JP2020096434A - 電源装置及び画像形成装置 - Google Patents

電源装置及び画像形成装置 Download PDF

Info

Publication number
JP2020096434A
JP2020096434A JP2018231987A JP2018231987A JP2020096434A JP 2020096434 A JP2020096434 A JP 2020096434A JP 2018231987 A JP2018231987 A JP 2018231987A JP 2018231987 A JP2018231987 A JP 2018231987A JP 2020096434 A JP2020096434 A JP 2020096434A
Authority
JP
Japan
Prior art keywords
voltage
power supply
switching
supply device
target voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018231987A
Other languages
English (en)
Other versions
JP7224888B2 (ja
Inventor
裕基 淺野
Hironori Asano
裕基 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018231987A priority Critical patent/JP7224888B2/ja
Priority to US16/705,058 priority patent/US10715049B2/en
Publication of JP2020096434A publication Critical patent/JP2020096434A/ja
Application granted granted Critical
Publication of JP7224888B2 publication Critical patent/JP7224888B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

【課題】電源装置の出力電圧が切り替わる際の素子へのストレスを軽減すること。【解決手段】外部から入力された24VSL信号に応じて目標電圧が5Vから24Vに切り替わることを制御部101に報知する目標電圧報知部117と、目標電圧を5V又は24Vに切り替える目標電圧切り替え部119と、を備え、目標電圧切り替え部119は、目標電圧報知部117により制御部101に目標電圧が5Vから24Vに切り替わることが報知された後に、目標電圧を5Vから24Vに切り替える。【選択図】図1

Description

本発明は、電源装置及び画像形成装置に関する。特に、フライバックトランスを用いた絶縁型コンバータに、アクティブクランプ方式を用いたスイッチング電源装置の出力電圧を切り替える制御に関する。
商用電源等の交流電源の交流電圧を直流電圧に変換するスイッチング電源において、スイッチング電源の消費電力を低減するため、スイッチング電源の効率を改善することが求められている。ここで、スイッチング電源の効率とは、スイッチング電源に供給された電力に対する、スイッチング電源が出力する電力の比率をいう。スイッチング電源の軽負荷状態の効率を改善する手段としては、スイッチング電源の軽負荷状態において、スイッチング電源の出力電圧を低下させる方法が有効である(例えば、特許文献1参照)。
特開2010−142071号公報
しかしながら、アクティブクランプ方式を用いたスイッチング電源において、スイッチング電源の出力電圧を急激に変更させると、次のような課題が発生する。すなわち、オーバーシュートやアンダーシュートが生じたり、ゼロ電圧スイッチングができなくなって素子にストレスがかかったりするという課題が発生する。
本発明は、このような状況のもとでなされたもので、電源装置の出力電圧が切り替わる際の素子へのストレスを軽減することを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)1次巻線及び2次巻線を有するトランスと、前記トランスの前記1次巻線に直列に接続された第1のスイッチング素子と、前記トランスの前記1次巻線に並列に接続された、第2のスイッチング素子とコンデンサとが直列に接続された回路と、前記2次巻線に誘起された電圧を整流平滑し出力電圧を出力する整流平滑手段と、前記出力電圧に応じたフィードバック電圧を出力するフィードバック手段と、前記フィードバック手段から出力された前記フィードバック電圧に基づいて前記出力電圧が目標電圧となるように前記第1のスイッチング素子及び前記第2のスイッチング素子を制御する制御手段と、を備える電源装置であって、外部から入力された第1の信号に応じて前記目標電圧が第1の電圧から前記第1の電圧よりも高い第2の電圧に切り替わることを前記制御手段に報知する報知手段と、前記目標電圧を前記第1の電圧又は前記第2の電圧に切り替える切替手段と、を備え、前記切替手段は、前記報知手段により前記制御手段に前記目標電圧が前記第1の電圧から前記第2の電圧に切り替わることが報知された後に、前記目標電圧を前記第1の電圧から前記第2の電圧に切り替えることを特徴とする電源装置。
(2)記録材に画像形成を行う画像形成手段と、前記(1)に記載の電源装置と、前記画像形成手段及び前記電源装置を制御する制御部と、を備えることを特徴とする画像形成装置。
本発明によれば、電源装置の出力電圧が切り替わる際の素子へのストレスを軽減することができる。
実施例1の電源回路の概略図 実施例1、2の制御方法を説明するタイミングチャート、簡易回路図 実施例1の出力電圧の切り替えタイミングを説明する図 実施例1の制御を行わない場合の電源回路の動作を説明する図 実施例2の電源回路の概略図 実施例2の出力電圧の切り替え制御を説明するフローチャート 実施例3の画像形成装置を示す図
以下、本発明を実施するための形態を、実施例により図面を参照しながら詳しく説明する。
[電源装置の構成]
実施例1のアクティブクランプ方式を用いたフライバック電源装置について、図面を参照して説明する。図1は、実施例1のアクティブクランプ方式を用いたスイッチング電源回路の概略を示す回路図である。商用電源等の交流電源10から交流電圧が全波整流手段であるブリッジダイオードBD1に入力され、整流される。ブリッジダイオードBD1により整流された電圧は、スイッチング電源回路100に入力される。スイッチング電源回路100では、平滑用コンデンサC3はブリッジダイオードBD1で整流された電圧の平滑手段として用いられ、平滑用コンデンサC3の低い側の電位をDCL、高い側の電位をDCHとする。スイッチング電源回路100は、平滑用コンデンサC3に充電された入力電圧Vinから、トランスT1の絶縁された2次側へ電源電圧として出力電圧Voutを出力する。
スイッチング電源回路100は、1次側に1次巻線P1、補助巻線P2、2次側に2次巻線S1を備えた絶縁型のトランスT1を有している。トランスT1の1次巻線P1から2次巻線S1には、後述する図2で説明するスイッチング動作によってエネルギーが供給されている。トランスT1の補助巻線P2は、1次巻線P1に印加された入力電圧Vinのフォワード電圧を、ダイオードD4及びコンデンサC4で整流平滑し、電源電圧V1を供給するために用いられる。
スイッチング電源回路100の1次側には、トランスT1の1次巻線P1に第1のスイッチング素子である電界効果トランジスタ(以下、FETとする)1が直列に接続されている。また、互いに直列に接続された電圧クランプ用のコンデンサC2及び第2のスイッチング素子であるFET2が、トランスT1の1次巻線P1と並列に接続されている。更に、スイッチング電源回路100の1次側には、FET1及びFET2の駆動を制御する制御部101が設けられている。
制御手段である制御部101は、ハイレベルの制御信号DRV−Lを出力することでFET1を駆動し、ハイレベルの制御信号DRV−Hを出力することでFET2を駆動する。制御部101のVC端子とG端子との間には、電源電圧V1が供給される。なお、FET2を駆動するため、コンデンサC5及びダイオードD5から構成されるチャージポンプ回路によって、制御部101のVH端子とGH端子との間に電源電圧V1が供給されている。
FET1と並列に、共振コンデンサC11が接続されている。共振コンデンサC11を設けずに、FET1のドレイン端子とソース端子との間の容量を利用してもよい。また、FET1に並列に接続されたダイオードD1は、FET1のボディーダイオードである。同様に、FET2に並列に接続されたダイオードD2も、FET2のボディーダイオードである。なお、制御部101は、例えばアナログ回路で構成されたICを用いてもよいし、発振器等によって生成されたクロック信号で動作する演算制御素子(例えばCPU、ASIC等)を用いてもよい。
スイッチング電源回路100の2次側には、トランスT1の2次巻線S1に生じるフライバック電圧の2次側の整流平滑手段であるダイオードD21及びコンデンサC21から構成される整流平滑回路118が設けられている。トランスT1の2次巻線S1に誘起された電圧は、ダイオードD21及びコンデンサC21によって整流平滑され、出力電圧Voutとして出力される。また、スイッチング電源回路100の2次側には、2次側に出力される出力電圧Voutに応じた情報(例えば、フィードバック電圧)を1次側にフィードバックするフィードバック手段として、フィードバック部115が設けられている。
フィードバック部115は、出力電圧Voutを所定の一定電圧(以下、目標電圧という)に制御するために用いられる。出力電圧Voutの電圧値は、シャントレギュレータIC5のリファレンス端子REFに入力される電圧である基準電圧によって設定される。すなわち、分圧抵抗R52、R53、R54によって出力電圧Voutが設定される。出力電圧Voutが目標電圧より高くなると、シャントレギュレータIC5のカソード端子Kから電流が流れ、プルアップ抵抗R51を介してフォトカプラPC5の2次側ダイオードが導通状態となる。これにより、フォトカプラPC5の1次側フォトトランジスタが動作し、コンデンサC6から電荷が放電される。このため、制御部101のFB端子の入力電圧(以下、FB端子電圧という)が低下する。一方、出力電圧Voutが目標電圧より低くなると、フォトカプラPC5の2次側ダイオードが非導通状態となる。これにより、フォトカプラPC5の1次側フォトトランジスタがオフ状態となり、電源電圧V1から抵抗R2を介してコンデンサC6を充電する電流が流れる。このため、FB端子電圧が上昇する。このように、フィードバック部115は、出力電圧Voutの変動に応じて制御部101のFB端子電圧を変化させる。
制御部101は、フィードバック部115から入力されたFB端子電圧を検知することで、出力電圧Voutを目標電圧に制御するためのフィードバック制御を行っている。このように、制御部101はFB端子電圧を監視することによって、出力電圧Voutを間接的にフィードバック制御できる。制御部101はFB端子電圧を監視することにより負荷の状態を把握できるため、負荷の状態に応じた適切な制御を行うことができる。負荷の状態を、より正確に判断するためには、FET1や、スイッチング電源回路100の負荷に電力を供給する経路に、電流検出手段を設けてもよい。
切替手段である目標電圧切り替え部119は、出力電圧Voutの目標電圧を切り替える機能を有する。目標電圧切り替え部119は、分圧抵抗R54と並列に接続されたFET51と、FET51のゲート端子とソース端子との間に接続された抵抗R55及びコンデンサC51と、FET51のゲート端子に接続された抵抗R56を有する。FET51のゲート端子は、抵抗R56を介して、外部から入力される第1の信号である24VSL信号に接続されている。24VSL信号は、例えば、スイッチング電源回路100が搭載される装置(例えば、画像形成装置)が備える制御部から出力される信号である。
24VSL信号がハイレベルの場合には、FET51がオン状態になり、分圧抵抗R54はショート(短絡)された状態となる。そのため、シャントレギュレータIC5のREF端子に入力される電圧は、出力電圧Voutを分圧抵抗R52、R53により分圧した電圧となる。その結果、シャントレギュレータIC5の基準電圧の出力電圧Voutに対する分圧比が下がり、出力電圧Voutには第2の電圧であるDC24Vが出力されるように、フィードバック部115が動作する状態となる。一方、24VSL信号がローレベルの場合には、FET51がオフ状態になり、分圧抵抗R53と分圧抵抗R54とが直列に接続される。そのため、シャントレギュレータIC5のREF端子に入力される電圧は、出力電圧Voutを分圧抵抗R52、R53、R54により分圧した電圧となる。その結果、シャントレギュレータIC5の基準電圧の出力電圧Voutに対する分圧比が上がり、出力電圧Voutには第1の電圧であるDC5Vが出力されるように、フィードバック部115が動作する状態となる。以上のように、目標電圧切り替え部119は、24VSL信号がハイレベルの場合には出力電圧Voutが24Vとなるように、24VSL信号がローレベルの場合には出力電圧Voutが5Vとなるように、出力電圧Voutの目標電圧を切り替える。
ここで、第2の抵抗である抵抗R56及び第2のコンデンサであるコンデンサC51は、24VSL信号に対するローパスフィルタの役割を果たしている。24VSL信号がローレベルからハイレベルに切り替わるとき、抵抗R56及びコンデンサC51の定数に応じた時間だけ、FET51がオンするタイミングが遅れる。逆に、24VSL信号がハイレベルからローレベルに切り替わるときは、FET51がオフするタイミングが遅れる。
報知手段である目標電圧報知部117は、24VSL信号の状態に応じて、出力電圧Voutの目標電圧を制御部101に報知する機能を有する。目標電圧報知部117は、FET71、FET71のゲート端子とソース端子との間に接続されている抵抗R72及びコンデンサC71を有する。また、目標電圧報知部117は、FET71のゲート端子に接続されている抵抗R73、FET71のドレイン端子に接続されているフォトカプラPC7、抵抗R71を有する。24VSL信号は、抵抗R73を介してFET71のゲート端子に接続されている。また、第1の抵抗である抵抗R73と第1のコンデンサであるコンデンサC71は、24VSL信号に対するローパルフィルタの役割を果たしている。
24VSL信号がハイレベル状態の場合は、FET71がオン状態となり、抵抗R71を介してフォトカプラPC7の2次側ダイオードに電流が流れる。その結果、フォトカプラPC7の1次側フォトトランジスタがオンし、コンデンサC7に充電された電荷が放電され、制御部101の24SL端子の入力電圧(以下、24SL端子電圧という)はローレベルの状態になる。一方、24VSL信号がローレベル状態の場合には、FET71はオフ状態となり、フォトカプラPC7の2次側ダイオードは非導通状態となり、電流は流れなくなる。その結果、フォトカプラPC7の1次側フォトトランジスタはオフ状態となり、電源電圧V1から、抵抗R1を介してコンデンサC7には電荷が充電され、24SL端子電圧はハイレベルの状態になる。
このように、24VSL信号がハイレベルで目標電圧が24Vの場合には制御部101の24SL端子電圧はローレベルとなり、24VSL信号がローレベルで目標電圧が5Vの場合には制御部101の24SL端子電圧はハイレベルとなる。これにより、制御部101は24SL端子電圧に応じて、目標電圧がDC24VかDC5Vかを検知する。制御部101は、24SL端子電圧がハイレベルのとき、出力電圧Voutが5VとなるようにFET1及びFET2のオン時間(以下、オンデューティーともいう)を制御する。以下、このような制御を行っている状態を5V制御モードという。制御部101は、24SL端子電圧がローレベルのとき、出力電圧Voutが24VとなるようにFET1及びFET2のオン時間を制御する。以下、このような制御を行っている状態を24V制御モードという。なお、出力電圧Voutの目標電圧が5Vから24Vに切り替わるときの制御を制御部101が行っている状態を、以下、切り替え制御モードといい、詳細は後述する。
このように、実施例1における24VSL信号は、目標電圧切り替え部119及び目標電圧報知部117双方に、接続されている。そして、24VSL信号が切り替わる際は、目標電圧報知部117によって制御部101へ目標電圧の切り替わりを報知した後、所定時間が経過した後に、目標電圧切り替え部119によって出力電圧Voutの目標電圧が切り替わる。この所定時間は、抵抗R56、コンデンサC51の時定数(第2の時定数)と、抵抗R73、コンデンサC71の時定数(第1の時定数)との差によって決定される。なお、目標電圧切り替え部119に入力される信号と目標電圧報知部117に入力される信号は、別々であってもよい。すなわち、目標電圧切り替え部119に第1の信号が入力され、目標電圧報知部117には第1の信号とは異なる信号が入力されてもよい。
起動回路103は、3端子レギュレータ又は降圧型スイッチング電源回路であり、VC端子とG端子との間に入力された入力電圧Vinを変換して、OUT端子から電源電圧V1を出力している。起動回路103は、補助巻線P2から供給される電源電圧V1が所定の電圧値以下となった場合にのみ動作する回路であり、スイッチング電源回路100の起動時に電源電圧V1を供給するために用いられる。
[スイッチング電源回路の制御方法]
図2は、制御部101によるアクティブクランプ方式を用いたスイッチング電源回路100の制御方法を説明する図である。スイッチング電源回路100は、制御部101がFET1及びFET2をともにオフさせるデッドタイムを挟んでFET1とFET2を交互にオン/オフすることで、2次側に電力を供給している。図2(A)は、FET1及びFET2の各端子の電圧波形及び電流波形を、後述する複数の期間[1]〜[4]に分けて示した図である。図2において、(a)はFET1のゲート端子への入力信号である制御信号DRV−Lの状態を示す、FET1のゲート端子とソース端子との間の電圧を示す図である。(b)はFET2のゲート端子への入力信号である制御信号DRV−Hの状態を示す、FET2のゲート端子とソース端子との間の電圧を示す図である。(c)はFET1のドレイン端子とソース端子との間の電圧を示す図である。(d)はFET1のドレイン電流を示す図であり、この場合のドレイン電流にはダイオードD1に流れる電流を含んでいる。(e)はFET2のドレイン電流を示す図であり、この場合のドレイン電流にはダイオードD2に流れる電流を含んでいる。(e)には励磁インダクタンスLsを流れる励磁電流を破線で示す。(f)は、トランスT1の2次側のダイオードD21に流れる電流波形を示す図である。なお、横軸は、いずれも時間を示す。
また、図2(B)は、複数の期間[1]〜[4]のそれぞれの期間における電流の流れを簡易回路図に分けて示した図である。なお、トランスT1をリーケージインダクタンスLr、励磁インダクタンスLs、理想トランスTiに分割して示してある。また、図2(B)の回路中に、それぞれの期間で流れる電流を濃い実線矢印で示している。
まず、[1]の期間は、FET1がオン状態で、FET2がオフ状態の期間である(図2(A)(a)、(b))。平滑用コンデンサC3からトランスT1の1次巻線P1に電流が流れることで、トランスT1のリーケージインダクタンスLr及び励磁インダクタンスLsにエネルギーが蓄えられる。このとき、FET1のドレイン端子−ソース端子間の電圧はほぼゼロであり(図2(A)(c))、FET1に流れるドレイン電流は直線的に増加する(図2(A)(d))。
次に、[2]の期間は、FET1及びFET2がともにオフ状態の期間、すなわちデッドタイムの期間である(図2(A)(a)、(b))。FET1をオフすると、トランスT1の1次巻線P1に流れていた電流は、共振コンデンサC11を充電するように流れる。そして、共振コンデンサC11が充電されるにつれて、FET1のドレイン端子−ソース端子間の電圧は上昇する(図2(A)(c))。FET1のドレイン端子−ソース端子間の電圧が電圧クランプ用のコンデンサC2の+端子の電圧を上回ると、トランスT1の1次巻線P1に流れていた電流は、ダイオードD2を介して電圧クランプ用のコンデンサC2を充電するように流れ始める。これにより、リーケージインダクタンスLrによるキックバック電圧は、電圧クランプ用のコンデンサC2によって吸収されるため、FET1のドレイン端子−ソース端子間に印加されるサージ電圧を抑制できる。また、FET2のドレイン端子−ソース端子間の電圧はほぼゼロとなるため、この状態で[3]の期間に移行してFET2をオンすると、FET2のゼロ電圧スイッチングを実現することができる。
ここで、[2]の期間は、FET1をオフしてから、FET2のドレイン端子−ソース端子間の電圧がほぼゼロになるまでの時間とほぼ同等、又はやや長めに設定するとよい。[2]の期間が長いと、ダイオードD2に流れる期間が長くなるため、その分無駄な電力が消費される。一方、[2]の期間が短いと、FET2のドレイン端子−ソース端子間の電圧がゼロになる前にFET2をオンすることになるため、ゼロ電圧スイッチングができず、やはり無駄な電力が消費される。したがって、[2]の期間を適切な値に設定することで、消費電力を抑制することができる。
続いて、[3]の期間は、FET2がオン状態で、FET1がオフ状態の期間である(図2(A)(a)、(b))。FET2がオンすると、ダイオードD2を介して電圧クランプ用のコンデンサC2を充電していた電流が、FET2を介して流れるようになる。電圧クランプ用のコンデンサC2の電圧が上昇すると、2次側のダイオードD21がオン状態となり、トランスT1の2次巻線S1を介して、スイッチング電源回路100の2次側に電力が供給される状態になる。
ここで、図2(A)(e)に示すFET2のドレイン電流において、破線で示した波形は、トランスT1の励磁インダクタンスLsを流れる励磁電流を示しており、直線的に変化している。なお、この励磁インダクタンスLsを流れる励磁電流と理想トランスTiを流れる電流との和が、FET2のドレイン電流となる。また、理想トランスTiを流れる電流は、ダイオードD21に流れる電流(図2(A)(f))と相似形となる。
また、[3]の期間は、2次側に電力が供給されていない期間(以下、[3]offの期間という)と、2次側に電力が供給されている期間(以下、[3]onという)の期間から構成されている。[3]offの期間では、主に電圧クランプ用のコンデンサC2とトランスT1のリーケージインダクタンスLr及び励磁インダクタンスLsとの共振動作によって、FET2に電流が流れる。一方、[3]onの期間では、主に電圧クランプ用のコンデンサC2とトランスT1のリーケージインダクタンスLrとの共振動作によって、FET2に電流が流れる。リーケージインダクタンスLrのインダクタンス値は励磁インダクタンスLsに比べて小さい(Lr<Ls)。そのため、[3]onの期間における共振周波数(Fonとする)は、[3]offの期間における共振周波数(Foffとする)に比べて高くなる(Fon>Foff)。
トランスT1の励磁インダクタンスLsを流れる励磁電流がゼロになることは、励磁インダクタンスLsに蓄積されたエネルギーは全て解放された状態であることを意味する。その後も、FET2をオンし続けると、それまでとは逆に、電圧クランプ用のコンデンサC2から励磁インダクタンスLsに向かって電流が流れ始め、励磁インダクタンスLsには逆相のエネルギーが蓄積されることになる。
続いて、[4]の期間は、再びFET1及びFET2がともにオフの状態の期間、すなわちデッドタイムの期間である。FET2をオフすると、トランスT1の1次巻線P1に流れていた電流は、共振コンデンサC11に充電された電荷を放電するように流れる。共振コンデンサC11が放電されるにつれて、FET1のドレイン端子−ソース端子間の電圧は減少する(図2(A)(c))。FET1のドレイン端子−ソース端子間の電圧がゼロを下回ると、トランスT1の1次巻線P1に流れていた電流は、ダイオードD1を介して平滑用コンデンサC3に回生される。この状態で[1]の期間に戻り、FET1をオンすると、FET1のゼロ電圧スイッチングを実現することができる。[4]の期間においても、前述した[2]の期間と同様に、FET2をオフしてからFET1のドレイン端子−ソース端子間電圧がほぼゼロになるまでの時間とほぼ同等、又はやや長めに設定することで、消費電力を抑制することができる。
以上説明したように、実施例1におけるスイッチング電源であるアクティブクランプ方式を用いたフライバック電源装置は、[1]の期間から[4]の期間における制御を繰り返す。これにより、リーケージインダクタンスLrによるサージ電圧を抑制しつつ、FET1及びFET2のゼロ電圧スイッチングを行って、2次側に電力供給を行うことができる。
ところで、上述したスイッチング電源回路100は、[1]の期間から[4]の期間を繰り返す連続動作状態で動作している。一般的なスイッチング電源回路では、FET1及びFET2が交互にスイッチング動作するスイッチング期間と、FET1及びFET2両方のスイッチング動作を停止する期間であるスイッチング停止期間とを設けた間欠動作が行われる。すなわち、スイッチング電源回路を間欠動作させることで、連続動作時よりも電力変換効率を向上させることができる。しかしながら、間欠動作状態では、出力電圧Voutにリップルが生じるため、出力電力が小さいときに限り間欠動作状態とするのが一般的である。実施例1のアクティブクランプ方式を用いたフライバック電源装置においても、間欠動作状態を設定することで電力変換効率を向上させることは可能である。例えばスイッチング電源回路100は、出力電力が大きいときに連続動作状態となるように制御され、出力電力が小さいときに間欠動作状態となるように制御される。
[目標電圧の切り替えタイミング]
(実施例1の制御を行った場合)
次に、出力電圧Voutの目標電圧を切り替えるときのタイミングについて、図3を用いて説明する。図3(A)は実施例1における切り替えタイミングである、制御部101へ目標電圧の切り替わりを報知した後に、出力電圧Voutの目標電圧が切り替わる場合について説明する図である。一方、図3(B)は、出力電圧Voutの目標電圧が切り替わった後に、制御部101へ目標電圧の切り替わりを報知した場合について説明する図である。図3において、(a)、(f)は24VSL信号の波形を示し、(b)、(g)は24SL端子電圧の波形を示す。(c)、(h)はFB端子電圧の波形を示し、(d)、(i)はFET1のオンデューティーを示す。(e)、(j)は出力電圧Voutを示し、その下に制御部101が行う制御モードを示す。横軸はいずれも時間を示す。
図3(A)において、まず外部から入力される24VSL信号がローレベルからハイレベルに切り替わると、第1の時間T1が経過した後に、24SL端子電圧がハイレベルからローレベルに変化する。第1の時間T1は、目標電圧報知部117の抵抗R73とコンデンサC71の時定数により決定される。これにより制御部101は、出力電圧Voutの目標電圧が5Vから24Vに切り替わったことを検知し、5V制御モードから切り替え制御モードに遷移する。
ここで切り替え制御モードとは、出力電圧Voutの目標電圧が切り替わってから出力電圧Voutが目標電圧に到達するまでに行われる制御である。具体的には、切り替え制御モードとは、FB端子電圧が所定値を超えている間にFET1のオンデューティーを徐々に大きくするオープンループ制御である。以下、所定値を所定値Vth(所定の電圧)とする。FET1のオンデューティーを徐々に大きくすることで、FET1及びFET2のゼロ電圧スイッチングを維持した状態で、出力電圧Voutを切り替えることができる。
5V制御モードから切り替え制御モードに切り替わってから第2の時間T2だけ遅れてFB端子電圧が上昇し始める(図3(A)(c))。第2の時間T2は、目標電圧切り替え部119の抵抗R56、コンデンサC51の時定数と、目標電圧報知部117の抵抗R73、コンデンサC71の時定数との差によって決定される。制御部101は既に切り替え制御モードに移行しているため、FET1のオンデューティーは徐々に大きくなるように制御される。これに伴い、出力電圧Voutも徐々に上昇していく(図3(A)(e))。出力電圧Voutが目標電圧である24Vの近傍まで上昇すると、FB端子電圧が下がり始める。FB端子電圧が所定値Vthまで下がると、制御部101は出力電圧Voutが目標電圧である24Vまで上昇したと判断し、切り替え制御モードから24V制御モードに遷移する。以上のように、抵抗R56、コンデンサC51の時定数に対して、抵抗R73、コンデンサC71の時定数を十分小さい値に設定する。これにより、制御部101へ目標電圧の切り替わりを報知した後に出力電圧Voutの目標電圧が切り替わるため、安定的に出力電圧Voutを切り替えられる。
(実施例1の制御と逆の制御を行った場合)
逆に、抵抗R56、コンデンサC51の時定数より、抵抗R73、コンデンサC71の時定数が大きくなるように設定すると、図3(B)のような動作になる。以下に説明する。外部から入力される24VSL信号がローレベルからハイレベルに切り替わると、第3の時間が経過した後にFB端子電圧が上昇し始める。第3の時間は、目標電圧切り替え部119の抵抗R56とコンデンサC51の時定数により決定される。この時点では、制御部101は5V制御モードであるため、FB端子電圧の上昇に伴ってFET1のオンデューティーは急激に大きくなるよう制御される(図3(B)(k))。これにより出力電圧Voutも急激に上昇する(図3(B)(j))。FET1のオンデューティーが急激に大きくなると、FET1のゼロ電圧スイッチングのために必要なエネルギーが不足する。これにより、大きな放射ノイズが発生して誤動作リスクが高まることに加えて、素子にストレスを与えて寿命低下の原因にもなるため、可能な限り避けるべきである。
FB端子電圧が上昇を開始して第4の時間T4だけ遅れて24SL端子電圧がローレベルになる。第4の時間T4は、目標電圧報知部117の抵抗R73、コンデンサC71の時定数と、目標電圧切り替え部119の抵抗R56、コンデンサC51の時定数との差によって決定される。その後、制御部101は24SL端子電圧がハイレベルからローレベルに遷移したことを検知すると、ようやく、5V制御モードから切り替え制御モードへと移行し、FET1のオンデューティーが徐々に大きくなるよう制御する。
出力電圧Voutが目標電圧である24Vの近傍まで上昇すると、FB端子電圧が下がり始める。FB端子電圧が所定値Vthまで下がると、制御部101は出力電圧Voutが目標電圧である24Vまで上昇したと判断し、切り替え制御モードから24V制御モードに遷移する。以上のように、抵抗R56、コンデンサC51の時定数に対して、抵抗R73、コンデンサC71の時定数が大きいと、出力電圧Voutの目標電圧が切り替わった後に制御部101へ目標電圧の切り替わりが報知される。このため、ゼロ電圧スイッチングができなくなり、種々の課題が生じる。
[ゼロ電圧スイッチングができないときの回路動作]
急激にFET1のオンデューティーを大きくしたときの回路動作を、図4を用いて説明する。図4の(a)〜(e)は図2(A)の(a)〜(e)と同様の図である。また、期間[1]〜[4]は、図2で説明した通りである。期間[5]は、期間[1]と同様FET1がオン状態でFET2がオフ状態の期間であるが、期間[1]に比べて時間が長い。すなわち、期間[1]のFET1のオン時間よりも期間[5]のFET1のオン時間の方が長い。その分、期間[5]の終了直前におけるFET1のドレイン電流は大きくなる(図4(d))。また、トランスT1に蓄えられるエネルギーも大きくなる。
期間[6]は、期間[2]と同様デッドタイムの期間であるが、期間[2]に比べてFET1及びFET2のドレイン電流が大きい。これは、期間[2]よりも期間[6]の方が、トランスT1に多くのエネルギーが蓄えられているためである。期間[7]は、期間[3]と同様FET2がオン状態でFET1がオフ状態の期間であり、時間も期間[3]と同じ長さである。しかし、期間[3]よりもトランスT1に蓄えられたエネルギーを解放するまでに長い時間を要する。このため、期間[7]において、トランスT1に蓄えられる逆相のエネルギーは、期間[3]よりも少なくなる(図4(h))。このエネルギーは、FET2をオフして期間[8]に移行した際に、FET1の共振コンデンサC11に充電された電荷の放電に使われるため、不足するとFET1のドレイン−ソース間電圧をゼロにすることができない(図4(f))。この状態では、FET1をゼロ電圧スイッチングすることができない。なお、期間[8]は期間[4]と同様デッドタイムである。
期間[9]は、期間[5]と同様FET1がオン状態でFET2がオフ状態の期間である。しかし、期間[9]開始時におけるトランスT1に蓄えられている逆相のエネルギーはほぼゼロであるため、期間[9]開始時のFET1のドレイン電流もほぼゼロとなる(図4(g))。また、期間[9]の時間は期間[5]の時間と同じ長さであるため、期間[9]でトランスT1に蓄えられるエネルギーは、期間[5]よりも大きくなる(図4(d))。
期間[10]は期間[6]と同様デッドタイムである。期間[11]は、期間[7]と同様FET2がオン状態でFET1がオフ状態の期間であり、時間も期間[7]と同じ長さである。期間[11]内でトランスT1に蓄えられたエネルギーを全て解放することはできず、逆相のエネルギーを蓄えることはできない(図4(k))。したがって、期間[12]のデッドタイムで、FET1のドレイン−ソース間電圧を下げることは、一切できない(図4(i))。この状態でFET1をオンして期間[13]に移行すると、トランスT1に蓄えられたエネルギー分だけ、FET1のドレイン電流が即座に流れる(図4(j))。これは、トランスT1に常に励磁電流が流れる状態、すなわち電流連続状態である。以上のように、急激にFET1のデューティーが大きくなる、すなわち、図3(B)のように、抵抗R56、コンデンサC51の時定数より、抵抗R73、コンデンサC71の時定数が大きくなるように設定すると、ゼロ電圧スイッチングができなくなる。
以上説明したように、実施例1では、図3(A)のように、24VSL信号に対する目標電圧切り替え部119及び目標電圧報知部117の回路動作の遅延時間を適切に設定する。具体的には、抵抗R56、コンデンサC51の時定数に対して、抵抗R73、コンデンサC71の時定数を十分小さい値に設定する。これにより、ゼロ電圧スイッチングを維持し、素子へのストレスをかけることなく安定的に出力電圧Voutを切り替えられる。
以上、実施例1によれば、電源装置の出力電圧が切り替わる際の素子へのストレスを軽減することができる。
[電源装置の構成]
実施例2について説明する。実施例1と異なる点についてのみ説明し、それ以外は説明を省略する。図5は、実施例2のアクティブクランプ方式を用いたスイッチング電源回路200の概略を示す回路図である。図1とは、目標電圧切り替え部119の代わりに、1次側からの目標電圧切り替え部219を追加した点が異なる。1次側からの目標電圧切り替え部219は、フォトカプラPC91と抵抗R91から構成される。フォトカプラPC91のアノード端子は制御部101の出力端子であるCH端子に、カソード端子はDCLに接続される。また、フォトカプラPC91の2次側のフォトトランジスタのコレクタ端子は抵抗R91を介して出力電圧Voutに接続され、エミッタ端子はフィードバック部115のFET51のゲート端子に接続される。なお、図1と同じ構成には同じ符号を付し、説明を省略する。
[5Vから24Vに切り替える際の制御]
出力電圧Voutの目標電圧を5Vから24Vに切り替える際の、制御部101の制御の流れを、図6を用いて説明する。ステップ(以下、Sとする)601で制御部101は、24SL端子電圧にハイレベル(High)、CH端子の電圧(以下、CH端子電圧という)にローレベル(Low)が入力されている状態であり、5V制御モードで動作している。CH端子電圧は第2の信号に相当する。S602で制御部101は、24SL端子電圧がローレベル(Low)であることを検知したか否かを判断する。S602で制御部101は、24SL端子電圧がローレベルではないと判断した場合、処理をS602に戻し、24SL端子電圧がローレベルであると判断した場合、処理をS603に進める。
S603で制御部101は、5V制御モードから切り替え制御モードに移行する。S604で制御部101は、CH端子電圧をローレベルからハイレベルに変更する。切り替え制御モードでは、制御部101は、FB端子電圧に依らず、FET1のオンデューティーを徐々に大きくする制御を行う。S605で制御部101は、FB端子電圧が所定値Vthより小さいか否かを判断する。S605で制御部101は、FB端子電圧が所定値Vth以上であると判断した場合、処理をS605に戻す。S605で制御部101は、FB端子電圧が所定値Vthより小さいと判断した場合、出力電圧Voutが24Vに達したと判断し、処理をS606に進める。
S606で制御部101は、切り替え制御モードから24V制御モードに移行し、処理を終了する。以上の制御を行うことで、目標電圧切り替え部119及び目標電圧報知部117の回路動作の遅延時間を考慮せずとも、ゼロ電圧スイッチングを維持し、素子へのストレスをかけることなく安定的に出力電圧Voutを切り替えられる。
以上、実施例2によれば、電源装置の出力電圧が切り替わる際の素子へのストレスを軽減することができる。
[画像形成装置]
図7に画像形成装置の一例として、レーザビームプリンタの概略構成を示す。レーザビームプリンタ1100(以下、プリンタ1100という)は、感光ドラム1101、帯電部1102、現像部1103を備えている。感光ドラム1101は、静電潜像が形成される像担持体である。帯電部1102は、感光ドラム1101を一様に帯電する。現像手段である現像部1103は、感光ドラム1101に形成された静電潜像にトナーを付着させ現像することでトナー像を形成する。感光ドラム1101上(像担持体上)に形成されたトナー像はカセット1104から供給された記録材としてのシートPに、転写手段である転写部1105によって転写される。シートPに転写された未定着のトナー像は定着器1106によって定着され、シートPはトレイ1107に排出される。この感光ドラム1101、帯電部1102、現像部1103、転写部1105が画像形成部(画像形成手段)である。また、プリンタ1100は、実施例1のスイッチング電源回路100又は実施例2のスイッチング電源回路200を備えている。スイッチング電源回路100又はスイッチング電源回路200は、例えばモータ等の駆動部と制御部1500へ電力を供給する。制御部1500は、CPU(不図示)を有しており、画像形成部による画像形成動作やシートPの搬送動作等を制御している。
プリンタ1100は、プリント動作を終了させると所定時間が経過した後、プリント動作をすぐに実行できるスタンバイ状態に遷移する。更に所定時間が経過した後、プリンタ1100は待機時の消費電力を低減するため、スタンバイ状態から低消費電力モードであるスリープ状態に遷移する。プリンタ1100はスリープ状態、スタンバイ状態、プリント状態の3つの状態を持ち、制御部1500がそれぞれの状態に遷移させる。制御部1500は、スイッチング電源回路100又はスイッチング電源回路200の目標電圧を24Vとするときは、ハイレベルの24VSL信号を出力する。制御部1500は、スイッチング電源回路100又はスイッチング電源回路200の目標電圧を5Vとするときは、ローレベルの24VSL信号を出力する。これにより、スイッチング電源回路100又はスイッチング電源回路200は、プリンタ1100がプリント状態又はスタンバイ状態のときに、例えば出力電圧Voutが24Vとなるように制御される。スイッチング電源回路100又はスイッチング電源回路200は、プリンタ1100がスリープ状態のときに、例えば出力電圧Voutが5Vとなるように制御される。なお、本発明の電源装置を適用することができる画像形成装置は、図7に例示された構成に限定されない。
以上、実施例3によれば、電源装置の出力電圧が切り替わる際の素子へのストレスを軽減することができる。
101 制御部
115 フィードバック部
117 目標電圧報知部
118 整流平滑回路
119 目標電圧切り替え部
FET1、FET2 電界効果トランジスタ
T1 トランス

Claims (8)

  1. 1次巻線及び2次巻線を有するトランスと、
    前記トランスの前記1次巻線に直列に接続された第1のスイッチング素子と、
    前記トランスの前記1次巻線に並列に接続された、第2のスイッチング素子とコンデンサとが直列に接続された回路と、
    前記2次巻線に誘起された電圧を整流平滑し出力電圧を出力する整流平滑手段と、
    前記出力電圧に応じたフィードバック電圧を出力するフィードバック手段と、
    前記フィードバック手段から出力された前記フィードバック電圧に基づいて前記出力電圧が目標電圧となるように前記第1のスイッチング素子及び前記第2のスイッチング素子を制御する制御手段と、
    を備える電源装置であって、
    外部から入力された第1の信号に応じて前記目標電圧が第1の電圧から前記第1の電圧よりも高い第2の電圧に切り替わることを前記制御手段に報知する報知手段と、
    前記目標電圧を前記第1の電圧又は前記第2の電圧に切り替える切替手段と、
    を備え、
    前記切替手段は、前記報知手段により前記制御手段に前記目標電圧が前記第1の電圧から前記第2の電圧に切り替わることが報知された後に、前記目標電圧を前記第1の電圧から前記第2の電圧に切り替えることを特徴とする電源装置。
  2. 前記報知手段は、第1のコンデンサと第1の抵抗とを有し、
    前記切替手段は、第2のコンデンサと第2の抵抗とを有し、
    前記第1のコンデンサ及び前記第1の抵抗により決定される第1の時定数が前記第2のコンデンサ及び前記第2の抵抗により決定される第2の時定数よりも小さいことを特徴とする請求項1に記載の電源装置。
  3. 前記切替手段は、前記第1の信号が入力され、前記第1の信号が入力されてから前記第2の時定数により決定される時間が経過したことに応じて、前記目標電圧を前記第1の電圧から前記第2の電圧に切り替えることを特徴とする請求項2に記載の電源装置。
  4. 前記制御手段は、前記報知手段から前記目標電圧が前記第1の電圧から前記第2の電圧に切り替わることが報知された後に、前記切替手段に第2の信号を出力し、
    前記切替手段は、前記第2の信号が入力されたことに応じて、前記目標電圧を前記第1の電圧から前記第2の電圧に切り替えることを特徴とする請求項1に記載の電源装置。
  5. 前記制御手段は、前記報知手段から前記目標電圧が前記第1の電圧から前記第2の電圧に切り替わることが報知されると、前記フィードバック電圧にかかわらず前記第1のスイッチング素子のオン時間を徐々に長くするように制御することを特徴とする請求項1から請求項4のいずれか1項に記載の電源装置。
  6. 前記制御手段は、前記報知手段から前記目標電圧が前記第1の電圧から前記第2の電圧に切り替わることが報知された後、前記フィードバック電圧が所定の電圧まで低下すると、前記出力電圧が前記第2の電圧となるように前記第1のスイッチング素子及び前記第2のスイッチング素子を制御することを特徴とする請求項1から請求項5のいずれか1項に記載の電源装置。
  7. 記録材に画像形成を行う画像形成手段と、
    請求項1から請求項6のいずれか1項に記載の電源装置と、
    前記画像形成手段及び前記電源装置を制御する制御部と、
    を備えることを特徴とする画像形成装置。
  8. 前記画像形成装置は、前記画像形成を行うプリント状態と、前記プリント状態よりも消費する電力が低いスタンバイ状態と、前記スタンバイ状態よりも消費する電力が低いスリープ状態と、で動作することが可能であり、
    前記制御部は、前記スリープ状態のときに前記目標電圧が前記第1の電圧となるような前記第1の信号を前記電源装置に出力し、前記プリント状態及び前記スタンバイ状態のときに前記目標電圧が前記第2の電圧となるような前記第1の信号を前記電源装置に出力することを特徴とする請求項7に記載の画像形成装置。
JP2018231987A 2018-12-11 2018-12-11 電源装置及び画像形成装置 Active JP7224888B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018231987A JP7224888B2 (ja) 2018-12-11 2018-12-11 電源装置及び画像形成装置
US16/705,058 US10715049B2 (en) 2018-12-11 2019-12-05 Power supply apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231987A JP7224888B2 (ja) 2018-12-11 2018-12-11 電源装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2020096434A true JP2020096434A (ja) 2020-06-18
JP7224888B2 JP7224888B2 (ja) 2023-02-20

Family

ID=70971221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231987A Active JP7224888B2 (ja) 2018-12-11 2018-12-11 電源装置及び画像形成装置

Country Status (2)

Country Link
US (1) US10715049B2 (ja)
JP (1) JP7224888B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362965B1 (ja) 2023-06-07 2023-10-17 コーセル株式会社 スイッチング電源装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861639B2 (en) * 2018-09-17 2020-12-08 Infineon Technologies Austria Ag Adaptive control loop gain for switching mode power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148675A (ja) * 2002-10-30 2004-05-27 Kyocera Mita Corp 画像形成装置
JP2012185778A (ja) * 2011-03-08 2012-09-27 Konica Minolta Business Technologies Inc 印刷制御装置、画像形成装置およびプリントシステム
JP2018182787A (ja) * 2017-04-03 2018-11-15 コニカミノルタ株式会社 電源装置および画像形成装置
JP2018191390A (ja) * 2017-04-28 2018-11-29 キヤノン株式会社 電源装置及び画像形成装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201324B2 (ja) * 1997-12-22 2001-08-20 株式会社村田製作所 スイッチング電源装置
JP3627708B2 (ja) * 2002-01-25 2005-03-09 株式会社村田製作所 スイッチング電源装置
US7940535B2 (en) * 2005-12-14 2011-05-10 Sharp Kabushiki Kaisha Discharge lamp lighting device for lighting discharge lamps
JP4320787B2 (ja) * 2007-05-21 2009-08-26 株式会社村田製作所 スイッチング電源装置
TW200910750A (en) * 2007-08-17 2009-03-01 Murata Manufacturing Co Switching power supply device
CA2713563A1 (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co., Ltd. High pressure discharge lamp lighting device and lighting fixture using the same
JP5268615B2 (ja) 2008-12-15 2013-08-21 キヤノン株式会社 電源装置および画像形成装置
CN102474186A (zh) * 2009-07-24 2012-05-23 Nec显示器解决方案株式会社 开关电源以及使用其的电子设备
JP5246285B2 (ja) * 2011-03-11 2013-07-24 Smk株式会社 自励式スイッチング電源回路
KR101365602B1 (ko) * 2011-10-21 2014-03-14 삼성전자주식회사 전원 공급 장치 및 그를 포함하는 화상 형성 장치
JP5641368B2 (ja) * 2012-04-12 2014-12-17 株式会社村田製作所 スイッチング電源装置
JP6045249B2 (ja) * 2012-08-10 2016-12-14 キヤノン株式会社 電源装置及び画像形成装置
JP6168746B2 (ja) * 2012-10-10 2017-07-26 キヤノン株式会社 スイッチング電源及びスイッチング電源を備えた画像形成装置
US20140293659A1 (en) * 2013-03-29 2014-10-02 Oki Data Corporation High-voltage generating apparatus, high-voltage power supply, and image forming apparatus
JP6218467B2 (ja) * 2013-07-12 2017-10-25 キヤノン株式会社 電源装置及び画像形成装置
TWI580168B (zh) * 2015-05-21 2017-04-21 立錡科技股份有限公司 具有同步控制功能的電源轉換器及其控制方法
US9966865B2 (en) * 2015-06-30 2018-05-08 Canon Kabushiki Kaisha Power supply apparatus and image forming apparatus
JP6611530B2 (ja) * 2015-09-11 2019-11-27 キヤノン株式会社 電力供給装置及び画像形成装置
JP6679298B2 (ja) * 2015-12-18 2020-04-15 キヤノン株式会社 電源装置及び画像形成装置
JP6700772B2 (ja) * 2015-12-18 2020-05-27 キヤノン株式会社 電源装置及び画像形成装置
JP6859113B2 (ja) * 2017-01-20 2021-04-14 キヤノン株式会社 電源装置及び画像形成装置
JP6942549B2 (ja) * 2017-07-14 2021-09-29 キヤノン株式会社 電源装置及び画像形成装置
JP6961420B2 (ja) * 2017-08-15 2021-11-05 キヤノン株式会社 電源装置及び画像形成装置
US10389259B2 (en) * 2017-08-15 2019-08-20 Canon Kabushiki Kaisha Power supply apparatus and image forming apparatus switching a capacitance value of a resonance capacitor at a time of a continuous operation and an intermittent operation
JP6961437B2 (ja) * 2017-09-28 2021-11-05 キヤノン株式会社 電源装置及び画像形成装置
JP2019092288A (ja) * 2017-11-14 2019-06-13 キヤノン株式会社 電源装置及び画像形成装置
US10749425B2 (en) * 2018-01-17 2020-08-18 Canon Kabushiki Kaisha Power supply apparatus and image forming apparatus
JP7166843B2 (ja) * 2018-08-28 2022-11-08 キヤノン株式会社 電源装置及び画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148675A (ja) * 2002-10-30 2004-05-27 Kyocera Mita Corp 画像形成装置
JP2012185778A (ja) * 2011-03-08 2012-09-27 Konica Minolta Business Technologies Inc 印刷制御装置、画像形成装置およびプリントシステム
JP2018182787A (ja) * 2017-04-03 2018-11-15 コニカミノルタ株式会社 電源装置および画像形成装置
JP2018191390A (ja) * 2017-04-28 2018-11-29 キヤノン株式会社 電源装置及び画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362965B1 (ja) 2023-06-07 2023-10-17 コーセル株式会社 スイッチング電源装置

Also Published As

Publication number Publication date
US20200186044A1 (en) 2020-06-11
JP7224888B2 (ja) 2023-02-20
US10715049B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
US9966865B2 (en) Power supply apparatus and image forming apparatus
US10139770B2 (en) Power source device and image forming apparatus
JP6961420B2 (ja) 電源装置及び画像形成装置
US9071156B2 (en) Switching power supply device and image forming apparatus with switching power supply device
JP6843696B2 (ja) 電源装置及び画像形成装置
US10432084B2 (en) Power supply apparatus and image forming apparatus controlling switching elements based on detection of a malfunction
JP6579827B2 (ja) 電源装置及び画像形成装置
US10389259B2 (en) Power supply apparatus and image forming apparatus switching a capacitance value of a resonance capacitor at a time of a continuous operation and an intermittent operation
US10063157B2 (en) Power source device and image forming apparatus
US20190222128A1 (en) Power supply apparatus and image forming apparatus
JP7224888B2 (ja) 電源装置及び画像形成装置
JP2001169545A (ja) Dc−dcコンバータ
US11088626B2 (en) Power supply apparatus and image forming apparatus
JP2019083617A (ja) 電源装置及び画像形成装置
JP6882052B2 (ja) 電源装置及び画像形成装置
JP7140572B2 (ja) 電源装置及び画像形成装置
US20230396175A1 (en) Power supply apparatus and image forming apparatus
JP7301666B2 (ja) 電源装置及び画像形成装置
JP6961421B2 (ja) 電源装置及び画像形成装置
JP2021168578A (ja) 電源装置及び画像形成装置
JP2019037070A (ja) 電源装置及び画像形成装置
JP2020092547A (ja) 電源装置及び画像形成装置
JP2020120473A (ja) 電源装置及び画像形成装置
JP2021010259A (ja) 電源装置及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R151 Written notification of patent or utility model registration

Ref document number: 7224888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151