JP2020065158A - 弾性波デバイスおよび複合基板 - Google Patents

弾性波デバイスおよび複合基板 Download PDF

Info

Publication number
JP2020065158A
JP2020065158A JP2018195792A JP2018195792A JP2020065158A JP 2020065158 A JP2020065158 A JP 2020065158A JP 2018195792 A JP2018195792 A JP 2018195792A JP 2018195792 A JP2018195792 A JP 2018195792A JP 2020065158 A JP2020065158 A JP 2020065158A
Authority
JP
Japan
Prior art keywords
substrate
electrode
linear expansion
main surface
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018195792A
Other languages
English (en)
Other versions
JP7199195B2 (ja
Inventor
倫之 栗原
Tomoyuki Kurihara
倫之 栗原
畑山 和重
Kazue Hatayama
和重 畑山
史章 井坂
Fumiaki Isaka
史章 井坂
直輝 柿田
Naoki Kakita
直輝 柿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018195792A priority Critical patent/JP7199195B2/ja
Publication of JP2020065158A publication Critical patent/JP2020065158A/ja
Application granted granted Critical
Publication of JP7199195B2 publication Critical patent/JP7199195B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】応力に起因したダメージを抑制すること。【解決手段】主面に平行な第1方向の第1線膨張係数が前記主面に平行でかつ前記第1方向に交差する第2方向の第2線膨張係数より大きい第1基板と、前記第1基板の主面と反対の面に接合され、前記第2線膨張係数より小さい第3線膨張係数を有する第2基板と、前記第1基板および前記第2基板を貫通し、前記主面を平面視して、前記第1方向における最大の幅は、前記第2方向における最大の幅より小さい形状の貫通電極と、を備える複合基板。【選択図】図4

Description

本発明は、弾性波デバイスおよび複合基板に関し、例えば線膨張係数の方向依存性のある基板を有する弾性波デバイスおよび複合基板に関する。
弾性波デバイスにおいて、支持基板上に圧電基板を接合し、支持基板および圧電基板に貫通電極を設けることが知られている(例えば特許文献1)。基板に平面形状が楕円状の貫通電極を形成することが知られている(例えば特許文献2)
特開2017−157922号公報 特開2016−225360号公報
基板を貫通する貫通電極を設ける場合、基板と貫通電極との熱応力により、基板および/または貫通電極にクラックが形成される等のダメージが生じることがある。
本発明は、上記課題に鑑みなされたものであり、応力に起因したダメージを抑制することを目的とする。
本発明は、主面に平行な第1方向の第1線膨張係数が前記主面に平行でかつ前記第1方向に交差する第2方向の第2線膨張係数より大きい第1基板と、前記第1基板の主面と反対の面に接合され、前記第2線膨張係数より小さい第3線膨張係数を有する第2基板と、前記第1基板および前記第2基板を貫通し、前記主面を平面視して、前記第1方向における最大の幅は、前記第2方向における最大の幅より小さい形状の貫通電極と、を備える複合基板である。
上記構成において、前記第1方向は、前記第1基板の前記主面に平行な方向のうち最も線膨張係数が大きい方向であり、前記第2方向は前記第1方向に直交する方向である構成とすることができる。
上記構成において、前記第1基板は回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板であり、前記第1方向は前記第1基板の結晶方位のX軸方位である構成とすることができる。
上記構成において、前記第2基板は、サファイア基板、シリコン基板、スピネル基板、石英基板、アルミナ基板または水晶基板である構成とすることができる。
上記構成において、前記主面を平面視して、前記貫通電極の形状は前記第1方向を短軸とする楕円形状である構成とすることができる。
上記構成において、前記主面を平面視して、前記貫通電極の形状は、前記第1方向における最大の幅に重なる線分を軸として線対称であり、外周がなめらかな線でありかつ外側に凸状の形状である構成とすることができる。
本発明は、上記複合基板と、前記主面に設けられ、前記貫通電極に電気的に接続された弾性波素子と、を備える弾性波デバイスである。
本発明は、主面に平行な第1方向の第1線膨張係数が前記主面に平行でかつ前記第1方向に交差する第2方向の第2線膨張係数より大きい基板と、前記基板の主面に設けられた弾性波素子と、前記基板の主面と反対の面に設けられた端子と、前記基板内に設けられ、第3線膨張係数を有し、前記第1線膨張係数と前記第3線膨張係数との差は前記第2線膨張係数と前記第3線膨張係数との差より小さく、前記弾性波素子と前記端子とを電気的に接続し、前記主面を平面視して、前記第1方向における最大の幅は、前記第2方向における最大の幅より大きく、前記基板を貫通し、前記弾性波素子と前記端子とを電気的に接続する貫通電極と、を備える弾性波デバイスである。
上記構成において、前記基板は回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板であり、前記第1方向は前記基板の結晶方位のX軸方位である構成とすることができる。
上記構成において、前記貫通電極は、銅、金、銀およびニッケルの少なくとも1つを主成分とする構成とすることができる。
上記構成において、前記主面を平面視して、前記貫通電極の形状は前記第1方向を長軸とする楕円形状である構成とすることができる。
上記構成において、前記主面を平面視して、前記貫通電極の形状は前記第1方向における最大の幅に重なる線分を軸として線対称であり、外周がなめらかな線でありかつ外側に凸状の形状である構成とすることができる。
本発明によれば、応力に起因したダメージを抑制することができる。
図1(a)は、実施例1に係る弾性波デバイスの平面図、図1(b)は、図1(a)のA−A断面図である。 図2(a)および図2(b)は、実施例1における貫通電極の断面図である。 図3(a)は、比較例1における貫通電極の平面図、図3(b)は、実施例1における貫通電極の平面図である。 図4(a)は、実施例2に係る弾性波デバイスの平面図、図4(b)は、図4(a)のA−A断面図である。 図5(a)および図5(b)は、実施例2における貫通電極の断面図である。 図6(a)から図6(c)は、反りのシミュレーション結果を示す図である。 図7(a)は、比較例2における貫通電極の平面図、図7(b)は、実施例2における貫通電極の平面図である。 図8は、実施例3に係る弾性波デバイスの断面図である。 図9は、実施例3における圧電基板の平面図である。 図10(a)から図10(d)は、実施例4に係る弾性波デバイスの製造方法を示す断面図である。 図11(a)から図11(d)は、実施例4の変形例1に係る弾性波デバイスの製造方法を示す断面図である。 図12(a)から図12(d)は、実施例4の変形例2に係る弾性波デバイスの製造方法を示す断面図(その1)である。 図13(a)および図13(b)は、実施例4の変形例2に係る弾性波デバイスの製造方法を示す断面図(その2)である。
以下、図面を参照し本発明の実施例について説明する。
図1(a)は、実施例1に係る弾性波デバイスの平面図、図1(b)は、図1(a)のA−A断面図である。電極指の配列方向をX方向、電極指の延伸方向をY方向、圧電基板の厚さ方向をZ方向とする。X方向、Y方向およびZ方向は、圧電基板の結晶方位のX軸方位およびY軸方位とは必ずしも対応しない。
図1(a)および図1(b)に示すように、圧電基板10上に弾性波共振器20およびパッド24が設けられている。圧電基板10は、単結晶基板であり、例えば回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板等のX方向とY方向とで線膨張係数が異なる基板である。回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板では、X方向はX軸方位となる。圧電基板10の厚さは、例えば50μmから200μmである。弾性波共振器20はIDT(Interdigital Transducer)18および反射器19を有する。反射器19はIDT18のX方向の両側に設けられている。IDT18および反射器19は、圧電基板10上の金属膜12により形成される。
IDT18は、対向する一対の櫛型電極16を備える。櫛型電極16は、複数の電極指14と、複数の電極指14が接続されたバスバー15と、を備える。一対の櫛型電極16の電極指14が交差する領域が交差領域である。交差領域の長さが開口長である。一対の櫛型電極16は、交差領域の少なくとも一部において電極指14がほぼ互い違いとなるように、対向して設けられている。交差領域において複数の電極指14が励振する弾性波は、主にX方向に伝搬する。同じ櫛型電極16の電極指14のピッチがほぼ弾性波の波長λとなる。ピッチは電極指14の2本分のピッチとなる。反射器19は、IDT18の電極指14が励振した弾性波(弾性表面波)を反射する。これにより弾性波はIDT16の交差領域内に閉じ込められる。
金属膜12は、例えばアルミニウムまたは銅を主成分とする膜である。電極指14と圧電基板10との間にチタン膜またはクロム膜等の密着膜が設けられていてもよい。密着膜は電極指14より薄い。電極指14を覆うように絶縁膜が設けられていてもよい。絶縁膜は保護膜または温度補償膜として機能する。
パッド24は少なくとも一部に金属膜12を含む金属層である。パッド24はバスバー15に接続されている。パッド24の下の圧電基板10に貫通電極22が設けられている。
図2(a)および図2(b)は、実施例1における貫通電極の断面図であり、図1(a)のB−B断面図およびC−C断面図である。図2(a)および図2(b)に示すように、圧電基板10の下面に端子25が設けられている。端子25は、銅または金等の金属層である。貫通電極22は圧電基板10を貫通しパッド24と端子25とを電気的に接続する。貫通電極22の平面形状は略楕円形状である。楕円形状の長軸はX方向であり、短軸はY方向である。貫通電極22の大きさは例えば10μmから100μmである。長軸に対する短軸の比は例えば0.9から0.1である。
表1は、圧電基板10の線膨張係数αx(X方向)およびαy(Y方向)を示す表である。
Figure 2020065158
表1のように、タンタル酸リチウム(LT)基板およびニオブ酸リチウム(LN)基板の線膨張係数は結晶方位に依存する。X軸方位の線膨張係数が最も大きくなる。圧電基板10として36°YカットX伝搬タンタル酸リチウム基板を用いると、X方向はX軸方位となる。このとき、X方向およびY方向の線膨張係数αxおよびαyはそれぞれ15.4ppm/℃および8.2ppm/℃となる。42°YカットX伝搬タンタル酸リチウム基板では、X方向およびY方向の線膨張係数αxおよびαyはそれぞれ16.1ppm/℃および11.0ppm/℃となる。41°YカットX伝搬ニオブ酸リチウム基板では、X方向およびY方向の線膨張係数αxおよびαyはそれぞれ15.4ppm/℃および10.9ppm/℃となる。
表2は、貫通電極22に用いられる金属の線膨張係数を示す表である。
Figure 2020065158
表2のように、銀、銅、金およびニッケルの線膨張係数αmは、それぞれ19.3ppm/℃、16.6ppm/℃、14.2ppm/℃および13.4ppm/℃である。これらの金属の線膨張係数は、表1のX方向の線膨張係数とほぼ同じであり、Y方向の線膨張係数より大きくなる。
図3(a)は、比較例1における貫通電極の平面図、図3(b)は、実施例1における貫通電極の平面図である。図3(a)に示すように、比較例1では貫通電極22の平面形状は直径がL0の円形状である。圧電基板10の温度を高くすると、圧電基板10および貫通電極22が膨張する。X方向においては、圧電基板10の線膨張係数に起因する応力X10と貫通電極22の線膨張係数に起因するX22はほぼ同じである。よって、X方向に圧電基板10と貫通電極22が接する境界では応力の集中は生じない。Y方向においては、圧電基板10の線膨張係数に起因する応力Y10より貫通電極22の線膨張係数に起因するY22が大きい。よって、Y方向に圧電基板10と貫通電極22が接する境界では応力が集中しやすくなる。これにより、圧電基板10にクラック等のダメージが生じ易くなる。応力の集中を抑制するため、貫通電極22の直径L0を大きくすると、チップサイズが大きくなり、弾性波デバイスが大型化する。
図3(b)に示すように、実施例1では貫通電極22の平面形状は長軸がL1および短軸がL2の楕円形状である。圧電基板10の温度を高くすると、圧電基板10および貫通電極22が膨張する。Y方向においては、応力Y10はY22より小さいものの、Y方向における圧電基板10と貫通電極22との境界の面積が比較例1より大きくなる。これにより、応力が分散される。さらに、貫通電極22のY方向の幅は小さいため貫通電極22がY方向に加える応力自体も比較例1より小さくなる。よって、圧電基板10へのクラック等のダメージの導入を抑制できる。X方向においては、X10とX22が同程度であり、応力の集中は生じない。また、図3(a)において、直径L0を大きくする場合に比べチップサイズを小さくでき、弾性波デバイスを小型化できる。
実施例1によれば、圧電基板10(基板)では、主面に平行なX方向(第1方向)の線膨張係数αx(第1線膨張係数)は、Y方向(主面に平行でかつ第1方向に交差する第2方向)の線膨張係数αy(第2線膨張係数)より大きい。貫通電極22の線膨張係数(第3線膨張係数)をαmとすると、αxとαmとの差はαyとαmとの差より小さい。このとき、主面を平面視して、X方向における貫通電極22の最大の幅はY方向における貫通電極22の最大の幅より大きい。例えば、X方向からみた貫通電極22の断面積は、Y方向からみた貫通電極22の断面積より小さい。これにより、圧電基板10および/または貫通電極22にクラックが形成される等のダメージが生じることを抑制できる。また、チップサイズを小さくできる。
αxとαyとの差はαyの0.1倍以上が好ましく、0.2倍以上がより好ましく、0.4倍以上がさらに好ましい。αyとαmとの差はαxとαmとの差の1.5倍以上が好ましく、2倍以上がより好ましく、3倍以上がさらに好ましい。X方向における貫通電極22の最大幅は、Y方向における貫通電極22の最大幅の1.1倍以上が好ましく、1.2倍以上がより好ましく、1.4倍以上がさらに好ましい。これらにより、応力に起因したダメージ等をより抑制できる。
X方向は、主面に平行な方向のうち最も線膨張係数が大きい方向であり、Y方向はX方向に直交する方向である。これにより、応力に起因したダメージ等をより抑制できる。
圧電基板10が回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板のとき、X軸方位の線膨張係数が最も大きい。そこで、第1方向は圧電基板10の結晶方位のX軸方位であることが好ましい。これにより、応力に起因したダメージ等をより抑制できる。
貫通電極22は、銅、金、銀およびニッケルの少なくとも1つを主成分とする。これにより、αxとαmとの差はαyとαmとの差より小さくできる。
貫通電極22の平面形状はオーバル形状であり、オーバル形状の長軸方向をX方向とする。これにより、応力を分散させることができ、ダメージ等をより抑制できる。オーバル形状は、外周がなめらかな線(すなわち微分可能な線)でありかつ外側に凸状の線であり、例えば楕円形状、長円形状または卵形状である。貫通電極22の平面形状は、中心を通りX方向および/またはY方向を延伸する直線に線対称であることが好ましい。すなわち、主面を平面視して、貫通電極22の形状は、X方向における最大の幅に重なる線分を軸として線対称であり、外周がなめらかな線でありかつ外側に凸状の線である形状である。
特に、主面を平面視して、貫通電極22の形状はX方向に長軸を有する楕円形状であることが好ましい。これにより、応力をより分散できる。長軸に対する短軸の比はαxに対するαyの比に略等しいことが好ましい。
圧電基板10の主面に設けられ、貫通電極22に電気的に接続された弾性波共振器20(弾性波素子)を備える弾性波デバイスを例に説明したが、基板は、圧電基板10以外でもよい。また、基板の主面には弾性波素子以外の電子素子が設けられてもよい。
実施例2は、支持基板上に圧電基板が接合された複合基板の例である。図4(a)は、実施例2に係る弾性波デバイスの平面図、図4(b)は、図4(a)のA−A断面図である。図5(a)および図5(b)は、実施例2における貫通電極の断面図であり、図4(a)のB−B断面図およびC−C断面図である。
図4(a)から図5(b)に示すように、圧電基板10は支持基板11上に接合されている。接合方法には例えば表面活性化法を用いる。表面活性化法では、支持基板11の上面および圧電基板10の下面をイオンビーム、中性化したビームまたはプラズマを用い活性化する。その後、支持基板11の上面と圧電基板10の下面とを接合する。これにより、支持基板11と圧電基板10とが直接接合する。なお、支持基板11と圧電基板10との間には10nm以下のアモルファス層が形成される。接合には接着剤等を用いてもよい。支持基板11は、例えば、サファイア基板、スピネル基板、シリコン基板、水晶基板、石英基板またはアルミナ基板である。支持基板11は、単結晶基板、多結晶基板または焼結体基板である。圧電基板10の厚さは例えば1μmから20μmであり、支持基板11の厚さは例えば50μmから200μmである。
支持基板11の線膨張係数αsは、圧電基板10のX方向の線膨張係数αxより小さい。例えばサファイアおよびアルミナの線膨張係数αsは7ppm/℃、シリコンの線膨張係数αsは2.3ppm/℃、スピネルの線膨張係数αsは7.5ppm/℃、石英および水晶の線膨張係数αsは1ppm/℃以下である。これにより、弾性表面波共振器の周波数温度係数を抑制できる。
貫通電極22の平面形状は略楕円形状である。楕円形状の長軸はY方向であり、短軸はX方向である。貫通電極22の大きさは例えば10μmから100μmである。長軸および短軸の長さは例えばそれぞれ58μmおよび27μmである。長軸に対する短軸の比は例えば0.9から0.1である。
支持基板11としてサファイア、圧電基板10として42°回転YカットX伝搬タンタル酸リチウム基板を用いた複合基板を25℃から260℃に加熱したときの複合基板の反りをシミュレーションした。
図6(a)から図6(c)は、反りのシミュレーション結果を示す図である。図6(a)ではZ方向の変位量を誇張して図示している。図6(a)に示すように、支持基板11上に圧電基板10が接合されており、支持基板11および圧電基板10を貫通する貫通電極22が設けられている。領域50aから50eはZ方向の変位量の分布を示す。領域50aにおける変位が最も大きく、領域50bから50eに行くに従い変位量は小さくなる。圧電基板10の中央部が最も変位量が大きくなる。
図6(b)は、圧電基板10の−X側に位置する貫通電極22を圧電基板10の外側(−X側)からみた図であり、図6(c)は、圧電基板10の内側(+X側)からみた図である。図6(b)および図6(c)のように、圧電基板10の+X側の変位量が最も大きい。これにより、−X側の圧電基板10と貫通電極22との境界の応力が最も大きくなると考えられる。
図7(a)は、比較例2における貫通電極の平面図、図7(b)は、実施例2における貫通電極の平面図である。図7(a)に示すように、比較例2では貫通電極22の平面形状は直径がL0の円形状である。圧電基板10および支持基板11の温度を高くすると、X方向では、圧電基板10と支持基板11との線膨張係数の差が大きいため、貫通電極22と圧電基板10との境界には大きな応力X10が加わる。Y方向では、圧電基板10と支持基板11との線膨張係数の差が小さいため、貫通電極22と圧電基板10との境界に加わる応力Y10は小さい。X方向に圧電基板10と貫通電極22が接する境界では応力の集中は生じやすくなる。これにより、圧電基板10にクラック等のダメージが生じ易くなる。応力の集中を抑制するため、貫通電極22の直径L0を大きくすると、チップサイズが大きくなり、弾性波デバイスが大型化する。
図7(b)に示すように、実施例2では貫通電極22の平面形状は長軸がL1および短軸がL2の楕円形状である。圧電基板10の温度を高くすると、圧電基板10および貫通電極22が膨張する。応力X10はY10より大きいものの、X方向における圧電基板10と貫通電極22との境界の面積が比較例2より大きくなる。これにより、応力が分散される。よって、圧電基板10へのクラック等のダメージの導入を抑制できる。また、図7(a)において、直径L0を大きくする場合に比べチップサイズを小さくでき、弾性波デバイスを小型化できる。
実施例2によれば、圧電基板10(第1基板)では、主面に平行なX方向(第1方向)の線膨張係数αx(第1線膨張係数)は、Y方向(主面に平行でかつ第1方向に交差する第2方向)の線膨張係数αy(第2線膨張係数)より大きい。支持基板11(第2基板)は、圧電基板10に接合され、αyより小さい線膨張係数αs(第3線膨張係数)を有する。貫通電極22は、圧電基板10および支持基板11を貫通する。このとき、主面を平面視して、X方向における貫通電極22の最大の幅は、Y方向における貫通電極22の最大の幅より小さい。例えば、X方向からみた貫通電極22の断面積は、Y方向からみた貫通電極22の断面積より大きい。これにより、圧電基板10および/または貫通電極22にクラックが形成される等のダメージが生じることを抑制できる。また、チップサイズを小さくできる。
αxとαyとの差はαyの0.1倍以上が好ましく、0.2倍以上がより好ましく、0.4倍以上がさらに好ましい。αsはαyの0.9倍以下が好ましく、0.8倍以下がより好ましい。X方向における貫通電極22の最大幅は、Y方向における貫通電極22の最大幅の0.9倍以下が好ましく、0.8倍以下がより好ましく、0.6倍以下がさらに好ましい。これらにより、応力に起因したダメージ等をより抑制できる。
X方向は、主面に平行な方向のうち最も線膨張係数が大きい方向であり、Y方向はX方向に直交する方向である。これにより、応力に起因したダメージ等をより抑制できる。
圧電基板10が回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板のとき、X軸方位の線膨張係数が最も大きい。そこで、第1方向は圧電基板10の結晶方位のX軸方位であることが好ましい。これにより、応力に起因したダメージ等をより抑制できる。
支持基板11は、サファイア基板、シリコン基板、スピネル基板、石英基板、アルミナ基板または水晶基板である。これにより、αsをαyより小さくできる。
貫通電極22の平面形状はオーバル形状であり、オーバル形状の短軸方向をX方向とする。これにより、応力を分散させることができる。貫通電極22の平面形状は、中心を通りX方向および/またはY方向を延伸する直線に線対称であることが好ましい。すなわち、主面を平面視して、貫通電極22の形状は、X方向における最大の幅に重なる線分を軸として線対称であり、外周がなめらかな線でありかつ外側に凸状の線である形状である。
特に、主面を平面視して、貫通電極22の形状はX方向に短軸を有する楕円形状であることが好ましい。これにより、応力をより分散できる。また、応力が加わる圧電基板10の内側半分がオーバル形状でもよい。
圧電基板10の支持基板11の圧電基板10に接合された面と反対の面に設けられ、貫通電極22に電気的に接続された弾性波共振器20(弾性波素子)を備える弾性波デバイスを例に説明したが、第1基板は、圧電基板10以外の基板でもよい。また、第1基板の主面には弾性波素子以外の電子素子が設けられてもよい。
実施例3は、実施例1および2を用いた弾性波デバイスの例である。以下では実施例2の支持基板11および圧電基板10を有する例を説明するが、実施例1の圧電基板10を用いてもよい。
図8は、実施例3に係る弾性波デバイスの断面図である。図8に示すように、圧電基板10および支持基板11上に基板30が搭載されている。基板30の下面に弾性波素子32およびパッド34が設けられている。弾性波素子32は例えば弾性表面波共振器または圧電薄膜共振器である。パッド34は、例えば銅層、金層またはアルミニウム層等の金属層である。基板30はバンプ28を介し圧電基板10にフリップチップ実装されている。バンプ28は、例えば金バンプ、半田バンプまたは銅バンプ等の金属バンプである。バンプ28はパッド24と34とを接合する。
圧電基板10上に弾性波共振器20を囲むように環状金属層46が設けられている。基板30を囲むように封止部40が設けられている。封止部40は環状金属層46に接合されている。封止部40は、例えば半田等の金属材料または樹脂等の絶縁材料である。基板30の上面および封止部40の上面に平板状のリッド42が設けられている。リッド42は例えば金属板または絶縁板である。リッド42および封止部40を覆うように保護膜44が設けられている。保護膜44は金属膜または絶縁膜である。
弾性波共振器20および弾性波素子32は空隙35を介し対向している。空隙35は、封止部40、圧電基板10、基板30およびリッド42により封止される。端子25は貫通電極22およびパッド24を介し弾性波共振器20と電気的に接続されている。また、端子25は、貫通電極22、パッド24、バンプ28およびパッド34を介し弾性波素子32と電気的に接続されている。
図9は、実施例3における圧電基板10の平面図である。図9に示すように、圧電基板10上に複数の弾性波共振器20、配線23、パッド24および環状金属層46が設けられている。弾性波共振器20は、直列共振器S1およびS2と並列共振器P1およびP2を有する。パッド24上にバンプ28が設けられている。圧電基板10内にパッド24に接続する貫通電極22が形成されている。破線は基板30が実装される領域である。貫通電極22は入力端子Tin、出力端子Toutおよびグランド端子Tgに接続されている。入力端子Tinと出力端子Toutとの間に直列共振器S1およびS2が配線23を介し直列に接続され,並列共振器P1およびP2が配線23を介し並列に接続されている。並列共振器P1およびP2の一端は配線23を介しグランド端子Tgに接続されている。このように、圧電基板10上にラダー型フィルタが設けられている。圧電基板10上に多重モード型フィルタが設けられていてもよい。
実施例4は、実施例2における貫通電極22の形成方法の例である。図10(a)から図10(d)は、実施例4に係る弾性波デバイスの製造方法を示す断面図である。図10(a)に示すように、サファイア基板等の支持基板11上にタンタル酸リチウム基板またはニオブ酸リチウム基板等の圧電基板10を接合する。圧電基板10および支持基板11に穴60を形成する。穴60の形成は例えばレーザ光を照射することにより行う。このとき、穴60の内面および穴60の周辺の圧電基板10の上面にレーザ光による加工により生じたデブリ65aが形成される。また、穴60の内面の圧電基板10にクラック65bが形成されることがある。さらに、穴60の内面の圧電基板10と支持基板11の界面に剥離65cが生じることがある。
図10(b)に示すように、デブリ65aを除去した後、穴60内に貫通電極22を形成する。貫通電極22は例えばめっき法を用い形成する。図10(c)に示すように、圧電基板10上に弾性波共振器20およびパッド24を形成する。図10(d)に示すように、支持基板11の下面を研削または研磨する。これにより、貫通電極22が支持基板11の下面に露出する。支持基板11の下面に貫通電極22に接続する端子25を形成する。
実施例4では、図10(a)において形成されるクラック65bおよび/または剥離65cは弾性波デバイスの信頼性に影響する可能性がある。
[実施例4の変形例1]
図11(a)から図11(d)は、実施例4の変形例1に係る弾性波デバイスの製造方法を示す断面図である。図11(a)に示すように、圧電基板10上に開口61を有するマスク層62を形成する。マスク層62は例えばフォトレジストである。
図11(b)に示すように、開口61内に穴60をレーザ光を照射し形成する。図10(a)と同様に、デブリ65a、クラック65bおよび剥離65cが形成される。
図11(c)に示すように、マスク層62をマスクに開口61内の圧電基板10をエッチングし圧電基板10の開口64を形成する。エッチングには例えばSF、CHFまたはCF等のフッ素系ガスを用いたドライエッチングを用いる。これにより、クラック65bと剥離65cが除去される。圧電基板10の開口64の側面に再デポジション物64aが付着する。
図11(d)に示すように、マスク層62を剥離する。デブリ65aおよび再デポジション物64aを例えば強酸を用い除去する。穴60および開口64内を洗浄する。これにより、支持基板11内の穴60の側面は2段に傾斜する。例えば、穴60の支持基板11内の上部の側面の傾斜角は開口64の側面の傾斜角とほぼ同じとなる。
実施例4の変形例1では、穴60の形成後に、マスク層62をマスクに圧電基板10をエッチングする。これにより、クラック65bおよび剥離65cを除去できる。
[実施例4の変形例2]
図12(a)から図13(b)は、実施例4の変形例2に係る弾性波デバイスの製造方法を示す断面図である。図12(a)に示すように、支持基板11に穴60をレーザ光を照射し形成する。穴60の内面および支持基板11の上面にデブリ65aが形成される。
図12(b)に示すように、デブリ65aを例えば強酸を用い除去する。穴60内を洗浄する。図12(c)に示すように、支持基板11の上面に圧電基板10を接合する。図12(d)に示すように、圧電基板10上に開口61を有するマスク層62を形成する。マスク層62は例えばフォトレジストである。
図13(a)に示すように、図11(c)と同様に、マスク層62をマスクに開口61内の圧電基板10をエッチングし圧電基板10の開口64を形成する。開口64の側面および穴60の側面にそれぞれ再デポジション物64aおよび64bが付着する。
図13(b)に示すように、マスク層62を剥離する。再デポジション物64aおよび64bを例えば強酸を用い除去する。穴60および開口64内を洗浄する。これにより、支持基板11内の穴60の側面は2段に傾斜する。例えば、穴60の支持基板11内の上部の側面の傾斜角は開口64の側面の傾斜角とほぼ同じとなる。
実施例4の変形例2では、支持基板11に穴60の形成後に、支持基板11の上面に圧電基板10を接合し、その後、圧電基板10に開口を設ける。これにより、クラック65bおよび剥離65cが形成されずに穴60を形成できる。
実施例4およびその変形例は、実施例2のように平面形状が楕円形状の貫通電極22の形成に用いることができる。貫通電極22の平面形状は円形状でもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 圧電基板
11 支持基板
20 弾性波共振器
22 貫通電極

Claims (12)

  1. 主面に平行な第1方向の第1線膨張係数が前記主面に平行でかつ前記第1方向に交差する第2方向の第2線膨張係数より大きい第1基板と、
    前記第1基板の主面と反対の面に接合され、前記第2線膨張係数より小さい第3線膨張係数を有する第2基板と、
    前記第1基板および前記第2基板を貫通し、前記主面を平面視して、前記第1方向における最大の幅は、前記第2方向における最大の幅より小さい形状の貫通電極と、
    を備える複合基板。
  2. 前記第1方向は、前記第1基板の前記主面に平行な方向のうち最も線膨張係数が大きい方向であり、前記第2方向は前記第1方向に直交する方向である請求項1に記載の複合基板。
  3. 前記第1基板は回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板であり、前記第1方向は前記第1基板の結晶方位のX軸方位である請求項1に記載の複合基板。
  4. 前記第2基板は、サファイア基板、シリコン基板、スピネル基板、石英基板、アルミナ基板または水晶基板である請求項1から3のいずれか一項に記載の複合基板。
  5. 前記主面を平面視して、前記貫通電極の形状は前記第1方向を短軸とする楕円形状である請求項1から4のいずれか一項に記載の複合基板。
  6. 前記主面を平面視して、前記貫通電極の形状は、前記第1方向における最大の幅に重なる線分を軸として線対称であり、外周がなめらかな線でありかつ外側に凸状の形状である請求項1から4のいずれか一項に記載の複合基板。
  7. 請求項1から6のいずれか一項に記載の複合基板と、
    前記主面に設けられ、前記貫通電極に電気的に接続された弾性波素子と、
    を備える弾性波デバイス。
  8. 主面に平行な第1方向の第1線膨張係数が前記主面に平行でかつ前記第1方向に交差する第2方向の第2線膨張係数より大きい基板と、
    前記基板の主面に設けられた弾性波素子と、
    前記基板の主面と反対の面に設けられた端子と、
    前記基板内に設けられ、第3線膨張係数を有し、前記第1線膨張係数と前記第3線膨張係数との差は前記第2線膨張係数と前記第3線膨張係数との差より小さく、前記弾性波素子と前記端子とを電気的に接続し、前記主面を平面視して、前記第1方向における最大の幅は、前記第2方向における最大の幅より大きく、前記基板を貫通し、前記弾性波素子と前記端子とを電気的に接続する貫通電極と、
    を備える弾性波デバイス。
  9. 前記基板は回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板であり、前記第1方向は前記基板の結晶方位のX軸方位である請求項8に記載の弾性波デバイス。
  10. 前記貫通電極は、銅、金、銀およびニッケルの少なくとも1つを主成分とする請求項8または9に記載の弾性波デバイス。
  11. 前記主面を平面視して、前記貫通電極の形状は前記第1方向を長軸とする楕円形状である請求項8から10のいずれか一項に記載の弾性波デバイス。
  12. 前記主面を平面視して、前記貫通電極の形状は前記第1方向における最大の幅に重なる線分を軸として線対称であり、外周がなめらかな線でありかつ外側に凸状の形状である請求項8から10のいずれか一項に記載の弾性波デバイス。
JP2018195792A 2018-10-17 2018-10-17 弾性波デバイスおよび複合基板 Active JP7199195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195792A JP7199195B2 (ja) 2018-10-17 2018-10-17 弾性波デバイスおよび複合基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195792A JP7199195B2 (ja) 2018-10-17 2018-10-17 弾性波デバイスおよび複合基板

Publications (2)

Publication Number Publication Date
JP2020065158A true JP2020065158A (ja) 2020-04-23
JP7199195B2 JP7199195B2 (ja) 2023-01-05

Family

ID=70388389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195792A Active JP7199195B2 (ja) 2018-10-17 2018-10-17 弾性波デバイスおよび複合基板

Country Status (1)

Country Link
JP (1) JP7199195B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075150B1 (ja) * 2021-08-16 2022-05-25 三安ジャパンテクノロジー株式会社 デュプレクサ
WO2022270406A1 (ja) * 2021-06-21 2022-12-29 国立大学法人東北大学 弾性表面波デバイス
JP7575023B2 (ja) 2021-06-21 2024-10-29 国立大学法人東北大学 弾性表面波デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124848A (ja) * 2000-10-17 2002-04-26 Tdk Corp 表面弾性波素子、電子部品及びその搭載方法
JP2009289935A (ja) * 2008-05-29 2009-12-10 Sumitomo Electric Device Innovations Inc 半導体装置
JP2017147708A (ja) * 2016-02-19 2017-08-24 太陽誘電株式会社 弾性波デバイス
JP2018125773A (ja) * 2017-02-02 2018-08-09 太陽誘電株式会社 弾性波デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124848A (ja) * 2000-10-17 2002-04-26 Tdk Corp 表面弾性波素子、電子部品及びその搭載方法
JP2009289935A (ja) * 2008-05-29 2009-12-10 Sumitomo Electric Device Innovations Inc 半導体装置
JP2017147708A (ja) * 2016-02-19 2017-08-24 太陽誘電株式会社 弾性波デバイス
JP2018125773A (ja) * 2017-02-02 2018-08-09 太陽誘電株式会社 弾性波デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270406A1 (ja) * 2021-06-21 2022-12-29 国立大学法人東北大学 弾性表面波デバイス
JP7575023B2 (ja) 2021-06-21 2024-10-29 国立大学法人東北大学 弾性表面波デバイス
JP7075150B1 (ja) * 2021-08-16 2022-05-25 三安ジャパンテクノロジー株式会社 デュプレクサ

Also Published As

Publication number Publication date
JP7199195B2 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6397352B2 (ja) 弾性波デバイス
JP6430977B2 (ja) 弾性波デバイス
JP2019186655A (ja) 弾性波デバイス、マルチプレクサおよび複合基板
US10756698B2 (en) Elastic wave device
JP6963445B2 (ja) 電子部品
JP2019165283A (ja) 弾性波装置
JP2019021998A (ja) 電子部品
JP7370146B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP2019125871A (ja) 弾性波装置
JP2007142794A (ja) 弾性表面波素子片および弾性表面波デバイス
JP6433930B2 (ja) 弾性波デバイス
JP7199195B2 (ja) 弾性波デバイスおよび複合基板
JP7231360B2 (ja) 弾性波デバイス
JP6310360B2 (ja) 弾性波デバイス
JP6950658B2 (ja) 弾性波装置
JP2018085705A (ja) 電子部品およびその製造方法
JP2020053812A (ja) 弾性波デバイス
JP2005181292A (ja) 圧力センサ
JP7406331B2 (ja) 電子デバイス、モジュールおよびウエハ
JP2020174332A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP2020184703A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP2021027383A (ja) 弾性波装置
JP2000236230A (ja) 弾性表面波フィルタ
JP2020191535A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7281146B2 (ja) 弾性波デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221220

R150 Certificate of patent or registration of utility model

Ref document number: 7199195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150