JP7117258B2 - 磁気記録媒体および磁気記録再生装置 - Google Patents

磁気記録媒体および磁気記録再生装置 Download PDF

Info

Publication number
JP7117258B2
JP7117258B2 JP2019036726A JP2019036726A JP7117258B2 JP 7117258 B2 JP7117258 B2 JP 7117258B2 JP 2019036726 A JP2019036726 A JP 2019036726A JP 2019036726 A JP2019036726 A JP 2019036726A JP 7117258 B2 JP7117258 B2 JP 7117258B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
recording medium
powder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019036726A
Other languages
English (en)
Other versions
JP2020140758A (ja
Inventor
直樹 佐野
栄貴 小沢
成人 笠田
拓都 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2019036726A priority Critical patent/JP7117258B2/ja
Priority to US16/802,768 priority patent/US11270725B2/en
Publication of JP2020140758A publication Critical patent/JP2020140758A/ja
Application granted granted Critical
Publication of JP7117258B2 publication Critical patent/JP7117258B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70615Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Fe metal or alloys
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/7013Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dispersing agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/708Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer
    • G11B5/7085Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer non-magnetic abrasive particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/71Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the lubricant
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/733Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the addition of non-magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • G11B5/7356Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer comprising non-magnetic particles in the back layer, e.g. particles of TiO2, ZnO or SiO2
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は、磁気記録媒体および磁気記録再生装置に関する。
磁気記録媒体(例えば特許文献1~3参照)は、大容量のデータ(情報)を長期間保存するためのデータストレージメディアとして有用な記録媒体である。
特開2012-43495号公報 特開平9-115130号公報 特開平10-124848号公報
データストレージ用途に用いられる磁気記録媒体は、温度および湿度が管理されたデータセンターで使用されることがある。一方、データセンターではコスト低減のために省電力化が求められている。省電力化のためには、データセンターにおける温湿度の管理条件を現在より緩和できるか、または管理を不要にできることが望ましい。しかし、温湿度の管理条件を緩和し、または管理を行わないと、磁気記録媒体が、天候変化、季節の変化等に起因する環境変化に晒されることが想定される。環境変化の一例としては、高湿下での低温から高温への温度変化が挙げられる。磁気記録媒体には優れた電磁変換特性を発揮できることが常に求められるため、そのような環境変化に晒された後の電磁変換特性の低下が、従来の磁気記録媒体よりも抑制された磁気記録媒体が提供できることは望ましい。
本発明の一態様は、高湿下での低温から高温への温度変化に晒された後の電磁変換特性の低下が少ない磁気記録媒体を提供することを目的とする。
本発明の一態様は、
非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体であって、
上記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、上記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分(S0.5-S13.5)は9.0nm以上である磁気記録媒体、
に関する。以下において、上記差分(S0.5-S13.5)を、単に「差分」とも記載する。また、1atm=101325Pa(パスカル)である。
一態様では、上記差分は、9.0nm以上30.0nm以下であることができる。
一態様では、上記差分は、10.0nm以上30.0nm以下であることができる。
一態様では、上記磁性層は、有機樹脂粒子を含むことができる。
一態様では、上記磁性層は、炭素数5以上のアルキル基を含有する化合物を含むことができる。
一態様では、上記化合物は、有機アミン化合物であることができる。
一態様では、上記化合物は、有機リン化合物であることができる。
一態様では、上記磁性層は、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上の潤滑剤を含むことができる。
一態様では、上記磁気記録媒体は、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を有することができる。
一態様では、上記磁気記録媒体は、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することができる。
一態様では、上記磁気記録媒体は、磁気テープであることができる。
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
本発明の一態様によれば、高湿下での低温から高温への温度変化に晒された後の電磁変換特性の低下が抑制された磁気記録媒体を提供することができる。また、本発明の一態様によれば、かかる磁気記録媒体を含む磁気記録再生装置を提供することができる。
[磁気記録媒体]
本発明の一態様は、非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体であって、上記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、上記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分(S0.5-S13.5)は9.0nm以上である磁気記録媒体に関する。
本発明および本明細書において、「n-ヘキサン洗浄」とは、磁気記録媒体から切り出した試料片を液温20~25℃のフレッシュなn-ヘキサン(200g)に浸漬して100秒間超音波洗浄(超音波出力:40kHz)することをいうものとする。洗浄対象の磁気記録媒体が磁気テープの場合には、長さ5cmの試料片を切り出してn-ヘキサン洗浄に付す。磁気テープの幅および磁気テープから切り出される試料片の幅は、通常、1/2インチである。1インチ=0.0254メートルである。1/2インチ幅以外の磁気テープについても、長さ5cmの試料片を切り出してn-ヘキサン洗浄に付せばよい。洗浄対象の磁気記録媒体が磁気ディスクの場合には、5cm×1.27cmのサイズの試料片を切り出してn-ヘキサン洗浄に付す。以下に詳述するスペーシングの測定は、n-ヘキサン洗浄後の試料片を、温度23℃相対湿度50%の環境下に24時間放置した後に行うものとする。
本発明および本明細書において、磁気記録媒体の「磁性層(の)表面」とは、磁気記録媒体の磁性層側表面と同義である。
本発明および本明細書において、磁気記録媒体の磁性層表面において光学干渉法により測定されるスペーシングとは、以下の方法により測定される値とする。
磁気記録媒体(詳しくは上記の試料片。以下同様。)と透明な板状部材(例えばガラス板等)を、磁気記録媒体の磁性層表面が透明な板状部材と対向するように重ね合わせた状態で、磁気記録媒体の磁性層側とは反対側から、0.5atmまたは13.5atmの圧力で押圧部材を押しつける。この状態で、透明な板状部材を介して磁気記録媒体の磁性層表面に光を照射し(照射領域:150000~200000μm)、磁気記録媒体の磁性層表面からの反射光と透明な板状部材の磁気記録媒体側表面からの反射光との光路差によって発生する干渉光の強度(例えば干渉縞画像のコントラスト)に基づき、磁気記録媒体の磁性層表面と透明な板状部材の磁気記録媒体側表面との間のスペーシング(距離)を求める。ここで照射される光は特に限定されるものではない。照射される光が、複数波長の光を含む白色光のように、比較的広範な波長範囲にわたり発光波長を有する光の場合には、透明な板状部材と反射光を受光する受光部との間に、干渉フィルタ等の特定波長の光または特定波長域以外の光を選択的にカットする機能を有する部材を配置し、反射光の中の一部の波長の光または一部の波長域の光を選択的に受光部に入射させる。照射させる光が単一の発光ピークを有する光(いわゆる単色光)の場合には、上記の部材は用いなくてもよい。受光部に入射させる光の波長は、一例として、例えば500~700nmの範囲にあることができる。ただし、受光部に入射させる光の波長は、上記範囲に限定されるものではない。また、透明な板状部材は、この部材を介して磁気記録媒体に光を照射し干渉光が得られる程度に、照射される光が透過する透明性を有する部材であればよい。
上記スペーシングの測定により得られる干渉縞画像を300000ポイントに分割して各ポイントのスペーシング(磁気記録媒体の磁性層表面と透明な板状部材の磁気記録媒体側表面との間の距離)を求め、これをヒストグラムとし、このヒストグラムにおける最頻値を、スペーシングとする。
同じ磁気記録媒体から試料片を5つ切り出し、各試料片について、n-ヘキサン洗浄後に0.5atmの圧力で押圧部材を押し付けてスペーシングを求め、更に13.5atmの圧力で押圧部材を押し付けてスペーシングを求める。そして5つの試料片についてn-ヘキサン洗浄後に0.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS0.5とし、5つの試料片についてn-ヘキサン洗浄後に13.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS13.5とする。こうして求められたS0.5とS13.5との差分(S0.5-S13.5)を、その磁気記録媒体についての差分(S0.5-S13.5)とする。
以上の測定は、例えばMicro Physics社製Tape Spacing Analyzer等の市販のテープスペーシングアナライザー(TSA;Tape Spacing Analyzer)を用いて行うことができる。実施例におけるスペーシング測定は、Micro Physics社製Tape Spacing Analyzerを用いて実施した。
上記磁気記録媒体は、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と13.5atmの押圧下で測定されるスペーシングS13.5との差分(S0.5-S13.5)が9.0nm以上である。これにより、上記磁気記録媒体によれば、高湿下で低温から高温への温度変化に晒された後に電磁変換特性の低下を抑制することができる。この点に関する本発明者らの推察は、以下の通りである。
磁気記録媒体に記録されたデータの再生は、通常、磁性層表面と磁気ヘッド(以下、単に「ヘッド」とも記載する。)とを接触させ摺動させることにより行われる。この摺動時にヘッドと主に接触(いわゆる真実接触)する部分は、磁性層表面に存在する突起と考えられる。上記方法により求められるスペーシングは、上記圧力が加えられた磁性層表面の突起の高さに対応する値ということができる。本発明者らは、鋭意検討を重ねる中で、磁気ヘッドとの摺動が繰り返される際に磁性層表面に加わる圧力は一定ではなく、大きな圧力が加わる場合もあり、大きな圧力が加わった際に磁性層表面の突起が削れて発生する削れ屑がヘッドに付着する等して磁性層表面とヘッドとの間に介在することが、電磁変換特性の低下の原因になると考えるに至った。なお、上記の大きな圧力が加わる場合とは、例えば磁気ヘッドのエッジ部との接触時が考えられる。
一方、高湿下において低温から高温への温度変化が生じると、磁気記録媒体の磁性層表面に結露(水分の付着)が生じると考えられる。この水分の存在が、磁性層表面と磁気ヘッドとの摺動時の摩擦係数を上昇させる原因になると推察される。これにより、上記の大きな圧力が加わった際に磁性層表面の突起がより削れ易くなって削れ屑が発生し易くなると考えられる。これに対し、上記方法により求められるS0.5とS13.5との差分(S0.5-S13.5)が9.0nm以上と大きいことは、上記のような大きな圧力が加わった際に磁性層が変形し易い(例えば磁性層表面の突起が磁性層の内部に沈み込み易い)ことを示していると考えられる。このように大きな圧力を受けて磁性層が変形し易いことが、大きな圧力が加わった際に磁性層表面の突起が削れることを抑制することに寄与すると推察される。このことが、高湿下で低温から高温への温度変化に晒された後に電磁変換特性の低下を抑制できることにつながると考えられる。
ただし、以上の推察に本発明は限定されない。また、本明細書に記載されている本発明者らのその他の推察にも、本発明は限定されるものではない。ところで、上記スペーシングの測定における押圧時の圧力に関して、本発明では、磁気ヘッドとの摺動時に磁性層表面に主に加わる圧力の例示的な値として0.5atmを採用し、磁気ヘッドとの摺動時に磁性層表面に加わる大きな圧力の例示的な値として13.5atmを採用したものであって、磁気ヘッドとの摺動時に上記磁気記録媒体に加わる圧力は上記圧力に限定されない。
以下、上記磁気記録媒体について、更に詳細に説明する。
<磁性層>
(差分(S0.5-S13.5))
上記磁気記録媒体において、上記差分は、9.0nm以上であり、上記の電磁変換特性の低下をより抑制する観点から、9.5nm以上であることが好ましく、10.0nm以上であることが更に好ましい、また、上記の電磁変換特性の低下をより一層抑制する観点からは、上記差分は、30.0nm以下であることが好ましく、25.0nm以下であることがより好ましく、20.0nm以下であることが更に好ましく、18.0nm以下であることが一層好ましく、16.0nm以下であることがより一層好ましい。上記差分は、磁性層表面に突起を形成することができる非磁性フィラー(以下、「突起形成剤」と記載する。)の種類および磁気記録媒体の製造条件によって制御することができる。この点の詳細は後述する。
上記磁気記録媒体のS0.5およびS13.5は、上記差分が9.0nm以上であれば特に限定されるものではない。主に磁性層表面と磁気ヘッドとの摺動初期の電磁変換特性の向上の観点からは、S0.5は、10.0nm以上であることが好ましく、12.0nm以上であることがより好ましく、15.0nm以上であることが更に好ましい。また、同様の観点から、S0.5は、40.0nm以下であることが好ましく、38.0nm以下であることがより好ましく、35.0nm以下であることが更に好ましい。また、S13.5は、高湿下で低温から高温への温度変化に晒された後の電磁変換特性の低下をより一層抑制する観点からは、3.0nm以上であることが好ましく、4.0nm以上であることがより好ましく、5.0nm以上であることが更に好ましい。同様の観点からは、S13.5は、20.0nm以下であることが好ましく、18.0nm以下であることがより好ましく、15.0nm以下であることが更に好ましい。
(強磁性粉末)
上記磁性層は、強磁性粉末を含む。磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を一種または二種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
以下に、六方晶フェライト粉末の一態様である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁束計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一態様では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一態様では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁束計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一態様では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一態様では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一態様では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一態様では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一態様では、ビスマス原子(Bi)を含まないものであることができる。
金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
ε-酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気記録媒体の磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一態様では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントするか、ディスプレイに表示する等して、粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語が、粉末を表すために用いられることもある。
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層は、少なくとも強磁性粉末を含み、結合剤を含むことができ、任意に一種以上の更なる添加剤を含むこともできる。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤、硬化剤)
上記磁気記録媒体は塗布型の磁気記録媒体であることができ、磁性層に結合剤を含むことができる。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。結合剤は、磁性層形成用組成物中に、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
また、結合剤とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁気記録媒体の製造工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層等の各層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(その他の成分)
磁性層には、上記の各種成分とともに、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、非磁性フィラー、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。非磁性フィラーとは、非磁性粒子または非磁性粉末と同義である。非磁性フィラーとしては、突起形成剤、および研磨剤として機能することができる非磁性フィラー(以下、「研磨剤」と記載する。)を挙げることができる。また、添加剤としては、特開2016-051493号公報の段落0030~0080に記載されている各種ポリマー等の公知の添加剤を用いることもできる。
非磁性フィラー
非磁性フィラーの一態様である突起形成剤としては、上記差分(S0.5-S13.5)の制御の容易性の観点からは、有機物質の粒子を用いることが好ましく、有機樹脂粒子を用いることがより好ましい。有機樹脂粒子とは、有機樹脂を主成分とする粒子をいうものとする。主成分とは、粒子を構成する成分の中で質量基準で最も多くを占める成分をいうものとし、例えば80質量%~100質量%を占める成分であることができる。 有機樹脂粒子を構成する有機樹脂としては、例えば、アクリル樹脂、メラミン樹脂、フッ素樹脂、ベンゾグアナミン樹脂、ビニル樹脂等を挙げることができる。なお、上記のアクリル樹脂には、メタクリル樹脂も包含されるものとする。また、有機樹脂粒子を構成する樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。有機樹脂粒子としては、市販品を使用してもよく、公知の方法で製造したものを使用してもよい。
上記のS0.5は、主に突起形成剤の粒子サイズにより制御することができる。突起形成剤の平均粒子サイズは、例えば30nm~4μmであり、好ましくは30nm~2μmであり、より好ましくは40nm~1μmである。一方、S13.5については、突起形成剤の粒子サイズに加えて、磁性層形成用組成物の調製方法によって制御することができる。この点については後述する。また、突起形成剤の密度は、例えば、0.5~3.0g/cmの範囲であることができ、磁性層表面と磁気ヘッドとの摺動初期の電磁変換特性の向上の観点からは0.8~2.5g/cmの範囲であることが好ましい。突起形成剤の密度は、ピクノメータ法により求められる値とする。
非磁性フィラーの他の一態様である研磨剤は、好ましくはモース硬度8超の非磁性粉末であり、モース硬度9以上の非磁性粉末であることがより好ましい。これに対し、突起形成剤のモース硬度は、例えば8以下または7以下であることができる。なおモース硬度の最大値は、ダイヤモンドの10である。研磨剤としては、具体的には、アルミナ(Al)、炭化ケイ素、ボロンカーバイド(BC)、SiO、TiC、酸化クロム(Cr)、酸化セリウム、酸化ジルコニウム(ZrO)、酸化鉄、ダイヤモンド等の粉末を挙げることができ、中でもα-アルミナ等のアルミナ粉末および炭化ケイ素粉末が好ましい。また、研磨剤の平均粒子サイズは、例えば30~300nmの範囲であり、好ましくは50~200nmの範囲である。
また、突起形成剤および研磨剤が、それらの機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、好ましくは強磁性粉末100.0質量部に対して、1.0~4.0質量部であり、より好ましくは1.5~3.5質量部である。一方、研磨剤については、磁性層における含有量は、好ましくは強磁性粉末100.0質量部に対して1.0~20.0質量部であり、より好ましくは3.0~15.0質量部であり、更に好ましくは4.0~10.0質量部である。
研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上させるための分散剤として挙げることができる。また、分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
潤滑剤
磁性層に含まれ得る添加剤の一態様である潤滑剤としては、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上の潤滑剤を挙げることができる。上記のS0.5およびS13.5は、n-ヘキサン洗浄後に測定される値である。スペーシング測定時に押圧される磁性層の表面に潤滑剤の液膜が存在すると、この液膜の厚み分、測定されるスペーシングは狭くなる。これに対し、押圧時に液膜として存在し得る潤滑剤は、n-ヘキサン洗浄によって除去できると推察される。したがって、n-ヘキサン洗浄後にスペーシングを測定することにより、押圧された状態の磁性層表面の突起の高さと良好に対応する値としてスペーシングの測定値を得ることができると考えられる。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層に含まれていてもよい。
脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル(ブチルステアレート)、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸アミドとしては、上記の各種脂肪酸のアミド、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
脂肪酸と脂肪酸の誘導体(アミドおよびエステル等)については、脂肪酸誘導体の脂肪酸由来部位は、併用される脂肪酸と同様または類似の構造を有することが好ましい。例えば、一例として、脂肪酸としてステアリン酸を用いる場合にステアリン酸エステルおよび/またはステアリン酸アミドを使用することは好ましい。
磁性層形成用組成物の脂肪酸含有量は、強磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~10.0質量部であり、より好ましくは1.0~7.0質量部である。磁性層形成用組成物の脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~10.0質量部であり、より好ましくは1.0~7.0質量部である。磁性層形成用組成物の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。
また、上記磁気記録媒体が非磁性支持体と磁性層との間に非磁性層を有する場合、非磁性層形成用組成物の脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは1.0~10.0質量部であり、より好ましくは1.0~7.0質量部である。非磁性層形成用組成物の脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0~15.0質量部であり、好ましくは0.1~10.0質量部である。非磁性層形成用組成物の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~1.0質量部である。
<非磁性層>
次に非磁性層について説明する。上記磁気記録媒体は、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末を含む非磁性層を有していてもよい。非磁性層は、非磁性粉末を含み、更に結合剤を含むことができる。非磁性層に使用される非磁性粉末は、無機物質の粉末(無機粉末)でも有機物質の粉末(有機粉末)でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
上記磁気記録媒体の非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が100Oe以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が100Oe以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
<バックコート層>
上記磁気記録媒体は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもできる。バックコート層には、非磁性粉末として、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層は、非磁性粉末とともに結合剤を含むことができる。バックコート層に含まれ得る結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
非磁性支持体の厚みは、例えば3.0~80.0μmの範囲であり、好ましくは3.0~50.0μmの範囲であり、より好ましくは3.0~10.0μmの範囲である。
磁性層の厚みは、近年求められている高密度記録化の観点からは、100nm以下であることが好ましい。磁性層の厚みは、より好ましくは10nm~100nmの範囲であり、更に好ましくは20~90nmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmの範囲であることが更に好ましい。
磁気記録媒体の各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
<製造方法>
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の一種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。磁気記録媒体の製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、粒径(ビーズ径)と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
一態様では、磁性層形成用組成物を調製する工程において、突起形成剤を含む分散液(以下、「突起形成剤液」と記載する。)を調製した後、この突起形成剤液を強磁性粉末等の磁性層形成用組成物の各種成分と混合することができる。例えば、突起形成剤液、研磨剤を含む分散液(以下、「研磨剤液」と記載する。)および強磁性粉末を含む分散液(以下、「磁性液」と記載する。)をそれぞれ別に調製した後に混合し分散させて磁性層形成用組成物を調製することができる。このように各種分散液を別に調製することは、磁性層形成用組成物における強磁性粉末、突起形成剤および研磨剤の分散性向上のために好ましい。
好ましくは、突起形成剤液は、有機化合物を含む有機溶媒中で突起形成剤の分散処理を行うことにより調製することができる。上記有機化合物は、アルキル基含有化合物であることが好ましい。アルキル基含有化合物が有するアルキル基は、炭素数5以上であることが好ましく、6以上であることがより好ましく、7以上であることが更に好ましく、8以上であることが一層好ましい。また、上記アルキル基の炭素数は、例えば20以下、18以下または16以下であることができる。アルキル基としては、鎖状アルキル基が好ましい。鎖状アルキル基は、直鎖アルキル基であってもよく、分岐を有するアルキル基でもよい。アルキル基含有化合物を含む有機溶媒中で分散処理を行って突起形成剤液を調製することは、主にスペーシングS13.5の値を小さくすることに寄与すると考えられる。これは、アルキル基含有化合物が、磁性層において突起形成剤(好ましくは有機樹脂粒子)と他の成分(例えば結合剤)との親和性を高める作用を発揮することにより磁性層中で突起形成剤が動きやすくなる結果、大きな圧力が加わった際、磁性層表面に存在する突起形成剤により形成された突起が磁性層の内部に沈み込み易くなるからではないかと本発明者らは推察している。上記アルキル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、例えば、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ基またはその塩の形態等を挙げることができる。置換基を有するアルキル基について、炭素数とは、置換基を含まない部分の炭素数をいうものとする。また、上記アルキル基含有化合物が有するアルキル基の数は、1つ以上であることができ、2つ以上であることができ、例えば2~3つ程度であることもできる。アルキル基含有化合物が2つ以上のアルキル基を有する場合、2つ以上のアルキル基は同じアルキル基でもよく異なるアルキル基でもよい。アルキル基含有化合物は、例えば一態様では、有機アミン化合物であることができる。有機アミン化合物は、第一級アミン、第二級アミンおよび第三級アミンのいずれであってもよい。アルキル基を含有する第一級アミンはRNH、第二級アミンはRNH、第三級アミンはRNで表すことができ、Rはアルキル基を表し、第二級アミンおよび第三級アミンに複数含まれるアルキル基Rは、同じアルキル基でもよく異なるアルキル基でもよい。また、他の一態様では、アルキル基含有化合物は、有機リン化合物であることができる。有機リン化合物の一例としては、有機ホスホン酸を挙げることができる。アルキル基含有ホスホン酸は、RP(=O)(OH)で表すことができ、Rはアルキル基を表す。突起形成剤液は、例えば、有機化合物(好ましくはアルキル基含有化合物)1.0質量部に対して、2.0~20.0質量部の突起形成剤および5.0~100.0質量部の有機溶媒を含む分散液として調製することができる。分散液の調製は、超音波処理等の公知の分散処理によって行うことができる。例えば、超音波処理は、200cc(1cc=1cm)あたり10~2000ワット程度の超音波出力で1~300分間程度行うことができる。また、分散処理後にろ過を行ってもよい。ろ過に用いるフィルタについては先の記載を参照できる。突起形成剤の調製のために使用する有機溶媒は、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からケトン溶媒の一種以上を含むことが好ましい。同様の理由から、研磨剤液および磁性液も、ケトン溶媒の一種以上を含むことが好ましい。
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う態様では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。磁気記録媒体の製造のためのその他の各種工程については、特開2010-231843号公報の段落0067~0070を参照できる。
上記のように製造された磁気記録媒体には、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気記録媒体の走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。上記磁気記録媒体は、テープ状の磁気記録媒体(磁気テープ)であってもよく、ディスク状の磁気記録媒体(磁気ディスク)であってもよい。以下では、磁気テープを例にサーボパターンの形成について説明する。
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
また、一態様では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気記録再生装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気記録再生装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気記録再生装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。磁気テープカートリッジのその他の詳細については、公知技術を適用することができる。
以上説明した本発明の一態様にかかる磁気記録媒体によれば、高湿下の低温から高温への温度変化に晒された後の電磁変換特性の低下を抑制することができる。一例として、高湿下は、例えば相対湿度70~100%程度の環境下であることができ、低温は、例えば0℃超~15℃程度であることができ、高温は、例えば30~50℃程度であることができ、低温から高温への温度変化は、例えば15~50℃程度の温度変化であることができる。
[磁気記録再生装置]
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体へのデータの記録および磁気記録媒体に記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、摺動型の磁気記録再生装置であることができる。摺動型の磁気記録再生装置とは、磁気記録媒体へのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
上記磁気記録再生装置に含まれる磁気ヘッドは、磁気記録媒体へのデータの記録を行うことができる記録ヘッドであることができ、磁気記録媒体に記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一態様では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一態様では、上記磁気記録再生装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気記録媒体を含むものであればよく、その他については公知技術を適用することができる。
例えば、サーボパターンが形成された磁気記録媒体へのデータの記録および/または記録されたデータの再生の際には、まず、サーボパターンを読み取って得られるサーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
以下に、本発明を実施例に基づき説明する。但し、本発明は実施例に示す態様に限定されるものではない。以下に記載の「部」は、「質量部」を示す。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。以下に記載の「eq」は、当量( equivalent)であり、SI単位に換算不可の単位である。
[突起形成剤]
実施例または比較例の磁気記録媒体の製造のために使用した突起形成剤は、以下の通りである。
突起形成剤1(有機樹脂粒子):日本触媒社製エポスターMX050W(アクリル系架橋樹脂)、平均粒子サイズ70nm、密度1.2g/cm
突起形成剤2(有機樹脂粒子):日本触媒社製エポスターMX100W(アクリル系架橋樹脂)、平均粒子サイズ150nm、密度1.2g/cm
突起形成剤3(有機樹脂粒子):日本触媒社製エポスターMX200W(アクリル系架橋樹脂)、平均粒子サイズ350nm、密度1.2g/cm
突起形成剤4(有機樹脂粒子):日本触媒社製エポスターSS(メラミン・ホルムアルデヒド縮合物)、平均粒子サイズ100nm、密度1.5g/cm
突起形成剤5(有機樹脂粒子):3M社製DyneonTF9207Z(ポリテトラフルオロエチレン(PTFE))、平均粒子サイズ120nm、密度2.0g/cm
突起形成剤6:旭カーボン社製旭#50(カーボンブラック)、平均粒子サイズ300nm、密度1.9g/cm
突起形成剤7:扶桑化学工業社製PL-10L(シリカ粒子の水分散ゾル;後述の突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ130nm、密度2.2g/cm
[強磁性粉末]
表1中、「BaFe」は、平均粒子サイズ12nmの六方晶バリウムフェライト粉末である。
表1中、「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
表1中、「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで急冷圧延して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
表1中、「ε-酸化鉄」は、以下の方法により作製されたε-酸化鉄粉末である。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.58Fe1.42)であった。また、先にSrFe1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁束計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁束計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
[実施例1]
<磁性層形成用組成物>
(磁性液)
強磁性粉末(表1参照):100.0部
オレイン酸:2.0部
塩化ビニル共重合体(カネカ社製MR-104):10.0部
SONa基含有ポリウレタン樹脂:4.0部
(重量平均分子量70000、SONa基:0.07meq/g)
添加剤A:10.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α-アルミナ(平均粒子サイズ:110nm):6.0部
塩化ビニル共重合体(カネカ社製MR110):0.7部
シクロヘキサノン:20.0部
(突起形成剤液)
突起形成剤(表1参照):1.3部 有機化合物(表1参照):0.3部
メチルエチルケトン:9.0部
シクロヘキサノン:6.0部
(潤滑剤および硬化剤液)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
上記の添加剤Aは、特開2016-051493号公報の段落0115~0123に記載の方法により合成されたポリマーである。
<非磁性層形成用組成物>
非磁性無機粉末(α-酸化鉄):80.0部
(平均粒子サイズ:0.15μm、平均針状比:7、BET(Brunauer-Emmett-Teller)比表面積:52m/g)
カーボンブラック(平均粒子サイズ:20nm):20.0部
電子線硬化型塩化ビニル共重合体:13.0部
電子線硬化型ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ブチルステアレート:2.0部
ステアリン酸:1.0部
<バックコート層形成用組成物>
非磁性無機粉末(α-酸化鉄):80.0部
(平均粒子サイズ:0.15μm、平均針状比:7、BET比表面積:52m2/g)
カーボンブラック(平均粒子サイズ:20nm):20.0部
カーボンブラック(平均粒子サイズ:100nm):3.0部
塩化ビニル共重合体:13.0部
スルホン酸基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ステアリン酸:3.0部
ポリイソシアネート(東ソー社製コロネート):5.0部
メチルエチルケトン:400.0部
<各層形成用組成物の調製>
磁性層形成用組成物は、以下の方法によって調製した。
上記磁性液の成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により、粒径0.5mmのジルコニア(ZrO2)ビーズ(以下、「Zrビーズ」と記載する)を用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分間とし、12パスの分散処理を行った。
研磨剤液は、上記研磨剤液の成分を混合した後、粒径1mmのZrビーズとともに縦型サンドミル分散機に入れ、ビーズ体積/(研磨剤液体積+ビーズ体積)が60%になるように調整し、180分間サンドミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施した。
突起形成剤液は、上記突起形成剤液の成分を混合した後に、ホーン式超音波分散機により200ccあたり500ワットの超音波出力で60分間超音波処理(分散処理)して得られた分散液を孔径0.5μmのフィルタでろ過して調製した。
磁性液、研磨剤液、突起形成剤液、ならびに潤滑剤および硬化剤液を、ディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタでろ過して磁性層形成用組成物を調製した。
非磁性層形成用組成物は以下の方法によって調製した。
潤滑剤(ブチルステアレートおよびステアリン酸)を除く上記成分をオープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ブチルステアレートおよびステアリン酸)を添加して、ディゾルバー撹拌機にて撹拌して混合処理を施して非磁性層形成用組成物を調製した。
バックコート層形成用組成物は以下の方法によって調製した。
潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を除く上記成分をオープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を添加して、ディゾルバー撹拌機にて撹拌して混合処理を施し、バックコート層形成用組成物を調製した。
<磁気テープの作製>
厚み6.0μmの二軸延伸ポリエチレンナフタレート支持体上に、乾燥後の厚みが1.0μmになるように非磁性層形成用組成物を塗布し乾燥させた後、125kVの加速電圧で40kGyのエネルギーとなるように電子線を照射して非磁性層を形成した。形成した非磁性層の上に、乾燥後の厚みが50nmになるように磁性層形成用組成物を塗布して塗布層を形成した。形成した塗布層が湿潤状態(所謂、未乾燥状態)にあるうちに、対向配置された電磁石を用いて、磁場強度0.60Tの磁場を塗布層の表面に対して垂直方向に印加し、垂直配向を行った後に乾燥させて磁性層を形成した。更に、バックコート層形成用組成物を、支持体の非磁性層と磁性層を形成した表面とは反対側の表面に乾燥後の厚みが0.5μmになるように塗布し乾燥させてバックコート層を形成した。
その後、金属ロールのみから構成される7段のカレンダロールを用いて、カレンダ速度80m/min、線圧294kN/m、および80℃のカレンダ温度(カレンダロールの表面温度)でカレンダ処理を行った。その後、雰囲気温度70℃の環境で36時間加熱処理を行った。加熱処理後、1/2インチ(1インチ=0.0254メートル)幅にスリットし、スリット品の送り出し、巻き取り装置を持った装置に不織布とカミソリブレードが磁性層表面に押し当たるように取り付けたテープクリーニング装置で磁性層の表面のクリーニングを行い、磁気テープを得た。
[実施例2~14、比較例1~9]
突起形成剤の種類、有機化合物の有無または種類、および強磁性粉末の種類の1つ以上を表1に示すように変更した点以外、実施例1と同じ方法により磁気テープを得た。
[評価方法]
(1)差分(S0.5-S13.5
TSA(Tape Spacing Analyzer(Micro Physics社製))を用いて、以下の方法により、n-ヘキサン洗浄後のスペーシングS0.5およびS13.5を測定し、測定された値から差分(S0.5-S13.5)を算出した。
実施例および比較例の各磁気テープから長さ5cmの試料片を5つ切り出し、各試料片を先に記載した方法によりn-ヘキサン洗浄を行った後、以下の方法によりS0.5およびS13.5を求めた。
磁気テープ(即ち上記試料片)の磁性層表面上に、TSAに備えられたガラス板(Thorlabs,Inc.社製ガラス板(型番:WG10530))を配置した状態で、押圧部材としてTSAに備えられているウレタン製の半球を用いて、この半球を磁気テープのバックコート層表面に0.5atmの圧力で押しつけた。この状態で、TSAに備えられているストロボスコープから白色光を、ガラス板を通して磁気テープの磁性層表面の一定領域(150000~200000μm)に照射し、得られる反射光を、干渉フィルタ(波長633nmの光を選択的に透過するフィルタ)を通してCCD(Charge-Coupled Device)で受光することで、この領域の凹凸で生じた干渉縞画像を得た。
この画像を300000ポイントに分割して各ポイントのガラス板の磁気テープ側の表面から磁気テープの磁性層表面までの距離(スペーシング)を求めこれをヒストグラムとし、ヒストグラムの最頻値をスペーシングとして求めた。
同じ試料片を更に押圧し、13.5atmの押圧下で上記と同じ方法によりスペーシングを求めた。
5つの試料片についてn-ヘキサン洗浄後に0.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS0.5とし、5つの試料片についてn-ヘキサン洗浄後に13.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS13.5とした。こうして求められたスペーシングS0.5、スペーシングS13.5および差分(S0.5-S13.5)を、表1に示す。
(2)高湿下での低温から高温への温度変化後のSNR低下
(i)雰囲気温度23℃および相対湿度50%の環境下にて、実施例および比較例の各磁気テープについて、記録ヘッド(MIG(Metal-in-gap)ヘッド、ギャップ長0.15μm、トラック幅1.0μm、1.8T)と再生ヘッド(GMR(Giant Magnetoresistive)ヘッド、素子厚み15nm、シールド間隔0.1μm、トラック幅1.0μm)をループテスターに取り付けて、線記録密度325kfciの信号を記録した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。その後、再生出力を測定し、再生出力とノイズとの比としてSNR(Signal-to-Noise-Ratio)を求めた。SNRは、比較例1のSNRを0dBとしたときの相対値として求めた。
(ii)実施例および比較例の各磁気テープを、上記(i)でSNRを評価した後、内部が温度10℃相対湿度80%に保たれたサーモボックスに3時間保管した。その後、磁気テープをサーモボックスから取出し(外気は温度23℃相対湿度50%)、1分以内に内部が温度32℃相対湿度80%に保たれたサーモルームに入れた後、30分以内にサーモルームにおいて上記(i)と同様に記録および再生を行い、上記(i)で求められた比較例1のSNRを0dBとしたときの相対値としてSNRを求めた。実施例および比較例の各磁気テープについて、ここで求められたSNRと上記(i)で求められたSNRの差分(「(ii)で求められたSNR」-「上記(i)で求められたSNR」)を算出し、SNR低下分とした。ここで求められたSNR低下分が-1.0dB以内であれば、高湿下での低温から高温への温度変化に晒された後のSNRの低下が抑制されていると評価することができる。
以上の結果を表1に示す。
Figure 0007117258000001
表1に示す結果から、実施例の磁気テープは、比較例の磁気テープと比べて、高湿下での低温から高温への温度変化後のSNR低下が抑制されていることが確認できる。
本発明の一態様は、各種データストレージ用磁気記録媒体の技術分野において有用である。

Claims (11)

  1. 非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体であって、
    前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は9.0nm以上30.0nm以下である磁気記録媒体。
  2. 前記差分は、10.0nm以上30.0nm以下である、請求項1に記載の磁気記録媒体。
  3. 前記磁性層は、有機樹脂粒子を含む、請求項1または2に記載の磁気記録媒体。
  4. 前記磁性層は、炭素数5以上のアルキル基を含有する化合物を含む、請求項1~のいずれか1項に記載の磁気記録媒体。
  5. 前記化合物は、有機アミン化合物である、請求項に記載の磁気記録媒体。
  6. 前記化合物は、有機リン化合物である、請求項に記載の磁気記録媒体。
  7. 前記磁性層は、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上の潤滑剤を含む、請求項1~のいずれか1項に記載の磁気記録媒体。
  8. 前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有する、請求項1~のいずれか1項に記載の磁気記録媒体。
  9. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1~のいずれか1項に記載の磁気記録媒体。
  10. 磁気テープである、請求項1~のいずれか1項に記載の磁気記録媒体。
  11. 請求項1~10のいずれか1項に記載の磁気記録媒体と、
    磁気ヘッドと、
    を含む磁気記録再生装置。
JP2019036726A 2019-02-28 2019-02-28 磁気記録媒体および磁気記録再生装置 Active JP7117258B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019036726A JP7117258B2 (ja) 2019-02-28 2019-02-28 磁気記録媒体および磁気記録再生装置
US16/802,768 US11270725B2 (en) 2019-02-28 2020-02-27 Magnetic recording medium having characterized magnetic layer, and magnetic recording and reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036726A JP7117258B2 (ja) 2019-02-28 2019-02-28 磁気記録媒体および磁気記録再生装置

Publications (2)

Publication Number Publication Date
JP2020140758A JP2020140758A (ja) 2020-09-03
JP7117258B2 true JP7117258B2 (ja) 2022-08-12

Family

ID=72236115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036726A Active JP7117258B2 (ja) 2019-02-28 2019-02-28 磁気記録媒体および磁気記録再生装置

Country Status (2)

Country Link
US (1) US11270725B2 (ja)
JP (1) JP7117258B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367460B2 (en) 2018-03-29 2022-06-21 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11514940B2 (en) 2018-09-14 2022-11-29 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
JP7003072B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003074B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7117258B2 (ja) * 2019-02-28 2022-08-12 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7098562B2 (ja) * 2019-03-22 2022-07-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7105211B2 (ja) 2019-03-28 2022-07-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7128147B2 (ja) 2019-04-26 2022-08-30 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6778787B1 (ja) 2019-05-15 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6788084B1 (ja) * 2019-09-19 2020-11-18 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7247128B2 (ja) * 2020-01-31 2023-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7351824B2 (ja) * 2020-07-17 2023-09-27 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6884256B2 (ja) * 2020-07-17 2021-06-09 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155805A (ja) 2011-01-27 2012-08-16 Fujifilm Corp 磁気テープ
JP2017168178A (ja) 2016-03-14 2017-09-21 日立マクセル株式会社 磁気記録媒体
JP2017224380A (ja) 2014-06-30 2017-12-21 富士フイルム株式会社 磁気記録媒体
JP2018106789A (ja) 2016-12-27 2018-07-05 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2019021371A (ja) 2017-07-19 2019-02-07 富士フイルム株式会社 磁気記録媒体

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676643B2 (ja) * 1990-04-19 1997-11-17 富士写真フイルム株式会社 磁気記録媒体及びその製造方法
JP4090523B2 (ja) 1995-10-16 2008-05-28 富士フイルム株式会社 磁気記録媒体
JPH10124848A (ja) 1996-08-27 1998-05-15 Fuji Photo Film Co Ltd 磁気記録媒体
JP2000057565A (ja) * 1998-08-11 2000-02-25 Kao Corp 磁気記録媒体の製造方法及び装置
US6162528A (en) * 1998-12-16 2000-12-19 Verbatim Corporation Magnetic recording medium and method for manufacturing the same
US7585576B2 (en) * 2002-12-19 2009-09-08 Sony Corporation Magnetic recording medium with dual magnetic layers including specific resins
JP2011048878A (ja) * 2009-08-27 2011-03-10 Fujifilm Corp 磁気記録媒体およびその製造方法
JP5208148B2 (ja) * 2010-03-10 2013-06-12 富士フイルム株式会社 磁気記録媒体
JP4970578B2 (ja) 2010-08-17 2012-07-11 日立マクセル株式会社 磁気記録媒体
JP6427132B2 (ja) * 2016-03-23 2018-11-21 富士フイルム株式会社 磁気テープおよび磁気テープ装置
US11211087B2 (en) * 2018-03-29 2021-12-28 Fujifilm Corporation Magnetic tape having characterized back coating layer, magnetic recording medium and magnetic recording and reproducing device
US10679657B2 (en) * 2018-03-29 2020-06-09 Fujifilm Corporation Magnetic tape and magnetic recording and reproducing device
US10741208B2 (en) * 2018-03-29 2020-08-11 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11367460B2 (en) * 2018-03-29 2022-06-21 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US11514940B2 (en) * 2018-09-14 2022-11-29 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
JP7003072B2 (ja) * 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003074B2 (ja) * 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US10811048B2 (en) * 2019-01-31 2020-10-20 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP7117258B2 (ja) * 2019-02-28 2022-08-12 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7098562B2 (ja) * 2019-03-22 2022-07-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7105211B2 (ja) * 2019-03-28 2022-07-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7128148B2 (ja) * 2019-04-26 2022-08-30 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7128147B2 (ja) * 2019-04-26 2022-08-30 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7147678B2 (ja) * 2019-05-08 2022-10-05 トヨタ自動車株式会社 移載方法
JP6778787B1 (ja) * 2019-05-15 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7132900B2 (ja) * 2019-09-19 2022-09-07 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP6788084B1 (ja) * 2019-09-19 2020-11-18 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7247128B2 (ja) * 2020-01-31 2023-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155805A (ja) 2011-01-27 2012-08-16 Fujifilm Corp 磁気テープ
JP2017224380A (ja) 2014-06-30 2017-12-21 富士フイルム株式会社 磁気記録媒体
JP2017168178A (ja) 2016-03-14 2017-09-21 日立マクセル株式会社 磁気記録媒体
JP2018106789A (ja) 2016-12-27 2018-07-05 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2019021371A (ja) 2017-07-19 2019-02-07 富士フイルム株式会社 磁気記録媒体

Also Published As

Publication number Publication date
JP2020140758A (ja) 2020-09-03
US20200279580A1 (en) 2020-09-03
US11270725B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP7117258B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7236492B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7128147B2 (ja) 磁気記録媒体および磁気記録再生装置
JP6788069B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7236482B2 (ja) 磁気テープおよび磁気記録再生装置
JP7217766B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7132900B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7091264B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6788084B1 (ja) 磁気記録媒体および磁気記録再生装置
JP7236493B2 (ja) 磁気テープおよび磁気記録再生装置
JP7425909B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7351824B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7351810B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7266012B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6893952B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2022121901A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6884256B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7432785B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7299205B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7266016B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2021009753A (ja) 磁気記録媒体および磁気記録再生装置
JP2020187820A (ja) 磁気記録媒体および磁気記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7117258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150