボパターンのエッジのテープ幅方向の端部2箇所を結ぶ線分と磁気テープの幅方向とのなす角度をいうものとする。この点を含め、以下に更に説明する。
サーボパターンが形成された磁気テープの磁性層表面を磁気力顕微鏡(MFM;Magnetic Force Microscope)で観察する。測定範囲は、サーボパターンが5本含まれる範囲とする。例えば、LTO Ultriumフォーマットテープでは、測定範囲を90μm×90μmとすることにより、AバーストまたはBバーストの5本のサーボパターンを観察することができる。測定範囲を100nmピッチで測定(粗測定)することによりサーボパターン(磁化領域)を抽出する。なお本発明および本明細書において、磁性層表面との語は、磁気テープの磁性層側表面と同義で用いるものとする。
その後、サーボパターンの、走行方向に対して下流側に位置するエッジにおいて磁化領域と非磁化領域との境界を検出するために、上記境界近傍において5nmピッチで測定を行い磁気プロファイルを得る。得られた磁気プロファイルが、磁気テープの幅方向に対して角度α傾斜している場合には、解析ソフトにより磁気テープ幅方向に沿うように(α=0°となるように)回転補正する。その後、解析ソフトにより、5nmピッチで測定された各プロファイルのピーク値の位置座標を算出する。このピーク値の位置座標は、磁化領域と非磁化領域との境界の位置を示している。位置座標は、例えば、走行方向をx座標、幅方向をy座標とするxy座標系により特定される。
理想形状が直線であって直線上のある位置の位置座標が(x,y)=(a,b)である場合を例に取ると、実際に求められたエッジ形状(上記境界の位置座標)が理想形状と一致していたならば、算出される位置座標は、(x,y)=(a,b)となる。この場合、位置ずれ幅はゼロである。これに対し、実際に求められたエッジ形状が理想形状からずれていたならば、上記境界のy=bの位置のx座標は、x=a+cまたはx=a―cとなる。x=a+cとは、例えば走行方向に対して上流側に幅cずれている場合であり、x=a-cとは、例えば走行方向に対して下流側に幅c(即ち上流側を基準にすると-c)ずれている場合である。ここでcが、位置ずれ幅である。即ち、理想形状からのx座標の位置ずれ幅の絶対値が、磁気テープの長手方向における理想形状からの位置ずれ幅である。こうして、5nmピッチでの測定により求められた走行方向の下流側のエッジ各箇所での位置ずれ幅を求める。
各サーボパターンについて得られた値から、解析ソフトにより累積分布関数を得る。得られた累積分布関数から、累積分布関数99.9%の値L99.9と0.1%の値L0.1とを求め、求められた値から各サーボパターンについて差分(L99.9-L0.1)を求める。
以上の測定を、異なる3箇所の測定範囲で行う(測定数N=3)。
各サーボパターンについて得られた差分(L99.9-L0.1)の算術平均を、磁気テープについての上記の差分(L99.9-L0.1)と定義する。
テープ幅方向の一方から他方に向かって連続的に延びる直線状サーボパターンについて、エッジ形状の「理想形状」とは、直線状のサーボパターンの走行方向の下流側のエッジの端部2箇所を結ぶ線分の形状(直線形状)である。例えば図15に示した直線状サーボパターンについては、図16または図17中のL1で示した直線の形状である。一方、不連続に延びる直線状サーボパターンについては、理想形状とは、傾斜角度の変曲点がある形状については、傾斜角度が同じ部分の一端から他端を結ぶ線分の形状(直線形状)である。また、1箇所以上で途切れて延びている形状については、連続的に延びている各部分のそれぞれの一端から他端を結ぶ線分の形状(直線形状)である。例えば、図19に示すサーボパターンについては、e1とe2とを結ぶ線分、およびe2とe3とを結ぶ線分である。図20に示すサーボパターンについては、e4とe5とを結ぶ線分、およびe6とe7とを結ぶ線分である。図21に示すサーボパターンについては、e8とe9とを結ぶ線分、およびe10とe11とを結ぶ線分である。
また、上記解析ソフトとしては、市販の解析ソフト、または公知の演算式を組み込んだ解析ソフトを用いることができる。
(1)測定用試料の準備
非磁性支持体の磁性層を有する表面とは反対側の表面上にバックコート層を有する磁気テープについては、磁気テープから切り出した測定用試料のバックコート層を除去した後に測定を行う。バックコート層の除去は、バックコート層を溶媒を用いて溶解する等の公知の方法により行うことができる。溶媒としては、例えばメチルエチルケトンを用いることができる。ただし、バックコート層を除去できる溶媒であればよい。バックコート層除去後の非磁性支持体表面は、エリプソメーターでの測定において、この表面での反射光が検出されないように公知の方法により粗面化する。粗面化は、例えばバックコート層除去後の非磁性支持体表面をサンドペーパーを用いて研磨する等の公知の方法によって行うことができる。バックコート層を持たない磁気テープから切り出した測定用試料については、磁性層を有する表面とは反対側の非磁性支持体表面について、粗面化を行う。
また、下記の非磁性層の屈折率測定のためには、更に磁性層を除去して非磁性層表面を露出させる。下記の非磁性支持体の屈折率測定のためには、更に非磁性層も除去して非磁性支持体の磁性層側の表面を露出させる。各層の除去は、バックコート層の除去について記載したように、公知の方法により行うことができる。なお以下に記載の長手方向とは、測定用試料が切り出される前に磁気テープに含まれていたときに、磁気テープの長手方向であった方向をいうものとする。この点は、以下に記載のその他の方向についても、同様である。
(2)磁性層の屈折率測定
エリプソメーターを用いて、入射角度を65°、70°および75°とし、長手方向から磁性層表面にビーム径300μmの入射光を照射することにより、Δ(s偏光とp偏光の位相差)およびΨ(s偏光とp偏光の振幅比)を測定する。測定は入射光の波長を400~700nmの範囲で1.5nm刻みで変化させて行い、各波長について測定値を求める。
各波長における磁性層のΔおよびΨの測定値、下記方法により求められる各方向における非磁性層の屈折率、ならびに磁性層の厚みを用いて、以下のように2層モデルによって各波長における磁性層の屈折率を求める。
2層モデルの基板である第0層を非磁性層とし、第1層を磁性層とする。空気/磁性層と磁性層/非磁性層の界面の反射のみを考慮し非磁性層の裏面反射の影響はないものと見做して2層モデルを作成する。得られた測定値に最も整合する第1層の屈折率を最小二乗法によってフィッティングにより求める。フィッティングの結果から得られた波長600nmにおける値として、長手方向における磁性層の屈折率Nx、および長手方向から入射光を入射させて測定した磁性層の厚み方向における屈折率Nz1を求める。
入射光を入射させる方向を磁気テープの幅方向とする点以外は上記と同様として、フィッティングの結果から得られた波長600nmにおける値として、幅方向における磁性層の屈折率Ny、および幅方向から入射光を入射させて測定した磁性層の厚み方向における屈折率Nz2を求める。
フィッティングは、以下の手法により行う。
一般的に「複素屈折率n=η+iκ」である。ここで、ηは屈折率の実数部であり、κは消光係数であり、iは虚数である。複素誘電率ε=ε1+iε2 (ε1とε2はクラマース・クローニッヒの関係を満たしている)とε1=η2-κ2、ε2=2ηκの関係にあり、NxおよびNz1算出の際は、Nxの複素誘電率をεx=εx1+iεx2、Nz1の複素誘電率をεz1=εz11+iεz12とする。
εx2を1つのガウシアンとし、ピーク位置が5.8~5.1eV、σが4~3.5 eVの任意の点を出発点とし、測定波長域(400~700nm)の外に誘電率にオフセットとなるパラメータを置き、測定値を最小二乗フィッティングすることによりNxを求める。同様に、εz12はピーク位置が3.2~2.9eV、σが1.5~1.2eVの任意の点を出発点とし、オフセットパラメータを置き、測定値を最小二乗フィッティングすることによりNz1を求める。NyおよびNz2も同様に求める。磁性層の面内方向について測定される屈折率Nxyは、「Nxy=(Nx+Ny)/2」として求める。磁性層の厚み方向について測定される屈折率Nzは、「Nz=(Nz1+Nz2)/2」として求める。求められたNxyとNzから、これらの差分の絶対値ΔNを求める。
(3)非磁性層の屈折率測定
以下の点を除き、上記方法と同様に非磁性層の波長600nmにおける屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求める。
入射光の波長は、250~700nmの範囲で1.5nm刻みで変化させる。
非磁性層と非磁性支持体の2層モデルを用いて、2層モデルの基板である第0層を非磁性支持体とし、第1層を非磁性層とする。空気/非磁性層と非磁性層/非磁性支持体の界面の反射のみを考慮し非磁性支持体の裏面反射の影響はないものと見做して2層モデルを作成する。
フィッティングにおいて、複素誘電率の虚部(ε2)に、7か所のピーク(0.6eV、2.3eV、2.9eV、3.6eV、4.6eV、5.0eV、6.0eV)を仮定し、測定波長域(250~700nm)の外に誘電率にオフセットとなるパラメータを置く。
(4)非磁性支持体の屈折率測定
2層モデルにより非磁性層の屈折率を求めるために用いられる非磁性支持体の波長600nmにおける屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)は、以下の点を除き、磁性層の屈折率測定のための上記方法と同様に求める。
2層モデルを用いず、表面反射のみの1層モデルを用いる。
フィッティングは、コーシーモデル(n=A+B/λ2、nは屈折率、AおよびBはそれぞれフィッティングにより定まる定数、λは波長)により行う。
また、先に記載したように、サーボパターンが設計形状により近い形状で形成されていることも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることにつながると考えられる。この点に関して、上記の差分(L99.9-L0.1)は、サーボパターンの形状に関する指標であって、この差分(L99.9-L0.1)が180nm以下であることも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることに寄与すると本発明者らは考えている。磁性層に形成されるサーボパターンの形状については、サーボライトヘッドが磁場を印加して磁性層に形成しようとするサーボパターン(磁化領域)の形状と、実際に磁性層に形成されるサーボパターンの形状とのずれを抑制するための手段の1つとしては、サーボライトヘッドの能力を高めること、具体的には磁場(漏れ磁界)が大きなサーボライトヘッドを使用することが考えられる。また、サーボライトヘッドが磁性層表面と接触しながら磁性層に磁場を印加してサーボパターンを形成する際にも、削れ屑(デブリ)が発生すると考えられる。この削れ屑が磁性層表面とサーボライトヘッドとの間に多く介在するほど、磁性層表面とサーボライトヘッドとの接触状態は不安定になってしまう。このことが、サーボライトヘッドが磁場を印加して磁性層に形成しようとするサーボパターン(磁化領域)の形状と、実際に磁性層に形成されるサーボパターンの形状とのずれが発生する原因になると、本発明者らは推察している。これに対し、ΔNが0.25以上0.40以下である磁性層がサーボライトヘッドと接触しても削れ難いことは、設計形状により近い形状のサーボパターンを形成すること、即ち、上記の差分(L99.9-L0.1)を180nm以下にすること、に寄与すると、本発明者らは考えている。
ただし、以上は本発明者らの推察であって、本発明を何ら限定するものではない。
上記磁気テープの磁性層のΔNは、0.25以上0.40以下である。良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量をより大きくする観点からは、ΔNは0.25以上0.35以下であることが好ましい。ΔNを調整するための手段の具体的態様は、後述する。
上記差分(L99.9-L0.1)は、180nm以下である。このことも、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくすることに寄与すると推察される。以上の観点からは、上記差分(L99.9-L0.1)は、170nm以下であることが好ましく、160nm以下であることがより好ましく、150nm以下であることが更に好ましい。また、上記差分(L99.9-L0.1)は、例えば、50nm以上、60nm以上、70nm以上、80nm以上、90nm以上または100nm以上であることができる。ただし、上記差分(L99.9-L0.1)の値が小さいほど、良好な再生品質を確保できるずれ量(トラックオフセット量)の許容量を大きくするうえで好ましいと考えられるため、上記差分(L99.9-L0.1)は上記で例示した下限を下回ってもよい。
(強磁性粉末)
磁性層は、強磁性粉末および結合剤を含む。磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2}
[上記式中、Ku:異方性定数(単位:J/m3)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm3)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶フェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語が、粉末を表すために用いられることもある。
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
上記磁気テープは塗布型磁気テープであって、磁性層に結合剤を含む。結合剤とは、一種以上の樹脂である。樹脂はホモポリマーであってもコポリマー(共重合体)であってもよい。磁性層に含まれる結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選択したものを単独で用いることができ、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂および塩化ビニル樹脂である。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0029~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。
結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定された値をポリスチレン換算して求められる値である。測定条件としては、下記条件を挙げることができる。後述の実施例に示す重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
磁性層には、強磁性粉末および結合剤が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。また、非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011-048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、研磨剤の分散性を向上させるための分散剤として挙げることができる。また、例えば潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030、0031、0034、0035および0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末および結合剤を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
非磁性支持体の厚みは、例えば3.0~80.0μmであり、好ましくは3.0~50.0μmであり、より好ましくは3.0~10.0μmである。
<<サーボパターンが形成される磁気テープの作製>>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の一種または二種以上を用いることができる。溶媒については、例えば特開2011-216149号公報の段落0153を参照できる。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程および分散後の粘度調整のための混合工程で分割して投入してもよい。上記磁気テープを製造するためには、従来の公知の製造技術を各種工程において用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報を参照できる。分散機は公知のものを使用することができる。また、強磁性粉末と研磨剤とを別分散することもできる。別分散とは、より詳しくは、研磨剤および溶媒を含む研磨剤液(但し、強磁性粉末を実質的に含まない)を、強磁性粉末、溶媒および結合剤を含む磁性液と混合する工程を経て磁性層形成用組成物を調製する方法である。上記の「強磁性粉末を実質的に含まない」とは、研磨剤液の構成成分として強磁性粉末を添加しないことを意味するものであって、意図せず混入した不純物として微量の強磁性粉末が存在することは許容されるものとする。ΔNに関しては、上記磁性液の分散条件を強化するほど、ΔNの値が大きくなる傾向がある。例えば、磁性液の分散時間を長くするほど、ΔNの値が大きくなる傾向がある。これは、磁性液の分散時間を長くするほど、磁性層形成用組成物の塗布層における強磁性粉末の分散性が高まり、配向処理によって強磁性粉末を構成する強磁性粒子の配向状態の均一性が高まり易い傾向があるためと考えられる。また、非磁性層形成用組成物の各種成分を混合し分散する際の分散時間を長くするほど、ΔNの値は大きくなる傾向がある。磁性液の分散時間および非磁性層形成用組成物の分散時間は、0.25以上0.40以下のΔNが実現できるように設定すればよい。
各層形成用組成物を調製する任意の段階において、公知の方法によってろ過を行ってもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。また、各層を形成するための塗布工程は、2段階以上の工程に分けて行うこともできる。例えば一態様では、磁性層形成用組成物を2段階以上の工程に分けて塗布することができる。この場合、2つの段階の塗布工程の間に乾燥処理を施してもよく、施さなくてもよい。また、2つの段階の塗布工程の間に配向処理を施してもよく、施さなくてもよい。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066も参照できる。また、各層形成用組成物を塗布した後の乾燥工程については、公知技術を適用できる。磁性層形成用組成物に関しては、磁性層形成用組成物を塗布して形成された塗布層(以下、「磁性層形成用組成物の塗布層」または単に「塗布層」とも記載する。)の乾燥温度を低くするほど、ΔNの値は大きくなる傾向がある。乾燥温度は、例えば乾燥工程を行う雰囲気温度であることができ、0.25以上0.40以下のΔNが実現できるように設定すればよい。
磁気テープ製造のためのその他の各種工程については、特開2010-231843号公報の段落0067~0070を参照できる。
例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに配向処理を施すことが好ましい。0.25以上0.40以下のΔNを実現する容易性の観点からは、配向処理は、磁性層形成用組成物の塗布層の表面に対して垂直に磁場が印加されるように磁石を配置して行うこと(即ち垂直配向処理)が好ましい。配向処理時の磁場の強度は、0.25以上0.40以下のΔNが実現できるように設定すればよい。また、磁性層形成用組成物の塗布工程を2段階以上の塗布工程により行う場合には、少なくとも最後の塗布工程の後に配向処理を行うことが好ましく、垂直配向処理を行うことがより好ましい。例えば2段階の塗布工程によって磁性層を形成する場合、1段階目の塗布工程の後には配向処理を行うことなく乾燥工程を行い、その後に2段階目の塗布工程で形成された塗布層に対して配向処理を施すことができる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける磁気テープの搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
また、磁性層形成用組成物の塗布層を乾燥させた後の任意の段階でカレンダ処理を行うことができる。カレンダ処理の条件については、例えば特開2010-231843号公報の段落0026を参照できる。カレンダ温度(カレンダロールの表面温度)を高くするほど、ΔNの値は大きくなる傾向がある。カレンダ温度は、0.25以上0.40以下のΔNが実現できるように設定すればよい。
上記磁気テープは、磁性層に、タイミングベースサーボパターンを有する。タイミングベースサーボパターンが形成された領域(サーボバンド)および2本のサーボバンドに挟まれた領域(データバンド)の配置例が、図14に示されている。タイミングベースサーボパターンの配置例は、図15に示されている。タイミングベースサーボパターンの形状の具体例は、図15~図17および図19~図21に示されている。ただし、各図面に示す配置例および/または形状は例示であって、磁気テープ装置(ドライブ)の方式に応じた形状および配置で、サーボパターン、サーボバンドおよびデータバンドを形成し配置すればよい。また、タイミングベースサーボパターンの形状および配置については、例えば、米国特許第5689384号のFIG.4、FIG.5、FIG.6、FIG.9、FIG.17、FIG.20等に例示された配置例等の公知技術を何ら制限なく適用することができる。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボパターンの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
本発明の一態様は、
上記磁気テープと、読取素子ユニットと、抽出部と、を含み、
上記読取素子ユニットは、上記磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取る複数の読取素子を有し、
上記抽出部は、上記読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、上記読取結果から、上記読取対象トラックに由来するデータを抽出する、磁気テープ装置
に関する。かかる磁気テープ装置については、先に詳述した通りである。
<実施例1>
<<研磨剤液の調製>>
アルファ化率約65%、BET比表面積20m2/gのアルミナ粉末(住友化学社製HIT-80)100.0部に対し、2,3-ジヒドロキシナフタレン(東京化成社製)を3.0部、SO3Na基含有ポリエステルポリウレタン樹脂(東洋紡社製UR-4800(SO3Na基:0.08meq/g))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)を31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合溶媒570.0部を混合し、ジルコニアビーズの存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物を得た。
(磁性液)
板状六方晶バリウムフェライト粉末 100.0部
活性化体積:表1参照、平均板状比:3.5
SO3Na基含有ポリウレタン樹脂 表1参照
重量平均分子量:70,000、SO3Na基含有量:表1参照
シクロヘキサノン 150.0部
メチルエチルケトン 150.0部
(研磨剤液)
上記で調製したアルミナ分散物 6.0部
(シリカゾル(突起形成剤液))
コロイダルシリカ(平均粒子サイズ:100nm) 2.0部
メチルエチルケトン 1.4部
(その他成分)
ステアリン酸 2.0部
ブチルステアレート 2.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)) 2.5部
(仕上げ添加溶媒)
シクロヘキサノン 200.0部
メチルエチルケトン 200.0部
上記磁性液の各種成分を、バッチ式縦型サンドミルにおいて分散メディアとしてビーズを用いてビーズ分散することにより、磁性液を調製した。ビーズとしてはジルコニアビーズ(ビーズ径:表1参照)を用いて、表1に記載の時間(磁性液ビーズ分散時間)、ビーズ分散を行った。
こうして得られた磁性液、上記の研磨剤液、シリカゾル、その他成分および仕上げ添加溶媒を混合し5分間ビーズ分散した後、バッチ型超音波装置(20kHz、300W)で0.5分間処理(超音波分散)を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過を行い磁性層形成用組成物を調製した。
下記の非磁性層形成用組成物の各種成分のうち、ステアリン酸、ブチルステアレート、シクロヘキサノンおよびメチルエチルケトンを除いた成分を、バッチ式縦型サンドミルを用いてビーズ分散(分散メディア:ジルコニアビーズ(ビーズ径:0.1mm)、分散時間:表1参照)して分散液を得た。その後、得られた分散液に残りの成分を添加し、ディゾルバー撹拌機により撹拌した。次いで、得られた分散液をフィルタ(孔径0.5μm)を用いてろ過し、非磁性層形成用組成物を調製した。
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m2/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
電子線硬化型塩化ビニル共重合体 13.0部
電子線硬化型ポリウレタン樹脂 6.0部
ステアリン酸 1.0部
ブチルステアレート 1.0部
シクロヘキサノン 300.0部
メチルエチルケトン 300.0部
下記のバックコート層形成用組成物の各種成分のうち、ステアリン酸、ブチルステアレート、ポリイソシアネートおよびシクロヘキサノンを除いた成分をオープンニーダにより混練および希釈して混合液を得た。その後、得られた混合液に対して横型ビーズミルにより、ビーズ径1.0mmのジルコニアビーズを用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分とし、12パスの分散処理を行った。その後、得られた分散液に残りの成分を添加し、ディゾルバー撹拌機により撹拌した。次いで、得られた分散液をフィルタ(孔径:1.0μm)を用いてろ過し、バックコート層形成用組成物を調製した。
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m2/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
塩化ビニル共重合体 13.0部
スルホン酸塩基含有ポリウレタン樹脂 6.0部
フェニルホスホン酸 3.0部
メチルエチルケトン 155.0部
ステアリン酸 3.0部
ブチルステアレート 3.0部
ポリイソシアネート 5.0部
シクロヘキサノン 355.0部
二軸延伸ポリエチレンナフタレート支持体上に、非磁性層形成用組成物を塗布し乾燥させた後、125kVの加速電圧で40kGyのエネルギーとなるように電子線を照射して非磁性層を形成した。
形成した非磁性層の表面上に乾燥後の厚みが50nmになるように磁性層形成用組成物を塗布して塗布層を形成した。この塗布層が湿潤状態にあるうちに、表1に記載の雰囲気温度(磁性層乾燥温度)の雰囲気中で異極対向磁石を用いて表1の「磁性層の形成と配向」欄に記載の強度の磁場を塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、磁性層を形成した。
その後、上記支持体の、非磁性層および磁性層を形成した表面とは反対側の表面上に、バックコート層形成用組成物を塗布し乾燥させた。
その後、金属ロールのみから構成されるカレンダロールを用いて、カレンダ処理速度80m/min、線圧300kg/cm(294kN/m)、および表1に記載のカレンダ温度(カレンダロールの表面温度)の条件下で、表面平滑化処理(カレンダ処理)を行った。
その後、雰囲気温度70℃の環境で36時間熱処理を行った。熱処理後、1/2インチ(1インチは0.0254メートル)幅にスリットし、スリット品の送り出しおよび巻き取り装置を持った装置に不織布とカミソリブレードが磁性層表面に押し当たるように取り付けたテープクリーニング装置で磁性層の表面のクリーニングを行った。その後、得られた磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッド(漏れ磁界:247kA/m)によって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する実施例1の磁気テープを得た。
表1に示す各種項目を表1に示すように変更した点以外、実施例1と同様に磁気テープを作製した。
表1中、「磁性層の形成と配向」欄に「配向処理なし」と記載されている比較例は、磁性層形成用組成物の塗布層について配向処理を行わずに磁気テープを作製した。
強磁性粉末として表1に示す活性化体積を有する六方晶バリウムフェライト粉末を使用し、表1に示すように各種条件を変更し、かつサーボライトヘッドとして漏れ磁界366kA/mのサーボライトヘッドを使用した点以外、実施例1と同様の方法で磁気テープを作製した。
実施例1と同様に二軸延伸ポリエチレンナフタレート支持体上に非磁性層を形成した後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層を、磁場の印加なしに表1に記載の雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第一の磁性層(配向処理なし)を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層が湿潤状態にあるうちに、表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で異極対向磁石を用いて表1の「磁性層の形成と配向」欄に記載の強度の磁場を第二の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第二の磁性層を形成した。
以上のように重層磁性層を形成した点以外、実施例1と同様の方法により磁気テープを作製した。
実施例1と同様に二軸延伸ポリエチレンナフタレート支持体上に非磁性層を形成した後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層が湿潤状態にあるうちに、表1に記載の雰囲気温度(磁性層乾燥温度)の雰囲気中で異極対向磁石を用いて表1の「磁性層の形成と配向」欄に記載の強度の磁場を第一の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第一の磁性層を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層を、磁場の印加なしに表1に記載の雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第二の磁性層(配向処理なし)を形成した。
以上のように重層磁性層を形成した点以外、実施例1と同様の方法により磁気テープを作製した。
(1)非磁性支持体および各層の厚み
作製した各磁気テープの磁性層、非磁性層、非磁性支持体およびバックコート層の厚みを以下の方法によって測定した。測定の結果、いずれの磁気テープにおいても、磁性層の厚みは50nm、非磁性層の厚みは0.7μm、非磁性支持体の厚みは5.0μm、バックコート層の厚みは0.5μmであった。
ここで測定された磁性層、非磁性層および非磁性支持体の厚みを、以下の屈折率の算出のために用いた。
(i)断面観察用試料の作製
特開2016-177851号公報の段落0193~0194に記載の方法にしたがい、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域を含む断面観察用試料を作製した。
(ii)厚み測定
作製した試料をSTEM観察し、STEM像を撮像した。このSTEM像は、加速電圧300kVおよび撮像倍率450000倍で撮像したSTEM -HAADF(High-Angle Annular Dark Field)像であり、1画像に、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域が含まれるように撮像した。こうして得られたSTEM像において、磁性層表面を表す線分の両端を結ぶ直線を、磁気テープの磁性層側表面を表す基準線として定めた。上記の線分の両端を結ぶ直線とは、例えば、STEM像を、断面観察用試料の磁性層側が画像の上方に位置しバックコート層側が下方に位置するように撮像した場合には、STEM像の画像(形状は長方形または正方形)の左辺と上記線分との交点とSTEM像の右辺と上記線分との交点とを結ぶ直線である。同様に磁性層と非磁性層との界面を表す基準線、非磁性層と非磁性支持体との界面を表す基準線、非磁性支持体とバックコート層との界面を表す基準線、磁気テープのバックコート層側表面を表す基準線を定めた。
磁性層の厚みは、磁気テープの磁性層側表面を表す基準線上の無作為に選んだ1箇所から、磁性層と非磁性層との界面を表す基準線までの最短距離として求めた。同様に、非磁性層、非磁性支持体およびバックコート層の厚みを求めた。
以下では、エリプソメーターとしてウーラム社製M-2000Uを使用した。2層モデルまたは1層モデルの作成およびフィッティングは、解析ソフトとしてウーラム社製WVASE32を使用して行った。
(i)非磁性支持体の屈折率測定
各磁気テープから測定用試料を切り出した。未使用の布にフレッシュなメチルエチルケトンを染み込ませ、この布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われるエリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、未使用の布にフレッシュなメチルエチルケトンを染み込ませ、この布を用いて測定用試料の磁性層および非磁性層をふき取り除去した後、シリコンウェハー表面と粗面化した表面とを静電気を利用して貼り付けることにより、測定用試料を、磁性層および非磁性層を除去して露出した非磁性支持体表面(以下、「非磁性支持体の磁性層側表面」と記載する。)を上方に向けてシリコンウェハー上に配置した。
エリプソメーターを用いて、このシリコンウェハー上の測定用試料の非磁性支持体の磁性層側表面に先に記載したように入射光を入射させてΔおよびΨを測定した。得られた測定値および上記(2)で求めた非磁性支持体の厚みを用いて、先に記載した方法によって非磁性支持体の屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求めた。
(ii)非磁性層の屈折率測定
各磁気テープから測定用試料を切り出した。未使用の布にフレッシュなメチルエチルケトンを染み込ませ、この布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われる分光エリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、未使用の布にフレッシュなメチルエチルケトンを染み込ませ、この布を用いて測定用試料の磁性層表面を軽くふき取り磁性層を除去して非磁性層表面を露出させた後、上記(i)と同様にシリコンウェハー上に測定用試料を配置した。
このシリコンウェハー上の測定用試料の非磁性層表面について、エリプソメーターを用いて測定を行い、分光エリプソメトリーにより、先に記載した方法によって非磁性層の屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求めた。
(iii)磁性層の屈折率測定
各磁気テープから測定用試料を切り出した。未使用の布にフレッシュなメチルエチルケトンを染み込ませ、この布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われる分光エリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、測定用試料を、上記(i)と同様にシリコンウェハー上に測定用試料を配置した。
このシリコンウェハー上の測定用試料の磁性層表面について、エリプソメーターを用いて測定を行い、分光エリプソメトリーにより、先に記載した方法によって磁性層の屈折率(長手方向における屈折率Nx、幅方向における屈折率Ny、長手方向から入射光を入射させて測定される厚み方向における屈折率Nz1、および幅方向から入射光を入射させて測定される厚み方向における屈折率Nz2)を求めた。求められた値から、Nxy、Nzを求め、更にこれらの差分の絶対値ΔNを求めた。実施例および比較例のいずれの磁気テープについても、求められたNxyは、Nzより大きな値(即ちNxy>Nz)であった。
磁気テープの垂直方向角型比とは、磁気テープの垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、磁性層表面と直交する方向をいう。実施例および比較例の各磁気テープについて、振動試料型磁束計(東英工業社製)を用いて、23℃±1℃の測定温度において、磁気テープに外部磁場を最大外部磁場1194kA/m(15kOe)かつスキャン速度4.8kA/m/秒(60Oe/秒)の条件で掃引して垂直方向角型比を求めた。測定値は反磁界補正後の値であり、振動試料型磁束計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。一態様では、磁気テープの垂直方向角型比は0.60以上1.00以下であることが好ましい。また、一態様では、磁気テープの垂直方向角型比は、例えば0.90以下、0.85以下、または0.80以下であることもでき、これらの値を上回ることもできる。
実施例および比較例の各磁気テープについて、以下の方法により差分(L99.9-L0.1)を求めた。
磁気力顕微鏡としてBruker製Dimension 3100を周波数変調モードで使用し、プローブとしてNanoworld社製SSS-MFMR(公称曲率半径15nm)を使用して、サーボパターンを形成した磁気テープの磁性層表面の90μm×90μmの測定範囲で、100nmピッチで粗測定を行いサーボパターン(磁化領域)を抽出した。磁気力顕微鏡観察時の磁性層表面とプローブ先端との間の距離は、20nmとした。上記測定範囲には、LTO Ultriumフォーマットにしたがい形成されたAバーストの5本のサーボパターンが含まれるため、これら5本のサーボパターンが抽出された。
上記磁気力顕微鏡およびプローブを用いて、各サーボパターンの走行方向に対して下流側のエッジについて、磁化領域と非磁化領域との境界近傍を5nmピッチで測定し磁気プロファイルを得た。得られた磁気プロファイルは、角度α=12°で傾斜していたため、解析ソフトにより角度α=0°となるように回転補正を行った。
測定は、磁性層表面の異なる3箇所で行った。各測定範囲には、それぞれAバーストの5本のサーボパターンが含まれていた。
その後、解析ソフトを用いて先に記載した方法により差分(L99.9-L0.1)を求めた。解析ソフトとしては、MathWorks製MATLABを使用した。こうして求められた差分(L99.9-L0.1)を、表1に示す。
(1)実施例および比較例の各磁気テープの磁性層に対して、IBM社製TS1155テープドライブに搭載されている記録再生ヘッドを用いて、速度:6m/s、線記録密度:600kbpi(255bitPRBS)およびトラックピッチ:2μmの記録条件にて、データの記録を行った。上記の単位kbpiは、線記録密度の単位(SI単位系に換算不可)である。上記のPRBSは、Pseudo Random Bit Sequenceの略称である。
上記記録により、各磁気テープの磁性層に、2つの隣接トラックの間、即ち第1のノイズ混入源トラックと第2のノイズ混入源トラックとの間に、読取対象トラックが位置する特定トラック領域が形成される。
(2)近接した状態で配置された2つの読取素子を有する読取素子ユニットを用いてデータ読取を行うモデル実験として、以下のデータ読取を行った。以下のモデル実験では、磁性層表面と読取素子とが接触し摺動することによってデータ読取が行われた。
単一の読取素子を有する磁気ヘッドを、読取対象トラックのテープ幅方向の中心と読取素子のトラック幅方向の中心とが一致するように配置した状態で読取を開始し、1回目のデータ読取を行った。この1回目のデータ読取中、サーボ素子によってサーボパターンを読み取り、タイミングベースサーボ方式のトラッキングも行った。また、サーボパターン読取動作に同期して読取素子によりデータ読取動作が行われた。
次いで同一の磁気ヘッドをテープ幅方向(一方の隣接トラック側)に500nmずらして、2回目のデータ読取を1回目のデータ読取と同様に行った。上記の2回のデータ読取は、それぞれ再生素子幅:0.2μm、速度:4m/s、サンプリングレート:ビットレートの1.25倍の読取条件で行った。
1回目のデータ読取で得られた読取信号を等化器に入力し、1回目のデータ読取における磁気テープと磁気ヘッド(読取素子)との位置のずれ量に応じた波形等化処理を施した。この波形等化処理は、次のように行われる処理である。一定周期で形成されているサーボパターンをサーボ素子によって読み取ることにより得られた位置のずれ量から、読取素子と読取対象トラックとの重複領域と、読取素子と隣接トラックとの重複領域との比を特定する。この特定された比から演算式を用いて導出されたタップ係数を読取信号に対して畳み込み演算することにより、波形等化処理を行う。上記演算式は、EPR4(Extended Partial Response class4)を基本波形(ターゲット)とする演算式である。2回目のデータ読取で得られた読取信号についても、同様に波形等化処理を施した。
上記の波形等化処理が施された2つの読取信号の位相合わせ処理(2次元信号処理)を行うことにより、近接した状態で配置された2つの読取素子(読取素子ピッチ=500nm)を有する読取素子ユニットにより得られるであろう読取信号を得た。こうして得られた読取信号について、信号検出点でのSNRを算出した。
(3)上記の(2)を、1回目のデータ読取開始時の読取素子の位置を、読取対象トラックのテープ幅方向の中心から0.1μm間隔で第1のノイズ混入源トラック側および第2のノイズ混入源トラック側にそれぞれトラックオフセットさせながら繰り返し、トラック位置に対するSNRのエンベロープを得た。
実施例および比較例のそれぞれについて、上記の1回目のデータ読取結果のみ(即ち単一素子のみでのデータ読取結果)に関しても、SNRのエンベロープを得た。
(4)単一素子のみでのデータ読取結果に関して得られたSNRのエンベロープを参照エンベロープとし、参照エンベロープにおけるトラックセンターのSNRからSNRが-3dB低下したところを、SNR下限値として設定した。各エンベロープにおいて、この下限値以上で最大のトラックオフセット量を、許容可能トラックオフセット量とした。実施例および比較例のそれぞれについて、単一素子のみでの許容可能トラックオフセット量に対する許容可能トラックオフセット量の増加率を、「許容可能トラックオフセット量増加率」として求めた。
上記方法により求められる許容可能トラックオフセット量が大きいことは、トラックマージンを小さくしても良好な再生品質での再生を可能にするうえで有利である。この点から、許容トラックオフセット量増加率が20%以上であることは好ましい。
なお一般に、角型比は磁性層における強磁性粉末の存在状態の指標として知られている。ただし、表1に示すように、垂直方向角型比が同じ磁気テープであってもΔNは相違している(例えば実施例3、4、比較例4)。このことは、ΔNは、磁性層における強磁性粉末の存在状態に加えて他の要因の影響も受ける値であることを示していると考えられる。
Claims (13)
- 非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気テープであって、
前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有し、
前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有し、
前記強磁性粉末は、六方晶フェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末であり、
前記磁性層は、タイミングベースサーボパターンを有し、
前記タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と前記累積分布関数0.1%の値L0.1との差分、L99.9-L0.1、が180nm以下である形状であり、かつ
前記磁性層の面内方向について測定される屈折率Nxyと前記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNが0.25以上0.40以下である、磁気テープ。 - 前記屈折率Nxyと前記屈折率Nzとの差分、Nxy-Nz、が0.25以上0.40以下である、請求項1に記載の磁気テープ。
- 前記タイミングベースサーボパターンは、磁気テープの幅方向の一方から他方に向かって連続的に延び、かつ前記幅方向に対して角度αで傾斜した直線状サーボパターンであり、かつ
前記理想形状は、前記角度αの方向に延びる直線形状である、請求項1または2に記載の磁気テープ。 - 前記差分、L99.9-L0.1、が100nm以上180nm以下である、請求項1~3のいずれか1項に記載の磁気テープ。
- 前記磁性層の厚みが10~100nmである、請求項1~4のいずれか1項に記載の磁気テープ。
- 前記磁性層の厚みが10~90nmである、請求項1~5のいずれか1項に記載の磁気テープ。
- 前記磁性層の厚みが10~70nmである、請求項1~6のいずれか1項に記載の磁気テープ。
- 前記磁性層の厚みが10~50nmである、請求項1~7のいずれか1項に記載の磁気テープ。
- 前記非磁性層の厚みが、0.1~0.7μmである、請求項1~8のいずれか1項に記載の磁気テープ。
- 前記強磁性粉末の平均粒子サイズが25nm以下である、請求項1~9のいずれか1項に記載の磁気テープ。
- 垂直方向角型比が0.60以上1.00以下である、請求項1~10のいずれか1項に記載の磁気テープ。
- 請求項1~11のいずれか1項に記載の磁気テープを含む磁気テープカートリッジ。
- 磁気テープと、
読取素子ユニットと、
抽出部と、
を含み、
前記磁気テープは、請求項1~11のいずれか1項に記載の磁気テープであり、
前記読取素子ユニットは、
前記磁気テープに含まれるトラック領域のうちの読取対象トラックを含む特定トラック領域からデータを各々読み取る複数の読取素子を有し、
前記抽出部は、前記読取素子毎の読取結果の各々に対して波形等化処理を施すことにより、前記読取結果から、前記読取対象トラックに由来するデータを抽出する、磁気テープ装置。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021214243A JP7190020B2 (ja) | 2019-01-31 | 2021-12-28 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
| JP2022193196A JP7357752B2 (ja) | 2021-12-28 | 2022-12-02 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019016520A JP7003073B2 (ja) | 2019-01-31 | 2019-01-31 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
| JP2021214243A JP7190020B2 (ja) | 2019-01-31 | 2021-12-28 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019016520A Division JP7003073B2 (ja) | 2019-01-31 | 2019-01-31 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2022193196A Division JP7357752B2 (ja) | 2021-12-28 | 2022-12-02 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2022046700A JP2022046700A (ja) | 2022-03-23 |
| JP7190020B2 true JP7190020B2 (ja) | 2022-12-14 |
Family
ID=87852860
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2021214243A Active JP7190020B2 (ja) | 2019-01-31 | 2021-12-28 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7190020B2 (ja) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017117505A (ja) | 2015-12-25 | 2017-06-29 | 富士フイルム株式会社 | 磁気テープおよび磁気テープ装置 |
| JP2018206463A (ja) | 2017-06-05 | 2018-12-27 | マクセルホールディングス株式会社 | 高記録密度用磁気記録媒体及びその記録再生機構 |
| JP2019008847A (ja) | 2017-06-23 | 2019-01-17 | 富士フイルム株式会社 | 磁気テープおよび磁気テープ装置 |
| JP7003073B2 (ja) | 2019-01-31 | 2022-01-20 | 富士フイルム株式会社 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3966435B2 (ja) * | 1998-01-13 | 2007-08-29 | 富士通株式会社 | 磁気テープ装置 |
-
2021
- 2021-12-28 JP JP2021214243A patent/JP7190020B2/ja active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017117505A (ja) | 2015-12-25 | 2017-06-29 | 富士フイルム株式会社 | 磁気テープおよび磁気テープ装置 |
| JP2018206463A (ja) | 2017-06-05 | 2018-12-27 | マクセルホールディングス株式会社 | 高記録密度用磁気記録媒体及びその記録再生機構 |
| JP2019008847A (ja) | 2017-06-23 | 2019-01-17 | 富士フイルム株式会社 | 磁気テープおよび磁気テープ装置 |
| JP7003073B2 (ja) | 2019-01-31 | 2022-01-20 | 富士フイルム株式会社 | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2022046700A (ja) | 2022-03-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7003073B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| JP7003074B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| JP7003072B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| US11430476B2 (en) | Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus | |
| US10878846B2 (en) | Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus | |
| JP7009415B2 (ja) | 磁気テープ装置 | |
| JP7012064B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| JP7009414B2 (ja) | 磁気テープ装置 | |
| JP7009417B2 (ja) | 磁気テープ装置 | |
| JP7190020B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| JP7357752B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| JP7009416B2 (ja) | 磁気テープ装置 | |
| JP7009413B2 (ja) | 磁気テープ装置 | |
| JP6898962B2 (ja) | 磁気テープ装置 | |
| JP7189312B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| JP7189313B2 (ja) | 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 | |
| JP6898963B2 (ja) | 磁気テープ装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211228 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221109 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221202 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7190020 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |


