JP2019160571A - リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 - Google Patents

リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 Download PDF

Info

Publication number
JP2019160571A
JP2019160571A JP2018045953A JP2018045953A JP2019160571A JP 2019160571 A JP2019160571 A JP 2019160571A JP 2018045953 A JP2018045953 A JP 2018045953A JP 2018045953 A JP2018045953 A JP 2018045953A JP 2019160571 A JP2019160571 A JP 2019160571A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
metal composite
composite oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018045953A
Other languages
English (en)
Other versions
JP6962838B2 (ja
Inventor
友也 黒田
Yuya Kuroda
友也 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2018045953A priority Critical patent/JP6962838B2/ja
Priority to EP19768094.5A priority patent/EP3767718A4/en
Priority to PCT/JP2019/010241 priority patent/WO2019177014A1/ja
Priority to US16/979,454 priority patent/US20210013508A1/en
Priority to CN201980018072.XA priority patent/CN111837266A/zh
Priority to KR1020207025845A priority patent/KR20200131237A/ko
Publication of JP2019160571A publication Critical patent/JP2019160571A/ja
Application granted granted Critical
Publication of JP6962838B2 publication Critical patent/JP6962838B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】電極を作製する際のプレス圧力による粒子割れの発生を抑制したリチウム金属複合酸化物粉末の提供。【解決手段】一次粒子が凝集して形成された二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物粉末であって、下記組成式(I)で表され、かつ、独立して存在する単粒子の数をa、二次粒子の数をbとしたとき、[a/(a+b)]が0.5<[a/(a+b)]<1.0を満たす、リチウム金属複合酸化物粉末。(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)Li[Lix(Ni(1−y−z−w)CoyMnzMw)1−x]O2・・・(I)【選択図】なし

Description

本発明は、リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池に関する。
リチウム金属複合酸化物粉末は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中・大型電源においても、実用化が進んでいる。
リチウム金属複合酸化物粉末は、一次粒子と、一次粒子が凝集して形成された二次粒子とから構成されることがある。リチウム金属複合酸化物粉末をリチウム二次電池用正極活物質として用いたとき、リチウム金属複合酸化物粉末は一次粒子の表面並びに二次粒子の表面及び内部で電解液と接し、粒子内へのリチウムイオンの挿入及び粒子内からのリチウムイオンの脱離が起こる。このため、リチウム金属複合酸化物粉末の一次粒子又は二次粒子の表面状態を制御することは、サイクル特性の向上や、電池エネルギー密度の向上等の電池特性を向上させる上で重要である。
例えば特許文献1には、コバルト、ニッケル、マンガンの群から選ばれる1種の元素と、リチウムとを主成分とする単分散の一次粒子(本発明の単粒子に相当)の粉体状のリチウム複合酸化物が記載されている。特許文献1に記載のリチウム複合酸化物は、特定の平均粒子径、比表面積、嵩密度を有し、凝集粒の無いリチウム複合酸化物である。特許文献1には、単分散の一次粒子からなるリチウム複合酸化物としたことにより、粒界がなく、正極材の成型時等に割れや破壊が起こりにくくなることが記載されている。
特開2004−355824号公報
特許文献1に記載のように、単分散の一次粒子からなるリチウム複合酸化物は割れや破壊が生じにくいものの、単分散の一次粒子が小さい場合などは充填する際の流動性が悪化するという問題がある。また、電解液が良好に浸透する観点から、サイクル特性を向上させるために正極活物質中には空隙を有する二次粒子が存在することが好ましい。
本発明は上記事情に鑑みてなされたものであって、電極を作製する際のプレス圧力による粒子割れの発生を抑制したリチウム金属複合酸化物粉末、該リチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質、該リチウム二次電池用正極活物質を含有する正極、及び該正極を有するリチウム二次電池を提供することを課題とする。
すなわち、本発明は、下記[1]〜[8]の発明を包含する。
[1]一次粒子が凝集して形成された二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物粉末であって、下記組成式(I)で表され、かつ、単粒子の数をa、二次粒子の数をbとしたとき、[a/(a+b)]が0.5<[a/(a+b)]<1.0を満たす、リチウム金属複合酸化物粉末。
Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
[2]前記組成式(I)において、0<x≦0.2である、[1]に記載のリチウム金属複合酸化物粉末。
[3]前記[a/(a+b)]が、0.8<[a/(a+b)]<1.0を満たす、[1]又は[2]に記載のリチウム金属複合酸化物粉末。
[4]前記単粒子の平均粒径が、0.5μm以上7μm以下である、[1]〜[3]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[5]前記二次粒子の平均粒径が、2μm以上20μm以下である、[1]〜[4]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[6][1]〜[5]のいずれか1つに記載のリチウム金属複合酸化物粉末を含有する、リチウム二次電池用正極活物質。
[7][6]に記載のリチウム二次電池用正極活物質を含有する正極。
[8][7]に記載の正極を有するリチウム二次電池。
本発明によれば、電極を作製する際のプレス圧力による粒子割れの発生を抑制したリチウム金属複合酸化物粉末、該リチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質、該リチウム二次電池用正極活物質を含有する正極、及び該正極を有するリチウム二次電池を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。 実施例1の正極活物質をSEM観察した結果を示す図である。 破壊の生じていない粒子の断面写真の一例を示す図である。 破壊の生じている粒子の断面写真の一例を示す図である。
本発明において、「一次粒子」とは、外観上に粒界が存在しない粒子であって、二次粒子を構成する粒子を意味する。
本発明において、「二次粒子」とは、前記一次粒子が凝集することにより形成された粒子である。
本発明において、「単粒子」とは、前記二次粒子とは独立して存在し、外観上に粒界が存在しない粒子であって、例えば粒子径が0.5μm以上の粒子を意味する。
<リチウム金属複合酸化物粉末>
本実施形態は、一次粒子が凝集して形成された二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物粉末である。本実施形態のリチウム金属複合酸化物粉末は、下記組成式(I)で表され、かつ、単粒子の数をa、二次粒子の数をbとしたとき、[a/(a+b)]が0.5<[a/(a+b)]<1.0を満たす。
Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
本実施形態のリチウム金属複合酸化物粉末は組成式(I)で表される。かつ、単粒子の数をa(以下、「単粒子数a」と記載することがある。)、二次粒子の数をb(以下、「二次粒子数b」と記載することがある。)としたとき、[a/(a+b)]が0.5<[a/(a+b)]<1.0を満たす。
単粒子は粒界が存在しないため、正極材の成型時の加圧操作による変形や破壊が起こらず、充放電時の膨張収縮にも耐えることができる。
二次粒子は一次粒子が凝集した、一般的には球状の粒子であり、内部に空隙を持つ。二次粒子は球状であるために嵩密度が高く、電極作製時の充填量を増やすことができる。このため比表面積を大きく確保でき、電池のサイクル特性や負荷電流特性を高くすることができる。一方で、空隙の存在は、正極材を製造する際の加圧操作により変形又は潰れて破壊される原因となる。さらに二次粒子には、一次粒子同士が焼結した際に生じる粒界が非常に多く存在する。この粒界は、プレス操作による粒子の割れの原因となり、電池特性を低下させるという問題がある。
本実施形態のリチウム金属複合酸化物粉末は、単粒子数aと二次粒子数bとの存在比率が上記特定の範囲を満たし、二次粒子数よりも単粒子数の存在比率が高い。このため、粒界が少なく、正極材の成型時の加圧操作で粒子の割れが生じにくいという優れた効果を奏する。また二次粒子の存在により、電極作製時の充填量を増やすことができる。
≪組成式(I)≫
本実施形態のリチウム金属複合酸化物粉末は、下記組成式(I)で表される。
Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
サイクル特性がよいリチウム二次電池を得る観点から、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
xの上限値と下限値は任意に組み合わせることができる。
また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0を超えることが好ましく、0.005以上であることがより好ましく、0.01以上であることがさらに好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
yの上限値と下限値は任意に組み合わせることができる。
また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.39以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
zの上限値と下限値は任意に組み合わせることができる。
また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が多いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
wの上限値と下限値は任意に組み合わせることができる。
本実施形態においては、前記組成式(I)におけるy+z+wは0.5未満が好ましく、0.3以下がより好ましい。
前記組成式(I)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属を表す。
また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるMは、Ti、Mg、Al、W、B、Zrからなる群より選択される1種以上の金属であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点から、Al、W、B、Zrからなる群より選択される1種以上の金属であることが好ましい。
≪単粒子数aと二次粒子数bとの存在割合≫
本実施形態のリチウム金属複合酸化物粉末は、単粒子数aと、二次粒子数bが下記の要件(II)を満たす。
0.5<[a/(a+b)]<1.0 ・・・(II)
本実施形態において、[a/(a+b)]は0.6以上が好ましく、0.7以上がより好ましく、0.8を超えることが特に好ましい。[a/(a+b)]の上限値は特に限定されない。一例としては、0.99以下、0.95以下、0.9以下であってもよい。
本実施形態において、[a/(a+b)]が上記下限値以上であることにより、リチウム金属複合酸化物粉末全体に対して、単粒子の存在比率が多いリチウム金属複合酸化物粉末となる。
本実施形態のリチウム金属複合酸化物は、粒界が少なく、正極材成形時の粒子割れが生じにくい。このためリチウム二次電池用正極活物質として用いた場合に、加圧に対する強度が高く、電極密度を高めることが可能となる。これにより、電池エネルギー密度を向上させることができる。
また、充放電時の膨張収縮による割れが生じにくい。このため、リチウム二次電池用正極活物質として用いた場合に、サイクル特性を向上させることができる。
本実施形態において、[a/(a+b)]が上記上限値以下であることにより、二次粒子が存在し、電極作製時の充填量を増やすことができる。
本実施形態において、[a/(a+b)]は下記の方法により算出する。
まず、リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM−5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から、粒子の総数が200以上となる任意の視野における独立して存在する単粒子を数え、その総数をaとする。また、同一の視野内における二次粒子の総数をbとする。同一の視野内における単粒子と二次粒子の合計数に対する単粒子aの割合a/(a+b)を算出する。
本実施形態においては、単粒子の平均粒径が、0.5μm以上が好ましく、0.75μm以上がより好ましく、1μm以上が特に好ましい。また、単粒子の平均粒径が、7μm以下であることが好ましく、6μm以下がより好ましく、5μm以下が特に好ましい。
上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、とりわけ単粒子の平均粒径が、0.5μm以上7μm以下であることが好ましい。
本実施形態においては、二次粒子の平均粒径が、2μm以上が好ましく、3μm以上がより好ましく、4μm以上が特に好ましい。また、二次粒子の平均粒径が、20μm以下が好ましく、18μm以下がより好ましく、16μm以下が特に好ましい。
上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、中でも二次粒子の平均粒径が、2μm以上20μm以下であることが好ましい。
本実施形態において、単粒子の平均粒子径は下記の方法により求める。
まず、リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM−5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から任意に50個の単粒子を抽出し、それぞれの単粒子について、単粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子の粒子径として測定する。得られた単粒子の粒子径の算術平均値を、リチウム金属複合酸化物粉末の平均単粒子径とする。
・二次粒子の平均粒子径
また、リチウム金属複合酸化物粉末の二次粒子についての「平均二次粒子径」は、上記平均単粒子径の測定方法と同様の方法で測定される二次粒子の粒子径の算術平均値を指す。
(層状構造)
本実施形態において、リチウム金属複合酸化物粉末の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
六方晶型の結晶構造は、P3、P3、P3、R3、P−3、R−3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P−31m、P−31c、P−3m1、P−3c1、R−3m、R−3c、P6、P6、P6、P6、P6、P6、P−6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P−6m2、P−6c2、P−62m、P−62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R−3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
<リチウム金属複合酸化物粉末の製造方法>
本実施形態のリチウム金属複合酸化物粉末を製造するにあたって、まず、リチウム以外の金属、すなわち、Ni、Co及びMnから構成される必須金属、並びに、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と、不活性溶融剤と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物粉末の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
まず共沈殿法、特に特開2002−201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、a+b+c=1)で表される金属複合水酸化物を製造する。
上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れか1種又は2種以上を使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。
錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30〜70℃の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム金属複合酸化物の二次粒子径、細孔半径等の各種物性を制御することが出来る。上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、あるいはそれらの混合ガスを反応槽内に供給してもよい。気体以外に酸化状態を促すものとして、過酸化水素などの坂酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。気体以外に還元状態を促すものとして、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用する事ができる。
例えば、反応槽内の反応pHを高くすると、二次粒子径が小さい金属複合化合物が得られやすい。一方、反応pHを低くすると、二次粒子径が大きい金属複合化合物が得られやすい。また、反応槽内の酸化状態を高くすると、空隙を多く有する金属複合化合物が得られやすい。一方、酸化状態を低くすると、緻密な金属複合化合物が得られやすい。反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウム複合酸化物の各種物性をモニタリングしつつ、反応条件を最適化すれば良い。
以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。
なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。
(リチウム金属複合酸化物の製造工程)
上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム塩と混合する。また、本実施形態において、この混合と同時に不活性溶融剤を混合することが好ましい。
金属複合酸化物若しくは金属複合水酸化物、リチウム塩及び不活性溶融剤を含む、不活性溶融剤含有混合物を焼成することにより、不活性溶融剤の存在下で、混合物を焼成することになる。不活性溶融剤の存在下で焼成することにより、一次粒子同士が焼結して二次粒子が生成することを抑制できる。また、結晶性の高い一次粒子を得ることができる。
本実施形態において、乾燥条件は特に制限されないが、例えば、金属複合酸化物又は金属複合水酸化物が酸化・還元されない条件(酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される)、金属複合水酸化物が酸化される条件(水酸化物が酸化物に酸化される)、金属複合酸化物が還元される条件(酸化物が水酸化物に還元される)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよく、水酸化物が酸化される条件では、酸素又は空気を使用すればよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。
金属複合酸化物又は金属複合水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該金属複合水酸化物は、LiNiCoMn(式中、a+b+c=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム−ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
本実施形態においては、不活性溶融剤の存在下で混合物の焼成を行うことで、混合物の反応を促進させることができる。不活性溶融剤は、焼成後のリチウム金属複合酸化物粉末に残留していてもよいし、焼成後に水などで洗浄すること等により除去されていてもよい。本実施形態においては、焼成後のリチウム複合金属酸化物は水などを用いて洗浄することが好ましい。
焼成における保持温度を調整することにより、得られるリチウム金属複合酸化物の単粒子の粒子径、二次粒子の粒子径を本実施形態の好ましい範囲に制御できる。
通常、保持温度が高くなればなるほど、単粒子の粒子径および二次粒子の粒子径は大きくなり、BET比表面積は小さくなる傾向にある。焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
本実施形態においては、保持温度の設定は、後述する不活性溶融剤の融点を考慮すればよく、不活性溶融剤の融点マイナス200℃以上不活性溶融剤の融点プラス200℃以下の範囲で行うことが好ましい。
保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴンまたはこれらの混合ガスを用いることができる。
焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb、Cs、Ca、Mg、SrおよびBaからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩およびAのタングステン酸塩からなる群より選ばれる1種以上が挙げられる。
Aのフッ化物としては、NaF(融点:993℃)、KF(融点:858℃)、RbF(融点:795℃)、CsF(融点:682℃)、CaF(融点:1402℃)、MgF(融点:1263℃)、SrF(融点:1473℃)およびBaF(融点:1355℃)を挙げることができる。
Aの塩化物としては、NaCl(融点:801℃)、KCl(融点:770℃)、RbCl(融点:718℃)、CsCl(融点:645℃)、CaCl(融点:782℃)、MgCl(融点:714℃)、SrCl(融点:857℃)およびBaCl(融点:963℃)を挙げることができる。
Aの炭酸塩としては、NaCO(融点:854℃)、KCO(融点:899℃)、RbCO(融点:837℃)、CsCO(融点:793℃)、CaCO(融点:825℃)、MgCO(融点:990℃)、SrCO(融点:1497℃)およびBaCO(融点:1380℃)を挙げることができる。
Aの硫酸塩としては、NaSO(融点:884℃)、KSO(融点:1069℃)、RbSO(融点:1066℃)、CsSO(融点:1005℃)、CaSO(融点:1460℃)、MgSO(融点:1137℃)、SrSO(融点:1605℃)およびBaSO(融点:1580℃)を挙げることができる。
Aの硝酸塩としては、NaNO(融点:310℃)、KNO(融点:337℃)、RbNO(融点:316℃)、CsNO(融点:417℃)、Ca(NO(融点:561℃)、Mg(NO、Sr(NO(融点:645℃)およびBa(NO(融点:596℃)を挙げることができる。
Aのリン酸塩としては、NaPO、KPO(融点:1340℃)、RbPO、CsPO、Ca(PO、Mg(PO(融点:1184℃)、Sr(PO(融点:1727℃)およびBa(PO(融点:1767℃)を挙げることができる。
Aの水酸化物としては、NaOH(融点:318℃)、KOH(融点:360℃)、RbOH(融点:301℃)、CsOH(融点:272℃)、Ca(OH)(融点:408℃)、Mg(OH)(融点:350℃)、Sr(OH)(融点:375℃)およびBa(OH)(融点:853℃)を挙げることができる。
Aのモリブデン酸塩としては、NaMoO(融点:698℃)、KMoO(融点:919℃)、RbMoO(融点:958℃)、CsMoO(融点:956℃)、CaMoO(融点:1520℃)、MgMoO(融点:1060℃)、SrMoO(融点:1040℃)およびBaMoO(融点:1460℃)を挙げることができる。
Aのタングステン酸塩としては、NaWO(融点:687℃)、KWO、RbWO、CsWO、CaWO、MgWO、SrWOおよびBaWOを挙げることができる。
本実施形態においては、これらの不活性溶融剤を2種以上用いることもできる。2種以上用いる場合は、融点が下がることもある。また、これらの不活性溶融剤の中でも、より結晶性が高いリチウム金属複合酸化物粉末を得るための不活性溶融剤としては、Aの炭酸塩および硫酸塩、Aの塩化物のいずれか又はその組み合わせであることが好ましい。また、Aとしては、ナトリウム(Na)およびカリウム(K)のいずれか一方又は両方であることが好ましい。すなわち、上記の中で、とりわけ好ましい不活性溶融剤は、NaCl、KCl、NaCOおよびKCO3、NaSO4、SOからなる群より選ばれる1種以上である。
これらの不活性溶融剤を用いることにより、得られるリチウム金属複合酸化物に含まれる単粒子数aと二次粒子数bの存在比率[a/(a+b)]を上記要件(II)の範囲に制御できる。さらに、単粒子と二次粒子の平均粒子径を本実施形態の好ましい範囲に制御できる。
本実施形態において、不活性溶融剤として、硫酸カリウムおよび硫酸ナトリウムのいずれか一方又は両方を用いた場合には、得られるリチウム金属複合酸化物の単粒子と二次粒子の平均粒子径を本実施形態の好ましい範囲に制御できる。
本実施形態において、焼成時の不活性溶融剤の存在量は適宜選択すればよい。得られるリチウム金属複合酸化物の単粒子数aと二次粒子数bの存在比率[a/(a+b)]を上記要件(II)の範囲とするためには、不活性溶融剤の存在量はリチウム化合物100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましい。また、必要に応じて、上記に挙げた不活性溶融剤以外の不活性溶融剤を併せて用いてもよい。該溶融剤としては、NHCl、NHFなどのアンモニウム塩等を挙げることができる。
<リチウム二次電池用正極活物質>
本実施形態は、前記本実施形態のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質である。
<リチウム二次電池>
次いで、リチウム二次電池の構成を説明しながら、本実施形態のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質を用いた正極、およびこの正極を有するリチウム二次電池について説明する。
本実施形態のリチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
図1A、図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
次いで、図1Bに示すように、電池缶5に電極群4および不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。
電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
以下、各構成について順に説明する。
(正極)
本実施形態の正極は、まず正極活物質、導電材およびバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N−メチル−2−ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。
以上に挙げられた方法により、正極を製造することができる。
(負極)
本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
(負極活物質)
負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。
負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
負極活物質として使用可能な窒化物としては、LiN、Li3−xN(ここで、AはNiおよびCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属およびスズ金属などを挙げることができる。
負極活物質として使用可能な合金としては、Li−Al、Li−Ni、Li−Si、Li−Sn、Li−Sn−Niなどのリチウム合金;Si−Znなどのシリコン合金;Sn−Mn、Sn−Co、Sn−Ni、Sn−Cu、Sn−Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレンおよびポリプロピレンを挙げることができる。
(負極集電体)
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
本実施形態のリチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒および環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS−SiS、LiS−GeS、LiS−P、LiS−B、LiS−SiS−LiPO、LiS−SiS−LiSO、LiS−GeS−Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
以上のような構成の正極活物質は、上述した本実施形態のリチウム含有複合金属酸化物を用いているため、正極活物質を用いたリチウム二次電池を、電池内部で生じる副反応を抑制することができる。
また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池を、電池内部で生じる副反応を抑制することができる。
さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも電池内部で生じる副反応を抑制したリチウム二次電池となる。
次に、本発明を実施例によりさらに詳細に説明する。
・[a/(a+b)]の算出方法
リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM−5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から、粒子の総数が200以上となる視野における独立して存在する単粒子を数え、その総数をaとした。また、同一の視野内における二次粒子の総数をbとした。同一の視野内における単粒子と二次粒子の合計数に対する一次粒子aの割合a/(a+b)を算出した。
≪実施例1≫
1. 正極活物質1の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.60:0.20:0.20となるように混合して、混合原料液を調製した。
次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。
ニッケルコバルトマンガン複合水酸化物粒子1と炭酸リチウム粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.20、KSO/(LiCO+KSO)=0.10(mol/mol)となるように秤量して混合した後、大気雰囲気下925℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質1を得た。
2.正極活物質1の評価
正極活物質1の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.20、z=0.20、w=0であった。
正極活物質1の単粒子径は2μmであり、二次粒子径は6μmであった。また、正極活物質1のa/(a+b)は0.79であった。
図2に、正極活物質1をSEM観察した結果を示す。図2に示すSEM写真には、一次粒子が凝集して形成された二次粒子が確認できた。また、この二次粒子とは独立に存在し、外観上粒界を有さない単粒子が確認できた。
正極活物質1を使用して作製した正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の一面側に塗布して乾燥させ、125kN/mの圧力でプレスし固着させた後の電極断面をSEM観察した結果、同一視内の総粒子数に対する破壊の生じていた粒子の割合は1.4%であった。
図3に破壊の生じていない粒子の断面写真の一例を示す。図4に破壊の生じている粒子の断面写真の一例を示す。
≪実施例2≫
1.正極活物質2の製造
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.88:0.08:0.04となるように混合した以外は、実施例1と同様に操作してニッケルコバルトマンガン複合水酸化物2を得た。
ニッケルコバルトマンガン複合水酸化物2と、水酸化リチウム一水和物粉末と硫酸カリウム粉末とを、Li/(Ni+Co+Mn)=1.20、LiOH/(LiOH+KSO)=0.10(mol/mol)となるように秤量して混合した後、酸素雰囲気下800℃で6時間焼成して、得られたリチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを、20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質2を得た。
2.正極活物質2の評価
正極活物質2の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.08、z=0.04、w=0であった。
正極活物質2の単粒子径3μmであり、二次粒子径は7μmであった。また、正極活物質1のSEM観察におけるa/(a+b)は0.92であった。
正極活物質2を使用して作製した正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の一面側に塗布して乾燥させ、125kN/mの圧力でプレスし固着させた後の電極断面をSEM観察した結果、同一視内の総粒子数に対する破壊の生じていた粒子の割合は0%であった。
≪比較例1≫
1.正極活物質3の製造
正極活物質焼成時にKSOを添加せずに、焼成温度を900℃とした以外は実施例1と同様の方法で正極活物質3を得た。
2.正極活物質3の評価
正極活物質3の組成分析を行い、組成式(I)に対応させたところ、x=0、y=0.20、z=0.20、w=0であった。
正極活物質3の単粒子径は0.8μmであり、二次粒子径は9μmであった。また、正極活物質1のSEM観察におけるa/(a+b)は0.45であった。
正極活物質3を使用して作製した正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の一面側に塗布して乾燥させ、125kN/mの圧力でプレスし固着させた後の電極断面をSEM観察した結果、同一視内の総粒子数に対する破壊の生じていた粒子の割合は24%であった。
≪比較例2≫
1.正極活物質4の製造
正極活物質焼成時にKSOを添加せずに、ニッケルコバルトマンガン複合水酸化物粒子1と炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.05となるように秤量して混合したとした以外は実施例1と同様の方法で正極活物質4を得た。
2.正極活物質4の評価
正極活物質4の組成分析を行い、組成式(I)に対応させたところ、x=0、y=0.20、z=0.20、w=0であった。
正極活物質4の単粒子径は2μmであり、二次粒子径は8μmであった。また、正極活物質4のSEM観察におけるa/(a+b)は0.11であった。
正極活物質4を使用して作製した正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の一面側に塗布して乾燥させ、125kN/mの圧力でプレスし固着させた後の電極断面をSEM観察した結果、破壊の生じていた粒子の割合は31%であった。
下記表1に、実施例1〜2、比較例1〜2の焼成温度、Li/Me、KSO濃度、組成、a/(a+b)、単粒子径、二次粒子径、プレス後破壊粒子数を記載する。
上記表1に示す結果の通り、単粒子の存在割合が好ましい範囲にある実施例1〜2は、比較例1〜2に比べ、電極のプレス工程によって割れる粒子の割合が小さくすることができた。
1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (8)

  1. 一次粒子が凝集して形成された二次粒子と、
    前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物粉末であって、
    下記組成式(I)で表され、かつ、単粒子の数をa、二次粒子の数をbとしたとき、[a/(a+b)]が0.5<[a/(a+b)]<1.0を満たす、リチウム金属複合酸化物粉末。
    Li[Li(Ni(1−y−z−w)CoMn1−x]O ・・・(I)
    (ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
  2. 前記組成式(I)において、0<x≦0.2である、請求項1に記載のリチウム金属複合酸化物粉末。
  3. 前記[a/(a+b)]が、0.8<[a/(a+b)]<1.0を満たす、請求項1又は2に記載のリチウム金属複合酸化物粉末。
  4. 前記単粒子の平均粒径が、0.5μm以上7μm以下である、請求項1〜3のいずれか1項に記載のリチウム金属複合酸化物粉末。
  5. 前記二次粒子の平均粒径が、2μm以上20μm以下である、請求項1〜4のいずれか1項に記載のリチウム金属複合酸化物粉末。
  6. 請求項1〜5のいずれか1項に記載のリチウム金属複合酸化物粉末を含有する、リチウム二次電池用正極活物質。
  7. 請求項6に記載のリチウム二次電池用正極活物質を含有する正極。
  8. 請求項7に記載の正極を有するリチウム二次電池。
JP2018045953A 2018-03-13 2018-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 Active JP6962838B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018045953A JP6962838B2 (ja) 2018-03-13 2018-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
EP19768094.5A EP3767718A4 (en) 2018-03-13 2019-03-13 LITHIUM METAL COMPOSITE OXIDE POWDER, POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE, AND LITHIUM SECONDARY BATTERY
PCT/JP2019/010241 WO2019177014A1 (ja) 2018-03-13 2019-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
US16/979,454 US20210013508A1 (en) 2018-03-13 2019-03-13 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
CN201980018072.XA CN111837266A (zh) 2018-03-13 2019-03-13 锂金属复合氧化物粉末、锂二次电池用正极活性物质、正极以及锂二次电池
KR1020207025845A KR20200131237A (ko) 2018-03-13 2019-03-13 리튬 금속 복합 산화물 분말, 리튬 이차 전지용 정극 활물질, 정극, 및 리튬 이차 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045953A JP6962838B2 (ja) 2018-03-13 2018-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池

Publications (2)

Publication Number Publication Date
JP2019160571A true JP2019160571A (ja) 2019-09-19
JP6962838B2 JP6962838B2 (ja) 2021-11-05

Family

ID=67907922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045953A Active JP6962838B2 (ja) 2018-03-13 2018-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池

Country Status (6)

Country Link
US (1) US20210013508A1 (ja)
EP (1) EP3767718A4 (ja)
JP (1) JP6962838B2 (ja)
KR (1) KR20200131237A (ja)
CN (1) CN111837266A (ja)
WO (1) WO2019177014A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077611A (ja) * 2018-09-11 2020-05-21 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP6826680B1 (ja) * 2020-01-17 2021-02-03 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
WO2021145431A1 (ja) * 2020-01-17 2021-07-22 住友化学株式会社 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池
JP2021111506A (ja) * 2020-01-09 2021-08-02 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム金属複合酸化物の製造方法
WO2021240194A1 (ja) 2020-05-26 2021-12-02 日産自動車株式会社 二次電池用正極
WO2021246186A1 (ja) * 2020-06-01 2021-12-09 株式会社Gsユアサ 正極及び蓄電素子
JP2023503075A (ja) * 2019-12-19 2023-01-26 エルジー エナジー ソリューション リミテッド 高温寿命特性の向上に最適化された正極およびこれを含む二次電池
EP4129926A4 (en) * 2020-09-21 2023-12-20 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL MANUFACTURED BY SOLID PHASE SYNTHESIS, AND METHOD FOR MANUFACTURING SAME
US11990616B2 (en) 2018-09-11 2024-05-21 Ecopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405655B2 (ja) * 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 非水電解質二次電池用正極及び非水電解質二次電池
KR20210150863A (ko) * 2020-06-04 2021-12-13 에스케이이노베이션 주식회사 리튬 이차 전지
KR20220167037A (ko) * 2021-06-11 2022-12-20 에스케이온 주식회사 리튬 이차 전지용 양극 조성물 및 이를 사용해 제조된 리튬 이차 전지
KR102605558B1 (ko) * 2022-01-07 2023-11-22 에스케이온 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142056A (ja) * 1993-11-18 1995-06-02 Sanyo Electric Co Ltd 非水系電池
JP2004087492A (ja) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質の製造法および正極活物質
WO2008078784A1 (ja) * 2006-12-26 2008-07-03 Santoku Corporation 非水電解質二次電池用正極活物質、正極及び二次電池
JP2010219065A (ja) * 2010-06-21 2010-09-30 Ngk Insulators Ltd 正極活物質及びリチウム二次電池
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
JP2012126633A (ja) * 2009-12-28 2012-07-05 Sumitomo Chemical Co Ltd リチウム複合金属酸化物の製造方法
WO2016129361A1 (ja) * 2015-02-12 2016-08-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法
JP2017188443A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2017188445A (ja) * 2016-03-31 2017-10-12 本田技研工業株式会社 非水系電解質二次電池用正極活物質

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004355824A (ja) 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質および正極
US9287554B2 (en) 2010-09-02 2016-03-15 Sumitomo Chemical Company, Limited Positive electrode active material
JP5035712B2 (ja) * 2010-09-30 2012-09-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6252010B2 (ja) * 2013-07-24 2017-12-27 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP6549565B2 (ja) * 2014-05-29 2019-07-24 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6624885B2 (ja) * 2015-02-19 2019-12-25 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
US10115967B2 (en) * 2016-03-31 2018-10-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
KR102390594B1 (ko) * 2016-07-29 2022-04-26 스미토모 긴조쿠 고잔 가부시키가이샤 니켈망간 복합 수산화물과 그 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 비수계 전해질 이차 전지
JP6337360B2 (ja) * 2016-08-31 2018-06-06 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018045953A (ja) 2016-09-16 2018-03-22 東芝ライテック株式会社 ランプ装置および照明装置
CN106450155B (zh) 2016-09-18 2019-11-29 贵州振华新材料股份有限公司 球形或类球形锂离子电池正极材料及制法和应用
JP6256956B1 (ja) * 2016-12-14 2018-01-10 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN106532005B (zh) * 2016-12-16 2020-06-09 贵州振华新材料有限公司 球形或类球形锂电池正极材料、电池及制法和应用
CN107359334B (zh) * 2017-07-11 2020-06-19 贵州振华新材料有限公司 球形或类球形锂离子电池正极材料及锂离子电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142056A (ja) * 1993-11-18 1995-06-02 Sanyo Electric Co Ltd 非水系電池
JP2004087492A (ja) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質の製造法および正極活物質
WO2008078784A1 (ja) * 2006-12-26 2008-07-03 Santoku Corporation 非水電解質二次電池用正極活物質、正極及び二次電池
JP2012126633A (ja) * 2009-12-28 2012-07-05 Sumitomo Chemical Co Ltd リチウム複合金属酸化物の製造方法
JP2010219065A (ja) * 2010-06-21 2010-09-30 Ngk Insulators Ltd 正極活物質及びリチウム二次電池
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
WO2016129361A1 (ja) * 2015-02-12 2016-08-18 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法
JP2017188443A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2017188445A (ja) * 2016-03-31 2017-10-12 本田技研工業株式会社 非水系電解質二次電池用正極活物質

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198736B2 (ja) 2018-09-11 2023-01-04 エコプロ ビーエム カンパニー リミテッド リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
US11990616B2 (en) 2018-09-11 2024-05-21 Ecopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2020077611A (ja) * 2018-09-11 2020-05-21 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP7198736B6 (ja) 2018-09-11 2023-01-23 エコプロ ビーエム カンパニー リミテッド リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP7427783B2 (ja) 2019-12-19 2024-02-05 エルジー エナジー ソリューション リミテッド 高温寿命特性の向上に最適化された正極およびこれを含む二次電池
JP2023503075A (ja) * 2019-12-19 2023-01-26 エルジー エナジー ソリューション リミテッド 高温寿命特性の向上に最適化された正極およびこれを含む二次電池
EP4089052A4 (en) * 2020-01-09 2024-03-06 Sumitomo Chemical Co LITHIUM METAL COMPOSITE OXIDE, ACTIVE SUBSTANCE OF POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY, AND METHOD FOR PRODUCING LITHIUM METAL COMPOSITE OXIDE
JP2021111506A (ja) * 2020-01-09 2021-08-02 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム金属複合酸化物の製造方法
WO2021145444A1 (ja) * 2020-01-17 2021-07-22 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
JP2021114409A (ja) * 2020-01-17 2021-08-05 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
WO2021145431A1 (ja) * 2020-01-17 2021-07-22 住友化学株式会社 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池
JP6826680B1 (ja) * 2020-01-17 2021-02-03 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
WO2021240194A1 (ja) 2020-05-26 2021-12-02 日産自動車株式会社 二次電池用正極
WO2021246186A1 (ja) * 2020-06-01 2021-12-09 株式会社Gsユアサ 正極及び蓄電素子
EP4129926A4 (en) * 2020-09-21 2023-12-20 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL MANUFACTURED BY SOLID PHASE SYNTHESIS, AND METHOD FOR MANUFACTURING SAME

Also Published As

Publication number Publication date
CN111837266A (zh) 2020-10-27
US20210013508A1 (en) 2021-01-14
EP3767718A1 (en) 2021-01-20
JP6962838B2 (ja) 2021-11-05
EP3767718A4 (en) 2021-12-15
KR20200131237A (ko) 2020-11-23
WO2019177014A1 (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6962838B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP6256956B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6600734B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP6108141B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
WO2016060105A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018079816A1 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
US11990617B2 (en) Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
JPWO2015182665A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6542421B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
WO2018043653A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2020130123A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6630864B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法
WO2019177023A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
WO2020130129A1 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法、及びリチウム二次電池用正極活物質の製造方法
JP6600066B1 (ja) リチウム複合金属酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2020011892A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP6843732B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018081937A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7222866B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP6640976B1 (ja) リチウム遷移金属複合酸化物粉末、ニッケル含有遷移金属複合水酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2019172573A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP2021098631A (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180816

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190809

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191001

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191008

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191129

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191203

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200609

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210309

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210824

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211005

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350