JP2020010001A - クリーニング方法及び基板処理装置 - Google Patents

クリーニング方法及び基板処理装置 Download PDF

Info

Publication number
JP2020010001A
JP2020010001A JP2018132558A JP2018132558A JP2020010001A JP 2020010001 A JP2020010001 A JP 2020010001A JP 2018132558 A JP2018132558 A JP 2018132558A JP 2018132558 A JP2018132558 A JP 2018132558A JP 2020010001 A JP2020010001 A JP 2020010001A
Authority
JP
Japan
Prior art keywords
gas
cleaning method
stage
chamber
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018132558A
Other languages
English (en)
Other versions
JP7038618B2 (ja
Inventor
恭子 池田
Kyoko Ikeda
恭子 池田
土橋 和也
Kazuya Dobashi
和也 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2018132558A priority Critical patent/JP7038618B2/ja
Priority to PCT/JP2019/026151 priority patent/WO2020013014A1/ja
Priority to KR1020217003382A priority patent/KR102584068B1/ko
Priority to US17/258,431 priority patent/US11517943B2/en
Priority to CN201980045291.7A priority patent/CN112385017A/zh
Publication of JP2020010001A publication Critical patent/JP2020010001A/ja
Application granted granted Critical
Publication of JP7038618B2 publication Critical patent/JP7038618B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • B08B7/026Using sound waves
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • B08B5/023Cleaning travelling work
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】チャンバ内のステージに付着した汚染物を効果的に除去することを提供する。【解決手段】チャンバ内のステージに付着した汚染物を除去するクリーニング方法であって、前記チャンバ内を所定の真空圧力に設定する第1工程と、前記ステージに向けて衝撃波を形成する第1のガスを供給する第2工程と、前記ステージに向けて衝撃波を形成しない第2のガスを供給する第3工程と、を有するクリーニング方法が提供される。【選択図】図7

Description

本開示は、クリーニング方法及び基板処理装置に関する。
例えば、特許文献1は、集塵体からパーティクルを除去する手段として亜音速のガスを集塵体とウェハ載置台との間の密閉空間に流して集塵体に付着したパーティクルをガスとともに外部に回収することを提案している。
また、例えば、特許文献2、3は、ウェハにガスクラスターを照射して、ウェハに付着したパーティクルを除去することを提案している。
特開2009−302185号公報 特開2015−26745号公報 特開2015−41646号公報
本開示は、チャンバ内のステージに付着した汚染物を効果的に除去することができる技術を提供する。
本開示の一の態様によれば、チャンバ内のステージに付着した汚染物を除去するクリーニング方法であって、前記チャンバ内を所定の真空圧力に設定する第1工程と、前記ステージに向けて衝撃波を形成する第1のガスを供給する第2工程と、前記ステージに向けて衝撃波を形成しない第2のガスを供給する第3工程と、を有するクリーニング方法が提供される。
一の側面によれば、チャンバ内のステージに付着した汚染物を効果的に除去することができる。
従来のクリーニング方法の一例を示す図。 一実施形態に係る衝撃波を説明するための図。 一実施形態に係る衝撃波の発生過程のシミュレーション結果の一例を示す図。 一実施形態に係るステージとシャワーヘッドの距離と衝撃波の関係のシミュレーション結果の一例を示す図。 一実施形態に係る成膜装置の一例を示す図。 図5の成膜装置を平面視した図。 第1実施形態に係るクリーニング方法の一例を示すフローチャート。 第2実施形態に係るクリーニング方法の一例を示すフローチャート。 第3実施形態に係るクリーニング方法の一例を示すフローチャート。 一実施形態に係る成膜装置のガスラインの一例を示す図。 一実施形態に係るNガスの導入の一例を示す図。 一実施形態に係るNガスの導入の一例を示す図。 一実施形態に係る成膜装置の一例を示す図。 一実施形態に係るサイクロン気流と排気の一例を示す図。 一実施形態に係るガスノズルの一例を示す図。 一実施形態に係るガスノズルの形状とシミュレーション結果の一例を示す図。
以下、本開示を実施するための形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の構成については、同一の符号を付することにより重複した説明を省く。
[はじめに]
CVD(Chemical Vapor Deposition)やエッチング装置において、プロセス起因の生成物がステージに付着し、それらがパーティクルとなりウェハプロセス時に飛散し、ウェハ上に付着(パーティクル汚染)することがある。そこで、従来からステージ上に付着したパーティクルを除去するクリーニング方法が知られている。
図1(a)及び(b)を参照して、従来のクリーニング方法の一例について説明する。ここでは、図1(a)に示すシャワーヘッド152を有するチャンバC内のステージ150上をクリーニングする場合について説明する。
図1(b)に従来のクリーニング方法の一例を示すように、従来のクリーニング方法では、まず、チャンバCに設けられた真空ポンプ(図示せず)を用いてチャンバC内の真空引きが開始される(ステップS100)。
チャンバC内が設定圧力に到達すると(ステップS102)、ガス導入口151から供給される高圧のガスが、シャワーヘッド152の多数のガス孔154からステージ150に向けて吐出し(ステップS104)。これにより、高圧ガスによるパージが行われる。これにより発生する衝撃波SWによって、ステージ150上に付着したパーティクルが剥離される。なお、本処理では、全ステップが実行される間、排気バルブが開状態に制御される。
高圧ガスによるパージが終了すると(ステップ106)、パージが所定回数繰り返したかを判定し(ステップ108)、所定回数実行するまでステップS102〜S108を繰り返し、所定回数実行した後に本処理を終了する。
しかしながら、上記クリーニング方法では、衝撃波の発生条件を適切に設定できない場合、その除去範囲は限定されることがある。また衝撃波により剥離されたパーティクルがステージに再付着したり、チャンバー内に滞留する可能性がある。このような事象を防ぐため、衝撃波を効果的に作用させる条件の設定や、ステージ上に付着したパーティクルを剥離した後、該パーティクルを速やかにチャンバC外に除去することが重要である。
そこで、一実施形態に係るクリーニング方法では、シャワーヘッドから高圧ガスをパージし、衝撃波をステージに当ててパーティクルを剥離させた後、インジェクタ等から供給するガスのサイクロン気流で掃気することにより、速やかにチャンバ外に排気する。
以下では、一実施形態に係るクリーニング方法にて使用する衝撃波について説明した後、一実施形態に係るクリーニング方法及び該クリーニング方法を実行する基板処理装置について説明する。
[衝撃波]
本明細書において「衝撃波」とは、圧力及び温度が不連続な波が、超音速で静止気体中を伝わる現象をいう。図2(a)に示すモデルでは、中空の物体L内をある速度で流れる、所定温度及び所定圧力の高圧ガスが、任意の位置で静止気体(速度=0)になるとき、圧力及び温度が不連続な波が生じ、衝撃波となって超音速で静止気体中を伝わる様子が模式的に示されている。図2(b)に示す例では、軸対称のガス管153内を超音速の高圧ガスが噴流し、ガス孔154からガス管153内の圧力よりも低圧の空間に吐出する。このときガスの流れにほぼ垂直に衝撃波SWが発生する。発生した衝撃波は、垂直衝撃波又はマッハディスクともいう。
本実施形態では、高圧のArガス(以下、「高圧ガス」ともいう。)をパージして衝撃波SWを発生させる。高圧ガスは、大気圧以上のガスであり、不活性ガスが好ましい。高圧ガスは、例えば、Arに代表される希ガス、Nガス、COガス等の不活性ガスが好適であるが、これに限られず、CFやNFなど定常状態で不活性なガスであってもよい。
図3は、本実施形態に係る衝撃波の発生過程についてシミュレーションを行った結果の一例を示す。シミュレーション条件としては、図3(a)に示すように、先端に直径を小さく設定したガス孔154を持つガス吐出口からArガスを吐出するようにした。また、ガス孔154の下端部からステージ表面までの距離(Gap)を20mmに設定した。また、ガス供給圧(ガス管153内の圧力)を0.2MPaに設定し、Arガスが吐出される空間の圧力を40Paに設定した。
以上のシミュレーション条件で、高圧ガスをガス孔154から吐出させた時を0秒として図3(a)〜図3(h)の経過時間毎の垂直衝撃波の状態について説明する。図3(a)は、1×10−5秒後のガスの状態を示すシミュレーション結果である。このとき、ガス孔154の近傍の空間にArガスの流れが形成されているが、衝撃波は発生しなかった。その後、図3(b)のA1に示すように、2×10−5秒後にはArガスの流れの先端に衝撃波が発生し始めた。図3(c)のA2に示すように、3×10−5秒後にはArガスの流れの先端に部分的に強力な質量Flux(kg/ms)が出現した。質量Fluxは、単位時間に単位面積を通過するガスの質量を示す物理量であり、衝撃波の強さの指標となる。
質量Fluxは、以下の(1)式から導かれる。
質量Flux(kg/ms)=ガス密度(kg/m)×垂直方向のガス流速(m/s)・・・(1)
図3(d)のA3に示すように、4×10−5秒後にはArガスの流れの先端の質量Fluxのピーク値が次第に高くなり、5.9×10−5秒後には、図3(e)に示す垂直衝撃波SWがステージまで到達した。それ以降の6×10−5秒後、6.2×10−5秒後、6.5×10−5秒後には、図3(f)〜(h)に示すように、所定値以上の質量Fluxの垂直衝撃波SWがステージに当たり、ステージ上のパーティクルが剥離された。
シャワーヘッドとステージの間の距離(Gap)を最適値に調整すると、質量Fluxが所定値以上の垂直衝撃波SWをステージに当てることができ、垂直衝撃波が強く作用し、ステージ上のパーティクルが剥離しやすくなる。
また、ガス供給圧を高くすると垂直衝撃波が強くなる。さらに、(1)式に示すように、シャワーヘッドから供給するガス種としては、ガス密度の大きい(つまり、分子量の大きい)ガスを使用すると垂直衝撃波が強くなる。
以上のシミュレーション結果から、垂直衝撃波がステージに到達し、時間を追うごとに垂直衝撃波が大きくなることが分かった。そして、垂直衝撃波がステージに到達するときにステージ上のパーティクルを剥離することが分かった。よって、垂直衝撃波が最も強い状態、つまり、質量Fluxが最も大きい値を持つ状態でステージの上面に到達すると、ステージ上のパーティクルの剥離効果が最も高くなることが分かった。
図4は、一実施形態に係るステージとガス孔154が形成されたシャワーヘッドの間の距離と垂直衝撃波のシミュレーション結果の一例を示す図である。図4(a)はステージとシャワーヘッドの間の距離を5mmに設定した場合、図4(b)はステージとシャワーヘッドの間の距離を10mmに設定した場合、図4(c)はステージとシャワーヘッドの距離を20mmに設定した場合のシミュレーション結果である。
ステージとシャワーヘッドの間の距離が5mm、10mmのとき、図4(a)及び(b)に示すように衝撃波が成長しきっておらず、衝撃波がステージに強く作用する状態になっていなかった。これに対して、ステージとシャワーヘッドの間の距離が20mmのとき、図4(c)に示すように垂直衝撃波SWが成長し、強力な質量Flux(kg/ms)が出現し、垂直衝撃波SWが強く作用する状態になった。
以上に説明したように、垂直衝撃波SWをステージに作用させ、更に、ステージから剥離したパーティクルがウェハ上に飛来して汚染することを防止する機構を有する成膜装置について、以下に説明する。
[成膜装置]
一実施形態に係る成膜装置100について、図5及び図6を参照しながら説明する。図5は、一実施形態に係る成膜装置100の縦断面の一例を示す図である。図6は、図5の成膜装置を平面視した図である。本実施形態に係る成膜装置100は、回転しながら複数枚のウェハWを同時に成膜可能な装置である。
図5に示す成膜装置100は、ほぼ円形の平面形状を有する扁平な真空容器(チャンバ)1と、真空容器1内に設けられ、真空容器1の中心に回転中心を有する回転テーブル2とを有する。真空容器1は、有底の円筒形状を有する容器本体12と、容器本体12の上面に対して、例えばOリングなどのシール部材13を介して気密に着脱可能に配置される天板11とを有する。
回転テーブル2は、中心部にて円筒形状のコア部21に固定されている。コア部21は、コア部21に対して垂直方向に伸びる回転軸22の上端に固定されている。回転軸22は真空容器1の底部14を貫通し、その下端が回転軸22を鉛直軸回りに回転させる駆動部23に取り付けられている。回転軸22及び駆動部23は、上面が開口した筒状のケース体20内に収納されている。ケース体20はその上面に設けられたフランジ部分が真空容器1の底部14の下面に気密に取り付けられており、これにより、ケース体20の内部雰囲気と外部雰囲気との気密状態が維持されている。
回転テーブル2の表面部には、図6に示すように回転方向(周方向)に沿って複数(本例では5枚)のウェハWを載置するための円形状の凹部(基板載置部)24が設けられている。なお、図6には便宜上、1つの凹部24だけにウェハWを示す。この凹部24は、ウェハWの直径よりも僅かに例えば4mm大きい内径と、ウェハWの厚さにほぼ等しい深さとを有している。したがって、ウェハWが凹部24に収容されると、ウェハWの表面と回転テーブル2の表面(ウェハWが載置されない領域)とが同じ高さになる。凹部24の底面には、ウェハWの裏面を支えてウェハWを昇降させるための例えば3本の昇降ピンが貫通する貫通孔が形成されている。
図6は、真空容器1内の構造を説明する図であり、説明の便宜上、天板11に設けられたシャワーヘッドSH及びガス供給管156を破線にて示し、それ以外の天板11の図示を省略している。成膜処理では、回転テーブル2を回転しながら5枚のウェハWが同時に処理される。
回転テーブル2の上方には、各々石英からなるインジェクタ31、インジェクタ41,42が真空容器1の周方向(回転テーブル2の回転方向(図6の矢印A))に互いに間隔をおいて配置されている。天板11には、シャワーヘッドSHが設けられている。
図示の例では、時計回りに、インジェクタ41、インジェクタ31、インジェクタ42及びシャワーヘッドSHがこの順番で配列されている。
図5に示すシャワーヘッドSH上のバルブV3は、ガス供給管156において真空容器1の直上の位置に設けられている。バルブV3を開けると、ガス供給部に接続されたガス供給管156から所定のガスがシャワーヘッドSHに供給され、多数のガス管153を通り、ガス孔154から真空容器C内に供給される。
インジェクタ31、インジェクタ41,42の基端部は、容器本体12の外周内壁に固定される。これにより、インジェクタ31、インジェクタ41,42は、真空容器1の外周内壁から真空容器1内に導入され、容器本体12の径方向に沿って回転テーブル2に対して水平に伸びるように取り付けられている。
本実施形態においては、インジェクタ31は、配管及び流量制御バルブなどを介して反応性ガスとしてのSi(シリコン)含有ガスを供給する。シャワーヘッドSHは、配管及び流量制御バルブなどを介して反応性ガスとしての酸化ガスを供給する。インジェクタ41、42は、配管及び流量制御バルブなどを介して分離ガスとしてのN(窒素)ガスを供給する。なお、インジェクタ31は、シャワーヘッド構造にしてもよいし、シャワーヘッドSHはインジェクタ構造にしてもよい。
インジェクタ31には、回転テーブル2に向かって開口する複数のガス孔が設けられている。シャワーヘッドSHには、回転テーブル2に向かって開口する多数のガス孔154が設けられている。
インジェクタ31の下方領域は、Si含有ガスの反応性ガスをウェハWに吸着させるための第1の処理領域P1となる。シャワーヘッドSHの下方領域は、第1の処理領域P1においてウェハWに吸着されたSi含有ガスを酸化させる第2の処理領域P2となる。
図6を参照すると、真空容器1内には2つの凸状部4が設けられている。凸状部4は、インジェクタ41、42とともに分離領域Dを構成するため、回転テーブル2に向かって突出するように天板11の裏面に取り付けられている。また、凸状部4は、頂部が円弧状に切断された扇型の平面形状を有する。
図5に示す天板11の下面には、回転テーブル2を固定するコア部21の外周を囲む突出部5が設けられている。本実施形態においては、凸状部4の内円弧が突出部5に連結し、外円弧が、真空容器1の容器本体12の内周面に沿うように配置されている。かかる構成により、凸状部4は、分離領域Dの両側から反応性ガスが侵入することを抑制して、両反応性ガスの混合を抑制する。
凸状部4の溝部に収容されるインジェクタ41、42には、回転テーブル2に向かって開口する複数のガス孔(図11の41a参照)が、インジェクタ41、42の長さ方向に沿って配列されている。
インジェクタ41、42のガス孔からNガスが供給されると、このNガスは、第1の領域P1からのSi含有ガスと、第2の領域P2からの酸化ガスとに対するカウンターフローとして働く。したがって、第1の領域P1からのSi含有ガスと、第2の領域P2からの酸化ガスとが分離領域Dにより分離される。よって、真空容器1内においてSi含有ガスと酸化ガスとが混合し、反応することが抑制される。
容器本体12の内周壁は、図5に示すように、例えば回転テーブル2の外端面と対向する部位から底部14に亘って外方側に窪み、排気領域Eを形成する。具体的には、第1の処理領域P1に連通する排気領域を第1の排気領域E1と記し、第2の処理領域P2に連通する領域を第2の排気領域E2と記す。これらの第1の排気領域E1及び第2の排気領域E2の底部には、図6に示すように、それぞれ、第1の排気口610及び第2の排気口620が形成されている。第1の排気口610及び第2の排気口620は、各々、図5及び図6に示す排気管630に連通し、圧力制御器650を介して真空ポンプ640に接続されている。第1の排気領域E1及び第2の排気領域E2は、真空ポンプ640により排気される。
回転テーブル2と真空容器1の底部14との間の空間には、ヒータユニット7が設けられ、ヒータユニット7により回転テーブル2を介して回転テーブル2上のウェハWが、プロセスレシピで決められた温度(例えば450℃)に加熱される。回転テーブル2の周縁付近の下方側にはリング状のカバー部材71が設けられている。カバー部材71は、回転テーブル2の上方空間から第1の排気領域E1及び第2の排気領域E2に至るまでの雰囲気とヒータユニット7が置かれている雰囲気とを区画して回転テーブル2の下方領域へのガスの侵入を抑える。
ヒータユニット7が配置されている空間よりも回転中心寄りの部位における底部14は、回転テーブル2の下面の中心部付近におけるコア部21に接近するように上方側に突出して突出部12aをなしている。突出部12aとコア部21との間は狭い空間になっており、また底部14を貫通する回転軸22の貫通孔の内周面と回転軸22との隙間が狭くなっていて、これら狭い空間はケース体20に連通している。ケース体20にはパージガスであるNガスを狭い空間内に供給してパージするためのパージガス供給管72が設けられている。
また、真空容器1の底部14には、ヒータユニット7の下方において周方向に所定の角度間隔で、ヒータユニット7の配置空間をパージするための複数のパージガス供給管72、74が設けられている。また、ヒータユニット7と回転テーブル2との間には、ヒータユニット7が設けられた領域へのガスの侵入を抑えるために、リング状のカバー部材71から突出部12aの上端部との間を周方向に亘って覆う蓋部材7aが設けられている。蓋部材7aは例えば石英で作製することができる。
真空容器1の天板11の中心部には分離カス供給管51が接続されていて、天板11とコア部21の間の空間に分離ガスであるNガスを供給する。この空間に供給された分離ガスは、突出部5と回転テーブル2との狭い隙間を介して回転テーブル2のウェハ載置領域の表面に沿って周縁に向けて吐出される。
さらに、真空容器1の外周内壁には、図6に示すように、外部の搬送アーム10と回転テーブル2との間でウェハWの受け渡しを行うための搬送口15が形成されている。搬送口15はゲートバルブにより開閉される。また回転テーブル2におけるウェハ載置領域である凹部24はこの搬送口15に臨む位置にて搬送アーム10との間でウェハWの受け渡しが行われる。よって、回転テーブル2の下方側には、ウェハWの受け渡し位置に対応する部位に、凹部24を貫通してウェハWを裏面から持ち上げるための受け渡し用の昇降ピン及びその昇降機構が設けられている。
本実施形態に係る成膜装置100には、装置全体の動作のコントロールを行うためのコンピュータからなる制御部103が設けられている。制御部103は、CPU及びROM(Read Only Memory)、RAM(Random Access Memory)等の記憶部101を有する。記憶部101内には、成膜方法やクリーニング方法を成膜装置100に実施させる制御プログラムが格納されている。制御部103のCPUは、メモリに記憶されたレシピに設定された手順に従い、成膜処理やクリーニング処理を制御する。制御プログラムは、ハードディスク、コンパクトディスク、光磁気ディスク、メモリカード、フレキシブルディスクなどの媒体102に記憶され、所定の読み取り装置により記憶部101へ読み込まれ、制御部103内にインストールされてもよい。
成膜装置100にて実行する成膜方法について説明する。本実施形態では、先ず、ゲートバルブを開き、外部から搬送アーム10により搬送口15を介してウェハWを回転テーブル2の凹部24内に受け渡す。
続いてゲートバルブを閉じ、真空ポンプ640により到達可能真空度にまで真空容器1内を排気した後、インジェクタ41、42から分離ガスであるNガスを所定の流量で吐出する。分離カス供給管51及びパージガス供給管72、73、74からもNガスを所定の流量で吐出する。これに伴い、圧力制御器650により真空容器1内を予め設定した処理圧力に制御する。次いで、回転テーブル2を時計回りに例えば20rpmの回転速度で回転させながらヒータユニット7によりウェハWを例えば450℃に加熱する。この後、インジェクタ31からSi含有ガスを供給し、シャワーヘッドSHから酸化ガスを供給する。
回転テーブル2の回転により、ウェハWは、第1の処理領域P1、分離領域D、第2の処理領域P2及び分離領域Dをこの順に繰り返して通過する。第1の処理領域P1において、ウェハWの表面にSi含有ガスの分子が吸着し、Si含有ガスの分子層が形成される。分離領域Dを通過した後、第2の処理領域P2において、ウェハWの表面に吸着したSi含有ガスが酸化ガスの分子により酸化され、酸化シリコン膜が一層成膜される。
次に、回転テーブル2の回転によりウェハWが第1の処理領域P1に再び至ると、インジェクタ31から供給されるSi含有ガスの分子がウェハWの表面に吸着する。
続けて、ウェハWが第2の処理領域P2を通過する際、ウェハWの表面に吸着したSi含有ガスが酸化ガスにより酸化され、酸化シリコン膜が更に成膜される。以上のプロセスが繰り返されることで、所定の膜厚の酸化シリコン膜が成膜される。
回転テーブル2は、ウェハWを載置するステージの一例であり、図示しない昇降機構により昇降可能に構成されてもよい。この場合、以下のクリーニング処理において回転テーブル2とシャワーヘッドSHの間の距離(Gap)が最適値に調整される。
成膜装置100は、基板に所定の処理を施す基板処理装置の一例であり、基板処理装置の構成はこれに限られない。例えば、基板処理装置は回転しなくてもよい。また、基板処理装置は、一枚ずつウェハWを処理する装置であってもよい。基板処理装置は、成膜装置に限られず、エッチング装置、アッシング装置等であってもよい。基板処理装置は、ウェハWをプラズマにより処理する装置であってもよいし、ウェハWをプラズマ以外のエネルギー(熱、光等)により処理する装置であってもよい。
回転テーブル2に一例を示すウェハを載置するステージには反応生成物が付着し、ウェハW上に飛来してパーティクル汚染を引き起こす要因となる。そこで、以下では、回転テーブル2に付着した汚染物を効果的に除去する一実施形態に係るクリーニング方法について説明する。
[クリーニング方法]
<第1実施形態>
まず、第1実施形態に係るクリーニング方法の一例について、図7を参照しながら説明する。図7は、第1実施形態に係るクリーニング方法の一例を示すフローチャートである。第1実施形態に係るクリーニング方法は、制御部103により制御される。
本処理が開始されると、制御部103は、駆動機構により回転テーブル2を昇降させ、回転テーブル2とシャワーヘッドSHの間の距離が最適になるように、回転テーブル2を調整する(ステップS10)。また、高さを調整済みの回転テーブル2を回転させ、インジェクタ31、41、42からNガスを供給する(ステップS10)。インジェクタ31、41、42のすべてからNガスを供給することが好ましいが、インジェクタ31、41、42の少なくともいずれかからNガスを供給してもよい。なお、ステップS10は、回転テーブル2に向けて衝撃波を形成しない第2のガスを供給する第3工程の一例である。第2のガスは、Nガスに限られず、Arガス等の不活性ガス又はCO2ガスであってもよいし、CFやNFなど定常状態で不活性なガスであってもよい。
次に、真空ポンプ640により真空容器1内の真空引きを開始し(ステップS11)、真空容器1内を例えば数Pa〜数十Paまで真空引きする。なお、ステップS11は、チャンバ内を所定の真空圧力に設定する第1工程の一例である。また、ステップS10の前段で予め真空引きを行っておくことは、当然想定される。
設定圧力に到達したとき(ステップS12)、真空容器1の直上の位置に設けられたガスラインのバルブV3を開き(ステップS13)、バルブV3よりも上流側のガス供給管156で溜めておいた高圧ガス(例えばArガス)をシャワーヘッドSHから真空容器1内に供給する(ステップS14)。これにより、高圧ガスの流れが超音速になり、そのときに生じる垂直衝撃波によって回転テーブル2上に付着したパーティクルを剥離させる。なお、ステップS14は、回転テーブル2に向けて衝撃波を形成する第1のガスを供給する第2工程の一例である。第1のガスは、Arガスに限られず、Nガス等の不活性ガス又はCO2ガスであってもよいし、CFやNFなど定常状態で不活性なガスであってもよい。
高圧ガスによるパージが終了すると、真空容器1の直上の位置に設けられたバルブV3を閉じる(ステップS15)。次に、パージが所定回数繰り返したかを判定し(ステップS16)、所定回数実行するまでステップS11以降の処理を繰り返し、所定回数実行後に本処理を終了する。
本処理では、排気側のバルブは常時開いたままにし、真空容器1内を常に排気する。また、インジェクタ31、41、42から導出するNガスは本処理が開始されてから終了するまで常に供給する。さらに、回転テーブル2は、本処理が終了するまで回転を停止せず、回転テーブル2の上面のすべてをクリーニングできるように、高圧ガスによるパージのタイミングが制御される。
かかるクリーニング方法によれば、回転テーブル2を回転させながら回転テーブル2上に衝撃波を当てる。また、常時各インジェクタ31、41、42からNガスを導入する。衝撃波により回転テーブル2から剥離した汚染物は、回転テーブル2の回転により生じるNガスのサイクロン気流にのせて移送され、真空容器1外にスムーズに排出される。
また、回転テーブル2とシャワーヘッドSHの間の距離を垂直衝撃波の質量Fluxが最大又は極力大きくなる位置に調整する。これにより、高圧ガスのパージにより強力な垂直衝撃波を回転テーブル2に当て、回転テーブル2上に付着した汚染物を効果的に除去できる。
更に、回転テーブル2を回転させることにより、回転テーブル2の表面の全面に垂直衝撃波を万遍なく波及させることができる。これにより、回転テーブル2に付着した汚染物を万遍なく除去することができる。
<第2実施形態>
次に、第2実施形態に係るクリーニング方法の一例について、図8を参照しながら説明する。図8は、第2実施形態に係るクリーニング方法の一例を示すフローチャートである。本処理が開始されると、制御部103は、回転テーブル2とシャワーヘッドSHの間の距離が最適になるように回転テーブル2を調整した後、回転テーブル2を回転させる(ステップS9)。
次に、真空ポンプ640により真空容器1内の真空引きを開始する(ステップS11)。なお、真空引き開始は、回転テーブルの回転(ステップS9)より前に開始しても良い。次に、インジェクタ31、41、42からNガスを供給する(ステップS20:第3工程の一例)。インジェクタ31、41、42の少なくともいずれかからNガスを供給してもよい。設定圧力に到達したとき(ステップS12:第1工程の一例)、真空容器1の直上の位置に設けられたバルブV3を開く(ステップS13)。これにより、上流側のガス供給管156で溜めておいた高圧ガスをシャワーヘッドSHから真空容器1内に供給する(ステップS14:第2工程の一例)。これにより、高圧ガスの流れが超音速になり、そのときに生じる垂直衝撃波によって回転テーブル2上に付着したパーティクルを剥離させる。
高圧ガスによるパージが終了すると、真空容器1の直上の位置に設けられたバルブV3を閉じる(ステップS15)。次に、インジェクタ31、41、42からのNガスの供給を停止する(ステップS21)。次に、パージが所定回数繰り返したかを判定し(ステップS16)、所定回数実行するまでステップS11以降の処理を繰り返し、所定回数実行後に本処理を終了する。
本処理では、排気側のバルブは常時開いたままにし、真空容器1内を常に排気する。また、回転テーブル2は、本処理が終了するまで回転を停止せず、回転テーブル2の上面のすべてをクリーニングできるように、高圧ガスによるパージのタイミングが制御される。
かかるクリーニング方法によれば、回転テーブル2を回転させながら高圧ガスを供給し、回転テーブル2上に衝撃波を当てる。また、少なくとも高圧ガスを供給する第2工程の間、各インジェクタ31、41、42からNガスを導入する。これにより、衝撃波により回転テーブル2から剥離した汚染物をNガスのサイクロン気流にのせてスムーズに移送し、真空容器1外に排出することができる。
<第3実施形態>
次に、第3実施形態に係るクリーニング方法の一例について、図9を参照しながら説明する。図9は、第3実施形態に係るクリーニング方法の一例を示すフローチャートである。本処理が開始されると、制御部103は、回転テーブル2とシャワーヘッドSHの間の距離が最適になるように、回転テーブル2を調整し、回転テーブル2を回転させる(ステップS9)。
次に、真空ポンプ640により真空容器1内の真空引きを開始する(ステップS11)。なお、真空引き開始は回転テーブルの回転(ステップS9)より前に実施しても良い。設定圧力に到達したとき(ステップS12:第1工程の一例)、真空容器1の直上の位置に設けられたバルブV3を開く(ステップS13)。これにより、上流側のガス供給管156で溜めておいた高圧ガスをシャワーヘッドSHから真空容器1内に供給する(ステップS14:第2工程の一例)。これにより、高圧ガスの流れが超音速になり、そのときに生じる垂直衝撃波によって回転テーブル2上に付着したパーティクルを剥離させる。
高圧ガスによるパージが終了すると、真空容器1の直上の位置に設けられたバルブV3を閉じる(ステップS15)。次に、インジェクタ31、41、42からNガスを供給する(ステップS20:第3工程の一例)。インジェクタ31、41、42の少なくともいずれかからNガスを供給してもよい。所定時間経過後、インジェクタ31、41、42からのNガスの供給を停止する(ステップS21)。次に、パージが所定回数繰り返したかを判定し(ステップS16)、所定回数実行するまでステップS11以降の処理を繰り返し、所定回数実行後に本処理を終了する。
本処理では、排気側のバルブは常時開いたままにし、真空容器1内を常に排気する。また、回転テーブル2は、本処理が終了するまで回転を停止せず、回転テーブル2の上面のすべてをクリーニングできるように、高圧ガスによるパージのタイミングが制御される。
かかるクリーニング方法によれば、高圧ガスを供給するステップS14と、インジェクタ31、41、42からNガスを供給するステップS20とを交互に実行し、第1のガスと第2のガスとを交互に供給する。これによっても、衝撃波により回転テーブル2から汚染物を剥離し、Nガスのサイクロン気流に乗せてスムーズに移送し、真空容器1外に排出することができる。
第1実施形態〜第3実施形態に係るクリーニング方法のいずれにおいても、シャワーヘッドSHと回転テーブル2の間の距離を調整した後にクリーニング方法が実行される。また、真空容器1の直上の位置にガス供給管156を開閉するバルブV3が設けられ、バルブV3の開閉を制御することで上流側のガス供給管156で溜めておいた高圧ガスがシャワーヘッドSHに供給される。これにより、高圧ガスを間欠的に供給して回転テーブル2上に衝撃波を形成する。
[衝撃波を得るためのガスライン]
Arガスを間欠的に供給するための成膜装置100のガスラインの一例について、図10を参照しながら説明する。図10は、比較例及び一実施形態に係る成膜装置のガスラインの一例を示す図である。
図10(a)は比較例のガスラインの一例を示し、図10(b)は本実施形態のガスラインの一例を示す。比較例のガスラインでは、ガスラインGLに2つのバルブV1、V2と、バルブV1、V2の間に流量制御器MFCが設けられ、バルブV2よりも下流側にフィルターFが取り付けられている。
本実施形態のガスラインでは、ガスラインGLに2つのバルブV1、V2と、バルブV1、V2の間に流量制御器MFCが設けられ、バルブV2よりも下流側にフィルターFが取り付けられている。加えて、真空容器1の直上にバルブV3が取り付けられている。本実施形態ではフィルターFを設けなくてもよい。
図10(a)に示す比較例のガスラインでは、バルブV1、V2が開くと、ガス供給源から供給されたArガスがガスラインGLを流れる。バルブV1、V2を開いた直後、フィルターFにおいて圧力損失が発生するため、バルブV1、V2を開いたときにシャワーヘッドSHに供給されるArガスの到達圧力が低下する。例えば、バルブV2を閉じているときに上流側の圧力が0.2MPaであるとする。比較例のガスラインでは、バルブV2を閉き、シャワーヘッドSHに供給されたArガスの圧力は、フィルターFにおける圧力損失により0.2MPaよりも低くなる。
一方、図10(b)に示す本実施形態のガスラインでは、バルブV1、V2が開くと、ガス供給源から供給されたArガスがガスラインGLを流れる。フィルターFをなくすか又は低圧損タイプの物を使用することで圧力損失の発生を抑えることができる。また、真空容器1の直上のバルブV3を衝撃波を発生させる所定のタイミングまで閉じることにより、真空容器1の直前までArガスでガスラインGLを満たすことができる。このため、速やかにガスラインGL内の圧力を上昇させることができる。例えば、バルブV3を閉じているときに真空容器1の直前のガスラインGLの圧力が0.2MPaであるとすると、バルブV3を開いたときにシャワーヘッドSHに供給されるArガスの到達圧力は低下せず、概ね0.2MPaの高圧状態に保たれる。
以上のように、本実施形態のガスラインでは、真空容器1の直上にバルブV3を設けることで、高圧ガスをシャワーヘッドSHに供給でき、これによりガス管153内の圧力を極短時間で概ね0.2MPaの高圧の状態まで上昇させることができる。これにより、ガス孔154から超音速で高圧ガスが噴流し、ガス管153内の圧力(約0.2MPa)よりも低圧(約40Pa)の空間に吐出する。そのときに生じる垂直衝撃波によって回転テーブル2上に付着したパーティクルを効果的に剥離させることができる。
なお、衝撃波を発生させるArガスの圧力は、大気圧以上であればよい。ただし、第2工程では、真空容器1内の圧力に対して、Arガスを供給するガス管153内の圧力を5倍以上、好ましくは10倍以上にした状態で第1のガスを供給することが好ましい。
[Nガス導入によるサイクロン気流]
第1実施形態〜第3実施形態に係るクリーニング方法では、少なくとも第2工程及び第3工程を実行する間、回転テーブル2を回転させ、真空容器1内を連続して排気する。その状態でインジェクタ31、41、42のガス孔からNガスを供給する。
図11(a)は、一実施形態に係るNガスの導入のシミュレーション結果の一例を示す図である。本シミュレーションでは、回転テーブル2が時計回りに回転している状態で、インジェクタ41のガス孔41aからNガスを供給したときのガスの流線を示す。また、本シミュレーションでは、回転テーブル2の外周と真空容器1の内壁の間の空間がリング状の排気口600となっており、排気口600は排気管630を介して真空ポンプ640(図5参照)に接続されている。
図11(a)のB−B断面を示す図11(b)を参照すると、インジェクタ41のガス孔41aは、回転テーブル2に向けて真下に設けられ、真下にNガスを供給する。図11(a)のシミュレーション結果によれば、Nガスは、回転テーブル2の回転により回転テーブル2上を這うようにサイクロン気流を形成しながら、回転テーブル2の外周と真空容器1の内壁の間のリング状の排気口600から排気された。これにより、衝撃波により回転テーブル2から剥離した汚染物をNガスのサイクロン気流にのせてスムーズに移送し、リング状の排気口600から真空容器1外に排出することができることがわかった。
以上から、図5の成膜装置1では、第3工程では、回転テーブル2の近傍にて径方向に水平に設けられたインジェクタ41からNガスを供給する。これにより、Nガスのサイクロン気流を形成しながら、衝撃波により回転テーブル2から剥離した汚染物を排気口に導くことができる。なお、図11の例では、インジェクタ41からNガスを供給する例を示したが、これに限られず、少なくともインジェクタ41、42及びインジェクタ31のいずれかからNガスを供給する。また、インジェクタ41、42及びインジェクタ31からNガスを供給することが好ましい。
クリーニング処理中に回転テーブル2が回転している場合、排気口は、サイクロン気流により回転テーブル2の外側にNガスが運ばれるので、排気口は回転テーブル2の外周部にあることが好ましい。これにより、回転テーブル2上を這うように形成されたNガスのサイクロン気流にのって回転テーブル2上から剥離した汚染物の再付着を防ぎつつ、汚染物のスムーズな排出を促すことができる。
以上に説明したように、第1実施形態〜第3実施形態に係るクリーニング方法によれば、回転テーブル2を回転させることにより、回転テーブル2の全面に垂直衝撃波を万遍なく当てることができる。これにより、回転テーブル2の上に付着する汚染物を万遍なく剥離することができる。また、インジェクタ31,41,42から供給されるNガスがサイクロン気流になり、剥離した汚染物をスムーズに排気側へ移送することができる。
ただし、Nガスの導入は、インジェクタを使用して行うことに限らない。図12(a)に示すように、回転テーブル2の中央に中心軸となるガス供給管55を配置し、ガス供給管55の側壁から等間隔にガスノズル56を設け、ガスノズル56に設けられたガス孔56aから円周方向にガスを供給してもよい。図12(b)に示すように、中心軸のガス供給管55の底面と回転テーブル2の間に隙間を設け、その隙間から円周方向にガスを供給してもよい。
図12(a−1)は、図12(a)の側面図の一例であり、図12(a−2)は、図12(a)の平面図の一例である。ガス供給管55内を流れるNガスは、図12(a−3)に示す角度θの位置のガス孔56aから回転テーブル2に向けて吐出され、図12(a−2)に示すように回転テーブル2の回転方向に従って円周の接線方向に流れる。
ガスノズル56のガス孔の角度θは、ガスノズル56の真下に限られず、ガスノズル56の真下から90°よりも小さい角度であってもよい。つまり、ガスノズル56のガス孔56aが真下に位置する角度を0°とすると、ガス孔56aの角度θは、円周方向に−90°<θ<90°を満たす位置に形成されればよい。
図12に示すガスノズル56を用いたNガスの供給によってもサイクロン気流により回転テーブル2の外周側にNガスが運ばれる。よってこの構成の場合、排気口は回転テーブル2の外周側に配置されることが望ましい。なお、図11に示すインジェクタ41のガス孔41a等の角度θについてもガス孔41aが真下に位置する角度を0°とすると、ガス孔41aの角度θは、円周方向に−90°<θ<90°を満たす位置に形成されればよい。
図13に一実施形態に係る成膜装置100の他の例を示す。この成膜装置100に示すように、複数のガスノズル57を真空容器1の側壁から円周方向に等間隔に貫通させてもよい。この場合、第3工程におけるNガスの導入は、ガスノズル57を用いて行ってもよい。
図13に示す成膜装置100は、第1実施形態〜第3実施形態に係るクリーニング方法を実行可能な他の基板処理装置の一例である。成膜装置100は、真空容器1を有する。真空容器1は、容器本体12と、容器本体12の上面に対して気密に着脱可能に配置される天板11とを有する。容器本体12には4つのステージSが設けられ、各ステージSにウェハWを載置する。
各ステージSの上方の天板11にはシャワーヘッドSHが設けられている。各シャワーヘッドSHは、昇降機構35により昇降可能に構成されてもよい。これにより、ステージSとシャワーヘッドSHの間の距離(Gap)を調整することができる。
シャワーヘッドSHには、ガス供給部(クリーニングガス供給部、パージガス供給部、反応性ガス供給部)から所定のタイミングに各ガスが供給される。また、シャワーヘッドSHには、整合器37を介してRF電源36が接続されている。
例えば、成膜時には、バルブV及び流量制御器MFCを制御してシャワーヘッドSHに成膜用のガス(反応性ガス)を供給し、RF電源36からシャワーヘッドSHに、例えば13.56MHz等の所定の周波数の高周波電力を印加する。これにより、シャワーヘッドSHに供給された成膜用のガスからプラズマが生成され、ステージS上のウェハに成膜処理が施される。
クリーニング時には、バルブV及び流量制御器MFCを制御してシャワーヘッドSHにクリーニングガス(例えばArガス)を供給し(第2工程の一例)、Arガスによる衝撃波を発生させてステージS上のパーティクルを剥離する。また、この第2工程と同時又は交互にパージガス供給部及び/又は真空容器1の外周内壁に設けられたガスノズル57からパージガスのNガスを供給し(第3工程の一例)、剥離されたパーティクルをNガスの気流にのせて移送する。移送されたパーティクルは排気口6から真空ポンプ640により排出される。
具体的には、図13に示す成膜装置100の場合、図14(a)に示すように複数のガスノズル57が容器本体12の外周内壁に等間隔に設けられ、ガスノズル57の円周方向に設けられたガス孔から接線方向にガスが供給される。ガスノズル57のガス孔が真下に位置する角度を0°とすると、ガスノズル57のガス孔の角度θは、円周方向に−90°<θ<90°(θ=0°を除く)を満たす位置に形成されればよい。θが0°である場合を除くのは、ステージが回転していない場合、θ=0°ではサイクロン気流にならないためである。
この場合、たとえば、図14(a)に示すように排気口6は真空容器1の底部の中央に設けられることが好ましい。これにより、真空容器1の外周側から中央側に向けて内側に流れるNガスのサイクロン気流を作り、真空容器1の中央側にパーティクルを移送し、中央の排気口6から排気する。
また、排気口6は中央に1つ設けられることに限られず、複数箇所に設けられてもよい。図14(b)の例では、4つの排気口6が4つのステージSの下方に各々設けられ、ガスノズル57から供給されるNガスのサイクロン気流にのって移送されるパーティクルを、4つの排気口6から排気する。
なお、排気口6は、真空容器1の外周、中央又はその間(ステージ下)であって真空容器1の底部に1つ又は複数設けられている例を上げて説明したが、これに限られない。たとえば、排気口6を、真空容器1の天井部に1つまたは複数設けてもよいし、真空容器1の底部と天井部に1つまたは複数設けてもよい。
[ガスノズルの形状]
ガスノズル56、57(図12?図14)の形状と、ガスの噴射の状態を示すシミュレーションの結果の一例について、図15及び図16を参照しながら説明する。図15はシミュレーションに用いたノズルの形状を示す図である。図16は、図15のガスノズルの各形状とガスの噴射のシミュレーション結果の一例を示す図である。
シミュレーションには、図15(a)及び(b)に示す形状のガスノズルを用いた。図15(a)に示すガスノズルは、ガス口に向かってストレートの形状を有する。図15(b)及び(b)に示すガスノズルは、ガス口に向かって約16°に広がるテーパー状を有する。図15(b)のガスノズルは、ガスの入口の直径φが0.5mmであるのに対して、ガスの出口であるガス口の直径φは2mmである。
以上の2つの形状のガスノズルに対して、10(L/min)、20℃のNガスをガスノズルから空間に噴射したときのシミュレーションの結果を図16に示す。この結果によれば、図15(a)のストレートの形状のガスノズルの場合、ガス口から噴射したNガスの噴流は直ぐに減速し、Nガスの高速噴流はガス口から100mm?150mmまで伸びなかった。
これに対して、図15(b)のテーパー状のガスノズルの場合、ガス口から噴射した高速なNガスのガス流が、100mm?150mmまで伸び、高速噴流が長く保たれた。この結果から、Nガスを供給するガスノズルの形状を工夫し、ガス口(ガスノズルの出口)に向かってテーパー状に広がる形状にすることでガスを高速化し、更に汚染物を効果的に排出できることがわかった。
以上に説明したように、本実施形態に係るクリーニング方法及び該クリーニング方法を実行する基板処理装置によれば、真空容器内のステージに付着した汚染物を効果的に除去することができる。
今回開示された一実施形態に係るクリーニング方法及び基板処理装置は、すべての点において例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。
本開示の基板処理装置は、Capacitively Coupled Plasma(CCP)、Inductively Coupled Plasma(ICP)、Radial Line Slot Antenna(RLSA)、Electron Cyclotron Resonance Plasma(ECR)、Helicon Wave Plasma(HWP)のどのタイプでも適用可能である。
本明細書では、基板の一例としてウェハWを挙げて説明した。しかし、基板は、これに限らず、FPD(Flat Panel Display)に用いられる各種基板、プリント基板等であっても良い。
1 真空容器
2 回転テーブル
4 凸状部
5 突出部
7 ヒータユニット
10 搬送アーム
11 天板
12 容器本体
15 搬送口
21 コア部
24 凹部(基板載置部)
31 インジェクタ
41、42 インジェクタ
55 ガス供給管
56 ガスノズル
100 成膜装置
103 制御部
610 第1の排気口
620 第2の排気口
600 排気口
640 真空ポンプ
SH シャワーヘッド
V3 バルブ

Claims (20)

  1. チャンバ内のステージに付着した汚染物を除去するクリーニング方法であって、
    前記チャンバ内を所定の真空圧力に設定する第1工程と、
    前記ステージに向けて衝撃波を形成する第1のガスを供給する第2工程と、
    前記ステージに向けて衝撃波を形成しない第2のガスを供給する第3工程と、
    を有するクリーニング方法。
  2. 前記第2工程は、
    前記第1のガスを間欠的に供給し、衝撃波を形成する、
    請求項1に記載のクリーニング方法。
  3. 前記第2工程と前記第3工程とを並行して実行する、
    請求項1又は2に記載のクリーニング方法。
  4. 前記第2工程と前記第3工程とを交互に実行する、
    請求項1又は2に記載のクリーニング方法。
  5. 前記ステージは回転可能であり、
    前記第2工程及び前記第3工程を実行する間、前記ステージを回転する、
    請求項1〜4のいずれか一項に記載のクリーニング方法。
  6. 前記第2工程及び前記第3工程を実行する間、前記チャンバ内を排気する、
    請求項1〜5のいずれか一項に記載のクリーニング方法。
  7. 前記第2工程は、
    前記チャンバの天井部に設けられたシャワーヘッドから前記第1のガスを供給する、
    請求項1〜6のいずれか一項に記載のクリーニング方法。
  8. 前記第2工程は、
    前記シャワーヘッドと前記ステージの間の距離を調整した後に実行される、
    請求項7に記載のクリーニング方法。
  9. 前記シャワーヘッドに繋がるガス供給管を開閉するバルブを前記チャンバの直上の位置に設け、
    前記第2工程は、
    前記バルブを開き、前記ガス供給管から前記シャワーヘッド内に前記第1のガスを供給する、
    請求項7又は8に記載のクリーニング方法。
  10. 前記第3工程は、
    前記ステージの上方にて径方向に設けられたインジェクタから前記第2のガスを供給する、
    請求項1〜9のいずれか一項に記載のクリーニング方法。
  11. 前記第3工程は、
    前記ステージの中央又は前記チャンバの側壁に設けられたガスノズルから前記第2のガスを供給する、
    請求項1〜10のいずれか一項に記載のクリーニング方法。
  12. 前記ガスノズルは、ガス口に向かって広がるテーパー状を有する、
    請求項11に記載のクリーニング方法。
  13. 前記ガスノズルのガス孔が真下に位置する角度を0°とし、前記ガス孔の角度θは、円周方向に−90°<θ<90°を満たす位置に形成される、
    請求項11又は12に記載のクリーニング方法。
  14. 前記ガスノズルを前記チャンバの中央に設けたガス供給管の外周内壁に配置し、前記チャンバの中央よりも外側に設けられた1つ又は複数の排気口から前記第2のガスを排気する第4工程を有する、
    請求項11〜13のいずれか一項に記載のクリーニング方法。
  15. 前記ガスノズルを前記チャンバの側壁に配置し、前記チャンバの中央又は前記ステージの下方に設けられた1つ又は複数の排気口から前記第2のガスを排気する第4工程を有する、
    請求項11〜13のいずれか一項に記載のクリーニング方法。
  16. 前記第1のガスは、大気圧以上のガスである、
    請求項1〜15のいずれか一項に記載のクリーニング方法。
  17. 前記第2工程は、
    前記第1のガスを供給するガス供給管内の圧力を前記チャンバ内の圧力に対して5倍以上にした状態で前記第1のガスを供給する、
    請求項1〜16のいずれか一項に記載のクリーニング方法。
  18. 前記ステージの上に複数の基板を保持する基板載置部が形成され、
    前記クリーニング方法を実行した後の前記ステージを回転しながら前記基板載置部に載置された複数の基板を同時に処理する、
    請求項1〜17のいずれか一項に記載のクリーニング方法。
  19. 前記第1のガス及び前記第2のガスは、不活性ガスである、
    請求項1〜18のいずれか一項に記載のクリーニング方法。
  20. チャンバ内に基板を載置するステージと、前記チャンバ内に第1のガスを供給する第1ガス供給管と、前記チャンバ内に第2のガスを供給する第2ガス供給管と、制御部とを有する基板処理装置であって、
    前記制御部は、
    前記チャンバ内を所定の真空圧力に設定し、
    前記ステージに向けて衝撃波を形成する第1のガスを供給し、
    前記ステージに向けて衝撃波を形成しない第2のガスを供給するように制御する基板処理装置。
JP2018132558A 2018-07-12 2018-07-12 クリーニング方法及び基板処理装置 Active JP7038618B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018132558A JP7038618B2 (ja) 2018-07-12 2018-07-12 クリーニング方法及び基板処理装置
PCT/JP2019/026151 WO2020013014A1 (ja) 2018-07-12 2019-07-01 クリーニング方法及び基板処理装置
KR1020217003382A KR102584068B1 (ko) 2018-07-12 2019-07-01 클리닝 방법 및 기판 처리 장치
US17/258,431 US11517943B2 (en) 2018-07-12 2019-07-01 Cleaning method and substrate processing apparatus
CN201980045291.7A CN112385017A (zh) 2018-07-12 2019-07-01 清洁方法和基片处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018132558A JP7038618B2 (ja) 2018-07-12 2018-07-12 クリーニング方法及び基板処理装置

Publications (2)

Publication Number Publication Date
JP2020010001A true JP2020010001A (ja) 2020-01-16
JP7038618B2 JP7038618B2 (ja) 2022-03-18

Family

ID=69142426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018132558A Active JP7038618B2 (ja) 2018-07-12 2018-07-12 クリーニング方法及び基板処理装置

Country Status (5)

Country Link
US (1) US11517943B2 (ja)
JP (1) JP7038618B2 (ja)
KR (1) KR102584068B1 (ja)
CN (1) CN112385017A (ja)
WO (1) WO2020013014A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286369A1 (ja) * 2021-07-16 2023-01-19 株式会社アルバック 真空処理装置
WO2024048316A1 (ja) * 2022-09-01 2024-03-07 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165648A (ja) * 2005-12-14 2007-06-28 Tokyo Electron Ltd 基板処理装置のクリーニング方法,基板処理装置,プログラム,プログラムを記録した記録媒体
JP2008053661A (ja) * 2006-08-28 2008-03-06 Tokyo Electron Ltd 洗浄装置及び洗浄方法
JP2008159787A (ja) * 2006-12-22 2008-07-10 Tokyo Electron Ltd 真空装置のクリーニング方法、真空装置の制御装置および制御プログラムを記憶した記憶媒体
JP2009123723A (ja) * 2007-11-12 2009-06-04 Hitachi High-Technologies Corp 真空処理装置または真空処理方法
JP2011135003A (ja) * 2009-12-25 2011-07-07 Tokyo Electron Ltd 成膜装置及び成膜方法
JP2018093121A (ja) * 2016-12-06 2018-06-14 東京エレクトロン株式会社 クリーニング方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327492B2 (ja) * 1993-09-30 2002-09-24 忠弘 大見 基体表面からの気相ゴミ除去装置及び除去方法並びにプロセス装置及びプロセスライン
JP3189113B2 (ja) * 1995-03-15 2001-07-16 東京エレクトロン株式会社 処理装置及び処理方法
JP3790627B2 (ja) * 1998-02-13 2006-06-28 住友重機械工業株式会社 表面洗浄方法及び装置
KR100328640B1 (ko) * 1999-06-21 2002-03-20 오자와 미토시 표면세정방법 및 장치
US20020096195A1 (en) * 2001-01-04 2002-07-25 Applied Materials, Inc. Method and apparatus for critical flow particle removal
US6578369B2 (en) * 2001-03-28 2003-06-17 Fsi International, Inc. Nozzle design for generating fluid streams useful in the manufacture of microelectronic devices
JP4754196B2 (ja) * 2003-08-25 2011-08-24 東京エレクトロン株式会社 減圧処理室内の部材清浄化方法および基板処理装置
US7846257B2 (en) * 2005-12-14 2010-12-07 Tokyo Electron Limited Method for cleaning substrate processing apparatus, substrate processing apparatus, program and recording medium having program recorded therein
US20080154410A1 (en) * 2006-12-22 2008-06-26 Tokyo Electron Limited Method for cleaning vacuum apparatus, device for controlling vacuum apparatus, and computer-readable storage medium storing control program
JP2009302185A (ja) 2008-06-11 2009-12-24 Canon Inc 処理装置
JP5031013B2 (ja) * 2008-11-19 2012-09-19 東京エレクトロン株式会社 成膜装置、成膜装置のクリーニング方法、プログラム、プログラムを記憶するコンピュータ可読記憶媒体
WO2010091365A2 (en) * 2009-02-08 2010-08-12 Ap Solutions, Inc. Plasma source with integral blade and method for removing materials from substrates
JP5107285B2 (ja) * 2009-03-04 2012-12-26 東京エレクトロン株式会社 成膜装置、成膜方法、プログラム、およびコンピュータ可読記憶媒体
JP2015026745A (ja) 2013-07-26 2015-02-05 東京エレクトロン株式会社 基板洗浄方法及び基板洗浄装置
JP6311236B2 (ja) 2013-08-20 2018-04-18 東京エレクトロン株式会社 基板洗浄装置
JP6321509B2 (ja) * 2014-09-24 2018-05-09 東京エレクトロン株式会社 基板処理装置及び基板載置ユニットの製造方法
JP6339004B2 (ja) * 2014-12-25 2018-06-06 東京エレクトロン株式会社 パージ方法
US20190055648A1 (en) * 2016-01-06 2019-02-21 Toshiba Mitsubishi-Electric Insustrial Systems Cor Gas supply apparatus
JP6832154B2 (ja) * 2016-12-27 2021-02-24 東京エレクトロン株式会社 パージ方法
JP7042689B2 (ja) * 2018-05-23 2022-03-28 東京エレクトロン株式会社 サセプタのドライクリーニング方法及び基板処理装置
JP2020077750A (ja) * 2018-11-07 2020-05-21 東京エレクトロン株式会社 クリーニング方法及び成膜方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165648A (ja) * 2005-12-14 2007-06-28 Tokyo Electron Ltd 基板処理装置のクリーニング方法,基板処理装置,プログラム,プログラムを記録した記録媒体
JP2008053661A (ja) * 2006-08-28 2008-03-06 Tokyo Electron Ltd 洗浄装置及び洗浄方法
JP2008159787A (ja) * 2006-12-22 2008-07-10 Tokyo Electron Ltd 真空装置のクリーニング方法、真空装置の制御装置および制御プログラムを記憶した記憶媒体
JP2009123723A (ja) * 2007-11-12 2009-06-04 Hitachi High-Technologies Corp 真空処理装置または真空処理方法
JP2011135003A (ja) * 2009-12-25 2011-07-07 Tokyo Electron Ltd 成膜装置及び成膜方法
JP2018093121A (ja) * 2016-12-06 2018-06-14 東京エレクトロン株式会社 クリーニング方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286369A1 (ja) * 2021-07-16 2023-01-19 株式会社アルバック 真空処理装置
WO2024048316A1 (ja) * 2022-09-01 2024-03-07 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Also Published As

Publication number Publication date
KR20210027456A (ko) 2021-03-10
WO2020013014A1 (ja) 2020-01-16
KR102584068B1 (ko) 2023-09-27
US11517943B2 (en) 2022-12-06
US20210268556A1 (en) 2021-09-02
JP7038618B2 (ja) 2022-03-18
CN112385017A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
US7967996B2 (en) Process for wafer backside polymer removal and wafer front side photoresist removal
US20080179008A1 (en) Reactor for wafer backside polymer removal using an etch plasma feeding a lower process zone and a scavenger plasma feeding an upper process zone
JP2003197615A (ja) プラズマ処理装置およびそのクリーニング方法
TWI756424B (zh) 電漿處理裝置之洗淨方法
JP2003273078A (ja) プラズマ処理装置の洗浄方法、洗浄方法及びプラズマ処理装置
JP2008311385A (ja) 基板処理装置
KR20080071524A (ko) 웨이퍼 전면 가스 세정과 함께 웨이퍼 후면 폴리머 제거를위한 프로세스
KR20080071525A (ko) 웨이퍼 후면 폴리머 제거와 웨이퍼 전면 제거제 플라즈마를위한 프로세스
KR102397199B1 (ko) 서셉터의 드라이 클리닝 방법 및 기판 처리 장치
JP7378276B2 (ja) プラズマ処理装置
US20160372308A1 (en) Plasma processing method
KR100948984B1 (ko) 기판 탑재대, 기판 탑재대의 제조 방법, 기판 처리 장치,유체 공급기구
KR20080055646A (ko) 기판 탑재대의 제조 방법
WO2020013014A1 (ja) クリーニング方法及び基板処理装置
WO2003056617A1 (fr) Procede de gravure et dispositif de gravure au plasma
JP3492289B2 (ja) プラズマcvd装置
JP7357182B1 (ja) 基板処理装置のメンテナンス方法及び基板処理装置
KR100262883B1 (ko) 플라즈마 크리닝 방법 및 플라즈마 처리장치
JP2006319042A (ja) プラズマクリーニング方法、成膜方法
JP2006310883A (ja) プラズマ処理装置およびそのクリーニング方法
JPH0456770A (ja) プラズマcvd装置のクリーニング方法
JP2008283217A (ja) 処理装置およびそのクリーニング方法
JP2006253733A (ja) プラズマ処理装置およびそのクリーニング方法
JPH09129611A (ja) エッチング方法
JPH11317396A (ja) エッチング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7038618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150