JP6826680B1 - 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 - Google Patents
全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 Download PDFInfo
- Publication number
- JP6826680B1 JP6826680B1 JP2020006338A JP2020006338A JP6826680B1 JP 6826680 B1 JP6826680 B1 JP 6826680B1 JP 2020006338 A JP2020006338 A JP 2020006338A JP 2020006338 A JP2020006338 A JP 2020006338A JP 6826680 B1 JP6826680 B1 JP 6826680B1
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- solid
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/76—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
「正極活物質の利用率」とは、全固体電池の初期放電容量を、液系リチウム二次電池の初期放電容量で除した値を意味する。
「正極活物質の利用率の値が高い」とは、充電と放電に寄与できる正極材の割合が、液系リチウムイオン二次電池と同等又は近しいことを意味する。
[2]酸化物固体電解質を含む全固体リチウムイオン電池に用いられる[1]に記載の全固体リチウムイオン電池用正極活物質。
[3]45MPaの圧力で全固体リチウムイオン電池用正極活物質を圧縮したときのプレス密度Aと、全固体リチウムイオン電池用正極活物質のタップ密度Bとの比(A/B)が、1.80以上である、[1]又は[2]に記載の全固体リチウムイオン電池用正極活物質。
[4]前記遷移金属が、Ni、Co、Mn、Ti、Fe、V及びWからなる群から選ばれる少なくとも1種である[1]〜[3]のいずれか1つに記載の全固体リチウムイオン電池用正極活物質。
[5]前記リチウム金属複合酸化物は、下記に示す組成式(A)で表される[4]に記載の全固体リチウムイオン電池用正極活物質。
Li[Lix(Ni(1−y−z−w)CoyMnzMw)1−x]O2 組成式(A)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、−0.10≦x≦0.30、0<y≦0.40、0≦z≦0.40、及び0≦w≦0.10を満たす。)
[6]前記組成式(A)において1−y−z−w≧0.50、かつy≦0.30を満たす[5]に記載の全固体リチウムイオン電池用正極活物質。
[7]前記粒子は、一次粒子と、前記一次粒子が凝集して形成された二次粒子と、前記一次粒子及び前記二次粒子とは独立して存在する単粒子と、から構成され、前記粒子における前記単粒子の含有率は、20%以上である[1]〜[6]のいずれか1つに記載の全固体リチウムイオン電池用正極活物質。
[8]前記粒子は、前記粒子の表面に金属複合酸化物からなる被覆層を有する[1]〜[7]のいずれか1つに記載の全固体リチウムイオン電池用正極活物質。
[9][1]〜[8]のいずれか1つに記載の全固体リチウムイオン電池用正極活物質を含む電極。
[10]固体電解質をさらに含む[9]に記載の電極。
[11]正極と、負極と、前記正極と前記負極とに挟持された固体電解質層と、を有し、前記固体電解質層は、第1の固体電解質を含み、前記正極は、前記固体電解質層に接する正極活物質層と、前記正極活物質層が積層された集電体と、を有し、前記正極活物質層は、[1]〜[8]のいずれか1つに記載の全固体リチウムイオン電池用正極活物質又は[9]もしくは[10]に記載の電極を含む全固体リチウムイオン電池。
[12]前記正極活物質層は、前記全固体リチウムイオン電池用正極活物質と、第2の固体電解質とを含む[11]に記載の全固体リチウムイオン電池。
[13]前記第1の固体電解質と、前記第2の固体電解質とが同じ物質である[12]に記載の全固体リチウムイオン電池。
[14]前記第1の固体電解質は、非晶質構造を有する[11]〜[13]のいずれか1つに記載の全固体リチウムイオン電池。
[15]前記第1の固体電解質は、酸化物固体電解質である[11]〜[14]のいずれか1つに記載の全固体リチウムイオン電池。
リチウム金属複合酸化物の粒子の表面に、後述する金属複合酸化物からなる被覆層を有する場合には、被覆層を有するリチウム金属複合酸化物の粒子が本発明の一態様に係る「リチウム金属複合酸化物の結晶を含む粒子」に該当する。
また、リチウム金属複合酸化物の粒子の表面に、金属複合酸化物からなる被覆層を有さない場合には、リチウム金属複合酸化物の粒子が本発明の一態様に係る「リチウム金属複合酸化物の結晶を含む粒子」に該当する。
以下、本実施形態の全固体リチウムイオン電池用正極活物質を、単に「正極活物質」と称することがある。
(要件1)正極活物質が含むリチウム金属複合酸化物は、層状構造を有し、且つ少なくともLiと遷移金属とを含む。
以下、順に説明する。
本実施形態の正極活物質に含まれるリチウム金属複合酸化物は、遷移金属として、Ni、Co、Mn、Ti、Fe、V及びWからなる群から選ばれる少なくとも1種を含む。
Li[Lix(Ni(1−y−z−w)CoyMnzMw)1−x]O2 ・・・(A)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の元素であり、−0.1≦x≦0.30、0≦y≦0.40、0≦z≦0.40、0≦w≦0.10、及び0<y+z+w、を満たす。)
サイクル特性がよいリチウム二次電池を得る観点から、前記組成式(A)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(A)におけるxは0.25以下であることが好ましく、0.10以下であることがより好ましい。
電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(A)におけるyは0を超えることが好ましく、0.005以上であることがより好ましく、0.01以上であることがさらに好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(A)におけるyは0.35以下であることがより好ましく、0.33以下であることがさらに好ましく、0.30以下であることがよりさらに好ましい。
サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(A)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存性が高いリチウム二次電池を得る観点から、前記組成式(A)におけるzは0.39以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(A)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が多いリチウム二次電池を得る観点から、前記組成式(A)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
電池容量が大きいリチウム二次電池を得る観点から、本実施形態においては、前記組成式(A)におけるy+z+wは0.50以下が好ましく、0.48以下がより好ましく、0.46以下がさらに好ましい。
前記組成式(A)におけるy+z+wは0を超え、0.001以上が好ましく、0.002以上がより好ましい。
y+z+wは0を超え0.50以下が好ましい。
前記組成式(A)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の元素を表す。
誘導結合プラズマ発光分析装置としては、例えば、エスアイアイ・ナノテクノロジー株式会社製、SPS3000が使用できる。
本実施形態において、リチウム金属複合酸化物の結晶構造は、層状構造である。リチウム金属複合酸化物の結晶構造は、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
本実施形態において、正極活物質が含むリチウム金属複合酸化物は、CuKα線を使用した粉末X線回折測定において、2θ=44.4±1°の範囲の回折ピークの積分強度I104と、2θ=18.5±1°の範囲内の回折ピークの積分強度I003との比I003/I104が1.23を超える。
回折角2θ=44.4±1°の範囲に存在するピークは、空間群R−3mに帰属されるリチウム金属複合酸化物の場合、結晶構造における最小単位である単位格子の(104)面に相当するピークである。
比I003/I104の上限は、例えば2.0以下、1.9以下、1.8以下が挙げられる。
上記上限値及び下限値は任意に組み合わせることができる。
組み合わせの例としては、1.24以上2.0以下、1.25以上1.9以下、1.26以上1.8以下が挙げられる。
測定条件の一例を以下に示す。以下の測定条件で測定することにより、粉末X線回折図形が得られる。
(測定条件)
回折角2θ=10°〜90°
サンプリング幅0.02°
スキャンスピード4°/min
統合粉末X線解析ソフトウェアとしては、例えばJADEが使用できる。
本実施形態において、正極活物質が含むリチウム金属複合酸化物は、45MPaの圧力で正極活物質を圧縮したときのプレス密度が2.90g/cm3以上であり、2.91g/cm3以上が好ましく、2.92g/cm3以上がより好ましく、2.93g/cm3以上が特に好ましい。
プレス密度の上限値の例としては、10g/cm3以下、9g/cm3以下、8g/cm3以下、7g/cm3以下、が挙げられる。
上記上限値及び下限値は任意に組みわせることができる。
組み合わせの例としては、2.90g/cm3以上10g/cm3以下、2.91g/cm3以上9g/cm3以下、2.92g/cm3以上g/cm3以下、2.93g/cm3以上7g/cm3以下、が挙げられる。
本実施形態におけるプレス密度の測定方法について、図3を参照して説明する。
図3に示すプレス密度測定装置40は、治具41、42、43を有する。
治具41は、円筒状の形状を有する。治具41の内部空間41aは円柱状である。内部空間41aの内径LDは、15mmである。
粉末Xの厚み(mm)=LB+Lx−LA−LC ・・・(P1)
プレス密度A=粉末質量÷粉末体積 ・・・(P2)
式(P2)中、粉末体積とは、上記の式(P1)により算出した正極活物質Xの厚み(mm)と、治具43が正極活物質Xに接触する接触面43Aの面積との積である。
本実施形態において、45MPaの圧力でリチウム金属複合酸化物の粉末を圧縮したときのプレス密度Aと、リチウム金属複合酸化物の粉末のタップ密度Bとの比(A/B)が、1.80以上であることが好ましく、1.85以上がより好ましく、1.90以上が特に好ましい。
また、比(A/B)は5.00以下が好ましく、4.00以下がより好ましく、3.00以下が特に好ましい。
上記上限値及び下限値は任意に組み合わせることができる。
組み合わせの例としては、1.80以上5.00以下、1.85以上4.00以下、1.90以上3.00以下が挙げられる。
比(A/B)が上記下限値未満の正極活物質は、正極活物質の粒子の表面が粗い、又は正極活物質の粒子の形状がいびつであり、タップ密度は高くでも外力をかけた際に正極活物質の粒子が動きにくく、空隙に入り込まずに電極を作成した際の密度が上がりにくい。
タップ密度は、JIS R 1628−1997記載の方法で求めた値を用いる。
(正極活物質シートの製造)
正極活物質と、Li3BO3とを正極活物質:Li3BO3=80:20(モル比)の組成になるように混合し、混合粉を得る。得られた混合粉に、樹脂バインダー(エチルセルロース)と、可塑剤(フタル酸ジオクチル)と、溶媒(アセトン)とを、混合粉:樹脂バインダー:可塑剤:溶媒=100:10:10:100(質量比)の組成となるように加え、遊星式攪拌・脱泡装置を用いて混合する。
正極活物質シートと、Li6.75La3Zr1.75Nb0.25O12の固体電解質ペレット(例えば、株式会社豊島製作所製)とを積層し、積層方向と平行に一軸プレスして積層体を得る。
上記の方法で作製したハーフセルを用いて、以下に示す条件で初回充放電試験を実施し、初回充放電効率を算出する。
上記の方法で作製したハーフセルを用いて、以下に示す条件で充放電試験を実施し、1サイクル目の放電容量を、初期放電容量として算出する。
・試験条件
試験温度25℃
充電最大電圧4.3V、充電電流0.01CA、カットオフ電流0.002CA 定電流定電圧充電
放電最小電圧2.5V、放電電流0.01CA、定電流放電
本実施形態の正極活物質は、正極活物質を構成する粒子が、一次粒子と、一次粒子が凝集して形成された二次粒子と、一次粒子及び二次粒子とは独立して存在する単粒子と、からなることが好ましい。
単粒子の平均粒子径を測定する場合、20000倍の拡大視野において、一視野に含まれる単粒子の全てを測定対象とする。一視野に含まれる単粒子が50個未満である場合には、測定数が50個以上となるまで複数視野の単粒子を測定対象とする。
二次粒子の平均粒子径を測定する場合、20000倍の拡大視野において、一視野に含まれる二次粒子の全てを測定対象とする。一視野に含まれる二次粒子が50個未満である場合には、測定数が50個以上となるまで複数視野の二次粒子を測定対象とする。
本実施形態において正極活物質は、正極活物質を構成するリチウム金属複合酸化物の粒子の表面に、金属複合酸化物からなる被覆層を有することが好ましい。
本実施形態の正極活物質が含有するリチウム金属複合酸化物を製造するにあたって、まず、目的物であるリチウム金属複合酸化物を構成する金属のうちリチウム以外の金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム化合物と、不活性溶融剤と焼成することが好ましい。
金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。
金属複合化合物は、通常公知の共沈殿法により製造することが可能である。共沈殿法としては、通常公知のバッチ式共沈殿法又は連続式共沈殿法を用いることができる。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、金属複合化合物の製造方法を詳述する。
なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。混合液のpHは、反応槽からサンプリングした混合液の温度が、40℃になったときに測定する。
連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプの反応槽を用いることができる。
本工程では、上記金属複合酸化物又は金属複合水酸化物を乾燥させた後、金属複合酸化物又は金属複合水酸化物とリチウム化合物とを混合する。また、本実施形態において、金属複合酸化物又は金属複合水酸化物とリチウム化合物を混合する際に、同時に不活性溶融剤を混合することが好ましい。
水酸化リチウムが不純物として炭酸リチウムを含む場合には、水酸化リチウム中の炭酸リチウムの含有率は、5質量%以下であることが好ましい。
1)金属複合酸化物又は金属複合水酸化物が酸化又は還元されない条件。具体的には、酸化物が酸化物のまま維持される乾燥条件、水酸化物が水酸化物のまま維持される乾燥条件である。
2)金属複合水酸化物が酸化される条件。具体的には、水酸化物が酸化物に酸化される乾燥条件である。
3)金属複合酸化物が還元される条件。具体的には、酸化物が水酸化物に還元される乾燥条件である。
水酸化物が酸化される条件のためには、乾燥時の雰囲気に酸素又は空気を使用すればよい。
正極活物質の粒子表面に被覆層を形成する場合、まずは被覆材原料及びリチウム金属複合酸化物を混合する。次に必要に応じて熱処理することによりリチウム金属複合酸化物の粒子の表面にリチウム金属複合酸化物からなる被覆層を形成できる。
例えば、製造するリチウム金属複合酸化物の焼成温度よりも、製造する被覆層の焼成温度のほうが低い場合に、このような製造方法を適用するのが好ましい。
また、リチウム金属複合酸化物の焼成温度と被覆層の焼成温度に大きな差がない場合にも、このような製造方法により被覆層を形成できる。ここで「大きな差」とは、例えば300℃以上の差がある場合が挙げられる。
本実施形態の正極活物質が単粒子及び二次粒子を含む場合、上述した正極活物質の製造方法1から、以下の変更を行うことで、正極活物質を製造することができる。
正極活物質の製造方法2においては、金属複合化合物の製造工程において、最終的に単粒子を形成する金属複合化合物と、二次粒子を形成する金属複合化合物をそれぞれ製造する。以下において、最終的に単粒子を形成する金属複合化合物を「単粒子前駆体」と記載することがある。また、最終的に二次粒子を形成する金属複合化合物を「二次粒子前駆体」と記載することがある。
リチウム金属複合酸化物の製造工程においては、上述の工程で得られた単粒子前駆体、二次粒子前駆体としての上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム化合物と混合する。単粒子前駆体、二次粒子前駆体は、乾燥後に、適宜分級を行ってもよい。
また、本実施形態の正極活物質が単粒子及び二次粒子を含む場合、上述した正極活物質の製造方法1により、単粒子から構成される第1のリチウム金属複合酸化物と、二次粒子から構成される第2のリチウム金属複合酸化物とを、それぞれ製造し、第1のリチウム金属複合酸化物及び第2のリチウム金属複合酸化物を混合することにより製造できる。
次いで、全固体リチウムイオン電池の構成を説明しながら、本発明の一態様に係る全固体リチウムイオン電池正極活物質を全固体リチウムイオン電池の正極活物質として用いた正極、及びこの正極を有する全固体リチウムイオン電池について説明する。本実施形態の全固体リチウムイオン電池は二次電池である。
各部材を構成する材料については、後述する。
本実施形態の正極110は、正極活物質層111と正極集電体112とを有している。
本実施形態の正極活物質層111が有してもよい固体電解質としては、リチウムイオン伝導性を有し、公知の全固体電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質、有機電解質を挙げることができる。無機電解質としては、酸化物系固体電解質、硫化物系固体電解質、水素化物系固体電解質を挙げることができる。有機電解質としては、ポリマー系固体電解質を挙げることができる。
酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物、ガーネット型酸化物などが挙げられる。
式中、M1は、B、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeからなる群から選ばれる1種以上の元素である。
式中、M2は、Ti、Zr、Ge、In、Ga、Sn及びAlからなる群から選ばれる1種以上の元素である。
式中、m、n、o、p及びqは、任意の正数である。
式中、M3は、Si、Ge、及びTiからなる群から選ばれる1種以上の元素である。
式中、M4は、P、As及びVからなる群から選ばれる1種以上の元素である。
硫化物系固体電解質としては、Li2S−P2S5系化合物、Li2S−SiS2系化合物、Li2S−GeS2系化合物、Li2S−B2S3系化合物、Li2S−P2S3系化合物、LiI−Si2S−P2S5、LiI−Li2S−P2O5、LiI−Li3PO4−P2S5、Li10GeP2S12などを挙げることができる。
水素化物系固体電解質材料としては、LiBH4、LiBH4−3KI、LiBH4−PI2、LiBH4−P2S5、LiBH4−LiNH2、3LiBH4−LiI、LiNH2、Li2AlH6、Li(NH2)2I、Li2NH、LiGd(BH4)3Cl、Li2(BH4)(NH2)、Li3(NH2)I、Li4(BH4)(NH2)3などを挙げることができる。
本実施形態の正極活物質層111が有してもよい導電材としては、炭素材料や金属化合物を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、適切な量を正極活物質層111に添加することにより正極110の内部の導電性を高め、充放電効率及び出力特性を向上させることができる。一方、カーボンブラックの添加量が多すぎると、正極活物質層111と正極集電体112との結着力、及び正極活物質層111内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。金属化合物としては電気導電性を有する金属、金属合金や金属酸化物が挙げられる。
正極活物質層111がバインダーを有する場合、バインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド系樹脂、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
本実施形態の正極110が有する正極集電体112としては、Al、Ni、ステンレス、Auなどの金属材料を形成材料とするシート状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質、導電材を含むこととしてもよい。固体電解質、導電材、バインダーは、上述したものを用いることができる。
負極活物質層121が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極110よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
負極120が有する負極集電体122としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
固体電解質層130は、上述の固体電解質(第1の固体電解質)を有している。正極活物質層111に固体電解質が含まれる場合、固体電解質層130を構成する固体電解質(第1の固体電解質)と、正極活物質層111に含まれる固体電解質(第2の固体電解質)とが同じ物質であってもよい。固体電解質層130は、リチウムイオンを伝達する媒質として機能するとともに、正極110と負極120とを分けるセパレータとしても機能する。
(3−1)(3−1−1)のいずれか1つに記載の正極活物質、又は(3−2)(3−2−1)(3−3)(3−3−1)(3−3−2)(3−4)(3−4−1)(3−4−2)のいずれか1つに記載の正極を含む全固体リチウムイオン電池。
正極と負極とが短絡しないように、固体電解質層を正極と負極とを接触させて提供すること、及び、外部電源により、前記正極に負の電位、前記負極に正の電位を印加することを含み、前記正極は、リチウム金属複合酸化物の結晶を含む粒子を含み、前記リチウム金属複合酸化物は、層状構造を有し、且つ少なくともLiと遷移金属とを含有し、前記リチウム金属複合酸化物は、CuKα線を使用した粉末X線回折測定において、2θ=44.4±1°の範囲の回折ピークの積分強度I104と、2θ=18.5±1°の範囲内の回折ピークの積分強度I003との比I003/I104が1.23を超え、45MPaの圧力で全固体リチウムイオン電池用正極活物質を圧縮したときのプレス密度が2.90g/cm3以上である、全固体リチウムイオン電池の充電方法。
正極と負極とが短絡しないように、固体電解質層を正極と負極とを接触させて提供すること、外部電源により、前記正極に負の電位、前記負極に正の電位を印加して全固体リチウムイオン電池を充電すること、及び、充電された前記全固体リチウムイオン電池の前記正極及び前記負極に放電回路を接続することを含み、前記正極は、リチウム金属複合酸化物の結晶を含む粒子を含み、前記リチウム金属複合酸化物は、層状構造を有し、且つ少なくともLiと遷移金属とを含有し、前記リチウム金属複合酸化物は、CuKα線を使用した粉末X線回折測定において、2θ=44.4±1°の範囲の回折ピークの積分強度I104と、2θ=18.5±1°の範囲内の回折ピークの積分強度I003との比I003/I104が1.23を超え、45MPaの圧力で全固体リチウムイオン電池用正極活物質を圧縮したときのプレス密度が2.90g/cm3以上である、全固体リチウムイオン電池の放電方法。
後述の方法で製造される正極活物質の組成分析は、得られた正極活物質の粒子を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
粉末X線回折測定は、X線回折装置(株式会社リガク製UltimaIV)を用いて行った。リチウム金属複合酸化物粉末を専用の基板に充填し、Cu−Kα線源を用いて、回折角2θ=10°〜90°、サンプリング幅0.02°、スキャンスピード4°/minの条件にて測定を行うことで、粉末X線回折図形を得た。
統合粉末X線解析ソフトウェアJADEを用い、得られた粉末X線回折図形から、2θ=44.4±1°の範囲の回折ピークの積分強度I104と、2θ=18.5±1°の範囲内の回折ピークの積分強度I003とを求め、その比(I003/I104)を算出した。
プレス密度は、図3に示すプレス密度測定装置40を用いて測定した。
粉末Xの厚み(mm)=LB+Lx−LA−LC ・・・(P1)
プレス密度A=粉末質量÷粉末体積 ・・・(P2)
式(P2)中、粉末体積とは、上記の式(P1)により算出した粉末Xの厚み(mm)と、治具43が粉末Xに接触する接触面43Aの面積との積である。
(正極活物質1の製造)
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
粉砕条件は、5Lポリタンクに硫酸カリウムを2kg仕込み、φ15mmのアルミナボールを5kg挿入して、ボールミル回転数を93rpmとして6時間粉砕した。
スラリーを脱水し、得られた固形物を、上記スラリーの調整に用いた混合物1の2倍の質量の水温5℃の純水ですすぐ、リンス工程を実施した。固形物を再度脱水し、80℃で15時間真空乾燥させた後、150℃で8時間真空乾燥させることで、正極活物質1を得た。
正極活物質1の組成分析を行い、組成式(A)に対応させたところ、x=0.05、y=0.08、z=0.04、w=0であった。
(正極活物質2の製造)
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子の原子比が0.91:0.07:0.02となる割合で混合して、混合原料液を調製したこと、及び反応槽内の溶液のpHを12.3(水溶液の液温が40℃のとき)となるように水酸化ナトリウム水溶液を適時滴下したこと以外は、実施例1と同様にして、ニッケルコバルトマンガン複合水酸化物2を得た。
粉砕条件は、5Lポリタンクに硫酸カリウムを2kg仕込み、φ15mmのアルミナボールを5kg挿入して、ボールミル回転数を93rpmとして6時間粉砕した。
[ターボスクリーナの運転条件、篩別条件]
得られたリチウム金属複合酸化物を、ターボスクリーナ(TS125×200型、フロイント・ターボ株式会社製)で篩分けした。ターボスクリーナの運転条件は下記の通りとした。
(ターボスクリーナ運転条件)
使用スクリーン:45μmメッシュ、ブレード回転数:1800rpm、供給速度:50kg/時間
正極活物質2の組成分析を行い、組成式(A)に対応させたところ、x=0.02、y=0.07、z=0.02、w=0であった。
(正極活物質E2の製造)
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子の原子比が0.91:0.07:0.02となる割合で混合して、混合原料液を調製したこと、及び反応槽内の溶液のpHを12.3(水溶液の液温が40℃のとき)になるように水酸化ナトリウム水溶液を適時滴下したこと以外は、実施例1と同様にして、ニッケルコバルトマンガン複合水酸化物3を得た。
正極活物質E2の組成分析を行い、組成式(A)に対応させたところ、x=0.02、y=0.07、z=0.02、w=0であった。
(正極活物質4の製造)
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
ARTECH ULTRASONIC SYSTEMS社製超音波発生器(型番:PNS35−50−S)により超音波振動(出力50W)を200mmステンレス製篩(目開き45μm)に与え手で濾しながら篩別した。
正極活物質4の組成分析を行い、組成式(A)に対応させたところ、x=0.55、y=0.20、z=0.25、w=0であった。
(正極活物質シートの製造)
前述した製造方法で得られる正極活物質と、Li3BO3とを正極活物質:Li3BO3=80:20(モル比)の組成になるように混合し、混合粉を得た。得られた混合粉に、樹脂バインダー(エチルセルロース)と、可塑剤(フタル酸ジオクチル)と、溶媒(アセトン)とを、混合粉:樹脂バインダー:可塑剤:溶媒=100:10:10:100(質量比)の組成となるように加え、遊星式攪拌・脱泡装置を用いて混合した。
正極活物質シートと、Li6.75La3Zr1.75Nb0.25O12の固体電解質ペレット(株式会社豊島製作所製)とを積層し、積層方向と平行に一軸プレスして積層体を得た。用いた固体電解質ペレットは、直径15.0mm、厚み0.5mmであった。
上記の方法で作製したハーフセルを用いて、以下に示す条件で充放電試験を実施し、1サイクル目の放電容量を、初期放電容量として算出した。
・試験条件
試験温度25℃
充電最大電圧4.3V、充電電流0.01CA、カットオフ電流0.002CA 定電流定電圧充電
放電最小電圧2.5V、放電電流0.01CA、定電流放電
(リチウム二次電池用正極の作製)
後述する製造方法で得られる正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N−メチル−2−ピロリドンを有機溶媒として用いた。
以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
上記の方法で作製したハーフセルを用いて、以下に示す条件で充放電試験を実施し、1サイクル目の放電容量を、初期放電容量として算出した。
・サイクル試験条件
試験温度25℃
充電最大電圧4.2V、充電電流0.2CA、カットオフ電流0.05CA、定電流定電圧充電
放電最小電圧2.5V、放電電流0.2CA、定電流放電
全固体電池の初期放電容量を、液系リチウム二次電池の初期放電容量で除した値を「正極材利用率」として算出した。
評価結果を表1に示す。
Claims (15)
- リチウム金属複合酸化物の結晶を含む粒子からなる全固体リチウムイオン電池用正極活物質であって、
前記リチウム金属複合酸化物は、層状構造を有し、且つ少なくともLiと遷移金属とを含有し、
前記リチウム金属複合酸化物は、CuKα線を使用した粉末X線回折測定において、2θ=44.4±1°の範囲の回折ピークの積分強度I104と、2θ=18.5±1°の範囲内の回折ピークの積分強度I003との比I003/I104が1.23を超え、
45MPaの圧力で全固体リチウムイオン電池用正極活物質を圧縮したときのプレス密度が2.90g/cm3以上である、全固体リチウムイオン電池用正極活物質。 - 酸化物固体電解質を含む全固体リチウムイオン電池に用いられる請求項1に記載の全固体リチウムイオン電池用正極活物質。
- 45MPaの圧力で全固体リチウムイオン電池用正極活物質を圧縮したときのプレス密度Aと、リチウム金属複合酸化物の粉末のタップ密度Bとの比(A/B)が、1.80以上である、請求項1又は2に記載の全固体リチウムイオン電池用正極活物質。
- 前記遷移金属が、Ni、Co、Mn、Ti、Fe、V及びWからなる群から選ばれる少なくとも1種である請求項1〜3のいずれか1項に記載の全固体リチウムイオン電池用正極活物質。
- 前記リチウム金属複合酸化物は、下記に示す組成式(A)で表される請求項4に記載の全固体リチウムイオン電池用正極活物質。
Li[Lix(Ni(1−y−z−w)CoyMnzMw)1−x]O2 組成式(A)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、−0.10≦x≦0.30、0<y≦0.40、0≦z≦0.40、及び0≦w≦0.10を満たす。) - 前記組成式(A)において1−y−z−w≧0.50、かつy≦0.30を満たす請求項5に記載の全固体リチウムイオン電池用正極活物質。
- 前記粒子は、一次粒子と、前記一次粒子が凝集して形成された二次粒子と、前記一次粒子及び前記二次粒子とは独立して存在する単粒子と、から構成され、
前記粒子における前記単粒子の含有率は、20%以上である請求項1〜6のいずれか1項に記載の全固体リチウムイオン電池用正極活物質。 - 前記粒子は、前記粒子の表面に金属複合酸化物からなる被覆層を有する請求項1〜7のいずれか1項に記載の全固体リチウムイオン電池用正極活物質。
- 請求項1〜8のいずれか1項に記載の全固体リチウムイオン電池用正極活物質を含む電極。
- 固体電解質をさらに含む請求項9に記載の電極。
- 正極と、負極と、前記正極と前記負極とに挟持された固体電解質層と、を有し、
前記固体電解質層は、第1の固体電解質を含み、
前記正極は、前記固体電解質層に接する正極活物質層と、前記正極活物質層が積層された集電体と、を有し、
前記正極活物質層は、請求項1〜8のいずれか1項に記載の全固体リチウムイオン電池用正極活物質又は請求項9もしくは10に記載の電極を含む全固体リチウムイオン電池。 - 前記正極活物質層は、前記全固体リチウムイオン電池用正極活物質と、第2の固体電解質とを含む請求項11に記載の全固体リチウムイオン電池。
- 前記第1の固体電解質と、前記第2の固体電解質とが同じ物質である請求項12に記載の全固体リチウムイオン電池。
- 前記第1の固体電解質は、非晶質構造を有する請求項11〜13のいずれか1項に記載の全固体リチウムイオン電池。
- 前記第1の固体電解質は、酸化物固体電解質である請求項11〜14のいずれか1項に記載の全固体リチウムイオン電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020006338A JP6826680B1 (ja) | 2020-01-17 | 2020-01-17 | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
KR1020227023646A KR20220129544A (ko) | 2020-01-17 | 2021-01-15 | 전고체 리튬 이온 전지용 정극 활물질, 전극 및 전고체 리튬 이온 전지 |
PCT/JP2021/001332 WO2021145444A1 (ja) | 2020-01-17 | 2021-01-15 | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
US17/792,621 US20230106687A1 (en) | 2020-01-17 | 2021-01-15 | Positive electrode active material for all-solid-state lithium-ion batteries, electrode and all-solid-state lithium-ion battery |
CN202180008783.6A CN114982014A (zh) | 2020-01-17 | 2021-01-15 | 全固态锂离子电池用正极活性物质、电极及全固态锂离子电池 |
EP21741166.9A EP4092782A1 (en) | 2020-01-17 | 2021-01-15 | Positive electrode active material for all-solid-state lithium ion batteries, electrode and all-solid-state lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020006338A JP6826680B1 (ja) | 2020-01-17 | 2020-01-17 | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6826680B1 true JP6826680B1 (ja) | 2021-02-03 |
JP2021114409A JP2021114409A (ja) | 2021-08-05 |
Family
ID=74228076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020006338A Active JP6826680B1 (ja) | 2020-01-17 | 2020-01-17 | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230106687A1 (ja) |
EP (1) | EP4092782A1 (ja) |
JP (1) | JP6826680B1 (ja) |
KR (1) | KR20220129544A (ja) |
CN (1) | CN114982014A (ja) |
WO (1) | WO2021145444A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022146273A (ja) * | 2021-03-22 | 2022-10-05 | プライムプラネットエナジー&ソリューションズ株式会社 | リチウムイオン二次電池 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7373008B2 (ja) * | 2022-03-31 | 2023-11-01 | 住友化学株式会社 | アルカリ金属含有重合体、並びにそれを含む電解質組成物及び電池 |
KR20240095715A (ko) * | 2022-12-16 | 2024-06-26 | 포스코홀딩스 주식회사 | 전고체 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 전고체 전지 |
CN118419895A (zh) * | 2024-04-18 | 2024-08-02 | 深圳市日月欣自动化设备有限公司 | 一种纳电负极材料炭化全自动生产工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007123255A (ja) * | 2005-09-27 | 2007-05-17 | Ishihara Sangyo Kaisha Ltd | リチウム・遷移金属複合酸化物及びその製造方法並びにそれを用いてなるリチウム電池 |
JP2011082150A (ja) * | 2009-09-09 | 2011-04-21 | Hitachi Maxell Ltd | 電気化学素子用電極及びそれを用いた電気化学素子 |
JP2015195155A (ja) * | 2014-03-19 | 2015-11-05 | 出光興産株式会社 | 固体電解質及び電池 |
JP2017199665A (ja) * | 2016-04-25 | 2017-11-02 | パナソニックIpマネジメント株式会社 | 電池製造方法、および、電池製造装置 |
JP2019160571A (ja) * | 2018-03-13 | 2019-09-19 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61143116A (ja) | 1984-12-17 | 1986-06-30 | Dynic Corp | 成形シ−トの製造方法 |
JPS6461504A (en) | 1987-08-27 | 1989-03-08 | Shinpuru Riyuutsuu Syst Kk | Wig wearing method |
JP3959915B2 (ja) * | 1999-12-27 | 2007-08-15 | ソニー株式会社 | 非水電解液電池 |
JP2002201028A (ja) | 2000-11-06 | 2002-07-16 | Tanaka Chemical Corp | 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法 |
CA2469367A1 (en) * | 2004-05-28 | 2005-11-28 | Nippon Chemical Industrial Co., Ltd | Lithium cobalt oxide, method for manufacturing the same, and nonaqueous electrolyte secondary battery |
CN100585922C (zh) * | 2006-12-15 | 2010-01-27 | 中国电子科技集团公司第十八研究所 | 锂离子电池正极材料氧化镍钴锰锂的制备方法 |
CN101585560B (zh) * | 2008-05-21 | 2011-08-17 | 比亚迪股份有限公司 | 一种锂离子电池正极材料及其制备方法及电池 |
US8871113B2 (en) * | 2010-03-31 | 2014-10-28 | Samsung Sdi Co., Ltd. | Positive active material, and positive electrode and lithium battery including positive active material |
CN102237510B (zh) * | 2010-04-29 | 2013-10-02 | 比亚迪股份有限公司 | 一种正极活性材料及其制备方法 |
JP2012243710A (ja) * | 2011-05-24 | 2012-12-10 | Sumitomo Electric Ind Ltd | 非水電解質電池用正極およびその製造方法と非水電解質電池 |
JP5626245B2 (ja) * | 2012-03-13 | 2014-11-19 | 東ソー株式会社 | リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途 |
JP6471025B2 (ja) * | 2014-06-27 | 2019-02-13 | 住友化学株式会社 | リチウム含有複合酸化物およびその製造方法 |
JP6603058B2 (ja) * | 2014-08-20 | 2019-11-06 | 住友化学株式会社 | リチウム含有複合酸化物の製造方法およびリチウム含有複合酸化物 |
JP6621443B2 (ja) | 2016-07-06 | 2019-12-18 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法 |
JP2020006338A (ja) | 2018-07-10 | 2020-01-16 | 株式会社栗本鐵工所 | 混練パドル、それを備えた混練装置、及び混練パドルの製造方法 |
-
2020
- 2020-01-17 JP JP2020006338A patent/JP6826680B1/ja active Active
-
2021
- 2021-01-15 CN CN202180008783.6A patent/CN114982014A/zh active Pending
- 2021-01-15 US US17/792,621 patent/US20230106687A1/en active Pending
- 2021-01-15 EP EP21741166.9A patent/EP4092782A1/en active Pending
- 2021-01-15 WO PCT/JP2021/001332 patent/WO2021145444A1/ja unknown
- 2021-01-15 KR KR1020227023646A patent/KR20220129544A/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007123255A (ja) * | 2005-09-27 | 2007-05-17 | Ishihara Sangyo Kaisha Ltd | リチウム・遷移金属複合酸化物及びその製造方法並びにそれを用いてなるリチウム電池 |
JP2011082150A (ja) * | 2009-09-09 | 2011-04-21 | Hitachi Maxell Ltd | 電気化学素子用電極及びそれを用いた電気化学素子 |
JP2015195155A (ja) * | 2014-03-19 | 2015-11-05 | 出光興産株式会社 | 固体電解質及び電池 |
JP2017199665A (ja) * | 2016-04-25 | 2017-11-02 | パナソニックIpマネジメント株式会社 | 電池製造方法、および、電池製造装置 |
JP2019160571A (ja) * | 2018-03-13 | 2019-09-19 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022146273A (ja) * | 2021-03-22 | 2022-10-05 | プライムプラネットエナジー&ソリューションズ株式会社 | リチウムイオン二次電池 |
JP7314191B2 (ja) | 2021-03-22 | 2023-07-25 | プライムプラネットエナジー&ソリューションズ株式会社 | リチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JP2021114409A (ja) | 2021-08-05 |
KR20220129544A (ko) | 2022-09-23 |
US20230106687A1 (en) | 2023-04-06 |
WO2021145444A1 (ja) | 2021-07-22 |
CN114982014A (zh) | 2022-08-30 |
EP4092782A1 (en) | 2022-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6650064B1 (ja) | 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池 | |
JP6742547B1 (ja) | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 | |
JP6780140B1 (ja) | 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池 | |
JP6705068B1 (ja) | 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池 | |
JP6734491B1 (ja) | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 | |
JP6826680B1 (ja) | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 | |
JP6850375B1 (ja) | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 | |
US20200313183A1 (en) | Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery | |
JP7194703B2 (ja) | 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池 | |
JP6810287B1 (ja) | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200306 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200306 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6826680 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |