CN111276749B - 一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法 - Google Patents

一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法 Download PDF

Info

Publication number
CN111276749B
CN111276749B CN201811476575.5A CN201811476575A CN111276749B CN 111276749 B CN111276749 B CN 111276749B CN 201811476575 A CN201811476575 A CN 201811476575A CN 111276749 B CN111276749 B CN 111276749B
Authority
CN
China
Prior art keywords
performance
magnetron sputtering
radio frequency
current collector
frequency magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811476575.5A
Other languages
English (en)
Other versions
CN111276749A (zh
Inventor
李硕
谭飞虎
梁晓平
魏峰
杜军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201811476575.5A priority Critical patent/CN111276749B/zh
Publication of CN111276749A publication Critical patent/CN111276749A/zh
Application granted granted Critical
Publication of CN111276749B publication Critical patent/CN111276749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法。该方法包括以下步骤:(1)设计在不同径向尺寸上相同电池形状的掩模版;(2)在衬底基片上覆盖掩模版,在磁控溅射设备上装样,安装靶材;(3)射频磁控溅射法溅射正极集流体、正极、电解质、负极、负极集流体,制备薄膜电池;(4)对不同径向尺寸上获得的电池分别进行充放电性能测试;(5)分析获得径向性能最优的区域。采用本发明的方法通过对不同径向尺寸上获得的薄膜电池进行性能分析,可以获得具有最佳性能的径向区域。

Description

一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法
技术领域
本发明涉及一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法,属于锂离子电池技术领域。
背景技术
全固态薄膜锂电池具有高能量密度,低自放电率,高安全性、高循环寿命等优点,是锂离子电池研发的热点。射频磁控溅射法制备薄膜电池原理是基于在电场作用下Ar离子轰击靶材,靶材原子溅射沉积在衬底基片上。电池的形状与尺寸通常由覆盖在衬底基片上的掩模版控制。利用该方法在圆形衬底上沉积的原子层均匀性不一致,因而在不同区域镀覆得到的电池性能不同。
发明内容
本发明的目的在于提供一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法,采用该方法通过对不同径向尺寸上获得的薄膜电池进行性能分析,可以获得具有最佳性能的径向区域。
为实现上述目的,本发明采用以下技术方案:
一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法,该方法包括以下步骤:
(1)设计在不同径向尺寸上相同电池形状的掩模版;
(2)在衬底基片上覆盖掩模版,在磁控溅射设备上装样,安装靶材;
(3)射频磁控溅射法溅射正极集流体、正极、电解质、负极、负极集流体,制备薄膜电池;
(4)对不同径向尺寸上获得的电池分别进行充放电性能测试;
(5)分析获得径向性能最优的区域。
其中,所述掩模版的直径为52mm,其设计方式为:在半径为r=3.54mm,7.91mm,12.75mm,17.68mm,22.64mm的位置分别布局尺寸为Φ3(直径为3mm)的圆形电池。
所用衬底基片的尺寸与掩模版的尺寸相同,溅射过程中衬底基片的温度为室温。
所用靶材尺寸为3.2×60mm,铜背板尺寸为2×60mm。
所述步骤(3)中,正极集流体为Pt靶,正极靶材为LiMn2O4,电解质靶材为Li3PO4,负极靶材为Li4Ti5O12,负极集流体为Pt靶。
所述步骤(3)中,射频磁控溅射法制备薄膜电池时真空度为5×10-4,其中正极集流体、负极集流体、正极、负极镀覆过程中通入2Pa氩气,气体流量保持30sccm;电解质镀覆过程中通入2Pa氮气,气体流量保持30sccm。
所述步骤(3)中,正极集流体、正极、电解质、负极、负极集流体的溅射功率分别为70w,时长分别为20min,150min,180min,150min,20min。
本发明的优点在于:
采用本发明的方法通过对不同径向尺寸上获得的薄膜电池进行性能分析,可以获得具有最佳性能的径向区域。
本发明通过射频磁控溅射法成功优选得到了在直径为52mm的圆形衬底基片上镀覆电池的最佳性能区域,即r=4.7~19.4mm;并在r=12.75mm处得到了充电电压1.630V,可逆放电容量0.52μAh/4mm2,放电窗口1.505V的Φ3薄膜电池。
附图说明
图1为掩模版径向布局设计方式示意图。
图2为位于不同半径圆环上电池的充放电曲线。
图3为不同位置电池距中心的径向尺寸与输出电压关系拟合曲线。
图4为圆形硅片镀覆电池在不同径向区域的性能优劣示意图。
具体实施方式
以下结合附图和实施例对本发明进行进一步详细说明,但并不意味着对本发明保护范围的限制。
实施例
在直径为52mm的圆形不锈钢掩模版不同径向尺寸位置上布局Φ3的电池孔洞模型,径向尺寸位置分别为r=3.54mm,7.91mm,12.75mm,17.68mm,22.64mm,见图1。
将该掩模版覆盖在直径为52mm的圆形硅片上,在样品托上固定好后在JGP560C15型超高真空五靶磁控溅射镀膜系统上装样,同时安装靶材。
采用机械泵与分子泵两级真空泵抽真空,当样品仓内真空度达到5×10-4Pa时向仓室内通入2Pa氩气,气体流量保持30sccm。
射频磁控溅射法依次镀覆正极集流体Pt、正极LiMn2O4,电解质LiPON、负极Li4Ti5O12、负极集流体Pt,镀覆时长分别为20min,150min,180min,150min,20min。其中电解质靶材为Li3PO4,镀覆过程中需关闭氩气,改为通入2Pa氮气,气体流量同样保持在30sccm。以上各薄膜层溅射功率均为70w。
采用MACCOR MC16电池测试仪测试不同径向尺寸上电池的充放电性能。由图2的充电曲线可以看出r=7.91mm,r=12.75mm,r=17.68mm处的电池具有较好的充电平台,并在r=12.75mm处得到了充电电压1.630V,可逆放电容量0.52μAh/4mm2,放电窗口1.505V的Φ3薄膜电池。
同时由图3拟合曲线可看到各电池输出电量随径向尺寸增大先增大后减小,在r=12.75mm处存在最大值。在r为4.7~19.4mm范围内,所获得电池的输出电量均大于32nW。
由此可见,该区域镀覆得到的电池性能明显优于其它径向区域,见图4。在制备较小尺寸电池时可在该区域进行镀覆。

Claims (6)

1.一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法,其特征在于,该方法包括以下步骤:
(1)设计在不同径向尺寸上相同电池形状的掩模版,所述掩模版的直径为52mm,其设计方式为:在半径为r=3.54mm,7.91mm,12.75mm,17.68mm,22.64mm的位置分别布局直径为3mm的圆形电池孔洞模型;
(2)在衬底基片上覆盖掩模版,在磁控溅射设备上装样,安装靶材;
(3)射频磁控溅射法溅射正极集流体、正极、电解质、负极、负极集流体,制备薄膜电池;
(4)对不同径向尺寸上获得的电池分别进行充放电性能测试;
(5)分析获得径向性能最优的区域。
2.根据权利要求1所述的射频磁控溅射法制备高性能全固态薄膜锂电池的方法,所用衬底基片的尺寸与掩模版的尺寸相同,溅射过程中衬底基片的温度为室温。
3.根据权利要求1所述的射频磁控溅射法制备高性能全固态薄膜锂电池的方法,所用靶材尺寸为3.2×60mm,铜背板尺寸为2×60mm。
4.根据权利要求1所述的射频磁控溅射法制备高性能全固态薄膜锂电池的方法,所述步骤(3)中,正极集流体为Pt靶,正极靶材为LiMn2O4,电解质靶材为Li3PO4,负极靶材为Li4Ti5O12,负极集流体为Pt靶。
5.根据权利要求1所述的射频磁控溅射法制备高性能全固态薄膜锂电池的方法,所述步骤(3)中,射频磁控溅射法制备薄膜电池时真空度为5×10-4,其中正极集流体、负极集流体、正极、负极镀覆过程中通入2Pa氩气,气体流量保持30sccm;电解质镀覆过程中通入2Pa氮气,气体流量保持30sccm。
6.根据权利要求1所述的射频磁控溅射法制备高性能全固态薄膜锂电池的方法,所述步骤(3)中,正极集流体、正极、电解质、负极、负极集流体的溅射功率分别为70w,时长分别为20min,150min,180min,150min,20min。
CN201811476575.5A 2018-12-04 2018-12-04 一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法 Active CN111276749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811476575.5A CN111276749B (zh) 2018-12-04 2018-12-04 一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811476575.5A CN111276749B (zh) 2018-12-04 2018-12-04 一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法

Publications (2)

Publication Number Publication Date
CN111276749A CN111276749A (zh) 2020-06-12
CN111276749B true CN111276749B (zh) 2021-01-26

Family

ID=70999990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811476575.5A Active CN111276749B (zh) 2018-12-04 2018-12-04 一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法

Country Status (1)

Country Link
CN (1) CN111276749B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601791A (zh) * 2004-10-21 2005-03-30 复旦大学 一种新型的全固态薄膜锂电池及其制备方法
WO2005041324A2 (en) * 2003-10-14 2005-05-06 3M Innovative Properties Company In-line deposition processes for thin film battery fabrication
CN1747217A (zh) * 2005-07-28 2006-03-15 复旦大学 一种原位沉积制备全固态薄膜锂电池的设备和方法
CN101924235A (zh) * 2009-06-09 2010-12-22 原子能和代替能源委员会 用单个掩模制造至少一个微元件的方法
CN102668215A (zh) * 2009-10-27 2012-09-12 应用材料公司 阴影掩膜对准和管理系统
CN102703856A (zh) * 2012-05-18 2012-10-03 河南大学 一种制备薄膜电极的辅助装置
CN107615557A (zh) * 2015-05-15 2018-01-19 应用材料公司 制造薄膜电池中的锂沉积工艺中使用的掩蔽装置、用于锂沉积工艺的设备、制造薄膜电池的电极的方法和薄膜电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245079B (en) * 2002-12-30 2005-12-11 Ind Tech Res Inst Method for growing highly-ordered nanofibers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041324A2 (en) * 2003-10-14 2005-05-06 3M Innovative Properties Company In-line deposition processes for thin film battery fabrication
CN1601791A (zh) * 2004-10-21 2005-03-30 复旦大学 一种新型的全固态薄膜锂电池及其制备方法
CN1747217A (zh) * 2005-07-28 2006-03-15 复旦大学 一种原位沉积制备全固态薄膜锂电池的设备和方法
CN101924235A (zh) * 2009-06-09 2010-12-22 原子能和代替能源委员会 用单个掩模制造至少一个微元件的方法
CN102668215A (zh) * 2009-10-27 2012-09-12 应用材料公司 阴影掩膜对准和管理系统
CN102703856A (zh) * 2012-05-18 2012-10-03 河南大学 一种制备薄膜电极的辅助装置
CN107615557A (zh) * 2015-05-15 2018-01-19 应用材料公司 制造薄膜电池中的锂沉积工艺中使用的掩蔽装置、用于锂沉积工艺的设备、制造薄膜电池的电极的方法和薄膜电池

Also Published As

Publication number Publication date
CN111276749A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
Liu et al. Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework
US9905895B2 (en) Pulsed mode apparatus with mismatched battery
US8864954B2 (en) Sputtering lithium-containing material with multiple targets
JP2009543285A (ja) 薄膜電気化学エネルギ源の製造のための方法及びデバイス
CN111438077A (zh) 一种退役三元软包电池的梯次利用性能快速筛选及检测的方法
CN115312774A (zh) 一种负极补锂极片预锂量确定及控制方法
Yi et al. A study on LiFePO 4/graphite cells with built-in Li 4 Ti 5 O 12 reference electrodes
CN101034741B (zh) 掺锆锰酸锂正极薄膜材料及其制备方法
CN115548482A (zh) 一种补锂方法、电池制备方法及电池
CN111244373A (zh) 一种反哺型锂离子电池隔膜材料及其制备和应用
CN114865099A (zh) 一种具有合金界面-锂厚膜结构的全固态厚膜锂电池及其制备方法
CN113564524B (zh) 一种制备碳包覆三维多孔铜集流体的方法
CN111276749B (zh) 一种射频磁控溅射法制备高性能全固态薄膜锂电池的方法
KR100364135B1 (ko) 산화바나듐을 양극활물질로 포함하는 리튬이차전지용 양극
EP4354539A1 (en) A lithium-ion battery electrode piece
CN106601997A (zh) 一种在负极集流体材料上激光溅射沉积渔网状SiOx薄膜的制备方法
CN111948554B (zh) 一种降低锂离子电池力学退化的方法
CN116387463A (zh) 一种三维自支撑复合锂负极的制备方法及其应用
CN100505388C (zh) 钨酸铁锂正极薄膜材料及其制备方法
CN113471561A (zh) 一种确定锂离子电池活化工艺的方法
CN110581263B (zh) 二氧化锰改性锂硫电池金属锂负极的制备方法以及一种锂硫电池
CN108649206B (zh) 锂/纳米碳化硅电池及其制备工艺
Liu et al. Effect of pre-lithiation amounts on the performance of LiNi0. 8Co0. 1Mn0. 1O2|| SiOx/Graphite pouch cell
Chen et al. Waterbed inspired stress relaxation strategies of patterned silicon anodes for fast-charging and longevity of lithium microbatteries
Libich et al. Performance of Graphite Negative Electrode in Lithium-Ion Battery Depending upon the Electrode Thickness

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant