CN102237510B - 一种正极活性材料及其制备方法 - Google Patents

一种正极活性材料及其制备方法 Download PDF

Info

Publication number
CN102237510B
CN102237510B CN2010101665926A CN201010166592A CN102237510B CN 102237510 B CN102237510 B CN 102237510B CN 2010101665926 A CN2010101665926 A CN 2010101665926A CN 201010166592 A CN201010166592 A CN 201010166592A CN 102237510 B CN102237510 B CN 102237510B
Authority
CN
China
Prior art keywords
solution
positive electrode
preparation
electrode active
active materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101665926A
Other languages
English (en)
Other versions
CN102237510A (zh
Inventor
王磊
游军飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN2010101665926A priority Critical patent/CN102237510B/zh
Publication of CN102237510A publication Critical patent/CN102237510A/zh
Application granted granted Critical
Publication of CN102237510B publication Critical patent/CN102237510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂离子电池技术领域,具体公开了一种正极活性材料及其制备方法。该正极活性材料包括三元复合氧化物,其通式为LiaNibCocMndMeO2,其中M为掺杂元素,0.97≤a≤1.06,b+c+d+e=1,0.05≤e/d≤0.15。该正极活性材料的制备方法包括:进行步骤S:将溶液A与溶液C并流加入到底液中沉淀,再将溶液B与溶液C并流加入到底液中沉淀;重复步骤S,后陈化,最后与锂源烧结得到。本发明所提供的元素掺杂的三元材料,其首次充放电效率有了大幅的提高,并且循环性能也有大幅增进。本发明的制备方法简单易行,可以大规模生产。

Description

一种正极活性材料及其制备方法
技术领域
本发明属于锂离子电池技术领域,尤其涉及一种正极活性材料及其制备方法。
背景技术
锂离子电池以其能量高、无污染等优点,越来越广泛地用于移动电话、数码相机等便携电子产品中,同时也作为汽车、空间站等大型设备的后备能源,随着其广泛的应用,对其各项性能的要求也不断提高。
现有广泛使用的正极活性材料一般为LiCoO2等Co系活性材料。但Co有毒,且价格较贵;LiCoO2在Li离子脱出时结构为Li1-xCoO2,当x>0.5时,其结构会发生不可逆变化,循环性能降低明显。同时现有LiCoO2的实际使用比容量也较低,只有约150mAh/g,较理论比容量约280mAh/g有较大差距,也不能得到高容量电池。
目前三元材料锂镍锰钴氧来克服它们各自的缺点后,三元材料取得了很大发展。三元材料锂镍锰钴氧是一种新型的锂离子电池正极材料,其具有安全性能好、价格相对较低,与电解液相容性好,循环性能优异等优点,但其导电性不甚理想,造成了首次放电容量较低,大倍率放电性能不佳。掺杂金属离子能提高其导电性能。
有文献公开了将锂源、镍源、钴源、锰源和铬源或镁源,按化学计量比混合,置于研钵中,研磨一段时间后,加入适合的去离子水或其他溶剂继续研磨到流变态,按后干燥研磨烧结,即得掺杂的三元材料锂镍锰钴氧。还有文献公开了一种多元复合锂离子电池材料及其制备方法,其采用液相共沉淀法,先共沉淀出前驱体镍锰钴氢氧化物,沉淀的粉体过滤洗涤干燥,再与锂盐及Ti、Ce的氧化物或氢氧化物混合一起烧结,即得掺杂的多元复合锂离子电池材料。但是掺杂元素会造成正极材料的首次放电效率低,以及循环性能变差。
发明内容
本发明所要解决的技术问题是:现有技术中,三元材料的元素掺杂造成首次放电效率低,以及循环性能差的缺点;从而提供了一种首次充放电效率高、循环性能好的正极活性材料。
一种正极活性材料,其包括三元复合氧化物,其通式为LiaNibCocMndMeO2,其中M为掺杂元素,0.97≤a≤1.06,b+c+d+e=1,0.05≤e/d≤0.15;在使用Cu-Kα射线的X射线衍射中,104晶面衍射峰的2θ为44.5±0.5°、半峰宽为0.18°~0.23°,003晶面衍射峰与104晶面衍射峰的峰强比I003/I104≥1.6。
本发明的第二目的是提供了一种上述正极活性材料的制备方法。
一种上述正极活性材料的制备方法,其包括如下步骤:
(1)进行步骤S:将溶液A与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;再将溶液B与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;
重复步骤S,且重复次数不少于5次;沉淀过程中,控制底液中pH为10.5~12.0;
溶液A为含镍离子、钴离子、锰离子的溶液,溶液B为镍离子、钴离子、掺杂离子的溶液;所述溶液A与溶液B中镍离子与钴离子的浓度比相同;
溶液C为碱溶液,底液为络合剂溶液;
(2)待沉淀完毕后,陈化,得到正极材料前驱体;
(3)将正极材料前驱体和锂源在含氧气氛下烧结。
本发明所提供的元素掺杂的三元材料,其首次充放电效率有了大幅的提高,并且循环性能也有大幅增进。本发明的制备方法简单易行,可以大规模生产。
附图说明
图1是对比例1的XRD图谱。
图2是本发明一优选实施例的XRD图谱。
图3是本发明一优选实施例的SEM图谱。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种正极活性材料,其包括锰位掺杂的复合氧化物,其通式为LiaNibCocMndMeO2,其中M为掺杂元素,0.97≤a≤1.06,b+c+d+e=1,0.05≤e/d≤0.15;在使用Cu-Kα射线的X射线衍射中,104晶面衍射峰的2θ为44.5±0.5°,半峰宽为0.18°~0.23°;003晶面衍射峰与104晶面衍射峰的峰强比I003/I104≥1.6。
本发明的掺杂元素M为金属元素,一般为Al、Ce、Cr、Ti、V、Mg、Cu、Zn、Ag、Pr、Nd、Pm、W、Mo等,本发明优选M选自Mg、Al、Cu和Zn中一种或几种。
本发明优选正极材料的平均粒径为7~16μm。
一种上述正极材料的制备方法,其包括如下步骤:
(1)进行步骤S:将溶液A与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;再将溶液B与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;
重复步骤S,且重复次数不少于5次;沉淀过程中,控制底液中pH为10.5~12.0;
溶液A为含镍离子、钴离子、锰离子的溶液,溶液B为镍离子、钴离子、掺杂离子的溶液;所述溶液A与溶液B中镍离子与钴离子的浓度比相同;
溶液C为碱溶液,底液为络合剂溶液;
(2)待沉淀完毕后,陈化,得到正极材料前驱体;
(3)将正极材料前驱体和锂源在含氧气氛下烧结。
其中,溶液A为将镍源、钴源以及锰源溶于水中制成。溶液B为将镍源、钴源以及掺杂元素源溶于水中制成。
镍源、锰源、钴源以及掺杂元素源均为本领领域技术人员所公知的,例如其可溶性硫酸盐、盐酸盐、硝酸盐等。本发明优选硫酸盐。
优选地,溶液A的金属离子总浓度1.0~5.0mol/L,溶液B的金属离子总浓度为0.1~0.5mol/L。
溶液C为沉淀剂溶液,沉淀剂为本领域技术人员所公知的,一般为氢氧化物。例如NaOH,LiOH等。
本发明优选沉淀剂的浓度为3.0~10mol/L。
本发明的底液为络合剂溶剂,络合剂用于络合各金属离子,控制反应的进程。
本发明的络合剂优选为氨水、乙二胺、乙二醇、十二至十六烷基磺酸钠。沉淀开始前底液中络合剂的浓度优选为0.1~1.0mol/L。
随着反应的进行,底液体积的增大,络合剂浓度下降,需要补充络合剂以增大其浓度。
可以采取额外滴加络合剂到底液中的方式来增大其浓度,也可以采用含络合剂的溶液C,来增加其浓度。
本发明优选采用含络合剂的溶液C。
为了避免环境对正极材料的影响,本发明优选排出底液中溶解氧,可以采用通入气体的方法来排氧。还可以采用去整个沉淀反应在惰性气氛下进行等措施来避免环境对正极材料制备的影响。
操作开始时,进行步骤S:先将溶液A与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;再将溶液B与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;然后重复步骤S。
其中,ppm为重量百分率,这是本领域技术人员所公知的,本发明是指镍离子质量占底液总质量的百分率。
优选地,步骤S中的溶液A加入量为反应釜内部体积的1/10~1/30,溶液B的加入量根据掺杂元素与Mn元素的比例关系(0.05≤e/d≤0.15)来确定。
上述溶液的滴加速度为0.01~0.03V反应釜/h。其中V反应釜为反应釜的内部体积。
通过研究发现,当步骤S的重复次数大于20(即步骤S总共进行21次),正极材料性能增长幅度较小。本发明优选步骤S的重复次数为5~20次。这样既可以保证较好的正极材料性能,又可以减少工艺的复杂性。
沉淀过程中,优选控制搅拌速率为300~600r/min,温度30~50℃。
沉淀完毕后,本发明优选将沉淀体系陈化5~10h,以促进沉淀的进一步转变。
待陈化完毕后,将沉淀物从体系中分离出来,可以选择过滤、抽滤、离心分离等固液分离手段来分离。然后用大量的去离子水冲洗沉淀物,再干燥得到正极材料前驱体。
步骤(2)将正极材料前驱体和锂源在含氧气氛下烧结。
锂源为本领域技术人员所公知的,例如LiOH、LiNO3、Li2CO3等。本发明优选锂源为LiOH和Li2CO3混合锂源。采用LiOH作为锂源,烧结出的正极材料的材料密度较高,而Li2CO3烧结出的正极材料离子微通道多。混合锂源能综合两者的优点,烧结出的材料综合性能更优。
更优选,锂源中LiOH与Li2CO3的摩尔比为2~4∶1。
优选地,本发明锂源的添加量按摩尔比Li∶(Ni+Co+Mn)=1.05~1.1∶1的比例加入。
含氧气氛为本领域技术人员所公知的,例如空气气氛、纯氧气氛、以及0族气体和氧气的混合气氛。更优选氧分压为21.21Kpa~101.33KPa。
烧结操作为本领域技术人员所公知的,本发明优选在800~900℃恒温烧结10~15h。
更优选地,分为二段烧结:先在450℃~650℃,处理3~6h,再800~900℃恒温烧结10~15h。
本发明的发明人意外发现通过本发明的制备方法制出的正极材料避免了首次充放电效率降低,循环性能变差的现象。本发明的发明人推测的原因是:现有技术中烧结法进行元素掺杂,掺杂元素分步不均,导致正极材料材料性能不佳。沉淀法进行元素掺杂,掺杂元素随机取代Ni位、Co位或者Mn位。掺杂元素取代Ni、Co位,并不能改善该正极材料的电化学性能,反而还会造成容量的衰减和循环性能的恶化等不良现象。本发明通过分步沉淀镍钴锰共沉淀晶体、镍钴掺杂元素共沉淀晶体,以上两种晶体相互交错生长,由于较好控制了上述共沉淀体的镍钴元素比,并且两种晶型构型较为相似,从而实现锰位掺杂。本发明制备的正极活性材料其首次充放电效率高,循环性能好。
以下结合具体实施例对本发明作进一步的阐述。
实施例1最佳实施例
溶液A:将硫酸镍、硫酸钴和硫酸锰溶于水中制成溶液,其中Ni2+、Co2+、Mn2+浓度均为2/3mol/L
溶液B:将硫酸镍、硫酸钴和硫酸镁溶于水中制成溶液,其中Ni2+、Co2+、Mg2+浓度均为2/15mol/L
溶液C:5.6mol/L NaOH,4.8mol/L NH3·H2O的混合溶液
底液:2.0mol/L NH3·H2O
将20L底液倒入100L反应釜中,通入氮气排出反应釜以及底液中氧气。并持续通入氮气保证反应釜中惰性气氛。
将2.8L溶液A与溶液C并流加入到反应釜中,检测底液中Ni2+,直至低于2000ppm。再将1.1L溶液B与溶液C并流加入到反应釜中,检测底液中Ni2低于2000ppm。重复以上步骤13次。
沉淀过程中,控制搅拌速率为450r/min,并控制pH保持在11.0~12.0之间。
沉淀结束后,陈化8h,分离出沉淀物,用去离子水洗涤3次后,在110℃下干燥,制成正极材料前驱体。
将5mol正极材料前驱体,与3.31mol一水合氢氧化锂和1.04mol碳酸锂,用无水乙醇作分散剂,球磨混合均匀。烘干过筛后,通空气,以5min/℃的升温速率升温到450℃,恒温烧结5h;再以5min/℃的速率升温到950℃,恒温烧结10h。
制得正极材料,记作S1。
实施例2
与实施例1所不同的是,溶液B为将硫酸镍、硫酸钴和锰酸铝溶于水中制成溶液,其中Ni2+、Co2+、Al3+浓度均为2/15mol/L。
其他部分同实施例1。
制得正极材料,记作S2。
实施例3
与实施例1所不同的是,重复次数为5次,其他部分同实施例1。
制得正极材料,记作S3。
实施例4
与实施例1所不同的是,重复次数为20次,其他部分同实施例1。
制得正极材料,记作S4。
实施例5
与实施例1所不同的是,锂源为2.7mol碳酸锂。其他部分同实施例1。
制得正极材料,记作S5。
实施例6
与实施例1所不同的是,锂源为5.4mol一水合氢氧化锂。其他部分同实施例1。
制得正极材料,记作S6。
对比例1
溶液A:将硫酸镍、硫酸钴和硫酸锰溶于水中制成溶液,其中Ni2+、Co2+、Mn2+浓度均为2/3mol/L
溶液C:5.6mol/L NaOH,4.8mol/L NH3·H2O的混合溶液
底液:2.0mol/L NH3·H2O
将20L底液倒入100L反应釜中,通入氮气排出反应釜以及底液中氧气。并持续通入氮气保证反应釜中惰性气氛。并流滴加A溶液与C溶液,控制搅拌速率为450r/min,并控制pH保持在11.0~12.0之间,反应结束后,陈化8h,分离出沉淀物,用去离子水洗涤3次后,在110℃下干燥,制成正极材料前驱体。
取5mol正极活性前驱体、0.2mol硝酸铝、3.31mol一水合氢氧化锂和1.04mol碳酸锂,用无水乙醇作分散剂,球磨混合均匀。烘干过筛后,通空气,以5min/℃的升温速率升温到450℃,恒温烧结5h;再以5min/℃的速率升温到950℃,恒温烧结10h。
制得正极材料,记作D1。
性能测试:
首次充放电效率测试:
测试电池的制备:将正极材料、乙炔黑和PVDF按重量比为85∶10∶5溶于N-甲基吡咯烷酮中,高速分散机分散20min后取出在100℃的烘箱中烘干。研磨过筛后在模具中加入镍网8MPa下压制成片。与锂片组装成CR2016模拟电池;电解液为1moL/L LiPF6-EC+DEC+EMC,隔膜采用Cellgard 2400微孔隔膜,电池的组装在充有氩气的手套箱中进行操作。
在BK-6016AR柜(广州蓝奇电子实业有限公司)上以0.1C的电流恒流将上述模拟电池充电至4.3伏,接着4.3V恒压充电,设置截至电流0.01C。冲完电后以0.1C电流恒流将电池放电至3.0伏,记录首次放电容量和首次充电容量,首次充放电效率=首次放电容量/首次充电容量×100%。结果见表1。
循环容量测试:
测试电池的制备:(1)正极片的制备:将正极材料、乙炔黑和PVDF以重量比为100∶4∶5溶于N-甲基吡咯烷酮中,搅拌均匀后涂敷在铝箔上,烘烤,温度为100±5℃,使用压片机碾压到一定的厚度,滚切成正极片。(2)负极片的制备:将石墨、乙炔黑和PVDF以重量比为100∶3∶6溶于N-甲基吡咯烷酮中,搅拌均匀后涂敷在铜箔上,烘烤,温度为100±5℃,使用压片机碾压到一定的厚度,滚切成负极片。(3)将上述正、负极极片与20μm厚的聚丙烯隔膜卷绕成方形锂离子电池电芯,收置于电池壳中并进行焊接,随后注入1.0mol/LLiPF6/(EC+EMC+DMC)(其中EC、EMC和DMC质量比为1∶1∶1)电解液,密封,制成测试电池。
化成完成后,在室温下,先以1C恒流充电,截至电压4.2V,在4.2V恒压充电,截至电流0.1C,搁置5min,以1C恒流放电。重复500次,计算500次容量保持率。结果见表1。
表1
  材料   首次充放电效率   500次容量保持率
  S1   93.2%   92.5%
  S2   92.3%   90.2%
  S3   87.4%   89.4%
  S4   93.6%   92.8%
  S5   87.2%   86.7%
  S6   89.4%   89.6%
  D1   83.2%   81.5%
从表1可以看出:本发明的实施例相对于对比例其首次充放电效率以及500次容量保持率都有了大幅的提升,从而说明了本发明的正极活性材料的容量损失少,以及循环性能优异。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种正极活性材料的制备方法,其包括如下步骤:
(1)进行步骤S:将溶液A与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;再将溶液B与溶液C并流加入到底液中沉淀,待底液中镍离子低于2000ppm;
重复步骤S,且重复次数不少于5次;沉淀过程中,控制底液中pH为10.5~12.0;
溶液A为含镍离子、钴离子、锰离子的溶液,溶液B为镍离子、钴离子、掺杂离子的溶液;所述溶液A中镍离子和钴离子的浓度比为a,溶液B中镍离子与钴离子的浓度比为b,a与b相同;
溶液C为碱溶液,底液为络合剂溶液;
(2)待沉淀完毕后,陈化,得到正极材料前驱体;
(3)将正极材料前驱体和锂源在含氧气氛下烧结;
所述正极活性材料包括三元复合氧化物,其通式为LiaNibCocMndMeO2,其中M为掺杂元素,0.97≤a≤1.06,b+c+d+e=1, 0.05≤e/d≤0.15;
在使用Cu-Kα射线的X射线衍射中,104晶面衍射峰的2θ为44.5±0.5° 、半峰宽为0.18°~0.23°,003晶面衍射峰与104晶面衍射峰的峰强比I003/I104≥1.6。
2.根据权利要求1所述的正极活性材料的制备方法,其特征在于:M选自Mg、Al、Cu和Zn中一种或几种。
3.根据权利要求1所述的正极活性材料的制备方法,其特征在于:所述正极活性材料的平均粒径为7~16μm。
4.根据权利要求1所述的正极活性材料的制备方法,其特征在于:所述溶液C中还包括络合剂。
5.根据权利要求1所述的正极活性材料的制备方法,其特征在于:所述步骤S的重复次数为5~20。
6.根据权利要求1所述的正极活性材料的制备方法,其特征在于:沉淀过程中,控制搅拌速率为300~ 600r/min,温度30~50℃。
7.根据权利要求1所述的正极活性材料的制备方法,其特征在于:所述锂源为氢氧化锂和碳酸锂的混合锂源。
8.根据权利要求7所述的正极活性材料的制备方法,其特征在于:所述锂源中氢氧化锂和碳酸锂的摩尔比为2~4:1。
9.根据权利要求1所述的正极活性材料的制备方法,其特征在于:所述烧结为先在450℃~650℃恒温烧结3~6h,再在800~900℃恒温烧结10~15h。
CN2010101665926A 2010-04-29 2010-04-29 一种正极活性材料及其制备方法 Active CN102237510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101665926A CN102237510B (zh) 2010-04-29 2010-04-29 一种正极活性材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101665926A CN102237510B (zh) 2010-04-29 2010-04-29 一种正极活性材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102237510A CN102237510A (zh) 2011-11-09
CN102237510B true CN102237510B (zh) 2013-10-02

Family

ID=44887928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101665926A Active CN102237510B (zh) 2010-04-29 2010-04-29 一种正极活性材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102237510B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730653A (zh) * 2014-01-08 2014-04-16 山东精工电子科技有限公司 一种掺杂稀土元素的镍钴锰酸锂正极材料的制备方法
CN104091919B (zh) * 2014-07-29 2016-05-18 中国科学院福建物质结构研究所 一种锂离子电池正极材料及其制备方法
CN104852044A (zh) * 2015-04-28 2015-08-19 燕宏伟 一种用于电池的正极材料
CN105977475A (zh) * 2016-07-06 2016-09-28 中国科学院宁波材料技术与工程研究所 一种高容量锂离子电池正极材料及其制备和应用
CN106532037A (zh) * 2017-01-13 2017-03-22 哈尔滨工业大学 一种钒、钼掺杂锂离子电池正极材料的制备方法
CN107437616B (zh) * 2017-07-11 2020-03-10 贵州振华新材料股份有限公司 锂离子电池正极材料及锂离子电池
CN107634194B (zh) * 2017-08-31 2020-12-04 福建师范大学 直接沉淀制备镍钴锰三元材料的方法
CN107946591A (zh) * 2017-11-21 2018-04-20 山东理工大学 一种钠离子电池高镍前驱体及其与正极材料的制备方法
CN108878799B (zh) * 2018-04-24 2020-09-15 广东邦普循环科技有限公司 一种介孔硅酸铝锂包覆的掺杂型单晶三元正极材料及其制备方法
CN109524662A (zh) * 2018-11-09 2019-03-26 浙江德升新能源科技有限公司 一种结晶性良好的镍钴锰酸锂正极材料的制备方法
CN109461926B (zh) * 2018-11-09 2022-03-11 万华化学集团股份有限公司 一种锂离子电池正极材料及其制备方法、正极和锂离子电池
JP6826680B1 (ja) * 2020-01-17 2021-02-03 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
CN113839013A (zh) * 2020-06-08 2021-12-24 天津国安盟固利新材料科技股份有限公司 一种双金属元素共掺杂的正极材料及其制备方法
CN113443659B (zh) * 2021-06-25 2022-05-03 浙江帕瓦新能源股份有限公司 湿法掺杂与碳包覆共修饰的四元正极材料及其制备方法
CN116216796A (zh) * 2023-04-25 2023-06-06 荆门市格林美新材料有限公司 一种改性镍锰二元前驱体及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040090A (en) * 1997-04-15 2000-03-21 Sanyo Electric Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
CN101483265A (zh) * 2009-01-13 2009-07-15 深圳市贝特瑞新能源材料股份有限公司 金属氧化物锂离子电池正极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040090A (en) * 1997-04-15 2000-03-21 Sanyo Electric Co., Ltd. Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery
CN101483265A (zh) * 2009-01-13 2009-07-15 深圳市贝特瑞新能源材料股份有限公司 金属氧化物锂离子电池正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐爱东等.掺杂锂镍钴锰氧材料的合成及电化学性能.《电源技术》.2007,第31卷(第12期),第959-962页. *

Also Published As

Publication number Publication date
CN102237510A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
CN102237510B (zh) 一种正极活性材料及其制备方法
CN109273701B (zh) 高镍核壳结构梯度镍钴锰三元正极材料及其制备方法
CN102055012B (zh) 一种锂离子电池及其制备方法
CN109546123B (zh) 五氧化二钒包覆核壳结构梯度镍钴锰正极材料及制备方法
US20150118563A1 (en) Lithium-rich positive electrode material, lithium battery positive electrode, and lithium battery
CN102244236A (zh) 一种锂离子电池富锂正极材料的制备方法
CN105552327A (zh) 具有多层结构的锂金属氧化物复合正极材料和组成该材料的前驱体材料及其制备方法和应用
CN103855387A (zh) 一种改性的锂离子电池三元正极材料及其制备方法
CN103794776B (zh) 一种高电压、高压实锂离子电池复合正极材料及制备方法
CN103715409A (zh) 一种包覆型镍锰酸锂锂离子电池正极材料的制备方法
CN103887483A (zh) 一种掺杂改性的三元正极材料及其制备方法
CN105355907A (zh) 具有“年轮”式结构的锂金属氧化物前驱体材料和该材料制备的正极材料及制备方法和应用
CN104425809A (zh) 锂离子电池正极材料及其制备方法、含有该材料的锂离子电池
CN103178252B (zh) 一种锂离子电池正极材料及其制备方法
CN114843469B (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法
CN104795555A (zh) 一种水溶液钠离子电池及其正极材料、制备方法和用途
CN103078099A (zh) 一种锂离子电池正极材料及其制备方法
CN113845153A (zh) 一种多元高熵固溶体正极材料以及制备方法和用途
CN105185978A (zh) 用作负极活性物质的含锰氧化合物及其制备方法和用途
CN102315437B (zh) 动力锂离子电池高比容量富锂复合正极材料及其合成方法
CN106252594A (zh) 一种具有纳米级两相共存结构的球形锂离子电池正极材料及其合成方法
CN103872313B (zh) 锂离子电池正极材料LiMn2‑2xM(II)xSixO4及其制备方法
CN103280572A (zh) 一种锂离子电池正极三元材料及制备方法
CN1641914A (zh) 一种锂离子电池的正极材料及其制备方法
CN102185146A (zh) 稀土掺杂的磷酸锰锂正极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant