JP2017199665A - 電池製造方法、および、電池製造装置 - Google Patents

電池製造方法、および、電池製造装置 Download PDF

Info

Publication number
JP2017199665A
JP2017199665A JP2017082237A JP2017082237A JP2017199665A JP 2017199665 A JP2017199665 A JP 2017199665A JP 2017082237 A JP2017082237 A JP 2017082237A JP 2017082237 A JP2017082237 A JP 2017082237A JP 2017199665 A JP2017199665 A JP 2017199665A
Authority
JP
Japan
Prior art keywords
battery
unit
time point
press
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017082237A
Other languages
English (en)
Other versions
JP6934620B2 (ja
Inventor
本田 和義
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2017199665A publication Critical patent/JP2017199665A/ja
Application granted granted Critical
Publication of JP6934620B2 publication Critical patent/JP6934620B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】従来技術においては、過不足無く、電池部材のプレスを行うことが望まれる。
【解決手段】電池製造装置を用いた電池製造方法であって、前記電池製造装置は、プレス部と、測定部と、制御部と、を備え、前記プレス部により、電池部材をプレスする工程(a)と、前記工程(a)の後に、前記測定部により、前記プレス部によりプレスされた前記電池部材の特性を測定する工程(b)と、前記工程(b)の後に、前記制御部により、前記測定部による測定結果に応じて、前記プレス部による前記電池部材へのプレス状態を制御する工程(c)と、を包含する、電池製造方法。
【選択図】図1

Description

本開示は、電池製造方法、および、電池製造装置に関する。
特許文献1は、加圧と同時に振動を付与するプレス方法を開示している。
特開2012−089388号公報
従来技術においては、過不足無く、電池部材のプレスを行うことが望まれる。
本開示の一様態における電池製造方法は、電池製造装置を用いた電池製造方法であって、前記電池製造装置は、プレス部と、測定部と、制御部と、を備え、前記プレス部により、電池部材をプレスする工程(a)と、前記工程(a)の後に、前記測定部により、前記プレス部によりプレスされた前記電池部材の特性を測定する工程(b)と、前記工程(b)の後に、前記制御部により、前記測定部による測定結果に応じて、前記プレス部による前記電池部材へのプレス状態を制御する工程(c)と、を包含する。
本開示の一様態における電池製造装置は、電池部材をプレスするプレス部と、前記プレス部によりプレスされた前記電池部材の特性を測定する測定部と、前記測定部による測定結果に応じて、前記プレス部による前記電池部材へのプレス状態を制御する制御部と、を備える。
本開示によれば、過不足無く、電池部材のプレスを行うことができる。
図1は、実施の形態1における電池製造装置1000の概略構成を示す図である。 図2は、実施の形態1における電池製造方法を示すフローチャートである。 図3は、実施の形態1における電池製造装置1100の概略構成を示す図である。 図4は、実施の形態1における電池製造装置1200の概略構成を示す図である。 図5は、実施の形態1における電池製造装置1300の概略構成を示す図である。 図6は、実施の形態1における電池製造装置1400の概略構成を示す図である。 図7は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。 図8は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。 図9は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。 図10は、電池部材10の概略構成を示す断面図である。 図11は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。 図12は、電池部材10の概略構成を示す断面図である。 図13は、製造される電池の概略構成を示す断面図である。 図14は、電池部材10の概略構成を示す断面図である。 図15は、電池部材10の概略構成を示す断面図である。 図16は、実施の形態2における電池製造装置2000の概略構成を示す図である。 図17は、実施の形態2における電池製造方法を示すフローチャートである。 図18は、実施の形態2における電池製造方法を実行した際の測定電圧値を示す図である。 図19は、実施の形態2における電池製造方法を実行した際の測定電圧値を示す図である。 図20は、実施の形態3における電池製造装置3000の概略構成を示す図である。 図21は、実施の形態3における電池製造方法を示すフローチャートである。 図22は、実施の形態3における電池製造方法を実行した際の測定電流値を示す図である。
以下、本開示の実施の形態が、図面を参照しながら、説明される。
(実施の形態1)
図1は、実施の形態1における電池製造装置1000の概略構成を示す図である。
実施の形態1における電池製造装置1000は、プレス部100と、測定部200と、制御部300と、を備える。
プレス部100は、電池部材10をプレスする。
測定部200は、プレス部100によりプレスされた電池部材10の特性を測定する。
制御部300は、測定部200による測定結果に応じて、プレス部100による電池部材10へのプレス状態を制御する。例えば、制御部300は、測定部200による測定結果に応じて、プレス部100による電池部材10へのプレス状態を変化させる。
図2は、実施の形態1における電池製造方法を示すフローチャートである。
実施の形態1における電池製造方法は、実施の形態1における電池製造装置1000を用いた電池製造方法である。例えば、実施の形態1における電池製造方法は、実施の形態1における電池製造装置1000において実行される電池製造方法である。
実施の形態1における電池製造方法は、プレス工程S1001(=工程(a))と、測定工程S1002(=工程(b))と、制御工程S1003(=工程(c))と、を包含する。
プレス工程S1001は、プレス部100により、電池部材10をプレスする工程である。
測定工程S1002は、プレス工程S1001の後に、実行される工程である。測定工程S1002は、測定部200により、プレス部100によりプレスされた電池部材10の特性を測定する工程である。
制御工程S1003は、測定工程S1002の後に、実行される工程である。制御工程S1003は、制御部300により、測定部200による測定結果に応じて、プレス部100による電池部材10へのプレス状態を制御する工程である。例えば、制御工程S1003は、制御部300により、測定部200による測定結果に応じて、プレス部100による電池部材10へのプレス状態を変化させる工程である。
以上の製造装置または製造方法によれば、過不足無く、電池部材10のプレスを行うことができる。すなわち、例えば、プレスが過度になされることにより、電池部材10が損傷することを回避できる。また、例えば、プレスが不十分であることにより、電池部材10の内部の材料の密度、または、固体電解質と電極材料との密着性が不十分となることを回避できる。
プレス部100は、例えば、プレス体と、移動部と、を備えていてもよい。
プレス体は、プレス時に電池部材10に接触し、電池部材10を押圧する部材である。プレス体は、例えば、プレス台などであってもよい。
移動部は、プレス体と接続される。移動部は、プレス体を移動させる。移動部は、例えば、シリンダであってもよい。
制御部300により移動部が制御されることで、プレス体による電池部材10の押圧状態が制御されてもよい。
制御部300は、例えば、プロセッサとメモリとにより、構成されてもよい。当該プロセッサは、例えば、CPU(Central Processing Unit)またはMPU(Micro−Processing Unit)などであってもよい。このとき、当該プロセッサは、メモリに記憶されているプログラムを読み出して実行することで、本開示で示される制御方法(電池製造方法)を実行してもよい。
また、実施の形態1における電池製造装置1000において、制御部300は、測定結果に応じて、プレス部100による電池部材10へのプレス圧力を制御してもよい。
言い換えれば、実施の形態1における電池製造方法においては、制御工程S1003は、制御部300により、測定結果に応じて、プレス部100による電池部材10へのプレス圧力を制御するプレス圧力制御工程(=工程(c1))を含んでもよい。
以上の製造装置または製造方法によれば、適切なプレス圧力により、電池部材10のプレスを行うことができる。これにより、プレス圧力の過不足無く、電池部材10のプレスを行うことができる。
なお、上述の「プレス圧力の制御」は、例えば、プレス圧力を変化させる(強くする、または、弱くする)ことを意味してもよい。
また、実施の形態1における電池製造装置1000において、制御部300は、測定結果に応じて、プレス部100による電池部材10へのプレス時間を制御してもよい。
言い換えれば、実施の形態1における電池製造方法においては、制御工程S1003は、制御部300により、測定結果に応じて、プレス部100による電池部材10へのプレス時間を制御するプレス時間制御工程(=工程(c2))を含んでもよい。
以上の製造装置または製造方法によれば、適切なプレス時間の間、電池部材10のプレスを行うことができる。これにより、プレス時間の過不足無く、電池部材10のプレスを行うことができる。
なお、上述の「プレス時間の制御」は、例えば、プレス時間を変化させる(長くする、または、短くする)ことを意味してもよい。
実施の形態1における電池製造装置1000または電池製造方法においては、制御部300(制御工程S1003)は、例えば、測定部200で測定された電池部材10の特性が予め設定した設定値に達したとき、または、予め決められた測定信号を測定部200で検出したとき、または、予め決められた測定信号が測定部200で検出されなくなったとき、など、に所定の手順でプレス動作を終了してもよい。
このとき、当該プレス動作の終了は、例えば、直ちにプレスを中止する方法、または、徐々にプレス圧を低減する方法、または、一定時間を経てプレスを中止する方法、または、測定部200の測定信号を参照しながらプレス圧を低減する方法、または、複数の方法の組合せによる方法、など、であってもよい。
[製造装置の構成例]
以下、製造装置の具体的な構成例が、説明される。
図3は、実施の形態1における電池製造装置1100の概略構成を示す図である。
実施の形態1における電池製造装置1100は、上述の電池製造装置1000の構成に加えて、さらに、下記の構成を備える。
すなわち、実施の形態1における電池製造装置1100は、プレス部100として、プレス台111と、プレス台112と、シリンダ121と、シリンダ122と、を備える。
上下一対のプレス台である、プレス台111とプレス台112とは、電池部材10を上下から挟み込む。
プレス台111とプレス台112としては、金属平板、絶縁コートした金属平板、セラミック平板、ゴム平板、など、が用いられうる。もしくは、プレス台111とプレス台112としては、曲率を有する凸板または凹板、ローラー状の部材、内部に気体または液体を充填した袋状の部材、など、が用いられうる。
プレス台111には、シリンダ121が、接続される。シリンダ121は、プレス台111を移動させる。すなわち、シリンダ121により、プレス台111が上下する。
プレス台112には、シリンダ122が、接続される。シリンダ122は、プレス台112を移動させる。すなわち、シリンダ122により、プレス台112が上下する。
シリンダ121とシリンダ122の駆動には、例えば、空圧、水圧、油圧、直動モータ、ネジ式、その他の方式が、適宜、用いられうる。
なお、プレス時においては、シリンダ121のみが駆動しプレス台111のみによりプレスが実行されてもよい。このとき、実施の形態1における電池製造装置1100は、シリンダ122を備えない構成であってもよい。すなわち、プレス台112は、位置が固定された部材であってもよい。
また、実施の形態1における電池製造装置1100は、測定部200として、測定器部210と、プローブ部211と、端子部212と、を備える。
端子部212は、プレス台に設置されてもよい。もしくは、電池部材10が集電体を備える場合には、当該集電体が、端子部212として、用いられてもよい。端子部212は、例えば、電極、圧電素子、測温素子、など、であってもよい。もしくは、プレス台111とプレス台112とが、端子部212として、用いられてもよい。
プローブ部211は、端子部212に接続される。プローブ部211は、端子部212からの信号を、測定器部210に導く。プローブ部211は、例えば、電線、光ファイバー、など、であってもよい。また、プローブ部211は、一系統であっても、二系統であっても、三系統以上であってもよい。
測定器部210は、プローブ部211に接続される。測定器部210は、プローブ部211からの信号を計測する。測定器部210は、例えば、抵抗測定器、充放電装置、電圧計、電流計、測温計、カメラ、音響計、など、であってもよい。なお、測定器部210と制御部300とは、一体構造であってもよい。
また、実施の形態1における電池製造装置1000においては、測定部200により測定される特性は、電気的特性であってもよい。
言い換えれば、実施の形態1における電池製造方法においては、測定工程S1002において、測定部200により測定される特性は、電気的特性であってもよい。
以上の製造装置または製造方法によれば、電池部材10のプレス時において、例えば、固体電解質と電極材料との接触の度合を、より精度良く測定できる。これにより、制御部によるプレス状態の制御を、より精度良く、実行できる。したがって、より過不足無く、電池部材10のプレスを行うことができる。
なお、当該電気的特性は、例えば、電圧値、電流値、電気抵抗値、など、であってもよい。これらを測定する構成としては、上述の電池製造装置1100の構成が用いられうる。このとき、上述の電池製造装置1100は、当該電気的特性を測定するために、電流または電圧を電池部材10に印加する装置を、さらに、備えていてもよい。
また、当該電気的特性として、電圧値と電流値との両方を測定してもよい。このとき、例えば、電圧信号と電流信号を元に、測定端子間のインピーダンスを求めることができる。電池部材10が複数の電池を直列に接続した構造である場合には、インピーダンスのステップ応答や周波数特性を解析することで、何番目の電池の接合状態が確保されているかについての情報を得ることもできる。
また、実施の形態1における電池製造装置1000においては、測定部200により測定される特性は、熱的特性であってもよい。
言い換えれば、実施の形態1における電池製造方法においては、測定工程S1002において、測定部200により測定される特性は、熱的特性であってもよい。
以上の構成によれば、電池部材のプレス時において、例えば、温度変化を伴う電池部材10の変化を、より精度良く測定できる。これにより、制御部によるプレス状態の制御を、より精度良く、実行できる。したがって、より過不足無く、電池部材10のプレスを行うことができる。
図4は、実施の形態1における電池製造装置1200の概略構成を示す図である。
実施の形態1における電池製造装置1200は、上述の電池製造装置1000の構成に加えて、さらに、下記の構成を備える。
すなわち、実施の形態1における電池製造装置1200は、測定部200として、温度計220(例えば、非接触温度計)を備える。
実施の形態1における電池製造装置1200は、加圧圧迫を制御する方法として、熱的情報(例えば、測温結果など)を用いる。図4に示すように、電池部材10の断面方向から、電池部材10の温度を、温度計220により、精密測定する。これにより、加圧圧迫の進行と共に、微小な温度変化を測定することができる。温度変化が所定の値になった時点で、加圧圧力を所定の手順で低減する。これにより、電池部材10を加圧から開放する。この結果、過不足のない良好な加圧状態で、電池部材10を作製することができる。
また、実施の形態1における電池製造装置1000においては、測定部200により測定される特性は、音響的特性であってもよい。
言い換えれば、実施の形態1における電池製造方法においては、測定工程S1002において、測定部200により測定される特性は、音響的特性であってもよい。
以上の構成によれば、電池部材10のプレス時において、例えば、電池部材10における微小なクラックの発生を、より精度良く測定できる。これにより、制御部によるプレス状態の制御を、より精度良く、実行できる。したがって、より過不足無く、電池部材10のプレスを行うことができる。
図5は、実施の形態1における電池製造装置1300の概略構成を示す図である。
実施の形態1における電池製造装置1300は、上述の電池製造装置1000の構成に加えて、さらに、下記の構成を備える。
すなわち、実施の形態1における電池製造装置1300は、測定部200として、音響計230と、測定端子231と、を備える。
実施の形態1における電池製造装置1300は、加圧圧迫を制御する方法として、音響的情報(例えば、振動など)を用いる。図5に示すように、音響計230の測定端子231を、加圧圧迫を行う電池部材10に差し向けて、加圧圧迫を行う。例えば、電池部材10の構成部材に微小なクラックが発生し始める前後で発生する特定の波形パターンを、測定端子231を通して音響計230が検出したときに、直ちに加圧圧迫を停止する。これにより、過剰な加圧を防止した状態で、電池部材10を作製することができる。
また、実施の形態1における電池製造装置1000においては、測定部200により測定される特性は、外観的特性であってもよい。
言い換えれば、実施の形態1における電池製造方法においては、測定工程S1002において、測定部200により測定される特性は、外観的特性であってもよい。
以上の構成によれば、電池部材10のプレス時において、例えば、電池部材10における外観的な特徴の変化の発生を、より精度良く測定できる。これにより、制御部によるプレス状態の制御を、より精度良く、実行できる。したがって、より過不足無く、電池部材10のプレスを行うことができる。
図6は、実施の形態1における電池製造装置1400の概略構成を示す図である。
実施の形態1における電池製造装置1400は、上述の電池製造装置1000の構成に加えて、さらに、下記の構成を備える。
すなわち、実施の形態1における電池製造装置1400は、測定部200として、映像取得部240(例えば、カメラ、顕微鏡、など)を備える。
実施の形態1における電池製造装置1400は、加圧圧迫を制御する方法として、外観的情報(例えば、画像など)を用いる。図6に示すように、電池部材10の断面方向から、電池部材10を映像取得部240で観察する。その後、制御部300に記憶された加圧圧迫の進行に伴う特徴的な画像の特徴と、映像取得部240により取得された画像の特徴と、を比較判定する。これにより、過不足のない良好な加圧状態で、電池部材10を作製することができる。
[電池部材の構成例]
以下、電池部材10の具体的な構成例が、説明される。
図7は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。
図7のように、正極集電体13の上に、正極活物質層12を形成する。正極集電体13として、金属箔(例えば、SUS箔、Al箔)が用いられうる。正極集電体13の厚みは、例えば、5〜50μmである。
正極活物質層12に含有される正極活物質として、公知の正極活物質(例えば、コバルト酸リチウム、LiNO、など)が用いられうる。正極活物質の材料はこの限りでなく、Liを離脱および挿入することができる各種材料が用いられうる。また、正極活物質層12の含有材料として、公知の固体電解質(例えば、無機系固体電解質など)が用いられうる。無機系固体電解質としては、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質として、例えば、LiS:Pの混合物が、用いられうる。正極活物質の表面は、固体電解質でコートされていてもよい。また、正極活物質層12の含有材料として、導電材(例えば、アセチレンブラック、など)、結着用バインダー(例えば、ポリフッ化ビニリデン、など)、など、が用いられうる。
これら正極活物質層12の含有材料を溶媒と共に適宜練り込んだペースト状の塗料を、正極集電体13上に塗工乾燥して、正極板を作製する。正極活物質層12の密度を高めるために、正極板をプレスしておいてもよい。このようにして作製される正極活物質層12の厚みは、例えば、5〜300μmである。
図8は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。
図8のように、負極集電体15の上に、負極活物質層14を形成する。負極集電体15として、金属箔(例えば、SUS箔、Cu箔)が用いられうる。負極集電体15の厚みは、例えば、5〜50μmである。
負極活物質層14に含有される負極活物質として、公知の負極活物質(例えば、グラファイト、など)が用いられうる。負極活物質の材料はこの限りでなく、Liを離脱および挿入することができる各種材料が用いられうる。また、負極活物質層14の含有材料として、公知の固体電解質(例えば、無機系固体電解質など)が用いられうる。無機系固体電解質としては、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質として、例えば、LiS:Pの混合物が用いられうる。また、負極活物質層14の含有材料として、導電材(例えば、アセチレンブラック、など)、結着用バインダー(例えば、ポリフッ化ビニリデン、など)、など、が用いられうる。
これら負極活物質層14の含有材料を溶媒と共に適宜練り込んだペースト状の塗料を負極集電体15上に塗工乾燥して負極板を作製する。負極活物質層14の密度を高めるために、負極板をプレスしておいてもよい。このようにして作製される負極活物質層14の厚みは、例えば、5〜300μmである。
なお、負極は正極よりも大きい面積を有してもよい。これにより、リチウム析出による不具合を防止することができる。
図9は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。
図9に示すように、正極活物質層12の上に、固体電解質層11を形成する。
なお、固体電解質層11に用いられる固体電解質として、公知の固体電解質(例えば、無機系固体電解質など)が用いられうる。無機系固体電解質としては、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質として、例えば、LiS:Pの混合物が用いられうる。
また、固体電解質層11の含有材料として、結着用バインダー(例えば、ポリフッ化ビニリデン、など)が用いられうる。これら固体電解質層11の含有材料を溶媒と共に適宜練り込んだペースト状の塗料を、正極活物質層12(または、負極活物質層14)上に、塗工乾燥して、固体電解質層11を作製する。固体電解質層11の強度を高めるために、軽度のプレスをしておいてもよい。このようにして作製される固体電解質層11の厚みは、例えば、1〜100μmである。
図10は、電池部材10の概略構成を示す断面図である。
図10に示すように、正極活物質層12の上に固体電解質層11が形成された図9に示される正極板と、図8に示される負極板とを、固体電解質層11を介して正極活物質層12と負極活物質層14が対向するように重ねて、電池部材10とする。
もしくは、電池部材10は、以下の構成であってもよい。
図11は、製造過程における電池部材10の構成部材の概略構成を示す断面図である。
図11に示すように、負極活物質層14の上に、固体電解質層11を形成する。
図12は、電池部材10の概略構成を示す断面図である。
図12に示すように、負極活物質層14の上に固体電解質層11が形成された図7に示される正極板と、図11に示される負極板とを、固体電解質層11を介して正極活物質層12と負極活物質層14が対向するように重ねて、電池部材10とする。
図13は、製造される電池の概略構成を示す断面図である。
実施の形態1におけるプレス部100により、図10または図12に示される電池部材10を加圧圧迫する(プレス工程)。これにより、図13に示される発電要素(単電池)が製造される。
なお、図10または図12に示される構成であれば、上述の図3に示した電池製造装置1100におけるプローブ部211は、例えば、正極集電体13と負極集電体15とに接続されてもよい。
もしくは、電池部材10は、以下の構成であってもよい。
図14は、電池部材10の概略構成を示す断面図である。
図14(a)は、正極活物質層12上に固体電解質層11が塗布された場合の構成を示す。
図14(b)は、負極活物質層14上に固体電解質層11が塗布された場合の構成を示す。
図14に示されるように、電池部材10は、バイポーラ構造の電池であってもよい。すなわち、電池部材10は、図14のように、上端の集電体としては、負極集電体15が用いられる。また、下端の集電体としては、正極集電体13が用いられる。これら以外の集電体として、バイポーラ集電体16が用いられる。バイポーラ集電体16の両面に、正極および負極の活物質層が形成される。電池部材10は、このように形成された複数の電池を直列に接続した構造であってもよい。バイポーラ集電体16は、単一の部材であってもよい。もしくは、バイポーラ集電体16は、2層以上の集電体の接着・接合・重ね合わせなどからなる集電体であってもよい。
なお、図14の構成であれば、上述の図3に示した電池製造装置1100におけるプローブ部211は、例えば、負極集電体15と正極集電体13とに接続されてもよい。
もしくは、電池部材10は、以下の構成であってもよい。
図15は、電池部材10の概略構成を示す断面図である。
図15(a)は、図9に示される正極板を用いた場合の構成を示す。
図15(b)は、図11に示される負極板を用いた場合の構成を示す。
図15に示されるように、電池部材10は、集電体の片面に活物質層と固体電解質層11とが積層された積層体であってもよい。図15のように、活物質層が形成されていない側の固体電解質層11に、測定用対極17(例えば、補助金属板、金属箔、など)を当てる。その状態で加圧を行うことで、電気的測定を行うことができる。なお、例えば、対極側に活物質層がない状態で、測定のための充電を行うことによる不具合は、充電電流を微小な電流とすることで無視できる。
なお、図15の構成であれば、上述の図3に示した電池製造装置1100におけるプローブ部211は、例えば、集電体と測定用対極17とに接続されてもよい。
以上のように、実施の形態1においては、電池部材10は、固体電解質を含んでもよい。
また、実施の形態1においては、電池部材10は、固体電解質を含む固体電解質層と、正極材料を含む正極材層(例えば、正極活物質層)と負極材料を含む負極材層(例えば、負極活物質層)とのうちの少なくとも1つと、が積層されてなる積層体を含んでもよい。
以上の構成によれば、過不足無く、固体電解質と電極材料との積層体のプレスを行うことができる。すなわち、例えば、プレスが過度になされることにより、当該積層体が損傷することを回避できる。また、例えば、プレスが不十分であることにより、電池部材10の内部の固体電解質と電極材料の密度、または、固体電解質と電極材料との密着性が不十分となることを回避できる。
固体電解質を含む電池である全固体電池では、電解液の代わりに固体電解質を用いるため、正極と負極と固体電解質との接合状態がより重要となる。全固体電池は、薄膜積層プロセスによっても形成可能であるが、塗工プロセスを用いる場合には、より生産性に優れる。塗工プロセスでは、塗工した各層の密度を高めるために、プレスを行う。また、塗工プロセスでは、正極材層と負極材層と固体電解質層とを密着させるために、プレスを行う。これらの塗工プロセスのプレスにおいて、本開示の構成であれば、過不足の無いプレスを行うことができる。
なお、実施の形態1の電池製造方法は、さらに、以下の工程を包含してもよい。
すなわち、実施の形態1の電池製造方法は、正極集電体上に正極材層を形成する正極板作製工程と、負極集電体上に負極材層を形成する負極板作製工程と、正極材層と負極材層のいずれかの上に固体電解質層を形成する固体電解質層作製工程と、固体電解質層を介して正極材層と負極材層を対向させることで積層体を作製する積層体作製工程と、集電体の両側から加圧圧迫して積層体を接合する積層体加圧工程と、を包含してもよい。
もしくは、積層体作製工程は、固体電解質層の両側に正極材層と負極材層とを形成する工程と、正極材層の外側に更に正極集電体を形成する工程と、負極材層の外側に更に負極集電体を形成する工程と、からなる工程であってもよい。
(実施の形態2)
以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
図16は、実施の形態2における電池製造装置2000の概略構成を示す図である。
実施の形態2における電池製造装置2000は、上述の実施の形態1における電池製造装置1000の構成に加えて、さらに、下記の構成を備える。
すなわち、実施の形態2における電池製造装置2000は、さらに、電流印加部400を備える。
電流印加部400は、電池部材10に電流を印加する。電流印加部400は、時点tv1から、電池部材10に所定電流を印加する。
制御部300は、時点tv1よりも後の期間に、プレス部100による電池部材10へのプレス圧力の経時的な増加を実行する。
ここで、実施の形態2においては、測定部200により測定される特性は、電圧である。
制御部300は、時点tv2において、プレス圧力の経時的な増加を停止する。時点tv2は、測定結果である測定電圧値が所定電圧値以下となる時点である。
図17は、実施の形態2における電池製造方法を示すフローチャートである。
実施の形態2における電池製造方法は、上述の実施の形態1における電池製造方法の工程に加えて、さらに、下記の工程を備える。
すなわち、実施の形態2における電池製造方法は、実施の形態2における電池製造装置2000を用いた電池製造方法である。例えば、実施の形態2における電池製造方法は、実施の形態2における電池製造装置2000において実行される電池製造方法である。
実施の形態2における電池製造方法は、さらに、電流印加工程S2002(=工程(d))を包含する。
電流印加工程S2002は、電流印加部400により、時点tv1から、電池部材10に所定電流を印加する工程である。
実施の形態2における電池製造方法においては、制御工程は、プレス圧力増加工程S2004(=工程(C11))と、プレス圧力増加停止工程S2006(=工程(C12))と、を含む。
プレス圧力増加工程S2004は、制御部300により、時点tv1よりも後の期間に、プレス部100による電池部材10へのプレス圧力の経時的な増加を実行する工程である。
ここで、実施の形態2においては、測定工程S2003およびS2009において、測定部200により測定される特性は、電圧である。
プレス圧力増加停止工程S2006は、制御部300により、時点tv2において、プレス圧力の経時的な増加を停止する工程である。時点tv2は、測定結果である測定電圧値が所定電圧値以下となる時点である。
以上の製造装置または製造方法によれば、より精度良く、電池部材10のプレスが過度となることを回避することができる。
なお、電流印加部400は、例えば、電流源およびリード線を備えてもよい。すなわち、電流印加部400は、リード線を通じて、電池部材10に電流を印加してもよい。このとき、リード線は、例えば、プローブ部211が接続されうる部分(例えば、集電体または測定用対極)に、接続されてもよい。
また、電流印加工程S2002は、プレス工程S2001よりも後に実行されてもよい。もしくは、電流印加工程S2002は、プレス工程S2001よりも前に実行されてもよい。
また、実施の形態2における電池製造方法においては、制御工程は、プレス圧力増加工程S2004とプレス圧力増加停止工程S2006との間に、判定工程S2005を含んでもよい。
判定工程S2005は、測定電圧値が所定電圧値以下であるか否かを判定する工程である。
判定工程S2005の判定結果が「Yes」である場合には、プレス圧力増加停止工程S2006を実行する。
判定工程S2005の判定結果が「No」である場合には、例えば、測定工程S2003から再度実行してもよい。
また、実施の形態2における電池製造装置2000において、制御部300は、時点tv2から、時点tv2よりも後の時点である時点tv3まで、プレス圧力を一定の圧力に維持してもよい。
言い換えれば、実施の形態2における電池製造方法においては、制御工程は、さらに、プレス圧力維持工程S2007(=工程(C13))を含んでもよい。
プレス圧力維持工程S2007は、制御部300により、時点tv2から、時点tv2よりも後の時点である時点tv3まで、プレス圧力を一定の圧力に維持する工程である。
以上の製造装置または製造方法によれば、より精度良く、電池部材10のプレスが不十分となることを回避することができる。
また、実施の形態2における電池製造装置2000において、制御部300は、時点tv2よりも後の時点である時点tv3において、プレス部100による電池部材10へのプレスを停止させてもよい。
電流印加部400は、時点tv1から、時点tv3よりも後の時点である時点tv4まで、電池部材10に所定電流を印加してもよい。
制御部300は、時点tv3から時点tv4までの期間において、測定電圧値が所定電圧値よりも大きくなった場合には、プレス部100による電池部材10へのプレスを再開してもよい。
言い換えれば、実施の形態2における電池製造方法においては、制御工程は、さらに、プレス停止工程S2008(=工程(C14))と、プレス再開工程S2011(=工程(C15))と、を含んでもよい。
プレス停止工程S2008は、制御部300により、時点tv2よりも後の時点である時点tv3において、プレス部100による電池部材10へのプレスを停止させる工程である。
電流印加工程S2002においては、電流印加部400は、時点tv1から、時点tv3よりも後の時点である時点tv4まで、電池部材10に所定電流を印加してもよい。
プレス再開工程S2011は、制御部300により、時点tv3から時点tv4までの期間において、測定電圧値が所定電圧値よりも大きくなった場合には、プレス部100による電池部材10へのプレスを再開する工程である。
以上の製造装置または製造方法によれば、加圧解放後に、電池部材10の安定状態を確認することができる。これにより、例えば、加圧解放後に、電池部材10の安定状態が確認されない場合には、再度、電池部材10のプレスを行うことができる。したがって、より精度良く、電池部材10のプレスが不十分となることを回避することができる。
なお、プレス再開工程S2011は、例えば、プレス工程S2001から、再度、図17に示される各工程を実行してもよい。
また、実施の形態2における電池製造方法においては、制御工程は、プレス停止工程S2008とプレス再開工程S2011との間に、測定工程S2009と判定工程S2010とを含んでもよい。
判定工程S2010は、測定電圧値が所定電圧値よりも大きいか否かを判定する工程である。
判定工程S2010の判定結果が「Yes」である場合には、プレス再開工程S2011を実行する。
判定工程S2010の判定結果が「No」である場合には、例えば、制御工程を終了してもよい。
図18は、実施の形態2における電池製造方法を実行した際の測定電圧値を示す図である。
図18における時点tpは、電池部材10に加圧が開始される時点である。加圧開始時(tp)には、正極と負極の電気的接触が弱い。このため、電池として機能せず、充電前の段階で所定の電圧が出ない。すなわち、測定電圧値としては、ごく小さな電圧を示す。
図18における時点tv1は、電池部材10への所定電流C1(mA)の印加が開始される時点である。時点tv1から、電池部材10の設計容量D(mAh)に対して、例えば、100分の1の電流C1(mA)で充電を行う(すなわち、C1=D/100)。このとき、端子間の上限電圧は、Vh(V)に制限するものとする。
加圧圧力を高めていくと、正極と負極とが、電気的に接触する。このため、充電前(所定電流C1の印加前)の段階で、数Vの電圧を示す。その後、電池としての起電力V0を有するようになる(tv1)。
しかし、この段階では、加圧が不十分なため、電池部材10の内部抵抗が高い。このため、充電電流を印加すると電圧は大きく上昇する(V1)。このとき、場合によっては、測定電圧値が、端子間の上限電圧(Vh)に達してしまう。もし、測定電圧値が、端子間の上限電圧に達した場合には、印加電流値を低減して、端子間の電圧上限以下になるようにする。
加圧時間を延長または加圧圧力を高めると、電池部材10の内部の粒子間接続が良好になっていく。このため、充電電流を印加しても、端子間の電圧の上昇が徐々に小さくなる。
図18における時点tv2は、測定電圧値が所定電圧値(V2)となる時点である。図18における時点tv3は、加圧が停止される時点である。測定電圧値(端子間電圧)が所定の値(v2)になった時点(tv2)から、所定の時間、加圧圧力を一定に保つ。その後、電池部材10を加圧から開放する(tv3)。これにより、過不足のない良好な加圧状態で、電池部材10を作製することができる。
図18における時点tv4は、電池部材10への所定電流C1の印加が停止される時点である。電池部材10を加圧から開放した後、時点tv4まで電流印加する。これにより、圧力解放後の接合の安定状態を確認することができる。電池部材10を加圧から開放した際に(tv3〜tv4)、測定電圧値が上昇する場合には、同様に、再度、加圧を行うことができる。
電池部材10に印加する電流は、図18のような、直流電流であってもよい。もしくは、電池部材10に印加する電流は、その他の波形の電流であってもよい。
図19は、実施の形態2における電池製造方法を実行した際の測定電圧値を示す図である。
図19は、電池部材10に印加する電流として、所定電流値C1を振幅とする矩形波の電流が用いられる例を示す。図19のような矩形電流を印加した場合には、測定電圧値は、電流印加に呼応した変動を繰り返す。例えば、最初の矩形電流印加においては、図19に示すように、電圧はv10からv1sに急速に上昇した後、v1eまで緩やかに上昇する。その後、電流印加を中断すると、v20まで低下して、次の矩形電流印加を迎える。電池部材10を加圧から開放するタイミングは、例えば、電流印加を中断する過程で、電圧が所定の値以下になったタイミングであってもよい。もしくは、vns−vn0あるいはvne−vnsが、所定の値以下になったときに、電池部材10を加圧から開放するとしてもよい。
(実施の形態3)
以下、実施の形態3が説明される。上述の実施の形態1または実施の形態2と重複する説明は、適宜、省略される。
図20は、実施の形態3における電池製造装置3000の概略構成を示す図である。
実施の形態3における電池製造装置3000は、上述の実施の形態1における電池製造装置1000の構成に加えて、さらに、下記の構成を備える。
すなわち、実施の形態3における電池製造装置3000は、さらに、電圧印加部500を備える。
電圧印加部500は、電池部材10に電圧を印加する。電圧印加部500は、時点ti1から、電池部材10に所定電圧を印加する。
制御部300は、時点ti1よりも後の期間に、プレス部100による電池部材10へのプレス圧力の経時的な増加を実行する。
ここで、実施の形態3においては、測定部200により測定される特性は、電流である。
制御部300は、時点ti2において、プレス圧力の経時的な増加を停止する。時点ti2は、測定結果である測定電流値が所定電流値以上となる時点である。
図21は、実施の形態3における電池製造方法を示すフローチャートである。
実施の形態3における電池製造方法は、上述の実施の形態1における電池製造方法の工程に加えて、さらに、下記の工程を備える。
すなわち、実施の形態3における電池製造方法は、実施の形態3における電池製造装置3000を用いた電池製造方法である。例えば、実施の形態3における電池製造方法は、実施の形態3における電池製造装置3000において実行される電池製造方法である。
実施の形態3における電池製造方法は、さらに、電圧印加工程S3002(=工程(e))を包含する。
電圧印加工程S3002は、電圧印加部500により、時点ti1から、電池部材10に所定電圧を印加する工程である。
実施の形態3における電池製造方法においては、制御工程は、プレス圧力増加工程S3004(=工程(C21))と、プレス圧力増加停止工程S3006(=工程(C22))と、を含む。
プレス圧力増加工程S3004は、制御部300により、時点ti1よりも後の期間に、プレス部100による電池部材10へのプレス圧力の経時的な増加を実行する工程である。
ここで、実施の形態3においては、測定工程S3003およびS3009において、測定部200により測定される特性は、電流である。
プレス圧力増加停止工程S3006は、制御部300により、時点ti2において、プレス圧力の経時的な増加を停止する工程である。時点ti2は、測定結果である測定電流値が所定電流値以上となる時点である。
以上の製造装置または製造方法によれば、より精度良く、電池部材10のプレスが過度となることを回避することができる。
なお、電圧印加部500は、例えば、電圧源およびリード線を備えてもよい。すなわち、電圧印加部500は、リード線を通じて、電池部材10に電圧を印加してもよい。このとき、リード線は、例えば、プローブ部211が接続されうる部分(例えば、集電体または測定用対極)に、接続されてもよい。
また、電圧印加工程S3002は、プレス工程S3001よりも後に実行されてもよい。もしくは、電圧印加工程S3002は、プレス工程S3001よりも前に実行されてもよい。
また、実施の形態3における電池製造方法においては、制御工程は、プレス圧力増加工程S3004とプレス圧力増加停止工程S3006との間に、判定工程S3005を含んでもよい。
判定工程S3005は、測定電流値が所定電流値以上であるか否かを判定する工程である。
判定工程S3005の判定結果が「Yes」である場合には、プレス圧力増加停止工程S3006を実行する。
判定工程S3005の判定結果が「No」である場合には、例えば、測定工程S3003から再度実行してもよい。
また、実施の形態3における電池製造装置3000において、制御部300は、時点ti2から、時点ti2よりも後の時点である時点ti3まで、プレス圧力を一定の圧力に維持してもよい。
言い換えれば、実施の形態3における電池製造方法においては、制御工程は、さらに、プレス圧力維持工程S3007(=工程(C23))を含んでもよい。
プレス圧力維持工程S3007は、制御部300により、時点ti2から、時点ti2よりも後の時点である時点ti3まで、プレス圧力を一定の圧力に維持する工程である。
以上の製造装置または製造方法によれば、より精度良く、電池部材のプレスが不十分となることを回避することができる。
また、実施の形態3における電池製造装置3000において、制御部300は、時点ti2よりも後の時点である時点ti3において、プレス部100による電池部材10へのプレスを停止させてもよい。
電圧印加部500は、時点ti1から、時点ti3よりも後の時点である時点ti4まで、電池部材10に所定電圧を印加してもよい。
制御部300は、時点ti3から時点ti4までの期間において、測定電流値が所定電流値よりも小さくなった場合には、プレス部100による電池部材10へのプレスを再開してもよい。
言い換えれば、実施の形態3における電池製造方法においては、制御工程は、さらに、プレス停止工程S3008(=工程(C24))と、プレス再開工程S3011(=工程(C25))と、を含んでもよい。
プレス停止工程S3008は、制御部300により、時点ti2よりも後の時点である時点ti3において、プレス部100による電池部材10へのプレスを停止させる工程である。
電圧印加工程S3002においては、電圧印加部500は、時点ti1から、時点ti3よりも後の時点である時点ti4まで、電池部材10に所定電圧を印加してもよい。
プレス再開工程S3011は、制御部300により、時点ti3から時点ti4までの期間において、測定電流値が所定電流値よりも小さくなった場合には、プレス部100による電池部材10へのプレスを再開する工程である。
以上の製造装置または製造方法によれば、加圧解放後に、電池部材10の安定状態を確認することができる。これにより、例えば、加圧解放後に、電池部材10の安定状態が確認されない場合には、再度、電池部材10のプレスを行うことができる。したがって、より精度良く、電池部材10のプレスが不十分となることを回避することができる。
なお、プレス再開工程S3011は、例えば、プレス工程S3001から、再度、図21に示される各工程を実行してもよい。
また、実施の形態3における電池製造方法においては、制御工程は、プレス停止工程S3008とプレス再開工程S3011との間に、測定工程S3009と判定工程S3010とを含んでもよい。
判定工程S3010は、測定電流値が所定電流値よりも小さいか否かを判定する工程である。
判定工程S3010の判定結果が「Yes」である場合には、プレス再開工程S3011を実行する。
判定工程S3010の判定結果が「No」である場合には、例えば、制御工程を終了してもよい。
図22は、実施の形態3における電池製造方法を実行した際の測定電流値を示す図である。
図22における時点ti1は、電池部材10への所定電圧V1(V)の印加が開始される時点である。時点ti1から、例えば、電池部材10の正極集電体と負極集電体間に、所定の電圧Vo(V)を印加する。このとき、端子間の上限電流は、ih(mA)に制限するものとする。
図22における時点tpは、電池部材10に加圧が開始される時点である。加圧開始時(tp)には、正極と負極の電気的接触が弱いため、電流はほとんど流れない。その後、加圧圧力を高めていくと、正極と負極が電気的に接触する。このため、電池部材10に電流が徐々に流れ始める。
しかし、この段階では加圧が不十分なため、電池部材10の内部抵抗が高い。このため、電流値はまだ小さい。更に、加圧時間を延長または加圧圧力を高めると、電池部材10の内部の粒子間接続が良好になっていく。これにより、電池部材10の電流が徐々に上昇する。
図22における時点ti2は、測定電流値が所定電流値(i2)となる時点である。図22における時点ti3は、加圧が停止される時点である。測定電流値が所定の値(i2)になった時点(ti2)で、加圧圧力を所定の時間、一定に保つ。その後、電池部材10の加圧を停止し、所定のプログラムに沿って、徐々に弱める(ti3)。これにより、過不足のない良好な加圧状態で、電池部材10を作製することができる。
図22における時点ti4は、電池部材10への所定電圧V1の印加が停止される時点である。電池部材10を加圧から開放した後、時点ti4まで電圧印加する。これにより、圧力解放後の接合の安定状態を確認することができる。電池部材10を加圧から開放した際に(ti3〜ti4)、測定電流値が低下する場合には、同様に、再度、加圧を行うことができる。
なお、電池部材10に印加する電圧は、図22のような、直流電圧であってもよい。もしくは、電池部材10に印加する電圧は、その他の波形の電圧(例えば、矩形波の電圧)であってもよい。
本開示は、例えば、良好な性能を発現しかつ過剰なプレスで破損することを防ぐことが求められる様々な用途(例えば、電池をはじめとする各種エネルギーデバイス、各種セラミックデバイス、炭素材料デバイス、など)に、好適に利用できる。
10 電池部材
100 プレス部
200 測定部
300 制御部
400 電流印加部
500 電圧印加部
1000 電池製造装置
1100 電池製造装置
1200 電池製造装置
1300 電池製造装置
1400 電池製造装置
2000 電池製造装置
3000 電池製造装置

Claims (14)

  1. 電池製造装置を用いた電池製造方法であって、
    前記電池製造装置は、プレス部と、測定部と、制御部と、を備え、
    前記プレス部により、電池部材をプレスする工程(a)と、
    前記工程(a)の後に、前記測定部により、前記プレス部によりプレスされた前記電池部材の特性を測定する工程(b)と、
    前記工程(b)の後に、前記制御部により、前記測定部による測定結果に応じて、前記プレス部による前記電池部材へのプレス状態を制御する工程(c)と、
    を包含する、
    電池製造方法。
  2. 前記工程(c)は、前記制御部により、前記測定結果に応じて、前記プレス部による前記電池部材へのプレス圧力を制御する工程(c1)を含む、
    請求項1に記載の電池製造方法。
  3. 前記工程(c)は、前記制御部により、前記測定結果に応じて、前記プレス部による前記電池部材へのプレス時間を制御する工程(c2)を含む、
    請求項1または2に記載の電池製造方法。
  4. 前記工程(b)において、前記測定部により測定される前記特性は、電気的特性である、
    請求項1から3のいずれかに記載の電池製造方法。
  5. 前記電池製造装置は、前記電池部材に電流を印加する電流印加部を備え、
    前記電流印加部により、時点tv1から、前記電池部材に所定電流を印加する工程(d)を包含し、
    前記工程(c)は、前記制御部により、前記時点tv1よりも後の期間に、前記プレス部による前記電池部材へのプレス圧力の経時的な増加を実行する工程(c11)を含み、
    前記工程(b)において、前記測定部により測定される前記特性は、電圧であり、
    前記測定結果である測定電圧値が所定電圧値以下となる時点を時点tv2とすると、
    前記工程(c)は、前記制御部により、前記時点tv2において、前記プレス圧力の経時的な増加を停止する工程(c12)を含む、
    請求項4に記載の電池製造方法。
  6. 前記工程(c)は、前記制御部により、前記時点tv2から、前記時点tv2よりも後の時点である時点tv3まで、前記プレス圧力を一定の圧力に維持する工程(c13)を含む、
    請求項5に記載の電池製造方法。
  7. 前記工程(c)は、前記制御部により、前記時点tv2よりも後の時点である時点tv3において、前記プレス部による前記電池部材へのプレスを停止させる工程(c14)を含み、
    前記工程(d)においては、前記電流印加部は、前記時点tv1から、前記時点tv3よりも後の時点である時点tv4まで、前記電池部材に前記所定電流を印加し、
    前記工程(c)は、前記制御部により、前記時点tv3から前記時点tv4までの期間において、前記測定電圧値が前記所定電圧値よりも大きくなった場合には、前記プレス部による前記電池部材へのプレスを再開する工程(c15)を含む、
    請求項5または6に記載の電池製造方法。
  8. 前記電池製造装置は、前記電池部材に電圧を印加する電圧印加部を備え、
    前記電圧印加部により、時点ti1から、前記電池部材に所定電圧を印加する工程(e)を包含し、
    前記工程(c)は、前記制御部により、前記時点ti1よりも後の期間に、前記プレス部による前記電池部材へのプレス圧力の経時的な増加を実行する工程(c21)を含み、
    前記工程(b)において、前記測定部により測定される前記特性は、電流であり、
    前記測定結果である測定電流値が所定電流値以上となる時点を時点ti2とすると、
    前記工程(c)は、前記制御部により、前記時点ti2において、前記プレス圧力の経時的な増加を停止する工程(c22)を含む、
    請求項4に記載の電池製造方法。
  9. 前記工程(c)は、前記制御部により、前記時点ti2から、前記時点ti2よりも後の時点である時点ti3まで、前記プレス圧力を一定の圧力に維持する工程(c23)を含む、
    請求項8に記載の電池製造方法。
  10. 前記工程(c)は、前記制御部により、前記時点ti2よりも後の時点である時点ti3において、前記プレス部による前記電池部材へのプレスを停止させる工程(c24)を含み、
    前記工程(e)においては、前記電圧印加部は、前記時点ti1から、前記時点ti3よりも後の時点である時点ti4まで、前記電池部材に所定電圧を印加し、
    前記工程(c)は、前記制御部により、前記時点ti3から前記時点ti4までの期間において、前記測定電流値が前記所定電流値よりも小さくなった場合には、前記プレス部による前記電池部材へのプレスを再開する工程(c25)を含む、
    請求項8または9に記載の電池製造方法。
  11. 前記工程(b)において、前記測定部により測定される前記特性は、熱的特性である、
    請求項1から3のいずれかに記載の電池製造方法。
  12. 前記工程(b)において、前記測定部により測定される前記特性は、音響的特性である、
    請求項1から3のいずれかに記載の電池製造方法。
  13. 前記電池部材は、固体電解質を含む固体電解質層と、正極材料を含む正極材層と負極材料を含む負極材層とのうちの少なくとも1つと、が積層されてなる積層体を含む、
    請求項1から12のいずれかに記載の電池製造方法。
  14. 電池部材をプレスするプレス部と、
    前記プレス部によりプレスされた前記電池部材の特性を測定する測定部と、
    前記測定部による測定結果に応じて、前記プレス部による前記電池部材へのプレス状態を制御する制御部と、
    を備える、
    電池製造装置。
JP2017082237A 2016-04-25 2017-04-18 電池製造方法、および、電池製造装置 Active JP6934620B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086778 2016-04-25
JP2016086778 2016-04-25

Publications (2)

Publication Number Publication Date
JP2017199665A true JP2017199665A (ja) 2017-11-02
JP6934620B2 JP6934620B2 (ja) 2021-09-15

Family

ID=60089111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082237A Active JP6934620B2 (ja) 2016-04-25 2017-04-18 電池製造方法、および、電池製造装置

Country Status (2)

Country Link
US (1) US9935330B2 (ja)
JP (1) JP6934620B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826680B1 (ja) * 2020-01-17 2021-02-03 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212963A (ja) * 1984-04-09 1985-10-25 Matsushita Electric Ind Co Ltd 溶融炭酸塩燃料電池の電解質体の製造法
JP2007087759A (ja) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd ゲル電解質電池、電池ユニット、および電池用ゲル電解質層の製造方法
JP2010205479A (ja) * 2009-03-02 2010-09-16 Toyota Motor Corp 圧粉全固体電池
JP2010257586A (ja) * 2009-04-21 2010-11-11 Toyota Motor Corp 燃料電池の製造方法
JP2012089388A (ja) * 2010-10-21 2012-05-10 Hitachi Zosen Corp 全固体電池の製造方法
WO2013088540A1 (ja) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 非水電解質二次電池と二次電池用負極の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996204B2 (ja) * 2012-02-13 2016-09-21 日産自動車株式会社 帯状の電池素材の搬送装置および搬送方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212963A (ja) * 1984-04-09 1985-10-25 Matsushita Electric Ind Co Ltd 溶融炭酸塩燃料電池の電解質体の製造法
JP2007087759A (ja) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd ゲル電解質電池、電池ユニット、および電池用ゲル電解質層の製造方法
JP2010205479A (ja) * 2009-03-02 2010-09-16 Toyota Motor Corp 圧粉全固体電池
JP2010257586A (ja) * 2009-04-21 2010-11-11 Toyota Motor Corp 燃料電池の製造方法
JP2012089388A (ja) * 2010-10-21 2012-05-10 Hitachi Zosen Corp 全固体電池の製造方法
WO2013088540A1 (ja) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 非水電解質二次電池と二次電池用負極の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826680B1 (ja) * 2020-01-17 2021-02-03 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
WO2021145444A1 (ja) * 2020-01-17 2021-07-22 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
JP2021114409A (ja) * 2020-01-17 2021-08-05 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池

Also Published As

Publication number Publication date
US20170309947A1 (en) 2017-10-26
US9935330B2 (en) 2018-04-03
JP6934620B2 (ja) 2021-09-15

Similar Documents

Publication Publication Date Title
JP7018576B2 (ja) 電池、および、電池製造方法、および、電池製造装置
US10005150B2 (en) Method for manufacturing electronic device
JP2008023554A (ja) マイクロスポット抵抗溶接装置およびその溶接方法
TW201703342A (zh) 蓄電裝置的製造方法及構造體的檢查裝置
KR101980844B1 (ko) 전기화학소자용 분리막의 절연 특성 평가 방법
JP6934620B2 (ja) 電池製造方法、および、電池製造装置
WO2004021498A1 (ja) 二次電池前駆体の検査方法およびその検査装置ならびにその方法を用いた二次電池の製造方法
CN111812470B (zh) 一种薄膜连续耐电压的测试方法
JP2008142739A (ja) 超音波接合装置およびその制御方法、並びに超音波接合の接合検査装置およびその接合検査方法
JP2013190220A (ja) リチウムイオン二次電池用セパレータの耐熱性評価用電極セット及びリチウムイオン二次電池用セパレータの耐熱性評価方法
JP2012028290A (ja) 電解液含浸方法及び電解液含浸装置
JP5818030B2 (ja) 電池の応答特性の測定方法
JP4313625B2 (ja) 二次電池の製造方法および二次電池前駆体の検査装置
KR102087065B1 (ko) 반완성 배터리 셀을 테스트하는 방법
CN100505358C (zh) 使压电致动器产生电接通及使该压电致动器极化的方法
CN109927304B (zh) 燃料电池的膜电极组件的超声波点焊系统及其点焊工艺
CN212808485U (zh) 一种薄膜连续耐电压的测试装置
CN211206628U (zh) 双极板涂层电阻测量装置
CN105510387A (zh) 检查装置
JP5152629B2 (ja) 燃料電池のインピーダンス計測方法およびインピーダンス計測装置
JP2020198273A (ja) 短絡箇所の特定方法
Schmitz et al. MEA segmentation using LASER Ablation
CN109148989A (zh) 新型的锂离子电池生产及使用方法
JP3911635B2 (ja) 板状基板の貼り合わせ方法及び板状基板の貼り合わせ装置
JP2014241238A (ja) 二次電池の検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R151 Written notification of patent or utility model registration

Ref document number: 6934620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151