JP2018521219A - 薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス、リチウム堆積プロセスのために構成された装置、薄膜バッテリの電極を製造するための方法、及び薄膜バッテリ - Google Patents

薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス、リチウム堆積プロセスのために構成された装置、薄膜バッテリの電極を製造するための方法、及び薄膜バッテリ Download PDF

Info

Publication number
JP2018521219A
JP2018521219A JP2017559532A JP2017559532A JP2018521219A JP 2018521219 A JP2018521219 A JP 2018521219A JP 2017559532 A JP2017559532 A JP 2017559532A JP 2017559532 A JP2017559532 A JP 2017559532A JP 2018521219 A JP2018521219 A JP 2018521219A
Authority
JP
Japan
Prior art keywords
masking device
insulator
mask portion
thin film
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017559532A
Other languages
English (en)
Inventor
アンケ ヘルミヒ,
アンケ ヘルミヒ,
トーマス ウェルナー ジルバウアー,
トーマス ウェルナー ジルバウアー,
ホセ マヌエル ディエゲス−カンポ,
ホセ マヌエル ディエゲス−カンポ,
シュテファン ケラー,
シュテファン ケラー,
ゲオルク ヨースト,
ゲオルク ヨースト,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2018521219A publication Critical patent/JP2018521219A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本開示は、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス(100)を提供する。マスキングデバイス(100)は、金属又は金属合金から作られたマスク部分(110)、及びマスク部分(110)内の1以上の開口部(120)を含み、1以上の開口部(120)は、堆積材料の粒子がマスク部分(110)を通過することを可能にするように構成され、1以上の開口部(120)の各開口部のサイズは、少なくとも0.5cmである。
【選択図】図1

Description

本開示の実施形態は、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス、リチウム堆積プロセスのために構成された装置、リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための方法、及び薄膜バッテリに関する。本開示の実施形態は、特に、リチウムイオンバッテリ、並びに、リチウムイオンバッテリの、アノードなどの、電極を製造するためのマスキングデバイス、装置、及び方法に関する。
リチウムイオンバッテリなどの薄膜バッテリは、携帯電話、ノートパソコン、埋め込み可能医療機器などの、増加している用途において使用されている。薄膜バッテリは、例えば、フォームファクター、サイクル寿命、電源能力、及び安全性に関して、有益な特性を提供する。薄膜バッテリの電極層などのパターン化された層は、堆積プロセス、例えば、リチウム堆積プロセスにおいてマスキングデバイスを使用して、堆積され得る。マスキングデバイスは、堆積プロセスにおいて使用される堆積材料によって腐食され得る。腐食は、マスキングデバイスの寿命を低減させ得る。マスキングデバイスは、定期的に交換される必要がある。更に、堆積プロセスに対して使用される高温は、マスキングデバイスに損傷を与え得る。更に、堆積プロセスで使用されるマスキングデバイスは、コストの検討が必要である。
上述の事から、当該技術分野における問題のうちの少なくとも幾つかを克服する、薄膜バッテリの製造におけるリチウム堆積プロセスで使用される新しいマスキングデバイス、リチウム堆積プロセスのために構成された新しい装置、リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための新しい方法、及び新しい薄膜バッテリが有益である。本開示の目的は、堆積材料によって腐食されにくいマスキングデバイスを提供することである。更に、本開示の目的は、マスキングデバイスのための製造コストを削減することである。
上述の事に照らして、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス、リチウム堆積プロセスのために構成された装置、リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための方法、及び薄膜バッテリが提供される。本開示の更なる態様、利点、及び特徴は、特許請求の範囲、明細書、及び添付図面から明らかになる。
本開示の一態様によれば、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイスが提供される。マスキングデバイスは、金属又は金属合金から作られたマスク部分、及びマスク部分内の1以上の開口部を含み、1以上の開口部は、堆積材料の粒子がマスク部分を通過することを可能にするように構成され、1以上の開口部の各開口部のサイズは少なくとも0.5cmである。
本開示の別の一態様によれば、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイスが提供される。マスキングデバイスは、金属又は金属合金から作られたマスク部分、及びマスク部分内の1以上の開口部を含み、1以上の開口部は、堆積材料の粒子がマスク部分を通過することを可能にするように構成され、マスキングデバイスは、更に、マスク部分に設けられた絶縁体を含む。
本開示の更に別の一態様によれば、リチウム堆積プロセスのために構成された装置が提供される。装置は、1以上の堆積源、及び本明細書で説明される実施形態によるマスキングデバイスを1以上含む。
本開示のまた更なる一態様によれば、リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための方法が提供される。該方法は、基板に対して本明細書で説明される実施形態によるマスキングデバイスを配置すること、及びマスク部分内の1以上の開口部を通して基板上にリチウム又はリチウム合金を堆積させて、薄膜バッテリの電極を形成することを含む。
本開示の更なる一態様によれば、薄膜バッテリが提供される。薄膜バッテリは、本明細書で説明される実施形態の方法を使用して堆積された電極を含む。
実施形態は、開示される方法を実行するための装置も対象としており、説明される各方法態様を実行するための装置部分を含む。これらの方法態様は、ハードウェア構成要素を用いて、適切なソフトウェアによってプログラミングされたコンピュータを用いて、これらの2つの任意の組合せによって、又はそれ以外の任意の態様で実行され得る。更に、本開示による実施形態は、説明される装置を操作するための方法も対象とする。方法は、装置のあらゆる機能を実行するための方法態様を含む。
本開示の上記の特徴を詳細に理解することができるように、実施形態を参照することによって、上で簡単に概説した本開示のより具体的な説明を得ることができる。添付の図面は本開示の実施形態に関連し、以下の記述において説明される。
本明細書で説明される実施形態による、薄膜バッテリの製造中にリチウム堆積プロセスで使用されるマスキングデバイスの概略図を示す。 本明細書で説明される実施形態による、薄膜バッテリの概略図を示す。 本明細書で説明される実施形態による、薄膜バッテリの製造中にリチウム堆積プロセスで使用される更なるマスキングデバイスの概略断面図を示す。 本明細書で説明される実施形態による、薄膜バッテリの製造中にリチウム堆積プロセスで使用される更なるマスキングデバイスの概略断面図を示す。 本明細書で説明される実施形態による、薄膜バッテリの製造中にリチウム堆積プロセスで使用される更なるマスキングデバイスの概略断面図を示す。 本明細書で説明される更なる実施形態による、薄膜バッテリの製造中にリチウム堆積プロセスで使用されるまた別のマスキングデバイスの概略断面図を示す。 本明細書で説明される実施形態による、リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための方法のフローチャートを示す。 本明細書で説明される実施形態による、薄膜バッテリの製造中にリチウム堆積プロセスで使用されるマスキングデバイスを有する堆積装置の概略図を示す。
ここで、本開示の種々の実施形態が詳細に参照されることになり、その1以上の実施例が図示される。図面に関する以下の説明の中で、同じ参照番号は同じ構成要素を指している。概して、個々の実施形態に関して相違のみが説明される。本開示の説明として各実施例が与えられているが、これは本開示を限定することを意図しているわけではない。更に、一実施形態の一部として図示且つ説明されている特徴を、他の実施形態で用いてもよく、或いは他の実施形態と併用してもよい。それにより、さらに別の実施形態が生み出される。本記載には、このような修正例及び変形例が含まれることが意図されている。
薄膜バッテリの大量生産中に、薄膜バッテリのアノードを形成するためのパターン化された電極層は、例えば、リチウム堆積プロセスにおいてマスキングデバイスを使用して堆積され得る。マスキングデバイスは、堆積プロセスにおいて使用されるリチウムによって腐食され得る。そして、マスキングデバイスの寿命が低減され得る。更に、堆積プロセスにおいて使用されるマスキングデバイスは、コストの検討が必要である。
本開示は、金属又はステンレス鋼などの金属合金から作られたマスク部分を有する、マスキングデバイスを提供する。該マスキングデバイスは、堆積プロセスにおいて使用され得るリチウム及び/又は高温に耐えることができる。該マスキングデバイスは、再使用可能である。更に、該マスキングデバイスは、削減されたコストで製造され得る。更に、金属又は金属合金は、例えば、セラミックよりも損傷又は破損を受けにくい。該マスキングデバイスは、高純度リチウムの堆積のためのプロセス、及び/又はリチウム合金若しくはリチウム複合物の堆積のためのプロセスなどの、リチウム堆積プロセスにおいて使用され得る。一実施例として、リチウム堆積プロセスは、Li、LiTi、又はLiTiOの堆積のためのプロセスであり得る。
本明細書で説明される実施形態は、例えば、リチウムバッテリ製造又はエレクトロクロミックウインドウのための、大面積の基板への堆積のために利用され得る。一実施例として、例えば、アノードなどの電極の製造のためのマスキングデバイスを使用して、複数の薄膜バッテリが、各大面積の基板上に形成され得る。ある実施形態によれば、大面積の基板は、約0.67mの基板(0.73×0.92m)に相当するGEN4.5、約1.4mの基板(1.1m×1.3m)に相当するGEN5、約4.29mの基板(1.95m×2.2m)に相当するGEN7.5、約5.7mの基板(2.2m×2.5m)に相当するGEN8.5、又は更に約8.7mの基板(2.85m×3.05m)に相当するGEN10であってもよい。GEN11及びGEN12のような更に次の世代、並びにそれに相当する基板面積を同様に実装することができる。
ある実施態様によれば、マスキングデバイスは、サブキャリアを用いた使用のために構成されている。一実施例として、(例えば、Gen4.5の堆積ウインドウを有する)大きなキャリア上のサブキャリア(例えば、DinA5、A4、又はA3)を用いて固定された基板の配列が使用され得る。
「基板」という用語は、本明細書で使用される際に、特に、インフレキシブル基板、例えば、ガラスプレート及び金属プレートを含み得る。しかし、本開示はこれらに限定されず、「基板」という用語は、ウェブ又はホイルなどのフレキシブル基板も含み得る。
マスキングデバイスの本実施形態は、薄膜バッテリの製造に言及しながら説明されるが、マスキングデバイスは、他のリチウム堆積プロセス、例えば、エレクトロクロミックウインドウの製造においても使用され得ることが理解されるべきである。
図1は、本明細書で説明される実施形態による、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス100の概略図を示す。図1の上側セクションは、マスキングデバイス100の平面図を示し、図1の下側セクションは、線I‐Iに沿ったマスキングデバイス100の側面断面図を示している。マスキングデバイス100は、リチウム堆積プロセス中に(図示せぬ)基板をマスキングするように構成されている。
マスキングデバイス100は、金属又は金属合金から作られたマスク部分110、及びマスク部分110内の1以上の開口部120を含む。1以上の開口部120は、堆積材料の粒子がマスク部分110を通過することを可能にするように構成されている。1以上の開口部120の各開口部のサイズは、少なくとも0.5cmである。金属又は金属合金から作られたマスク部分110を有するマスキングデバイス100は、堆積プロセスにおいて使用されるリチウムに耐えることができ、再使用可能である。更に、マスキングデバイス100は、削減されたコストで製造され得る。更に、金属又は金属合金から作られたマスク部分110は、例えば、セラミックのマスクと比較したときに、損傷又は破損を受けにくい。
図1で示されている1以上の開口部120は、矩形状を有する。しかし、本開示は、それに限られるものではない。1以上の開口部120は、任意の他の形状、例えば、規則的又は不規則的な形状を有し得る。1以上の開口部120の形状は、基板上に又は基板の上に堆積される薄膜バッテリの電極の形状に対応する。1以上の開口部120は、マスク部分110を通ってマスク部分110の厚さ方向に沿って延在する。1以上の開口部120は、「貫通孔」又は「開孔」とも称され得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、1以上の開口部120の各開口部のサイズは、0.5cmから50cmまでの範囲内、特に、0.5cmから25cmまでの範囲内、更に特に、0.5cmから10cmまでの範囲内にある。開口部のサイズは、開口部の外周又は境界によって画定される。一実施例として、図1の矩形状開口部のサイズは、開口部の第1の横長122と第2の横長124によって画定される。ある実施態様では、1以上の開口部120の各開口部のサイズは、約1cm(例えば、1cm×1cm)又は約4cm(例えば、2cm×2cm)である。
ある実施形態によれば、マスク部分110は、少なくとも0.1mm、特に、少なくとも0.5mm、及び、更に特に、少なくとも1mmの厚さ112を有する。一実施例として、マスク部分110は、約0.1mmと約10mmの間の範囲内、特に、約0.1mmと約2mmの間の範囲内、及び、更に特に、約0.5mmと約1mmの間の範囲内にある厚さ112を有する。一実施例として、マスク部分110は、堅い又はインフレキシブルなマスク本体などのマスク本体であり得る。ある実施形態において、厚さ112は、マスク部分110が実質的に堅い又はインフレキシブルであるように選択される。言い換えると、例えば、フレキシブルシート又はメッシュと比較したときに、マスク部分110がインフレキシブルであるように、厚さ112が選択される。実質的に堅い又はインフレキシブルなマスク部分110は、マスキングデバイスの安定性及び/又は構造的統合性を改良し得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、マスク部分110の金属又は金属合金は、ステンレス鋼、モリブデン、鉄、クロム、アルミニウム、及びそれらの任意の組み合わせから成る群から選択される。一実施例として、ステンレス鋼は、鉄及びクロムを含み得る。しかし、本開示は、それらに限られることなく、堆積材料、例えば、リチウムによって腐食されにくい又は全く腐食されない、任意の金属又は金属合金が使用され得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、マスキングデバイスは、基板キャリアに連結可能であり得る。一実施例として、基板キャリアは、堆積プロセス中に基板を支持するように構成されたフレーム又はプレートであり得る。マスキングデバイスは、堆積プロセス中に基板をマスキングするために、キャリアに取り付けられ得る。マスキングデバイスは、ねじ、クランプ、磁気クランプなどの磁気手段、静電手段、及びそれらの任意の組み合わせ、のうちの少なくとも1つを使用して、キャリアに取り付けられ得る。
図2は、本明細書で説明される実施形態による、薄膜バッテリ200の概略図を示す。薄膜バッテリは、携帯電話、ノートパソコン、及び埋め込み可能医療機器などの、数多くの用途で使用され得る。
薄膜バッテリ200は、本明細書で説明される実施形態によるマスキングデバイスを使用して堆積された電極を含む。例えば、電極は、薄膜バッテリ200のアノード260であり得る。ある実施態様では、マスキングデバイスが、複数の薄膜バッテリの電極を形成するように構成されている。マスキングデバイスは、複数の開口部を有し得る。例えば、複数の開口部の各開口部は、複数の薄膜バッテリのうちの薄膜バッテリのそれぞれの電極に対応し得る。一実施例として、複数の薄膜バッテリは、薄膜バッテリのアノードを形成するためのマスキングデバイスを使用して、大面積の基板上に形成され得る。
図2は、例えば、ガラス、セラミック、金属、シリコン、マイカ、堅い材料、フレキシブル材料、プラスチック、ポリマー、又はそれらの任意の組み合わせであり得る、基板210を示している。アノード電流コレクタ(ACC)220とカソード電流コレクタ(CCC)230が、基板210上に又は基板210の上に堆積されている。例えば、LiCoOを含むカソード240が、カソード電流コレクタ230の上に堆積されている。例えば、LiPONを含む電極250が、少なくともカソード240の上に堆積されている。アノード260(例えば、高純度リチウム又はリチウム合金)が、本明細書で説明される実施形態によるマスキングデバイスを使用して堆積されている。アノード260は、例えば、蒸発プロセス又はスパッタリングプロセスを使用して形成され得る。一実施例として、スパッタリングプロセスは、DCスパッタリング又はパルス状DCスパッタリングを使用して実行され得る。カプセル化層270が、薄膜バッテリ200の構造を保護するために堆積され得る。
「〜の上に(over)」という用語に言及する場合、即ち、1つの層が他の層の上にあるというような場合には、基板から始まり、第1の層が基板の上に堆積され、第1の層の後に堆積される更なる層は、したがって、第1の層と基板の上にあると理解される。言い換えると、「〜の上に(over)」という用語は、起点が基板である場合の層、層スタック、及び/又は膜の順序を規定するために使用されている。これは、層スタックが上下逆に図示されているか否かに関わらない。
本明細書で説明される実施形態と組み合わされ得る、ある実施形態によれば、本開示のマスキングデバイスを使用して堆積された電極(例えば、アノード260)は、(高純度)リチウム又はリチウム合金から作られ得る。一実施例として、リチウム合金は、リチウムと、錫、シリコンなどの半導体、及びそれらの任意の組み合わせから成る群から選択された少なくとも1つの材料とを含み得る。一実施例として、Li、LiTi、又はLiTiOが、リチウム堆積プロセスにおいて堆積され得る。電極、例えば、アノード260は、0.1から50マイクロメートルまでの範囲内、特に、1から10マイクロメートルまでの範囲内にある厚さを有し、より具体的には、約6マイクロメートルの厚さを有し得る。
図3Aは、本明細書で説明される実施形態による、薄膜バッテリの製造におけるリチウム堆積プロセスで使用される別のマスキングデバイス300の概略断面図を示す。矢印は、(図示せぬ)堆積源によって供給された堆積材料を示す。堆積材料、例えば、リチウム又はリチウム合金は、マスキングデバイス300を通過して、基板210上に堆積され、アノード、例えば、薄膜バッテリの電極を形成する。
マスキングデバイスは、金属又は金属合金から作られたマスク部分110、及びマスク部分110内の1以上の開口部120を含み、1以上の開口部120は、堆積材料の粒子がマスク部分110を通過することを可能にするように構成され、マスキングデバイスは、更に、マスク部分110に設けられた絶縁体310を含む。絶縁体310は、マスク部分110と基板210との間に設けられている。
絶縁体310は、製造プロセス中に、例えば、薄膜バッテリ又は薄膜バッテリの電極の間での電気的な短絡を低減させ又は完全に避ける。絶縁体310は、電気的な絶縁材料であると理解され得る。ある実施態様では、絶縁体310が、セラミック材料とポリテトラフルオロエチレン(テフロン)のうちの少なくとも一方を含む。一実施例として、絶縁体310は、セラミック絶縁体であり得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、マスク部分110は、第1の側114と第2の側116を有する。第1の側114は、リチウム堆積プロセス中に基板210と対面するように構成され、第2の側116は、リチウム堆積プロセス中に(図示せぬ)堆積源と対面するように構成されている。絶縁体310は、マスク部分110の少なくとも第1の側114に設けられている。第1の側114は、マスク部分110の第1の表面又は第1の表面領域であり、第2の側116は、マスク部分110の第2の表面又は第2の表面領域であり得る。
図3Aの実施例では、ある実施形態によれば、絶縁体310が、マスク部分110の第1の側114においてのみ設けられ、マスク部分110の第2の側116においては設けられていない。絶縁体310は、マスク部分110の第1の側114を覆うことができる。実施例として、絶縁体310は、第1の側114(又は第1の表面若しくは第1の表面領域)の少なくとも50%、特に、第1の側114の少なくとも90%、更に特に、第1の側114の100%を覆うことができる。
ある実施態様では、絶縁体310が、マスク部分110内の1以上の開口部120に対応する、1以上の絶縁体開口部320を有する。一実施例として、1以上の絶縁体開口部312は、マスク部分110内の1以上の開口部120の形状及び/又はサイズと実質的に合致した形状及び/又はサイズを有し得る。ある実施態様では、1以上の絶縁体開口部320の各絶縁体開口部が、マスク部分110内の1以上の開口部120のサイズと実質的に等しいサイズを有する。「実質的に」という用語は、絶縁体開口部320とマスク部分110内の開口部とのサイズが、例えば、製造許容誤差によって正確には一致しない実施形態を含むだろう。許容誤差は、例えば、開口部のサイズのプラス/マイナス10%の範囲内であり得る。未だ、開口部は、実質的に同じサイズを有していると考えられる。ある実施形態では、絶縁体310が、マスク部分110の1以上の開口部120の中へ延在しない。
他の実施態様では、1以上の絶縁体開口部320のうちの少なくとも1つの(及び具体的には各)絶縁体開口部が、マスク部分110内の1以上の開口部120のサイズよりも大きいサイズを有し得る。一実施例として、絶縁体310は、マスク部分110内の1以上の開口部120の周りで、第1の側114(又は第1の表面若しくは第1の表面領域)の一部分に設けられていない。絶縁体310は、マスク部分110内の1以上の開口部120の周りで、第1の側114の一部分を覆わない。更に他の実施形態では、1以上の絶縁体開口部320のうちの少なくとも1つの(及び具体的には各)絶縁体開口部が、マスク部分110内の1以上の開口部120のサイズよりも小さいサイズを有し得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、絶縁体310は、マスク部分110から分離して設けられている。一実施例として、絶縁体310とマスク部分110とは、分離した物であり得る。絶縁体310とマスク部分110は、例えば、接着剤及び/又はクランプとねじのうちの少なくとも一方などの機械的手段を使用して、互いに取り付けられ得る。絶縁体310とマスク部分110とを分離した物として提供することは、マスキングデバイスの簡略化された製造を可能にする。更に、絶縁体310とマスク部分110とは、例えば、損傷の場合に個別に交換可能であり、整備コストが削減される。ある実施態様では、絶縁体310とマスク部分110とが、互いに接触し得る。直接的な接触は、堆積材料からの絶縁体310の保護を改良し得る。他の実施態様では、絶縁体310とマスク部分110とは、それらが直接的に接触しないように、互いから距離をおいて配置され得る。絶縁体310とマスク部分110とは、個別に配置され及び/又は交換され、マスキングデバイスの取り扱いを容易にし得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態では、絶縁体310が、2つ以上の絶縁体ユニットなどの、(図示せぬ)1以上の絶縁体ユニットを含む(又はそれらから成る)。2つ以上の絶縁体ユニットは、マスク部分がスタックの上端にある状態で、互いの上に積み重ねることができる。ある実施態様では、1以上の絶縁体ユニットが、その内部に設けられた絶縁体開口部を有する1以上の絶縁体プレートであり得る。
マスク部分110、例えば、ステンレス鋼のマスクが、絶縁体310を保護するために絶縁体310の上に配置され得る。一実施例として、絶縁体310は、堆積材料、例えば、リチウムによって腐食され得るセラミックマスクであり得る。金属又は金属合金から作られたマスク部分110は、セラミックマスクを保護するために、セラミックマスクの上端に配置され得る。一方、セラミックマスクは、薄膜バッテリの製造プロセス中に、薄膜バッテリの間の電気的な短絡を避ける絶縁マスキング材料を提供する。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、絶縁体310は、マスク部分110上の被覆として設けられている。一実施例として、マスク部分110は、絶縁体310を設けるために、ポリテトラフルオロエチレン(テフロン)を用いて少なくとも部分的に被覆され得る。絶縁体310がマスク部分110上の被覆として設けられるときに、マスキングデバイスは、低減された厚さを伴って製造され得る。
図3Bは、本明細書で説明される実施形態による、薄膜バッテリの製造におけるリチウム堆積プロセスで使用される別のマスキングデバイス350の概略断面図を示す。マスキングデバイス350は、図3Aの実施例で示されたマスキングデバイス300と類似しており、図3Aに関連して与えられた説明が、図3Bの実施形態にも適用される。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、マスク部分360内の1以上の開口部120は、傾斜を付けられた又は面取りされた端部370を有し得る。一実施例として、マスク部分360の第2の側、すなわち、堆積源に対面するマスク部分360の側における1以上の開口部120の端部分が、傾斜を付けられ又は面取りされ得る。傾斜を付けられた又は面取りされた端部370は、基準線372に対して傾き得る。ある実施態様では、1以上の開口部120の内側壁が、基準線372に対して少なくとも部分的に傾き、傾斜を付けられた又は面取りされた端部370を提供する。基準線372は、マスク部分360の厚さ方向と1以上の開口部120の軸とのうちの少なくとも一方に平行であり得る。ある実施態様では、基準線372が、被覆されるべき基板210の表面と実質的に垂直であり得る。言い換えると、基準線372は垂直であり得る。
ある実施態様では、基準線372に平行な平面内の1以上の開口部120の断面が、少なくとも部分的にV形状であり得る。V形状は、傾斜を付けられた又は面取りされた端部370によって設けられ得る。ある実施形態によれば、基準線372に対する傾斜を付けられた又は面取りされた端部370の角度375が、少なくとも10度、特に、少なくとも30度、及び、更に特に、少なくとも45度である。角度375は、90度未満であり得る。
ある実施態様では、1以上の絶縁体開口部320の各絶縁体開口部が、絶縁体310に対面するマスク部分360の側において、1以上の開口部120のサイズと実質的に等しいか又はそれを上回るサイズを有する。一実施例として、1以上の絶縁体開口部320の各絶縁体開口部は、絶縁体310に対面するマスク部分360の側において、1以上の開口120のサイズよりも大きいサイズを有する。マスク部分360は、少なくとも部分的に絶縁体開口部320と重なる。一方、マスク部分360内の1以上の開口部120は、上述のように、傾斜を付けられた又は面取りされた端部370を有する。
傾斜を付けられた又は面取りされた端部370は、マスク部分360及び/又は絶縁体310内の開口部の内側壁によってもたらされる日陰効果(shading effect)を低減させ又は完全に避けることができる。基板210上に堆積される材料の厚さの均一性が改良され得る。
図3Cは、本明細書で説明される実施形態による、薄膜バッテリの製造におけるリチウム堆積プロセスで使用される別のマスキングデバイス380の概略断面図を示す。マスキングデバイス380は、図3Bの実施例で示されたマスキングデバイス350と類似しており、図3Bに関連して与えられた説明が、図3Cの実施形態にも適用される。
図3Cの実施例では、絶縁体390の1以上の絶縁体開口部320が、傾斜を付けられた又は面取りされた端部382を有する。一実施例として、基板210から離れる方向に面している1以上の絶縁体開口部320の端部分が、傾斜を付けられ又は面取りされ得る。傾斜を付けられた又は面取りされた端部382は、基準線372に対して傾き得る。ある実施態様では、1以上の絶縁体開口部320の内側壁が、基準線372に対して少なくとも部分的に傾き、傾斜を付けられた又は面取りされた端部382を提供する。基準線372は、絶縁体390の厚さ方向と1以上の絶縁体開口部320の軸とのうちの少なくとも一方に平行であり得る。
ある実施態様では、1以上の絶縁体開口部320の内側面が、傾いた部分(傾斜を付けられた又は面取りされた端部382)と傾いていない部分387とを有する。傾いていない部分387は、基板210に対面する絶縁体390の側に設けられ得る。傾いていない部分387は、絶縁体390の厚さ方向において、1mm未満であり、特に、0.5mm未満であり得る。
ある実施形態によれば、マスク部分360内の1以上の開口部120の内側壁は、図3Bを参照して説明されたように、基準線372に対して少なくとも部分的に傾いており、絶縁体390の1以上の絶縁体開口部320は、傾斜を付けられた又は面取りされた端部382を有する。マスク部分360内の1以上の開口部120と1以上の絶縁体開口部320とは、基準線372と平行な平面内で結合された断面を有し、それは、少なくとも部分的にV形状であり得る。基準線372に対するV形状の角度375は、少なくとも10度、特に、少なくとも30度、及び、更に特に、少なくとも45度である。角度375は、90度未満であり得る。
図4は、本明細書で説明される更なる実施形態による、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるまた別のマスキングデバイス400の概略断面図を示す。マスク部分410は、絶縁体310上の被覆として設けられている。被覆は、堆積材料からの絶縁体310の改良された保護を可能にする。更に、マスキングデバイスは、低減された厚さで製造され得る。
ある実施態様によれば、マスク部分110又は被覆は、約10マイクロメートルと約0.1mmの間の範囲内、特に、約25マイクロメートルと約0.1mmの間の範囲内、及び、更に特に、約50マイクロメートルと約0.1mmの間の範囲内にある厚さ112を有する。厚さ112は、例えば、約50マイクロメートルであり得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、絶縁体310は、第1の絶縁体の側314と第2の絶縁体の側316を有する。第1の絶縁体の側314は、リチウム堆積プロセス中に(図示せぬ)基板と対面するように構成され、第2の絶縁体の側316は、リチウム堆積プロセス中に(図示せぬ)堆積源と対面するように構成されている。マスク部分410を形成する被覆は、絶縁体310の少なくとも第2の絶縁体の側316に設けられている。
一実施例として、被覆は、第2の絶縁体の側316においてのみ設けられ、第1の絶縁体の側314においては設けられていない。被覆は、少なくとも部分的に、第2の絶縁体の側316を覆い得る。一実施例として、被覆は、第2の絶縁体の側316の少なくとも90%を覆い、更に特に、第2の絶縁体の側316の100%を覆い得る。
ある実施態様では、絶縁体310が、1以上の絶縁体開口部320を有する。1以上の絶縁体開口部320は、1以上の絶縁体開口部320を画定する側壁315を有し得る。被覆によって設けられたマスク部分410は、少なくとも部分的に、1以上の絶縁体開口部320の中へ延在し得る。一実施例として、側壁315は、少なくとも部分的に、及び、特に完全に、被覆によって覆われ得る。ある実施態様では、被覆が、絶縁体310の厚さの少なくとも10%を超えて、特に、少なくとも50%を超えて、及び、更に特に、100%を超えて、1以上の絶縁体開口部320の中へ延在する。1以上の絶縁体開口部320の中へ延在する金属又は金属合金の被覆は、堆積材料からの絶縁体310の保護を改良し得る。一実施例として、セラミックマスク(絶縁体310)の腐食が、低減され又は完全に避けられ得る。
ある実施態様では、1以上の絶縁体開口部320の各絶縁体開口部が、(参照番号424で示されている)マスク部分410内の1以上開口部420のサイズよりも大きい、(参照番号324で示されている)サイズを有する。一実施例として、1以上の絶縁体開口部320のサイズは、被覆(マスク部分410)が1以上の絶縁体開口部320の中へ延在したときに、マスク部分410内の1以上の開口部420のサイズよりも大きくなり得る。
図5は、本明細書で説明される実施形態による、リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための方法のフローチャートを示す。電極は、アノードであり得る。
方法500は、ブロック510で、基板に対して本明細書で説明される実施形態によるマスキングデバイスを配置すること、及び、ブロック520で、マスク部分内の1以上の開口部を通して基板上にリチウム又はリチウム合金を堆積させて、薄膜バッテリの電極を形成することを含む。基板は、大面積の基板であり、複数の薄膜バッテリの複数の電極が、同時に生成され得る。
ある実施態様では、リチウム堆積プロセスが、スパッタリング又は加熱蒸散(thermal evaporation)を使用して実行される。一実施例として、スパッタリングプロセスは、DCスパッタリング又はパルス状DCスパッタリングを使用して実行され得る。
本明細書で説明される実施形態によれば、リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための方法は、コンピュータプログラムと、ソフトウェアと、コンピュータソフトウェア製品と、大面積の基板などの基板を処理するために装置の対応する構成要素と通信可能なCPU、メモリ、ユーザインターフェース、及び入出力手段を有し得る、相互に関連したコントローラとによって、実行され得る。
図6は、薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス620を有する装置600の概略図を示す。マスキングデバイス620は、本明細書で説明される実施形態に従って構成され得る。
本開示の一態様によれば、装置600は、本明細書で説明される実施形態による、1以上の堆積源610と、1以上のマスキングデバイス620とを含む。マスキングデバイス620は、基板210と1以上の堆積源610との間に配置されている。1以上の堆積源610によって供給されるリチウムなどの堆積材料は、マスク部分内の1以上の開口部を通過し、基板210上に堆積され、基板210上のパターン化された層を形成する。装置600は、例えば、反応性スパッタ堆積などのスパッタ堆積のために構成され得る。例えば、加熱蒸散などの他の堆積技術も使用され得る。
DCスパッタリングは、大面積の基板などの基板210上に高純度リチウム又はリチウム合金を堆積させるために使用され得る。スパッタリングの間に、ターゲット611と電極との間に電位を提供することによって、堆積源610のターゲット611の露出された表面に対してイオンが駆り立てられる。ターゲット611へのイオンの衝突が、ターゲット611の原子を取り外し、その後、それらの原子が基板210上に堆積される。ターゲットは、金属ターゲットであり、特に、リチウムターゲットであり得る。プロセスは、プロセス雰囲気内で実行され得る。ある実施形態によれば、プロセス雰囲気は、アルゴンなどの不活性ガス、酸素、窒素、水素、及びアンモニア(NH)などの反応性ガス、オゾン(O)、活性ガス、及びそれらの任意の組み合わせから成る群から選択された1以上の処理ガスを含み得る。
例示的に、内部で層を堆積させるための1つの真空チャンバ602が示されている。真空チャンバ602は、「処理チャンバ」とも称され得る。図6で示されているように、更なる真空チャンバ603が、真空チャンバ602に隣接して設けられていてもよい。真空チャンバ602は、バルブハウジング604及びバルブユニット605を有するバルブによって、隣接する更なる真空チャンバ603から分離され得る。基板210を有するキャリア630と任意選択的なその上のマスキングデバイス620とが、矢印1で示されているように真空チャンバ602の中へ挿入された後で、バルブユニット605を閉じられ得る。キャリア630は、堆積プロセス中に基板210を支持するように構成された、フレーム又はプレートであり得る。マスキングデバイス620は、堆積プロセス中に基板210をマスキングするために、キャリア630に取り付けられ得る。マスキングデバイス620は、ねじ、クランプ、及び磁気クランプなどの磁気手段のうちの少なくとも1つを使用して、キャリア630に取り付けられ得る。他の実施形態では、マスキングデバイス620は、真空チャンバ602内に取り付けられ得る。言い換えると、マスキングデバイス620は、キャリア630から分離して設けられ得る。
真空チャンバ内の雰囲気は、例えば、真空チャンバに連結された真空ポンプを用いて技術的真空(technical vacuum)を生成することによって、且つ/又は、処理ガスを真空チャンバ602内の堆積領域内に挿入することによって、個別に制御することができる。真空チャンバ602内には、その上に基板210を有するキャリア630を、真空チャンバ602の中へ搬送し及び真空チャンバ602から出すように搬送するために、ローラ640が設けられている。
単純化のために、堆積源610は、1つの真空チャンバ602内に設けられるように示されている。例えば、薄膜バッテリの異なる層を堆積させるための堆積源が、異なる真空チャンバ、例えば、真空チャンバ602に隣接した更なる真空チャンバ603内に設けられ得る。堆積源又は堆積源の群610を異なる真空チャンバ内に設けることによって、適切な処理ガスを有する雰囲気及び/又は適切な程度の技術的真空が、各堆積領域内に提供され得る。一実施例として、図2を参照しながら説明されたように、堆積源を有する複数の真空チャンバが設けられて、薄膜バッテリの層を形成し得る。2つの堆積源が、図6の実施例で示されているが、任意の適切な数の堆積源が設けられ得る。一実施例として、2つ以上の堆積源の配列が真空チャンバ602内に設けられ得る。配列は、3つ以上、6つ以上、10以上、又は更に12以上の堆積源を含み得る。
1以上の堆積源610は、例えば、基板210上に堆積されるべき材料のターゲット611を有する回転可能なカソードであってもよい。カソードは、中にマグネトロンを有する回転可能なカソードであり得る。マグネトロンスパッタリングが、基板210上にリチウム又はリチウム合金を堆積させて、例えば、薄膜バッテリの電極を形成するために実行され得る。堆積源610は、スパッタリング中に電子を収集するアノード612と共にDC電源614に接続されている。本明細書で説明される他の実施形態と組み合わされ得る、また更なる実施形態によれば、1以上のカソードのうちの少なくとも1つが、その対応する個別のDC電源を有し得る。
本明細書で使用される際に、「マグネトロンスパッタリング」は、磁石アセンブリ、すなわち、磁場を発生させることができるユニットを使用して実行されるスパッタリングを指す。そのような磁石アセンブリは、永久磁石から成り得る。この永久磁石は、回転ターゲットの表面の下方に生成された発生磁場の内部に自由電子が捕捉されるようなやり方で、回転可能ターゲットの内部に配置されるか又は平面ターゲットに連結される。そのような磁石アセンブリは、更に、平面カソードに配置連結されてもよい。
ある実施形態によれば、基板210は、堆積材料の堆積中に静的であり又は動的である。本明細書で説明される実施形態によれば、例えば、薄膜バッテリ処理のために静的堆積プロセスが提供され得る。当業者であれば理解するように、動的堆積処理とは異なる「静的堆積処理」という用語は、基板の任意の動きを除外するものではないことに留意するべきである。静的堆積処理は、例えば、堆積中の静的基板位置と、堆積中の振動基板位置と、堆積中に本質的に一定である平均基板位置と、堆積中のディザリング基板位置(dithering substrate position)と、堆積中の搖動基板位置と、カソードが1つの真空チャンバ内に設けられる、すなわち、所定の組のカソードが真空チャンバ内に設けられる堆積処理と、例えば、層の堆積中に真空チャンバを隣接するチャンバから分離するバルブユニットを閉じることによって、真空チャンバが、隣接するチャンバに関連して密閉雰囲気を有する基板位置と、又はそれらの組み合わせとのうちの少なくとも1つを、含むことができる。静的堆積処理は、静的位置を有する堆積処理、本質的に静的な位置を有する堆積処理、又は基板の部分的な静的位置を有する堆積処理として理解することができる。このことから、基板位置が(ある場合では)堆積中の任意の移動を完全に無しとしない、静的堆積処理は、未だ、動的処理から区別され得る。
本開示は、金属又はステンレス鋼などの金属又は金属合金から作られたマスク部分を有する、マスキングデバイスを提供する。マスキングデバイスは、堆積プロセスで使用され得るリチウム及び/又は高温に耐えることができる。マスキングデバイスは、再使用可能である。更に、マスキングデバイスは、削減されたコストで製造され得る。更に、金属又は金属合金は、例えば、セラミックよりも損傷又は破損を受けにくい。
以上の説明は本開示の実施形態を対象としているが、本開示の基本的な範囲を逸脱することなく本開示の他の更なる実施形態を考案することができ、本開示の範囲は、以下の特許請求の範囲によって定められる。

Claims (15)

  1. 薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイスであって、
    金属又は金属合金から作られたマスク部分、及び
    前記マスク部分内の1以上の開口部を備え、前記1以上の開口部が、堆積材料の粒子が前記マスク部分を通過することを可能にするように構成され、前記1以上の開口部の各開口部のサイズが、少なくとも0.5cmである、マスキングデバイス。
  2. 前記1以上の開口部の各開口部の前記サイズが、0.5cmから50cmまでの範囲内にある、請求項1に記載のマスキングデバイス。
  3. 前記マスキングデバイスが、複数の薄膜バッテリの電極の形成のために構成されている、請求項1又は2の記載のマスキングデバイス。
  4. 前記マスク部分に設けられた絶縁体を更に含む、請求項1から3のいずれか一項に記載のマスキングデバイス。
  5. 前記絶縁体が、セラミック材料とポリテトラフルオロエチレンのうちの少なくとも一方を含む、請求項4に記載のマスキングデバイス。
  6. 前記マスク部分が、第1の側と第2の側を有し、前記第1の側が前記リチウム堆積プロセス中に基板と対面するように構成され、前記第2の側が、前記リチウム堆積プロセス中に堆積源と対面するように構成され、前記絶縁体が、前記マスク部分の少なくとも前記第1の側に設けられている、請求項4又は5に記載のマスキングデバイス。
  7. 前記絶縁体が、前記マスク部分内の前記1以上の開口部に対応する1以上の絶縁体開口部を有する、請求項4から6のいずれか一項に記載のマスキングデバイス。
  8. 前記1以上の絶縁体開口部のうちの各開口部が、前記マスク部分内の前記1以上の開口部の前記サイズと等しいか又はそれを上回るサイズを有する、請求項7に記載のマスキングデバイス。
  9. 前記マスク部分と前記絶縁体が、分離した物として設けられる、請求項4から8のいずれか一項に記載のマスキングデバイス。
  10. 前記マスク部分が、前記絶縁体上の被覆として設けられる、請求項4から8のいずれか一項に記載のマスキングデバイス。
  11. 前記マスク部分の前記金属又は前記金属合金が、ステンレス鋼、モリブデン、アルミニウム、鉄、クロム、及びそれらの任意の組み合わせから成る群から選択されている、請求項1から10のいずれか一項に記載のマスキングデバイス。
  12. リチウム堆積プロセスのために構成された装置であって、
    1以上の堆積源、及び
    請求項1から11のいずれか一項に記載のマスキングデバイスを1以上備える、装置。
  13. リチウム堆積プロセスにおいて薄膜バッテリの電極を製造するための方法であって、
    基板に対して請求項1から11のいずれか一項に記載のマスキングデバイスを配置すること、及び
    前記マスク部分内の前記1以上の開口部を通して前記基板上にリチウム又はリチウム合金を堆積させて、前記薄膜バッテリの前記電極を形成することを含む、方法。
  14. 前記リチウム堆積プロセスが、スパッタリング又は加熱蒸散を使用して実行される、請求項13に記載の方法。
  15. 請求項13又は14に記載の方法を使用して製造された電極を含む、薄膜バッテリ。
JP2017559532A 2015-05-15 2015-05-15 薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス、リチウム堆積プロセスのために構成された装置、薄膜バッテリの電極を製造するための方法、及び薄膜バッテリ Pending JP2018521219A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2015/000695 WO2016185234A1 (en) 2015-05-15 2015-05-15 Masking device for use in a lithium deposition process in the manufacturing of thin film batteries, apparatus configured for a lithium deposition process, method for manufacturing electrodes of thin film batteries, and thin film battery

Publications (1)

Publication Number Publication Date
JP2018521219A true JP2018521219A (ja) 2018-08-02

Family

ID=57318983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559532A Pending JP2018521219A (ja) 2015-05-15 2015-05-15 薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス、リチウム堆積プロセスのために構成された装置、薄膜バッテリの電極を製造するための方法、及び薄膜バッテリ

Country Status (6)

Country Link
US (1) US20180351164A1 (ja)
JP (1) JP2018521219A (ja)
KR (1) KR102000769B1 (ja)
CN (1) CN107615557A (ja)
TW (1) TW201711265A (ja)
WO (1) WO2016185234A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
SG11202008268RA (en) 2018-03-19 2020-10-29 Applied Materials Inc Methods for depositing coatings on aerospace components
WO2019209401A1 (en) 2018-04-27 2019-10-31 Applied Materials, Inc. Protection of components from corrosion
KR20230051717A (ko) * 2018-07-09 2023-04-18 다이니폰 인사츠 가부시키가이샤 증착 마스크의 제조 방법 및 증착 마스크 장치의 제조 방법
US11009339B2 (en) 2018-08-23 2021-05-18 Applied Materials, Inc. Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries
CN111276749B (zh) * 2018-12-04 2021-01-26 有研工程技术研究院有限公司 一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法
CN113795908A (zh) 2019-04-08 2021-12-14 应用材料公司 用于修改光刻胶轮廓和调整临界尺寸的方法
US11629402B2 (en) 2019-04-16 2023-04-18 Applied Materials, Inc. Atomic layer deposition on optical structures
EP3969633A4 (en) 2019-04-16 2023-12-06 Applied Materials, Inc. METHOD FOR THIN FILM DEPOSITION IN TRENCHES
WO2020219332A1 (en) 2019-04-26 2020-10-29 Applied Materials, Inc. Methods of protecting aerospace components against corrosion and oxidation
KR20220009991A (ko) 2019-05-16 2022-01-25 드래곤플라이 에너지 코퍼레이션 전기화학 전지의 건조 분말 코팅 층들을 위한 시스템들 및 방법들
US11794382B2 (en) 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11466364B2 (en) 2019-09-06 2022-10-11 Applied Materials, Inc. Methods for forming protective coatings containing crystallized aluminum oxide
US11519066B2 (en) 2020-05-21 2022-12-06 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same
WO2022005696A1 (en) 2020-07-03 2022-01-06 Applied Materials, Inc. Methods for refurbishing aerospace components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103130A (ja) * 2005-10-03 2007-04-19 Geomatec Co Ltd 薄膜固体二次電池および薄膜固体二次電池の製造方法
JP2012122084A (ja) * 2010-12-06 2012-06-28 Sumitomo Electric Ind Ltd 薄型電池の製造方法
JP2012167303A (ja) * 2011-02-10 2012-09-06 Toyota Motor Corp 薄膜固体電池製造用スパッタ装置及び薄膜固体電池の製造方法
JP2014019891A (ja) * 2012-07-17 2014-02-03 Ulvac Japan Ltd 誘電体膜の形成方法、薄膜二次電池の製造方法、及び、誘電体膜の形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982132B1 (en) * 1997-10-15 2006-01-03 Trustees Of Tufts College Rechargeable thin film battery and method for making the same
JP3933342B2 (ja) * 1999-04-05 2007-06-20 東洋アルミニウム株式会社 二次電池の集電体用金属箔および二次電池用集電体
US6558836B1 (en) * 2001-02-08 2003-05-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Structure of thin-film lithium microbatteries
KR100437768B1 (ko) * 2001-09-13 2004-06-30 엘지전자 주식회사 박막증착장치
US20050079418A1 (en) * 2003-10-14 2005-04-14 3M Innovative Properties Company In-line deposition processes for thin film battery fabrication
KR101139147B1 (ko) * 2009-09-11 2012-04-26 파나소닉 주식회사 전자 부품 실장체 및 그 제조 방법 및 인터포저
KR101131555B1 (ko) * 2009-10-22 2012-04-04 지에스나노텍 주식회사 박막 전지 제조용 패턴 마스크, 박막 전지 및 그 제조 방법
KR101260025B1 (ko) * 2011-06-30 2013-05-09 지에스나노텍 주식회사 박막전지용 양극 형성 방법 및 그 방법으로 제조된 박막전지
US8927068B2 (en) * 2011-07-12 2015-01-06 Applied Materials, Inc. Methods to fabricate variations in porosity of lithium ion battery electrode films

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103130A (ja) * 2005-10-03 2007-04-19 Geomatec Co Ltd 薄膜固体二次電池および薄膜固体二次電池の製造方法
JP2012122084A (ja) * 2010-12-06 2012-06-28 Sumitomo Electric Ind Ltd 薄型電池の製造方法
JP2012167303A (ja) * 2011-02-10 2012-09-06 Toyota Motor Corp 薄膜固体電池製造用スパッタ装置及び薄膜固体電池の製造方法
JP2014019891A (ja) * 2012-07-17 2014-02-03 Ulvac Japan Ltd 誘電体膜の形成方法、薄膜二次電池の製造方法、及び、誘電体膜の形成装置

Also Published As

Publication number Publication date
US20180351164A1 (en) 2018-12-06
WO2016185234A1 (en) 2016-11-24
KR102000769B1 (ko) 2019-07-16
CN107615557A (zh) 2018-01-19
TW201711265A (zh) 2017-03-16
KR20180008719A (ko) 2018-01-24

Similar Documents

Publication Publication Date Title
JP2018521219A (ja) 薄膜バッテリの製造におけるリチウム堆積プロセスで使用されるマスキングデバイス、リチウム堆積プロセスのために構成された装置、薄膜バッテリの電極を製造するための方法、及び薄膜バッテリ
US8628645B2 (en) Manufacturing method for thin film battery
US8753724B2 (en) Plasma deposition on a partially formed battery through a mesh screen
US9356320B2 (en) Lithium battery having low leakage anode
TW201538769A (zh) 鋰金屬上之固態電解質及阻障層以及其方法
CA2486762A1 (en) Carbon coated battery electrodes
JP2009179867A (ja) 平行平板型マグネトロンスパッタ装置、固体電解質薄膜の製造方法、及び薄膜固体リチウムイオン2次電池の製造方法
JP2009158416A (ja) 固体電解質薄膜の製造方法、平行平板型マグネトロンスパッタ装置、及び薄膜固体リチウムイオン2次電池の製造方法
WO2018113904A1 (en) Sputter deposition source and method of depositing a layer on a substrate
KR20180103163A (ko) 기판을 마스킹하기 위한 마스크 어레인지먼트 및 마스크를 기판에 대해 정렬하기 위한 방법
JP2019519673A (ja) 基板をコーティングするための方法、及びコータ
US11757158B2 (en) All-solid-state lithium battery and method for fabricating the same
JP2013122080A (ja) スパッタリング装置
KR102204230B1 (ko) 진공 증착 프로세스에서의 기판 상의 재료 증착을 위한 장치, 기판 상의 스퍼터 증착을 위한 시스템, 및 기판 상의 재료 증착을 위한 장치의 제조를 위한 방법
JP2022544641A (ja) 基板上に材料を堆積する方法
KR20180086217A (ko) 기판 상의 스퍼터 증착을 위해 구성된 시스템, 스퍼터 증착 챔버를 위한 차폐 디바이스, 및 스퍼터 증착 챔버에서 전기적 차폐를 제공하기 위한 방법
JP2018519427A (ja) スパッタ堆積プロセス中に少なくとも1つの基板を支持するためのキャリア、少なくとも1つの基板上にスパッタ堆積するための装置、および少なくとも1つの基板上にスパッタ堆積する方法
JP2019527301A (ja) スパッタ堆積源、スパッタ堆積装置及びスパッタ堆積源を操作する方法
JP2013144840A (ja) スパッタリング装置、絶縁膜の形成方法
US20220380889A1 (en) Versatile Vacuum Deposition Sources and System thereof
US20170279115A1 (en) SPECIAL LiPON MASK TO INCREASE LiPON IONIC CONDUCTIVITY AND TFB FABRICATION YIELD
WO2022194377A1 (en) Method of depositing material on a substrate
TW202132592A (zh) 薄膜製造裝置
JP2012054112A (ja) リチウム二次電池用の電極活物質層の形成方法
JP2012153983A (ja) 固体電解質薄膜の製造方法、及び薄膜固体リチウムイオン2次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110