JP2018172384A - 会合化した抗原を消失させる抗原結合分子 - Google Patents

会合化した抗原を消失させる抗原結合分子 Download PDF

Info

Publication number
JP2018172384A
JP2018172384A JP2018087413A JP2018087413A JP2018172384A JP 2018172384 A JP2018172384 A JP 2018172384A JP 2018087413 A JP2018087413 A JP 2018087413A JP 2018087413 A JP2018087413 A JP 2018087413A JP 2018172384 A JP2018172384 A JP 2018172384A
Authority
JP
Japan
Prior art keywords
amino acid
antigen
tyr
thr
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087413A
Other languages
English (en)
Other versions
JP7016769B2 (ja
JP2018172384A5 (ja
Inventor
智之 井川
Tomoyuki Igawa
智之 井川
奈緒香 廣庭
Naoka Hironiwa
奈緒香 廣庭
絵里子 伊藤
Eriko Ito
絵里子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Publication of JP2018172384A publication Critical patent/JP2018172384A/ja
Publication of JP2018172384A5 publication Critical patent/JP2018172384A5/ja
Application granted granted Critical
Publication of JP7016769B2 publication Critical patent/JP7016769B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70535Fc-receptors, e.g. CD16, CD32, CD64 (CD2314/705F)

Abstract

【課題】タンパク質の会合体を単量体より優先して血漿中から消失することのできる抗原結合分子を提供する。
【解決手段】会合体を形成する抗原に結合する抗原結合分子に、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン及びFc領域を含ませることで、タンパク質の会合体を単量体より優先して血漿中から消失することのできる抗原結合分子。本抗原結合分子を用ることにより、標的組織に起因する各種疾患を標的組織特異的に治療することが可能となる。本抗原結合分子を用いることにより、タンパク質の会合体が病因である疾患の治療が可能となる。
【選択図】なし

Description

本発明は、血漿中から会合化した抗原を消失させるための抗原結合分子の使用、抗原結合分子を投与することを含む血漿中から会合化した抗原を消失させる方法、血漿中から会合化した抗原を消失させることが可能な抗原結合分子を含む医薬組成物、血漿中から会合化した抗原を消失させるための抗原結合分子のスクリーニング方法、および血漿中から会合化した抗原を消失させるための抗原結合分子の製造方法を提供する。
遺伝子変異や環境変化など様々な要因によりタンパク質が会合体を形成すると、タンパク質の生理機能が低下したり、細胞に毒性をもたらしたりすることで、様々な病気の原因となることが知られている。例えば、アミロイドβが脳内で凝集し蓄積すると、神経細胞が変性し、アルツハイマー病を発症する。また、免疫グロブリンL鎖が凝集し各臓器に沈着することで、臓器不全がもたらされ、ALアミロイドーシスを発症する。これらのように、様々なタンパク質の会合体の細胞外蓄積を特徴とする疾患群をアミロイドーシスと言い、厚生労働省特定疾患調査研究班の分類によると、全身性アミロイドーシスで10種、限局性アミロイドーシスで10種の病型があると報告されている。アミロイドーシス以外にも、神経細胞内に凝集化したαシヌクレインが沈着する疾患として、αシヌクレイン病が知られている。遺伝性のパーキンソン病の中には、脳の神経細胞へのαシヌクレインの沈着が原因であり、αシヌクレイン病の一種と考えられているものもある。以上のように、世の中にはタンパク質の会合体が病因である疾患がいくつも知られているが、タンパク質の凝集のメカニズムは未だに明らかになっておらず、多くの疾患において根本的な治療薬は存在していない。
近年、血漿中で安定性が高く副作用が少ないことから、抗体が医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1、および非特許文献2)。
抗体一分子あたりが中和できる抗原量はアフィニティーに依存し、アフィニティーを強くすることで少ない抗体量で抗原を中和することが可能であり、様々な方法で抗体のアフィニティーを強くすることが可能である(非特許文献3)。さらに抗原に共有結合的に結合し、アフィニティーを無限大にすることができれば一分子の抗体で一分子の抗原(二価の場合は二抗原)を中和することが可能である。しかし、これまでの方法では一分子の抗体で一分子の抗原(二価の場合は二抗原)の化学量論的な中和反応が限界であり、抗原量以下の抗体量で抗原を完全に中和することは不可能であった。つまり、アフィニティーを強くする効果には限界が存在していた(非特許文献4)。中和抗体の場合、その中和効果を一定期間持続させるためには、その期間に生体内で産生される抗原量以上の抗体量が投与される必要があり、上述の抗体の薬物動態向上、あるいは、アフィニティーマチュレーション技術だけでは、必要抗体投与量の低減には限界が存在していた。そのため、抗原量以下の抗体量で抗原の中和効果を目的期間持続するためには、一つの抗体で複数の抗原を中和する必要がある。
最近、これを達成する新しい方法として、抗原に対してpH依存的に結合する抗体を用いることで、一分子の抗体が複数分子の抗原に結合することが可能であると報告された(特許文献1、非特許文献5)。抗原に対して血漿中の中性条件下においては強く結合し、エンドソーム内の酸性条件下において抗原から解離するpH依存的抗原結合抗体はエンドソーム内で抗原から解離することが可能である。pH依存的抗原結合抗体は、抗原を解離した後に抗体がFcRnによって血漿中にリサイクルされると再び抗原に結合することが可能であるため、1分子のpH依存的抗原結合抗体で複数の抗原に繰り返し結合することが可能となる。このようなリサイクリング抗体は、1分子の抗体が繰り返し複数の抗原に結合することが可能であることから、医薬品として極めて有用である。
また、抗原の血漿中滞留性は、FcRnに結合してリサイクルされる抗体と比較して非常に短い。このような血漿中滞留性が長い通常の抗体がその抗原に結合すると、抗体抗原複合体の血漿中滞留性は抗体と同様に長くなる。そのため、通常の抗体を投与すると、抗体は抗原に結合し、抗原は抗体と結合することによりむしろ血漿中滞留性が長くなり(血漿中から消失されにくくなり)、血漿中の抗原濃度は上昇してしまう。一方、pH依存的抗原結合抗体はエンドソーム内で抗原から解離することによって、血漿中抗原濃度の上昇を抑制することができる。しかしながら、このようなpH依存的抗原結合抗体であっても、抗体投与によって、抗体投与前と比較して、血漿中抗原濃度が上昇してしまう可能性がある。
最近、pH依存的抗原結合抗体に対して、中性条件下においてFcRnへの結合を増強した抗体が作製され、このような抗体を投与することによって、抗体投与前と比較して血漿中抗原濃度を低下できることが見出された(特許文献2)。通常抗体およびpH依存的抗原結合抗体のようなリサイクルされる抗体は、抗体投与により血漿中の抗原濃度を上昇させてしまうのに対して、中性条件下においてFcRnへの結合を増強したpH依存的抗原結合抗体は、抗体投与により血漿中の抗原濃度を低下させることが可能である。このような抗体は、血漿中から積極的に抗原を除去することが可能であることから、医薬品として極めて有用である。
しかしながら、タンパク質の会合体が病因である疾患に関しては、血漿中に正常な機能を持つ単量体と、病因である会合体が共存しており、会合体を選択的に血漿中から除去する性質を持つ抗体が望まれていた。
なお、本発明の先行技術文献を以下に示す。
国際公開第WO 2009/125825号, ANTIGEN-BINDING MOLECULE CAPABLE OF BINDING TO TWO OR MORE ANTIGEN MOLECULES REPEATEDLY 国際公開第WO 2011/122011号, ANTIBODIES WITH MODIFIED AFFINITY TO FCRN THAT PROMOTE ANTIGEN CLEARANCE
Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nature Biotechnology 23, 1073 - 1078 (2005) Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur J Pharm Biopharm. 2005 Apr;59(3):389-96. Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R., A general method for greatly improving the affinity of antibodies by using combinatorial libraries., Proc. Natl. Acad. Sci. U. S. A. (2005) 102 (24), 8466-8471 Rathanaswami P, Roalstad S, Roskos L, Su QJ, Lackie S, Babcook J., Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8., Biochem. Biophys. Res. Commun. (2005) 334 (4), 1004-1013 Igawa T, et al., Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol. 2010, 28, 1203-7.
タンパク質の会合体が病因である疾患の治療には、会合体を選択的に血漿中から除去する性質を持つ抗体が求められるが、中性条件下におけるFcRnへの結合を増強していない通常の抗体は、背景技術に記載の通り、血漿中の抗原濃度を上昇させてしまう可能性が考えられ、その場合、病因となるタンパク質の消失を遅くし、蓄積させる方向に働き、細胞毒性の増強など悪い影響をもたらしてしまう。
一方、FcRnへの結合を増強したpH依存的抗原結合抗体は、血漿中から抗原を除去することが可能であるが、会合体が原因の疾患においては、血漿中に正常な機能を持つ単量体と、病因である会合体が共存しているため、FcRn結合を増強したpH依存的抗原結合抗体を用いても、会合体だけでなく、正常な単量体までも除去されてしまう可能性が考えられる。更に、血漿中の存在比において、会合体に比べて単量体が圧倒的に多い場合、単量体の除去が優先的に行われ、会合体の除去は行われにくい状況になる可能性も考えられる。
本発明はこのような状況に鑑みて為されたものであり、その課題は、病因となるタンパク質の会合体を単量体より優先して血漿中から消失することのできる抗原結合分子、該抗原結合分子を含む医薬組成物及び該抗原結合分子の製造方法を提供することにある。
本発明者らは上記課題を解決するために鋭意研究を行った。その結果、本発明者らは、会合体を形成する抗原に結合する抗原結合分子に、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン及びFc領域を含ませることで、タンパク質の会合体を単量体より優先して血漿中から消失することのできる抗原結合分子を作製することに成功した。
より具体的には、本発明は、以下に関する。
〔1〕会合化した抗原に結合し、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン及びFc領域を含む、抗原結合分子。
〔2〕会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性より高い、〔1〕に記載の抗原結合分子。
〔3〕会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高い、〔1〕または〔2〕に記載の抗原結合分子。
〔4〕血漿中において、会合化した抗原が会合化していない抗原よりも優先して消失する、〔1〕から〔3〕のいずれかに記載の抗原結合分子。
〔5〕血漿中において、抗原結合分子の非存在下での会合化した抗原のクリアランスに対する当該抗原結合分子の存在下での会合化した抗原のクリアランス比が、会合化していない抗原の同クリアランス比の1.5倍以上である、〔1〕から〔4〕のいずれかに記載の抗原結合分子。
〔6〕前記抗原結合ドメインが、カルシウムイオン濃度の条件によって抗原に対する結合活性が変化する、〔1〕から〔5〕のいずれかに記載の抗原結合分子。
〔7〕前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での抗原に対する結合活性が高カルシウムイオン濃度の条件下での抗原に対する結合活性よりも低い抗原結合ドメインである、〔6〕に記載の抗原結合分子。
〔8〕前記抗原結合ドメインが、pHの条件によって抗原に対する結合活性が変化する抗原結合ドメインである、〔1〕から〔7〕のいずれかに記載の抗原結合分子。
〔9〕前記抗原結合ドメインが、pH酸性域における抗原に対する結合活性がpH中性域の条件における抗原に対する結合活性よりも低い抗原結合ドメインである、〔8〕に記載の抗原結合分子。
〔10〕前記抗原が、血漿中において会合化する抗原である、〔1〕〜〔9〕のいずれかに記載の抗原結合分子。
〔11〕前記抗原が、ハンチンチン、ataxin-1、ataxin-2、Caチャンネルα1A、ataxin-7、TATA binding protein、MDJ、DRPLA、アンドロゲンレセプター、α1-アンチトリプシン、α1-アンチキモトリプシン、ニューロセルピン、C1インヒビター、アンチトロンビンIII、Aβ、L-ch、トランスサイレチン、SAA、β2M、H-ch、シスタチンC、αシヌクレイン、amylin、ヘモグロビン、クリスタリン、IgA、Tauタンパク、TAR DNA-binding protein 43kDa (TDP-43)、Superoxide dismutase (SOD1)、FUS(Fused in Sarcoma gene)、Prion、PHOX2B、ARX、poly-adenylate binding protein nuclear 1(PABPN1)、ジスフェルリン、デスミン、またはGFAP、ケラチン5/14のいずれかである〔10〕に記載の抗原結合分子。
〔12〕前記Fc領域が、それぞれ配列番号:9、10、11、または12のいずれかで表されるFc領域である、〔1〕から〔11〕のいずれかに記載の抗原結合分子。
〔13〕前記Fc領域のpH酸性域の条件下でのFcRnに対する結合活性が、配列番号:9、10、11、または12のいずれかで表されるFc領域のFcRnに対する結合活性より増強されているFc領域である、〔1〕から〔11〕のいずれかに記載の抗原結合分子。
〔14〕前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される238位、244位、245位、249位、250位、251位、252位、253位、254位、255位、256位、257位、258位、260位、262位、265位、270位、272位、279位、283位、285位、286位、288位、293位、303位、305位、307位、308位、309位、311位、312位、314位、316位、317位、318位、332位、339位、340位、341位、343位、356位、360位、362位、375位、376位、377位、378位、380位、382位、385位、386位、387位、388位、389位、400位、413位、415位、423位、424位、427位、428位、430位、431位、433位、434位、435位、436位、438位、439位、440位、442位または447位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である〔13〕に記載の抗原結合分子。
〔15〕前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
238位のアミノ酸がLeu、
244位のアミノ酸がLeu、
245位のアミノ酸がArg、
249位のアミノ酸がPro、
250位のアミノ酸がGlnまたはGluのいずれか、もしくは
251位のアミノ酸がArg、Asp、Glu、またはLeuのいずれか、
252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
254位のアミノ酸がSerまたはThrのいずれか、
255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、Pro、またはThrのいずれか、
257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
258位のアミノ酸がAsp、
260位のアミノ酸がSer、
262位のアミノ酸がLeu、
270位のアミノ酸がLys、
272位のアミノ酸がLeu、またはArgのいずれか、
279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
285位のアミノ酸がAsn、
286位のアミノ酸がPhe、
288位のアミノ酸がAsn、またはProのいずれか、
293位のアミノ酸がVal、
307位のアミノ酸がAla、Glu、Gln、またはMetのいずれか、
311位のアミノ酸がAla、Glu、Ile、Lys、Leu、Met、Ser 、Val、またはTrpのいずれか、
309位のアミノ酸がPro、
312位のアミノ酸がAla、Asp、またはProのいずれか、
314位のアミノ酸がAlaまたはLeuのいずれか、
316位のアミノ酸がLys、
317位のアミノ酸がPro、
318位のアミノ酸がAsn、またはThrのいずれか、
332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
341位のアミノ酸がPro、
343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
375位のアミノ酸がArg、
376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
377位のアミノ酸がLys、
378位のアミノ酸がAsp、Asn、またはValのいずれか、
380位のアミノ酸がAla、Asn、Ser、またはThrのいずれか
382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
389位のアミノ酸がAsn、Pro、またはSerのいずれか、
423位のアミノ酸がAsn、
427位のアミノ酸がAsn、
428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
431位のアミノ酸がHis、またはAsnのいずれか、
433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
434位のアミノ酸がAla、Gly、His、Phe、Ser、Trp、またはTyrのいずれか、
436位のアミノ酸がArg、Asn、His、Ile、Leu、Lys、Met、またはThrのいずれか、
438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
440位のアミノ酸がLys、もしくは、
442位のアミノ酸がLys、308位のアミノ酸がIle、Pro、またはThrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸である、〔14〕に記載の抗原結合分子。
〔16〕前記Fc領域のpH中性域の条件下でのFcRnに対する結合活性が、配列番号:9、10、11、または12のいずれかで表されるFc領域のFcRnに対する結合活性より増強されているFc領域である、〔1〕から〔11〕のいずれかに記載の抗原結合分子。
〔17〕前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位または436位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である〔16〕に記載の抗原結合分子。
〔18〕前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
237位のアミノ酸がMet、
248位のアミノ酸がIle、
250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
254位のアミノ酸がThr、
255位のアミノ酸がGlu、
256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
258位のアミノ酸がHis、
265位のアミノ酸がAla、
286位のアミノ酸がAlaまたはGluのいずれか、
289位のアミノ酸がHis、
297位のアミノ酸がAla、
303位のアミノ酸がAla、
305位のアミノ酸がAla、
307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
311位のアミノ酸がAla、His、またはIleのいずれか、
312位のアミノ酸がAlaまたはHisのいずれか、
314位のアミノ酸がLysまたはArgのいずれか、
315位のアミノ酸がAla、AspまたはHisのいずれか、
317位のアミノ酸がAla、
332位のアミノ酸がVal、
334位のアミノ酸がLeu、
360位のアミノ酸がHis、
376位のアミノ酸がAla、
380位のアミノ酸がAla、
382位のアミノ酸がAla、
384位のアミノ酸がAla、
385位のアミノ酸がAspまたはHisのいずれか、
386位のアミノ酸がPro、
387位のアミノ酸がGlu、
389位のアミノ酸がAlaまたはSerのいずれか、
424位のアミノ酸がAla、
428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
433位のアミノ酸がLys、
434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
の群から選択される少なくとも一つ以上のアミノ酸である、〔17〕に記載の抗原結合分子。
〔19〕前記Fc領域が、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFc領域を含む〔1〕から〔15〕のいずれかに記載の抗原結合分子。
〔20〕前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位または440位の群から選択される少なくとも一つ以上のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む〔19〕に記載の抗原結合分子。
〔21〕前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、もしくは
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸を含む〔20〕に記載の抗原結合分子。
〔22〕前記Fc領域が、活性型Fcγレセプターに対する結合活性よりも抑制型Fcγレセプターに対する結合活性が高いFc領域である、〔1〕から〔18〕のいずれかに記載の抗原結合分子。
〔23〕前記抑制型FcγレセプターがヒトFcγRIIbである、〔22〕に記載の抗原結合分子。
〔24〕前記活性型FcγレセプターがヒトFcγRIa、ヒトFcγRIIa(R)、ヒトFcγRIIa(H)、ヒトFcγRIIIa(V)またはヒトFcγRIIIa(F)である、〔22〕または〔23〕に記載の抗原結合分子。
〔25〕前記Fc領域のEUナンバリングで表される238位または328位のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む、〔22〕から〔24〕のいずれかに記載の抗原結合分子。
〔26〕前記Fc領域のEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluである、〔25〕に記載の抗原結合分子。
〔27〕前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
233位のアミノ酸がAsp、
234位のアミノ酸がTrp、またはTyrのいずれか、
237位のアミノ酸がAla、Asp、Glu、Leu、Met、Phe、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、
267位のアミノ酸がAla、GlnまたはValのいずれか、
268位のアミノ酸がAsn、Asp、またはGluのいずれか、
271位のアミノ酸がGly、
326位のアミノ酸がAla、Asn、Asp、Gln、Glu、Leu、Met、SerまたはThrのいずれか、
330位のアミノ酸がArg、Lys、またはMetのいずれか、
323位のアミノ酸がIle、Leu、またはMetのいずれか、もしくは
296位のアミノ酸がAsp、
の群から選択される少なくとも一つ以上のアミノ酸である、〔27〕または〔28〕に記載の抗原結合分子。
〔28〕〔1〕から〔27〕のいずれかに記載の抗原結合分子を有効成分として含む医薬組成物。
〔29〕血漿中において、会合化した抗原を消失させるための、〔1〕から〔27〕のいずれかに記載の抗原結合分子の使用。
〔30〕前記会合化した抗原が、会合化していない抗原よりも優先して消失される、〔29〕に記載の抗原結合分子の使用。
〔31〕以下の工程(a)を含む、会合化した抗原に結合し、該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子のスクリーニング方法;
(a) 細胞内イオン濃度条件下における抗原結合分子の会合化した抗原に対する抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低い抗原結合分子を選択する工程。
〔32〕更に、以下の工程を含む、〔31〕に記載のスクリーニング方法;
(i) 細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性よりも高くなる抗原結合分子を選択する工程、
及び/又は、
(ii) 細胞外イオン濃度条件下における会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高くなる抗原結合分子を選択する工程。
〔33〕以下の工程(a)〜(c)を含む、会合化した抗原と結合し、当該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子の製造方法;
(a) 細胞内イオン濃度条件下における抗原結合分子の会合化した抗原に対する抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低い抗原結合分子を選択する工程、
(b) 前記工程(a)で選択された抗原結合分子をコードする遺伝子を含むベクターを含む宿主細胞を培養する工程、及び、
(c) 前記工程(b)で得られた培養液から抗原結合分子を単離する工程。
〔34〕以下の工程(a)〜(c)を含む、会合化した抗原と結合し、当該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子の製造方法;
(a) 細胞内イオン濃度条件下における抗原結合分子の会合化した抗原に対する抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低い抗原結合分子を選択する工程、
(b) (i) 細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性よりも高くなる抗原結合分子を選択する工程、及び/又は、(ii) 細胞外イオン濃度条件下における会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高くなる抗原結合分子を選択する工程、
(c) 前記工程(a)及び(b)で選択された抗原結合分子をコードする遺伝子を含むベクターを含む宿主細胞を培養する工程、および
(d) 前記工程(c)で得られた培養液から抗原結合分子を単離する工程。
pH依存的結合抗体が繰り返し可溶型抗原に結合することを示す図である。(i) 抗体が可溶型抗原と結合する、(ii) 非特異的に、ピノサイトーシスにより細胞内へ取り込まれる、(iii) エンドソーム内で抗体はFcRnと結合し、可溶型抗原は抗体から解離する、(iv) 可溶型抗原はライソソームに移行し分解される、(v) 可溶型抗原が解離した抗体はFcRnにより血漿中にリサイクルされる、(vi) リサイクルされた抗体は、再び可溶型抗原へ結合することが可能となる。 中性条件下でFcRnへの結合を増強することによって、pH依存的結合抗体が抗原に繰り返し結合できる効果をさらに向上させることを示す図である。(i) 抗体が可溶型抗原と結合する、(ii) FcRnを介して、ピノサイトーシスにより細胞内へ取り込まれる、(iii) エンドソーム内で可溶型抗原は抗体から解離する、(iv) 可溶型抗原はライソソームに移行し分解される、(v) 可溶型抗原が解離した抗体はFcRnにより血漿中にリサイクルされる、(vi) リサイクルされた抗体は、再び可溶型抗原へ結合することが可能となる。 会合化したヒトIgAのSEC分析結果の図である。 Biacoreを用いた抗ヒトIgA抗体の単量体ヒトIgA及び会合化したヒトIgAへの相互作用を示すセンサーグラムである。 GA2-IgG1抗体投与群のノーマルマウス血漿中抗体濃度推移を示す図である。 単量体ヒトIgA単独投与群、単量体ヒトIgA+GA2-IgG1抗体投与群のノーマルマウス血漿中単量体ヒトIgAの濃度推移を示す図である。 会合化ヒトIgA単独投与群、会合化ヒトIgA+GA2-IgG1抗体投与群のノーマルマウス血漿中会合化ヒトIgAの濃度推移を示す図である。 "ヒトIgA+GA2-IgG1投与時のヒトIgA濃度/ヒトIgA単独投与時のヒトIgA濃度"の推移を示す図である。 会合化した抗原に対して複数の抗体が多価で結合し大きな免疫複合体を形成し、受容体に対して多価で強固に結合することにより、細胞内に効率的に取り込まれることを例示する図である。 会合化していない抗原の場合、大きな免疫複合体を形成しないため、受容体への結合が弱く、細胞内への取り込みが効率的でないことを例示する図である。
以下の定義および詳細な説明は、本明細書において説明する本発明の理解を容易にするために提供される。
会合化した抗原
本発明においては、通常の生体液中に存在する分子(単量体)が、2分子以上会合あるいは多量化した状態の分子を意味する。会合化した抗原は通常に生体液中に存在する抗原と比較して、同じ立体構造(タンパク質2次構造、3次構造)を有する単量体が会合あるいは多量化した分子であってもよいし、単量体と比較して部分的、あるいは全体的に変性して分子が会合あるいは多量化した分子であってもよい。更に、両者の混合物が会合あるいは多量化した分子であってもよい。また、会合化した抗原の中に、抗原結合分子が結合しない別の種類の抗原が存在していても良い。本発明の抗原結合分子の対象抗原としては、会合化する抗原であれば特に限定されないが、病態時に会合化している抗原が好ましく、会合化した抗原が疾患の原因物質である抗原がより好ましい。そのような抗原としては、例えば、後述の表7に記載の抗原が挙げられる。なお、本明細書においては、会合化した抗原を会合化抗原または多量体抗原と記載することもある。
本発明における生体液とは、病態時に会合化している抗原が存在している生体内の脈管又は組織・細胞の間を満たす全ての液体を意味し、具体的には、血漿、間質液、脳脊髄液、髄液、穿刺液、関節液、肺胞液(気管支肺胞洗浄液)、リンパ液、腹水、胸水、心嚢水、嚢胞液、眼房水(房水)等が挙げられる。
このような会合化した抗原を調製する方法として、例えば以下の方法が挙げられる。(1)会合化した抗原を含む血漿から会合化した抗原をクロマトグラフィー法等で精製する。(2)SPDP(N-Succinimidyl 3-(2-pyridyldithio)propionate)等の化学的架橋剤で化学的に単量体抗原を架橋し、会合化した抗原をクロマトグラフィー法等で精製する。(3)熱処理や酸処理により化学的に単量体抗原を全体的あるいは部分的に変性させることで、会合化した抗原をクロマトグラフィー法等で精製する。
アミノ酸
本明細書において、たとえば、Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、Val/Vと表されるように、アミノ酸は1文字コードまたは3文字コード、またはその両方で表記されている。
アミノ酸の改変
抗原結合分子のアミノ酸配列中のアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法もまた採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。
本明細書において、アミノ酸の改変部位を表す際に用いられる「および/または」の用語の意義は、「および」と「または」が適宜組み合わされたあらゆる組合せを含む。具体的には、例えば「33位、55位、および/または96位のアミノ酸が置換されている」とは以下のアミノ酸の改変のバリエーションが含まれる;
(a) 33位、(b)55位、(c)96位、(d)33位および55位、(e)33位および96位、(f)55位および96位、(g)33位および55位および96位。
エピトープ
抗原中に存在する抗原決定基を意味するエピトープは、本明細書において開示される抗原結合分子中の抗原結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗原結合分子中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。
直線状エピトープは、アミノ酸一次配列が認識されたエピトープを含むエピトープである。直線状エピトープは、典型的には、少なくとも3つ、および最も普通には少なくとも5つ、例えば約8ないし約10個、6ないし20個のアミノ酸が固有の配列において含まれる。
立体構造エピトープは、直線状エピトープとは対照的に、エピトープを含むアミノ酸の一次配列が、認識されたエピトープの単一の規定成分ではないエピトープ(例えば、アミノ酸の一次配列が、必ずしもエピトープを規定する抗体により認識されないエピトープ)である。立体構造エピトープは、直線状エピトープに対して増大した数のアミノ酸を包含するかもしれない。立体構造エピトープの認識に関して、抗体は、ペプチドまたはタンパク質の三次元構造を認識する。例えば、タンパク質分子が折り畳まれて三次元構造を形成する場合には、立体構造エピトープを形成するあるアミノ酸および/またはポリペプチド主鎖は、並列となり、抗体がエピトープを認識するのを可能にする。エピトープの立体構造を決定する方法には、例えばX線結晶学、二次元核磁気共鳴分光学並びに部位特異的なスピン標識および電磁常磁性共鳴分光学が含まれるが、これらには限定されない。例えば、Epitope Mapping Protocols in Methods in Molecular Biology (1996)、第66巻、Morris(編)を参照。
エピトープに結合する抗原結合ドメインの構造はパラトープと呼ばれる。エピトープとパラトープの間に作用する、水素結合、静電気力、ファンデルワールス力、疎水結合等によりエピトープとパラトープは安定して結合する。このエピトープとパラトープの間の結合力はアフィニティー(affinity)と呼ばれる。複数のエピトープと複数のパラトープが結合するときの結合力の総和はアビディティ(avidity)と呼ばれる。複数のパラトープを含む(すなわち多価の)抗体等が複数のエピトープに結合する際には、結合力(affinity)が相加的または相乗的に働くため、アビディティはアフィニティーよりも高くなる。
結合活性
下記に抗原に対する抗原結合ドメインを含む被験抗原結合分子によるエピトープへの結合の確認方法が例示されるが、これに限定されるものではない。
例えば、ある抗原に対する抗原結合ドメインを含む被験抗原結合分子が、当該抗原分子中に存在する線状エピトープを認識することは、たとえば次のようにして確認することができる。例えば、上記の目的のために当該抗原を構成するアミノ酸配列からなる線状のペプチドが合成される。当該ペプチドは、化学的に合成され得る。あるいは、当該抗原をコードするcDNAを利用して、遺伝子工学的手法により得られる。次に、上記線状ペプチドと、当該抗原に対する抗原結合ドメインを含む被験抗原結合分子との結合活性が評価される。たとえば、固定化された線状ペプチドを抗原とするELISAによって、当該ペプチドに対する当該抗原結合分子の結合活性が評価され得る。あるいは、当該抗原が細胞表面に発現している細胞に対する当該抗原結合分子の結合における、線状ペプチドによる阻害のレベルに基づいて、線状ペプチドに対する結合活性が明らかにされ得る。これらの試験によって、線状ペプチドに対する当該抗原結合分子の結合活性が明らかにされ得る。
また、ある抗原に対する抗原結合ドメインを含む被験抗原結合分子が立体構造エピトープを認識することは、次のようにして確認され得る。上記の目的のために、本明細書において記載されるように、一般的な組換え遺伝子手法を用いることによって、当該抗原内のネイティブな立体エピトープの形成を可能にする宿主細胞(例えば、動物細胞、昆虫細胞、酵母細胞)に当該抗原をコードする組換え遺伝子が形質導入される。このように作製された組換え細胞の培養液から立体構造エピトープを含む抗原が調製される。抗原に対する抗原結合ドメインを含む被験抗原結合分子が立体構造エピトープを認識するとは、当該被験抗原結合分子が固定化された立体構造エピトープを含む抗原に接触した際に当該抗原に強く結合する一方で、固定化された抗原のアミノ酸配列を構成するアミノ酸配列からなる線状ペプチドに対して、当該抗原結合分子が実質的に結合しないとき等が挙げられる。上記線状ペプチドの代わりに、ジチオスレイトール(dithiothreitol)、ジチオエリトリトール(dithioerythritol)β-メルカプトエタノール(β-mercaptoethanol)、ホスフィン誘導体(phosphines)、水素化ホウ素ナトリウム(sodium borohydride)等のジスルフィド結合を切断する還元剤、および/または、グアニジン塩酸塩、尿素、ラウリル硫酸ナトリウム等の界面活性剤等のカオトロピック薬剤によって変性されたIgAに対する当該被験抗原結合分子もまた使用され得る。ここで、実質的に結合しないとは、ヒトIgAに対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性をいう。
ある抗原に対する抗原結合ドメインを含む被験抗原結合分子の当該抗原に対する結合活性を測定する方法としては、例えば、Antibodies A Laboratory Manual記載の方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)が挙げられる。即ちIgAを抗原とするELISAやEIAの原理によって評価され得る。
ELISAフォーマットにおいて、ある抗原に対する抗原結合ドメインを含む被験抗原結合分子の当該抗原に対する結合活性は、酵素反応によって生成するシグナルレベルを比較することによって定量的に評価される。すなわち、抗原を固定化したELISAプレートに被験抗原結合分子を加え、当該プレートに固定された抗原に結合した被験抗原結合分子が、被験抗原結合分子を認識する酵素標識抗体を利用して検出される。上記ELISAにおいては、被験抗原結合分子の希釈系列を作成し、抗原に対する抗体結合力価(titer)を決定することにより、当該抗原に対する被験抗原結合分子の結合活性が比較され得る。
緩衝液等に懸濁した細胞表面上に発現している抗原に対する被験抗原結合分子の結合は、フローサイトメーターによって検出することができる。フローサイトメーターとしては、例えば、次のような装置が知られている。
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM (いずれもBD Biosciences社の商品名)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)
また、例えば、ある抗原に対する抗原結合ドメインを含む被験抗原結合分子の抗原に対する結合活性の好適な測定方法の一例として、次の方法が挙げられる。まず、ある抗原を発現する細胞と反応させた被験抗原結合分子を認識するFITC標識した二次抗体で染色する。被験抗原結合分子を適宜好適な緩衝液によって希釈することによって、当該抗原結合分子が所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用され得る。次に、FACSCalibur(BD社)により蛍光強度と細胞数が測定される。当該細胞に対する抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、被験抗原結合分子の結合量によって表される被験抗原結合分子の結合活性が測定され得る。
ある抗原に対する抗原結合ドメインを含む被験抗原結合分子が、ある抗原結合分子とエピトープを共有することは、両者の同じエピトープに対する競合によって確認され得る。抗原結合分子間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。
具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートした抗原が、候補となる競合抗原結合分子の存在下、または非存在下でプレインキュベートされた後に、被験抗原結合分子が添加される。ウェル中の抗原に結合した被験抗原結合分子の量は、同じエピトープへの結合に対して競合する候補となる競合抗原結合分子の結合能に間接的に相関している。すなわち同一エピトープに対する競合抗原結合分子の親和性が大きくなればなる程、被験抗原結合分子の抗原をコートしたウェルへの結合活性は低下する。
抗原を介してウェルに結合した被験抗原結合分子の量は、予め抗原結合分子を標識しておくことによって、容易に測定され得る。たとえば、ビオチン標識された抗原結合分子は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定される。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイは、特に競合ELISAアッセイといわれる。抗原結合分子は、検出あるいは測定が可能な他の標識物質で標識され得る。具体的には、放射標識あるいは蛍光標識などが公知である。
候補の競合抗原結合分子の非存在下で実施されるコントロール試験において得られる結合活性と比較して、競合抗原結合分子が、抗原に対する被験抗原結合分子の結合を少なくとも20%、好ましくは少なくとも20-50%、さらに好ましくは少なくとも50%ブロックできるならば、当該被験抗原結合分子は競合抗原結合分子と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗原結合分子である。
ある抗原に対する抗原結合ドメインを含む被験抗原結合分子が結合するエピトープの構造が同定されている場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、当該エピトープを構成するペプチドにアミノ酸変異を導入したペプチドに対する両者の抗原結合分子の結合活性を比較することによって評価され得る。
こうした結合活性を測定する方法としては、例えば、前記のELISAフォーマットにおいて変異を導入した線状のペプチドに対する被験抗原結合分子及び対照抗原結合分子の結合活性を比較することによって測定され得る。ELISA以外の方法としては、カラムに結合した当該変異ペプチドに対する結合活性を、当該カラムに被検抗原結合分子と対照抗原結合分子を流下させた後に溶出液中に溶出される抗原結合分子を定量することによっても測定され得る。変異ペプチドを例えばGSTとの融合ペプチドとしてカラムに吸着させる方法は公知である。
また、細胞上に発現する抗原結合分子中の同定されたエピトープが立体エピトープの場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、例えば次の方法で評価され得る。まず、対象となる抗原を発現する細胞とエピトープに変異が導入された抗原を発現する細胞が調製される。これらの細胞がPBS等の適切な緩衝液に懸濁された細胞懸濁液に対して被験抗原結合分子と対照抗原結合分子が添加される。次いで、適宜緩衝液で洗浄された細胞懸濁液に対して、被験抗原結合分子と対照抗原結合分子を認識することができるFITC標識された抗体が添加される。標識抗体によって染色された細胞の蛍光強度と細胞数がFACSCalibur(BD社)によって測定される。被験抗原結合分子と対照抗原結合分子の濃度は好適な緩衝液によって適宜希釈することによって所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用される。当該細胞に対する標識抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、標識抗体の結合量によって表される被験抗原結合分子と対照抗原結合分子の結合活性を測定することができる。
本発明において、会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性より高いかどうかは上述の方法にしたがって、会合化した抗原に対する結合活性と会合化していない抗原に対する結合活性を比較することで確認することができる。
抗原結合ドメイン
本明細書において、「抗原結合ドメイン」は目的とする抗原に結合するかぎりどのような構造のドメインも使用され得る。そのようなドメインの例として、例えば、抗体の重鎖および軽鎖の可変領域、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(国際公開WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(国際公開WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(国際公開WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(国際公開WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれたバレル構造の片側を支える4つのループ領域であるAnticalin等(国際公開WO2003/029462)、ヤツメウナギ、ヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なった馬てい形の構造の内部の並行型シート構造のくぼんだ領域(国際公開WO2008/016854)が好適に挙げられる。本発明の抗原結合ドメインの好適な例として、抗体の重鎖および軽鎖の可変領域を含む抗原結合ドメインが挙げられる。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
免疫複合体(Immune complex)
免疫複合体は、少なくとも一つの会合化していない抗原、あるいは、会合化した抗原と少なくとも一つの抗原結合分子が互いに結合してより大きな分子量の抗原と抗原結合分子とからなる複合体を形成する場合に生じる構造を意味する。
抗体
本明細書において、抗体とは、天然のものであるかまたは部分的もしくは完全合成により製造された免疫グロブリンをいう。抗体はそれが天然に存在する血漿や血清等の天然資源や抗体を産生するハイブリドーマ細胞の培養上清から単離され得るし、または遺伝子組換え等の手法を用いることによって部分的にもしくは完全に合成され得る。抗体の例としては免疫グロブリンのアイソタイプおよびそれらのアイソタイプのサブクラスが好適に挙げられる。ヒトの免疫グロブリンとして、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD
、IgE、IgMの9種類のクラス(アイソタイプ)が知られている。本発明の抗体には、これらのアイソタイプのうちIgG1、IgG2、IgG3、IgG4が含まれ得る。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242 に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリングで表される356-358位のアミノ酸配列がDELであってもEEMであってもよい。また、ヒトIgκ (Kappa)定常領域とヒトIgλ (Lambda)定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。
所望の結合活性を有する抗体を作製する方法は当業者において公知である。
抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として取得され得る。哺乳動物由来のモノクローナル抗体には、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主細胞によって産生されるもの等が含まれる。なお本願発明のモノクローナル抗体には、「ヒト化抗体」や「キメラ抗体」が含まれる。
モノクローナル抗体産生ハイブリドーマは、公知技術を使用することによって、例えば以下のように作製され得る。すなわち、通常の免疫方法にしたがって感作抗原を使用して哺乳動物が免疫される。得られる免疫細胞が通常の細胞融合法によって公知の親細胞と融合される。次に、通常のスクリーニング法によって、モノクローナルな抗体産生細胞をスクリーニングすることによって所望の抗体を産生するハイブリドーマが選択され得る。 該感作抗原で免疫される哺乳動物としては、特定の動物に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましい。一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が好適に使用される。
公知の方法にしたがって上記の動物が感作抗原により免疫される。例えば、一般的な方法として、感作抗原が哺乳動物の腹腔内または皮下に注射によって投与されることにより免疫が実施される。具体的には、PBS(Phosphate-Buffered Saline)や生理食塩水等で適当な希釈倍率で希釈された感作抗原が、所望により通常のアジュバント、例えばフロイント完全アジュバントと混合され、乳化された後に、該感作抗原が哺乳動物に4から21日毎に数回投与される。また、感作抗原の免疫時には適当な担体が使用され得る。特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、アルブミン、キーホールリンペットヘモシアニン等の担体タンパク質と結合した該感作抗原ペプチドを免疫することが望ましい場合もある。
また、所望の抗体を産生するハイブリドーマは、DNA免疫を使用し、以下のようにしても作製され得る。DNA免疫とは、免疫動物中で抗原タンパク質をコードする遺伝子が発現され得るような態様で構築されたベクターDNAが投与された当該免疫動物中で、感作抗原が当該免疫動物の生体内で発現されることによって、免疫刺激が与えられる免疫方法である。タンパク質抗原が免疫動物に投与される一般的な免疫方法と比べて、DNA免疫には、次のような優位性が期待される。
−抗原が膜タンパク質の場合、膜タンパク質の構造を維持して免疫刺激が与えられ得る
−免疫抗原を精製する必要が無い
DNA免疫によって本発明のモノクローナル抗体を得るために、まず、抗原となるタンパク質を発現するDNAが免疫動物に投与される。抗原となるタンパク質をコードするDNAは、PCRなどの公知の方法によって合成され得る。得られたDNAが適当な発現ベクターに挿入され、免疫動物に投与される。発現ベクターとしては、たとえばpcDNA3.1などの市販の発現ベクターが好適に利用され得る。ベクターを生体に投与する方法として、一般的に用いられている方法が利用され得る。たとえば、発現ベクターが吸着した金粒子が、gene gunで免疫動物個体の細胞内に導入されることによってDNA免疫が行われる。
このように哺乳動物が免疫され、血清中における目的の抗原に対する抗体力価の上昇が確認された後に、哺乳動物から免疫細胞が採取され、細胞融合に供される。好ましい免疫細胞としては、特に脾細胞が使用され得る。
前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形質を指す。選択マーカーには、ヒポキサンチン−グアニン−ホスホリボシルトランスフェラーゼ欠損(以下HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下TK欠損と省略する)などが公知である。HGPRTやTKの欠損を有する細胞は、ヒポキサンチン−アミノプテリン−チミジン感受性(以下HAT感受性と省略する)を有する。HAT感受性の細胞はHAT選択培地中でDNA合成を行うことができず死滅するが、正常な細胞と融合すると正常細胞のサルベージ回路を利用してDNAの合成を継続することができるためHAT選択培地中でも増殖するようになる。
HGPRT欠損やTK欠損の細胞は、それぞれ6チオグアニン、8アザグアニン(以下8AGと省略する)、あるいは5'ブロモデオキシウリジンを含む培地で選択され得る。これらのピリミジンアナログをDNA中に取り込む正常な細胞は死滅する。他方、これらのピリミジンアナログを取り込めないこれらの酵素を欠損した細胞は、選択培地の中で生存することができる。この他G418耐性と呼ばれる選択マーカーは、ネオマイシン耐性遺伝子によって2-デオキシストレプタミン系抗生物質(ゲンタマイシン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公知である。
このようなミエローマ細胞として、例えば、P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)、NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519)、MPC-11(Cell(1976)8 (3), 405-415)、SP2/0(Nature(1978)276 (5685), 269-270)、FO(J. Immunol. Methods(1980)35 (1-2), 1-21)、S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323)、R210(Nature(1979)277 (5692), 131-133)等が好適に使用され得る。
基本的には公知の方法、たとえば、ケーラーとミルステインらの方法(Methods Enzymol.(1981)73, 3-46)等に準じて、前記免疫細胞とミエローマ細胞との細胞融合が行われる。
より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前記細胞融合が実施され得る。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルス(HVJ)等が使用され、更に融合効率を高めるために所望によりジメチルスルホキシド等の補助剤が添加されて使用される。
免疫細胞とミエローマ細胞との使用割合は任意に設定され得る。例えば、ミエローマ細胞に対して免疫細胞を1から10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用され、さらに、牛胎児血清(FCS)等の血清補液が好適に添加され得る。
細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温されたPEG溶液(例えば平均分子量1000から6000程度)が通常30から60%(w/v)の濃度で添加される。混合液が緩やかに混合されることによって所望の融合細胞(ハイブリドーマ)が形成される。次いで、上記に挙げた適当な培養液が逐次添加され、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等が除去され得る。
このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、係る十分な時間は数日から数週間である)上記HAT培養液を用いた培養が継続され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施される。
このようにして得られたハイブリドーマは、細胞融合に用いられたミエローマが有する選択マーカーに応じた選択培養液を利用することによって選択され得る。例えばHGPRTやTKの欠損を有する細胞は、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。すなわち、HAT感受性のミエローマ細胞を細胞融合に用いた場合、HAT培養液中で、正常細胞との細胞融合に成功した細胞が選択的に増殖し得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記HAT培養液を用いた培養が継続される。具体的には、一般に、数日から数週間の培養によって、所望のハイブリドーマが選択され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施され得る。
所望の抗体のスクリーニングおよび単一クローニングが、公知の抗原抗体反応に基づくスクリーニング方法によって好適に実施され得る。例えば、固定化した抗原に対する抗体の結合活性がELISAの原理に基づいて評価され得る。たとえば、ELISAプレートのウェルに抗原が固定化される。ハイブリドーマの培養上清をウェル内のIgAに接触させ、IgAに結合する抗体が検出される。モノクローナル抗体がマウス由来の場合、細胞に結合した抗体は、抗マウスイムノグロブリン抗体によって検出され得る。これらのスクリーニングによって選択された、抗原に対する結合能を有する所望の抗体を産生するハイブリドーマは、限界希釈法等によりクローニングされ得る。
このようにして作製されるモノクローナル抗体を産生するハイブリドーマは通常の培養液中で継代培養され得る。また、当該ハイブリドーマは液体窒素中で長期にわたって保存され得る。
当該ハイブリドーマを通常の方法に従い培養し、その培養上清から所望のモノクローナル抗体が取得され得る。あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖せしめ、その腹水からモノクローナル抗体が取得され得る。前者の方法は、高純度の抗体を得るのに好適なものである。
当該ハイブリドーマ等の抗体産生細胞からクローニングされる抗体遺伝子によってコードされる抗体も好適に利用され得る。クローニングした抗体遺伝子を適当なベクターに組み込んで宿主に導入することによって、当該遺伝子によってコードされる抗体が発現する。抗体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は例えば、Vandammeらによって既に確立されている(Eur.J. Biochem.(1990)192 (3), 767-775)。下記に述べるように組換え抗体の製造方法もまた公知である。
たとえば、所望の抗体を産生するハイブリドーマ細胞から、当該抗体の可変領域(V領域)をコードするcDNAが取得される。そのために、通常、まずハイブリドーマから全RNAが抽出される。細胞からmRNAを抽出するための方法として、たとえば次のような方法を利用することができる。
−グアニジン超遠心法(Biochemistry (1979) 18 (24), 5294-5299)
−AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)
抽出されたmRNAは、mRNA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して精製され得る。あるいは、QuickPrep mRNA Purification Kit (GEヘルスケアバイオサイエンス製)などのように、細胞から直接全mRNAを抽出するためのキットも市販されている。このようなキットを用いて、ハイブリドーマからmRNAが取得され得る。得られたmRNAから逆転写酵素を用いて抗体V領域をコードするcDNAが合成され得る。cDNAは、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化学工業社製)等によって合成され得る。また、cDNAの合成および増幅のために、SMART RACE cDNA 増幅キット(Clontech製)およびPCRを用いた5'-RACE法(Proc. Natl. Acad. Sci. USA (1988) 85 (23), 8998-9002、Nucleic Acids Res. (1989) 17 (8), 2919-2932)が適宜利用され得る。更にこうしたcDNAの合成の過程においてcDNAの両末端に後述する適切な制限酵素サイトが導入され得る。
得られたPCR産物から目的とするcDNA断片が精製され、次いでベクターDNAと連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選択された後に、当該コロニーを形成した大腸菌から所望の組換えベクターが調製され得る。そして、該組換えベクターが目的とするcDNAの塩基配列を有しているか否かについて、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認される。
可変領域をコードする遺伝子を取得するためには、可変領域遺伝子増幅用のプライマーを使った5'-RACE法を利用するのが簡便である。まずハイブリドーマ細胞より抽出されたRNAを鋳型としてcDNAが合成され、5'-RACE cDNAライブラリが得られる。5'-RACE cDNAライブラリの合成にはSMART RACE cDNA 増幅キットなど市販のキットが適宜用いられる。
得られた5'-RACE cDNAライブラリを鋳型として、PCR法によって抗体遺伝子が増幅される。公知の抗体遺伝子配列をもとにマウス抗体遺伝子増幅用のプライマーがデザインされ得る。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列である。したがって、サブクラスは予めIso Stripマウスモノクローナル抗体アイソタイピングキット(ロシュ・ダイアグノスティックス)などの市販キットを用いて決定しておくことが望ましい。
具体的には、たとえばマウスIgGをコードする遺伝子の取得を目的とするときには、重鎖としてγ1、γ2a、γ2b、γ3、軽鎖としてκ鎖とλ鎖をコードする遺伝子の増幅が可能なプライマーが利用され得る。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーには可変領域に近い定常領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、5' RACE cDNAライブラリ作製キットに付属するプライマーが利用される。
こうして増幅されたPCR産物を利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンが再構成され得る。再構成されたイムノグロブリンの、抗原に対する結合活性を指標として、所望の抗体がスクリーニングされ得る。たとえば所望の抗原に対する抗体の取得を目的とするとき、抗体の抗原に対する結合は、特異的であることがさらに好ましい。当該抗原に結合する抗体は、たとえば次のようにしてスクリーニングされ得る;
(1)ハイブリドーマから得られたcDNAによってコードされるV領域を含む抗体を所望の抗原に接触させる工程、
(2)当該抗原と抗体との結合を検出する工程、および
(3)当該抗原発現細胞に結合する抗体を選択する工程。
抗体と抗原との結合を検出する方法は公知である。具体的には、先に述べたELISAなどの手法によって、抗体と抗原発現細胞との結合が検出され得る。
結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法も好適に用いられる。ポリクローナルな抗体発現細胞群より抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)を形成することができる。scFvをコードする遺伝子をファージベクターに挿入することにより、scFvを表面に発現するファージが取得され得る。このファージと所望の抗原との接触の後に、抗原に結合したファージを回収することによって、目的の結合活性を有するscFvをコードするDNAが回収され得る。この操作を必要に応じて繰り返すことにより、所望の結合活性を有するscFvが濃縮され得る。
目的とする抗体のV領域をコードするcDNAが得られた後に、当該cDNAの両末端に挿入した制限酵素サイトを認識する制限酵素によって該cDNAが消化される。好ましい制限酵素は、抗体遺伝子を構成する塩基配列に出現する頻度が低い塩基配列を認識して消化する。更に1コピーの消化断片をベクターに正しい方向で挿入するためには、付着末端を与える制限酵素の挿入が好ましい。上記のように消化された抗体のV領域をコードするcDNAを適当な発現ベクターに挿入することによって、抗体発現ベクターが取得され得る。このとき、抗体定常領域(C領域)をコードする遺伝子と、前記V領域をコードする遺伝子とがインフレームで融合されれば、キメラ抗体が取得される。ここで、キメラ抗体とは、定常領域と可変領域の由来が異なることをいう。したがって、マウス−ヒトなどの異種キメラ抗体に加え、ヒト−ヒト同種キメラ抗体も、本発明におけるキメラ抗体に含まれる。予め定常領域を有する発現ベクターに、前記V領域遺伝子を挿入することによって、キメラ抗体発現ベクターが構築され得る。具体的には、たとえば、所望の抗体定常領域(C領域)をコードするDNAを保持した発現ベクターの5'側に、前記V領域遺伝子を消化する制限酵素の制限酵素認識配列が適宜配置され得る。同じ組み合わせの制限酵素で消化された両者がインフレームで融合されることによって、キメラ抗体発現ベクターが構築される。
モノクローナル抗体を製造するために、抗体遺伝子が発現制御領域による制御の下で発現するように発現ベクターに組み込まれる。抗体を発現するための発現制御領域とは、例えば、エンハンサーやプロモーターを含む。また、発現した抗体が細胞外に分泌されるように、適切なシグナル配列がアミノ末端に付加され得る。発現されたポリペプチドは上記配列のカルボキシル末端部分で切断され、切断されたポリペプチドが成熟ポリペプチドとして細胞外に分泌され得る。次いで、この発現ベクターによって適当な宿主細胞が形質転換されることによって、所望の抗体をコードするDNAを発現する組換え細胞が取得され得る。
抗体遺伝子の発現のために、抗体重鎖(H鎖)および軽鎖(L鎖)をコードするDNAは、それぞれ別の発現ベクターに組み込まれる。H鎖とL鎖が組み込まれたベクターによって、同じ宿主細胞に同時に形質転換(co-transfect)されることによって、H鎖とL鎖を備えた抗体分子が発現され得る。あるいはH鎖およびL鎖をコードするDNAが単一の発現ベクターに組み込まれることによって宿主細胞が形質転換され得る(国際公開WO 1994/011523を参照のこと)。
単離された抗体遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の抗原結合分子を単離するのに応用され得る。真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO(Chinese hamster ovary cell line)、COS(Monkey kidney cell line)、ミエローマ(Sp2/O、NS0等)、BHK (baby hamster kidney cell line)、HEK293(human embryonic kidney cell line with sheared adenovirus (Ad)5 DNA)、PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes)、Hela、Vero、など(Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))。
(2)両生類細胞:アフリカツメガエル卵母細胞など。
(3)昆虫細胞:sf9、sf21、Tn5など。
あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞が適宜利用され得る。
更に真菌細胞としては、次のような細胞を利用することができる。
−酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces )属、メタノール資化酵母(Pichia pastoris)などのPichia属
−糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus )属
また、原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli )、枯草菌などの細菌細胞が適宜利用され得る。これらの細胞中に、目的とする抗体遺伝子を含む発現ベクターが形質転換によって導入される。形質転換された細胞をin vitroで培養することにより、当該形質転換細胞の培養物から所望の抗体が取得され得る。
組換え抗体の産生には、上記宿主細胞に加えて、トランスジェニック動物も利用され得る。すなわち所望の抗体をコードする遺伝子が導入された動物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質をコードする遺伝子の内部にインフレームで挿入することによって融合遺伝子として構築され得る。乳汁中に分泌されるタンパク質として、たとえば、ヤギβカゼインなどが利用され得る。抗体遺伝子が挿入された融合遺伝子を含むDNA断片はヤギの胚へ注入され、当該注入された胚が雌のヤギへ導入される。胚を受容したヤギから生まれるトランスジェニックヤギ(またはその子孫)が産生する乳汁からは、所望の抗体が乳汁タンパク質との融合タンパク質として取得され得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがトランスジェニックヤギに対して投与され得る(Bio/Technology (1994), 12 (7), 699-702)。
本明細書において記載される抗原結合分子がヒトに投与される場合、当該抗原結合分子における抗原結合ドメインとして、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体由来の抗原結合ドメインが適宜採用され得る。遺伝子組換え型抗体には、例えば、ヒト化(humanized)抗体等が含まれる。これらの改変抗体は、公知の方法を用いて適宜製造される。
本明細書において記載される抗原結合分子における抗原結合ドメインを作製するために用いられる抗体の可変領域は、通常、4つのフレームワーク領域(FR)にはさまれた3つの相補性決定領域(complementarity-determining region ; CDR)で構成されている。CDRは、実質的に、抗体の結合特異性を決定している領域である。CDRのアミノ酸配列は多様性に富む。一方FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い同一性を示すことが多い。そのため、一般に、CDRの移植によって、ある抗体の結合特異性を、他の抗体に移植することができるとされている。
ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植するCDR移植技術(CDR grafting technology)を適用したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。Overlap Extension PCRにおいては、ヒト抗体のFRを合成するためのプライマーに、移植すべきマウス抗体のCDRをコードする塩基配列が付加される。プライマーは4つのFRのそれぞれについて用意される。一般に、マウスCDRのヒトFRへの移植においては、マウスのFRと同一性の高いヒトFRを選択するのが、CDRの機能の維持において有利であるとされている。すなわち、一般に、移植すべきマウスCDRに隣接しているFRのアミノ酸配列と同一性の高いアミノ酸配列からなるヒトFRを利用するのが好ましい。
また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる。それぞれのプライマーによってヒトFRが個別に合成される。その結果、各FRにマウスCDRをコードするDNAが付加された産物が得られる。各産物のマウスCDRをコードする塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト抗体遺伝子を鋳型として合成された産物のオーバーラップしたCDR部分を互いにアニールさせて相補鎖合成反応が行われる。この反応によって、ヒトFRがマウスCDRの配列を介して連結される。
最終的に3つのCDRと4つのFRが連結されたV領域遺伝子は、その5'末端と3'末端にアニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が増幅される。上記のように得られたDNAとヒト抗体C領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト型抗体発現用ベクターが作成できる。当該組込みベクターを宿主に導入して組換え細胞を樹立した後に、当該組換え細胞を培養し、当該ヒト化抗体をコードするDNAを発現させることによって、当該ヒト化抗体が当該培養細胞の培養物中に産生される(欧州特許公開EP239400、国際公開WO1996/002576参照)。
上記のように作製されたヒト化抗体の抗原への結合活性を定性的又は定量的に測定し、評価することによって、CDRを介して連結されたときに該CDRが良好な抗原結合部位を形成するようなヒト抗体のFRが好適に選択できる。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。具体的には、FRにアニーリングするプライマーに部分的な塩基配列の変異を導入することができる。このようなプライマーによって合成されたFRには、塩基配列の変異が導入される。アミノ酸を置換した変異型抗体の抗原への結合活性を上記の方法で測定し評価することによって所望の性質を有する変異FR配列が選択され得る(Cancer Res., (1993) 53, 851-856)。
また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。
さらに、ヒト抗体ライブラリを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。
また、抗体遺伝子を取得する方法としてBernasconiら(Science (2002) 298, 2199-2202)または国際公開WO2008/081008に記載のようなB細胞クローニング(それぞれの抗体のコード配列の同定およびクローニング、その単離、およびそれぞれの抗体(特に、IgG1、IgG2、IgG3またはIgG4)の作製のための発現ベクター構築のための使用等)の手法が、上記のほか適宜使用され得る。
EUナンバリングおよびKabatナンバリング
本発明で使用されている方法によると、抗体のCDRとFRに割り当てられるアミノ酸位置はKabatにしたがって規定される(Sequences of Proteins of Immunological Interest(National Institute of Health, Bethesda, Md., 1987年および1991年)。本明細書において、抗原結合分子が抗体または抗原結合断片である場合、可変領域のアミノ酸はKabatナンバリングにしたがい、定常領域のアミノ酸はKabatのアミノ酸位置に準じたEUナンバリングにしたがって表される。
イオン濃度の条件
金属イオン濃度の条件
本発明の一つの態様では、イオン濃度とは金属イオン濃度のことをいう。「金属イオン」とは、水素を除くアルカリ金属および銅族等の第I族、アルカリ土類金属および亜鉛族等の第II族、ホウ素を除く第III族、炭素とケイ素を除く第IV族、鉄族および白金族等の第VIII族、V、VIおよびVII族の各A亜族に属する元素と、アンチモン、ビスマス、ポロニウム等の金属元素のイオンをいう。金属原子は原子価電子を放出して陽イオンになる性質を有しており、これをイオン化傾向という。イオン化傾向の大きい金属は、化学的に活性に富むとされる。
本発明で好適な金属イオンの例としてカルシウムイオンが挙げられる。カルシウムイオンは多くの生命現象の調節に関与しており、骨格筋、平滑筋および心筋等の筋肉の収縮、白血球の運動および貪食等の活性化、血小板の変形および分泌等の活性化、リンパ球の活性化、ヒスタミンの分泌等の肥満細胞の活性化、カテコールアミンα受容体やアセチルコリン受容体を介する細胞の応答、エキソサイトーシス、ニューロン終末からの伝達物質の放出、ニューロンの軸策流等にカルシウムイオンが関与している。細胞内のカルシウムイオン受容体として、複数個のカルシウムイオン結合部位を有し、分子進化上共通の起源から由来したと考えられるトロポニンC、カルモジュリン、パルブアルブミン、ミオシン軽鎖等が知られており、その結合モチーフも数多く知られている。例えば 、カドヘリンドメイン、カルモジュリンに含まれるEFハンド、Protein kinase Cに含まれるC2ドメイン、血液凝固タンパク質FactorIXに含まれるGlaドメイン、アシアログライコプロテインレセプターやマンノース結合レセプターに含まれるC型レクチン、LDL受容体に含まれるAドメイン、アネキシン、トロンボスポンジン3型ドメインおよびEGF様ドメインがよく知られている。
本発明においては、金属イオンがカルシウムイオンの場合には、カルシウムイオン濃度の条件として低カルシウムイオン濃度の条件と高カルシウムイオン濃度の条件が挙げられる。カルシウムイオン濃度の条件によって結合活性が変化するとは、低カルシウムイオン濃度と高カルシウムイオン濃度の条件の違いによって抗原に対する抗原結合分子の結合活性が変化することをいう。例えば、低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合が挙げられる。また、高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合もまた挙げられる。
本明細書において、高カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には100μMから10 mMの間から選択される濃度であり得る。また、別の態様では、200μMから5 mMの間から選択される濃度でもあり得る。また、異なる態様では400μMから3 mMの間から選択される濃度でもあり得るし、ほかの態様では200μMから2 mMの間から選択される濃度でもあり得る。さらに400μMから1 mMの間から選択される濃度でもあり得る。特に生体内の血漿中(血中)でのカルシウムイオン濃度に近い500μMから2.5 mMの間から選択される濃度が好適に挙げられる。
本明細書において、低カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には0.1μMから30μMの間から選択される濃度であり得る。また、別の態様では、0.2μMから20μMの間から選択される濃度でもあり得る。また、異なる態様では0.5μMから10μMの間から選択される濃度でもあり得るし、ほかの態様では1μMから5μMの間から選択される濃度でもあり得る。さらに2μMから4μMの間から選択される濃度でもあり得る。特に生体内の早期エンドソーム内でのイオン化カルシウム濃度に近い1μMから5μMの間から選択される濃度が好適に挙げられる。
本発明において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低いとは、抗原結合分子の0.1μMから30μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、100μMから10 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。好ましくは、抗原結合分子の0.5μMから10μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、200μMから5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味し、特に好ましくは、生体内の早期エンドソーム内のカルシウムイオン濃度における抗原結合活性が、生体内の血漿中のカルシウムイオン濃度における抗原結合活性より弱いことを意味し、具体的には、抗原結合分子の1μMから5μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、500μMから2.5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。
金属イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化しているか否かは、例えば前記の結合活性の項で記載されたような公知の測定方法を使用することによって決定され得る。例えば、低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高く変化することを確認するためには、低カルシウムイオン濃度および高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性が比較される。
さらに本発明において、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」という表現は、抗原結合分子の高カルシウムイオン濃度条件下における抗原に対する結合活性が低カルシウムイオン濃度条件下における抗原に対する結合活性よりも高いと表現することもできる。なお本発明においては、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」を「低カルシウムイオン濃度条件下における抗原結合能が高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱い」と記載する場合もあり、また、「低カルシウムイオン濃度の条件における抗原結合活性を高カルシウムイオン濃度の条件における抗原に対する結合活性より低下させる」を「低カルシウムイオン濃度条件下における抗原結合能を高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱くする」と記載する場合もある。
抗原への結合活性を測定する際のカルシウムイオン濃度以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合分子と抗原との結合活性の測定は、抗原が可溶型抗原である場合は、抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことで可溶型抗原への結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合分子をアナライトとして流すことで膜型抗原への結合活性を評価することが可能である。
本発明の抗原結合分子において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性よりも弱い限り、低カルシウムイオン濃度条件下における抗原に対する結合活性と高カルシウムイオン濃度条件下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する低カルシウムイオン濃度の条件におけるKD(Dissociation constant:解離定数)と高カルシウムイオン濃度の条件におけるKDの比であるKD (Ca 3μM)/KD (Ca 2 mM)の値が2以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が10以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が40以上である。KD (Ca 3μM)/KD (Ca 2 mM)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
抗原に対する結合活性の値として、抗原が可溶型抗原の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を用いることが可能である。
また、本発明の抗原結合分子の低カルシウム濃度の条件における抗原に対する結合活性と高カルシウム濃度の条件における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対する低カルシウム濃度の条件におけるkd(解離速度定数)と高カルシウム濃度の条件におけるkd(解離速度定数)の比であるkd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。
抗原結合活性の値として、抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、異なるカルシウムイオン濃度における抗原結合分子の抗原に対する結合活性を測定する際は、カルシウム濃度以外の条件は同一とすることが好ましい。
例えば、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(c)を含む抗原結合ドメイン(または抗原結合分子)のスクリーニングによって取得され得る。
(a) 低カルシウム濃度の条件における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(b) 高カルシウム濃度の条件における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(c) 低カルシウム濃度の条件における抗原結合活性が、高カルシウム濃度の条件における抗原結合活性より低い抗原結合ドメイン(または抗原結合分子)を選択する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(c)を含む抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 高カルシウム濃度の条件における抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を低カルシウム濃度条件下に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメイン(または抗原結合分子)を単離する工程。
また、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(d)を含む抗原結合ドメイン(または抗原結合分子)若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 低カルシウム濃度条件下で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン(または抗原結合分子)を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン(または抗原結合分子)を高カルシウム濃度条件下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに高カルシウム濃度条件下で抗原結合ドメイン(または抗原結合分子)のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン(または抗原結合分子)を低カルシウム濃度条件下でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメイン(または抗原結合分子)を単離する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに低カルシウム濃度条件下で抗原結合ドメイン(または抗原結合分子)のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン(または抗原結合分子)を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン(または抗原結合分子)を高カルシウム濃度条件下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(d)を含むスクリーニング方法によって取得され得る。
(a) 高カルシウム濃度条件下で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン(または抗原結合分子)を低カルシウム濃度条件下に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン(または抗原結合分子)を単離する工程。
なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)〜(c)あるいは(a)〜(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得された低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)が提供される。(a)〜(c)あるいは(a)〜(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
本発明のスクリーニング方法において、低カルシウム濃度条件下における抗原結合ドメイン(または抗原結合分子)の抗原結合活性は、イオン化カルシウム濃度が0.1μM〜30μMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として、0.5μM〜10μMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の細胞内でのイオン化カルシウム濃度、中でも早期エンドソーム内のイオン化カルシウム濃度が挙げられ、具体的には1μM〜5μMにおける抗原結合活性を挙げることができる。また、高カルシウム濃度条件下における抗原結合ドメイン(または抗原結合分子)の抗原結合活性は、イオン化カルシウム濃度が100μM〜10 mMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として200μM〜5 mMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の細胞外でのイオン化カルシウム濃度、中でも血漿中でのイオン化カルシウム濃度を挙げることができ、具体的には0.5 mM〜2.5 mMにおける抗原結合活性を挙げることができる。
抗原結合ドメイン(または抗原結合分子)の抗原結合活性は当業者に公知の方法により測定することが可能であり、イオン化カルシウム濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン(または抗原結合分子)の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
本発明において、高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い抗原結合ドメイン(または抗原結合分子)を選択する工程は、低カルシウム濃度条件下における抗原結合活性が高カルシウム濃度条件下における抗原結合活性より低い抗原結合ドメイン(または抗原結合分子)を選択する工程と同じ意味である。
高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い限り、高カルシウム濃度条件下における抗原結合活性と低カルシウム濃度条件下における抗原結合活性の差は特に限定されないが、好ましくは高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
前記のスクリーニング方法によりスクリーニングされる本発明の抗原結合ドメイン(または抗原結合分子)はいかなる抗原結合ドメイン(または抗原結合分子)でもよく、例えば上述の抗原結合ドメイン(または抗原結合分子)をスクリーニングすることが可能である。例えば、天然の配列を有する抗原結合ドメイン(または抗原結合分子)をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合ドメイン(または抗原結合分子)をスクリーニングしてもよい。
ライブラリ
ある一態様によれば、本発明の抗原結合ドメイン(または抗原結合分子)は、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が抗原結合ドメインに含まれている互いに配列の異なる複数の抗原結合分子から主としてなるライブラリから取得され得る。イオン濃度の例としては金属イオン濃度や水素イオン濃度が好適に挙げられる。
本明細書において「ライブラリ」とは複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチド、もしくはこれらの配列をコードする核酸、ポリヌクレオチドをいう。ライブラリ中に含まれる複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチドの配列は単一の配列ではなく、互いに配列の異なる抗原結合分子または抗原結合分子を含む融合ポリペプチドである。
本明細書においては、互いに配列の異なる複数の抗原結合分子という記載における「互いに配列の異なる」との用語は、ライブラリ中の個々の抗原結合分子の配列が相互に異なることを意味する。すなわち、ライブラリ中における互いに異なる配列の数は、ライブラリ中の配列の異なる独立クローンの数が反映され、「ライブラリサイズ」と指称される場合もある。通常のファージディスプレイライブラリでは106から1012であり、リボゾームディスプレイ法等の公知の技術を適用することによってライブラリサイズを1014まで拡大することが可能である。しかしながら、ファージライブラリのパンニング選択時に使用されるファージ粒子の実際の数は、通常、ライブラリサイズよりも10ないし10,000倍大きい。この過剰倍数は、「ライブラリ当量数」とも呼ばれるが、同じアミノ酸配列を有する個々のクローンが10ないし10,000存在し得ることを表す。よって本発明における「互いに配列の異なる」との用語はライブラリ当量数が除外されたライブラリ中の個々の抗原結合分子の配列が相互に異なること、より具体的には互いに配列の異なる抗原結合分子が106から1014分子、好ましくは107から1012分子、さらに好ましくは108から1011、特に好ましくは108から1010存在することを意味する。
また、本発明の、複数の抗原結合分子から主としてなるライブラリという記載における「複数の」との用語は、例えば本発明の抗原結合分子、融合ポリペプチド、ポリヌクレオチド分子、ベクターまたはウイルスは、通常、その物質の2つ以上の種類の集合を指す。例えば、ある2つ以上の物質が特定の形質に関して互いに異なるならば、その物質には2種類以上が存在することを表す。例としては、アミノ酸配列中の特定のアミノ酸位置で観察される変異体アミノ酸が挙げられ得る。例えば、フレキシブル残基以外、または表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上の抗原結合分子がある場合、本発明の抗原結合分子は複数個存在する。他の実施例では、フレキシブル残基をコードする塩基以外、または表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸をコードする塩基以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上のポリヌクレオチド分子があるならば、本発明のポリヌクレオチド分子は複数個存在する。
さらに、本発明の、複数の抗原結合分子から主としてなるライブラリという記載における「から主としてなる」との用語は、ライブラリ中の配列の異なる独立クローンの数のうち、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性 が 異なっている抗原結合分子の数が反映される。具体的には、そのような結合活性を示す抗原結合分子がライブラリ中に少なくとも104分子存在することが好ましい。また、より好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも105分子存在するライブラリから取得され得る。さらに好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも106分子存在するライブラリから取得され得る。特に好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも107分子存在するライブラリから取得され得る。また、好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも108分子存在するライブラリから取得され得る。別の表現では、ライブラリ中の配列の異なる独立クローンの数のうち、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が異なっている抗原結合分子の割合としても好適に表現され得る。具体的には、本発明の抗原結合ドメインは、そのような結合活性を示す抗原結合分子がライブラリ中の配列の異なる独立クローンの数の0.1%から80%、好ましくは0.5%から60%、より好ましくは1%から40%、さらに好ましくは2%から20%、特に好ましくは4%から10% 含まれるライブラリから取得され得る。融合ポリペプチド、ポリヌクレオチド分子またはベクターの場合も、上記と同様、分子の数や分子全体における割合で表現され得る。また、ウイルスの場合も、上記と同様、ウイルス個体の数や個体全体における割合で表現され得る。
カルシウムイオン濃度の条件によって抗原に対する抗原結合ドメインの結合活性を変化させるアミノ酸
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン(または抗原結合分子)はどのように調製されてもよく、例えば、金属イオンがカルシウムイオン濃度である場合には、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリにカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)や非天然アミノ酸変異を導入した抗体又はライブラリ(カルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸の含有率を高くしたライブラリや特定箇所にカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である 。
前記のようにイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸の例として、例えば、金属イオンがカルシウムイオンである場合には、カルシウム結合モチーフを形成するアミノ酸であれば、その種類は問わない。カルシウム結合モチーフは、当業者に周知であり、詳細に記載されている(例えばSpringerら(Cell (2000) 102, 275-277)、KawasakiおよびKretsinger(Protein Prof. (1995) 2, 305-490)、Moncriefら(J. Mol. Evol. (1990) 30, 522-562)、Chauvauxら(Biochem. J. (1990) 265, 261-265)、BairochおよびCox(FEBS Lett. (1990) 269, 454-456)、Davis(New Biol. (1990) 2, 410-419)、Schaeferら(Genomics (1995) 25, 638〜643)、Economouら(EMBO J. (1990) 9, 349-354)、Wurzburgら(Structure. (2006) 14, 6, 1049-1058))。すなわち、ASGPR, CD23、MBR、DC-SIGN等のC型レクチン等の任意の公知のカルシウム結合モチーフが、本発明の抗原結合分子に含まれ得る。このようなカルシウム結合モチーフの好適な例として、上記のほかには配列番号:2に記載される抗原結合ドメインに含まれるカルシウム結合モチーフも挙げられ得る。
また、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸の例として、金属キレート作用を有するアミノ酸も好適に用いられる得る。金属キレート作用を有するアミノ酸の例として、例えばセリン(Ser(S))、スレオニン(Thr(T))、アスパラギン(Asn(N))、グルタミン(Gln(Q))、アスパラギン酸(Asp(D))およびグルタミン酸(Glu(E))等が好適に挙げられる。
前記のアミノ酸が含まれる抗原結合ドメインの位置は特定の位置に限定されず、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる限り、抗原結合ドメインを形成する重鎖可変領域または軽鎖可変領域中のいずれの位置でもあり得る。すなわち、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、別の態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3のKabatナンバリングで表される95位、96位、100a位および/または101位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
また、本発明の一態様では、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が軽鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、別の態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1のKabatナンバリングで表される30位、31位および/または32位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
また、別の態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR2に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、当該アミノ酸残基が軽鎖のCDR2のKabatナンバリングで表される50位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリが提供される。
さらに別の態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3のKabatナンバリングで表される92位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
また、本発明の抗原結合ドメインは、当該アミノ酸残基が、前記に記載された軽鎖のCDR1、CDR2およびCDR3から選択される2つまたは3つのCDRに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから本発明の異なる態様として取得され得る。さらに、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のKabatナンバリングで表される30位、31位、32位、50位および/または92位のいずれかひとつ以上に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
特に好適な実施形態では、抗原結合分子の軽鎖および/または重鎖可変領域のフレームワーク配列は、ヒトの生殖細胞系フレームワーク配列を有していることが望ましい。したがって、本発明の一態様においてフレームワーク配列が完全にヒトの配列であるならば、ヒトに投与(例えば疾病の治療)された場合、本発明の抗原結合分子は免疫原性反応を殆どあるいは全く引き起こさないと考えられる。上記の意味から、本発明の「生殖細胞系列の配列を含む 」とは、本発明のフレームワーク配列の一部が、いずれかのヒトの生殖細胞系フレームワーク配列の一部と同一であることを意味する。例えば、本発明の抗原結合分子の重鎖FR2の配列が複数の異なるヒトの生殖細胞系フレームワーク配列の重鎖FR2配列が組み合わされた配列である場合も、本発明の「生殖細胞系列の配列を含む 」抗原結合分子である。
フレームワークの例としては、例えばV-Base(http://vbase.mrc-cpe.cam.ac.uk/)等のウェブサイトに含まれている、現在知られている完全にヒト型のフレームワーク領域の配列が好適に挙げられる。 これらのフレームワーク領域の配列が本発明の抗原結合分子に含まれる生殖細胞系列の配列として適宜使用され得る。生殖細胞系列の配列はその類似性にもとづいて分類され得る(Tomlinsonら(J. Mol. Biol. (1992) 227, 776-798)WilliamsおよびWinter(Eur. J. Immunol. (1993) 23, 1456-1461)およびCoxら(Nat. Genetics (1994) 7, 162-168))。 7つのサブグループに分類されるVκ、10のサブグループに分類されるVλ、7つのサブグループに分類されるVHから好適な生殖細胞系列の配列が適宜選択され得る。
完全にヒト型のVH配列は、下記のみに限定されるものではないが、例えばVH1サブグループ(例えば、VH1-2、VH1-3、VH1-8、VH1-18、VH1-24、VH1-45、VH1-46、VH1-58、VH1-69)、VH2サブグループ(例えば、VH2-5、VH2-26、VH2-70)、VH3サブグループ(VH3-7、VH3-9、VH3-11、VH3-13、VH3-15、VH3-16、VH3-20、VH3-21、VH3-23、VH3-30、VH3-33、VH3-35、VH3-38、VH3-43、VH3-48、VH3-49、VH3-53、VH3-64、VH3-66、VH3-72、VH3-73、VH3-74)、VH4サブグループ(VH4-4、VH4-28、VH4-31、VH4-34、VH4-39、VH4-59、VH4-61)、VH5サブグループ(VH5-51)、VH6サブグループ(VH6-1)、VH7サブグループ(VH7-4、VH7-81)のVH配列等が好適に挙げられる。これらは公知文献(Matsudaら(J. Exp. Med. (1998) 188, 1973-1975))等にも記載されており、当業者はこれらの配列情報をもとに本発明の抗原結合分子を適宜設計することが可能である。これら以外の完全にヒト型のフレームワークまたはフレームワークの準領域も好適に使用され得る。
完全にヒト型のVκ配列は、下記のみに限定されるものではないが、例えばVk1サブグループに分類されるA20、A30、L1、L4、L5、L8、L9、L11、L12、L14、L15、L18、L19、L22、L23、L24、O2、O4、O8、O12、O14、O18、Vk2サブグループに分類されるA1、A2、A3、A5、A7、A17、A18、A19、A23、O1、O11、Vk3サブグループに分類されるA11、A27、L2、L6、L10、L16、L20、L25、Vk4サブグループに分類されるB3、Vk5サブグループに分類されるB2(本明細書においてはVk5-2とも指称される))、Vk6サブグループに分類されるA10、A14、A26等(Kawasakiら(Eur. J. Immunol. (2001) 31, 1017-1028)、SchableおよびZachau(Biol. Chem. Hoppe Seyler (1993) 374, 1001-1022)およびBrensing-Kuppersら(Gene (1997) 191, 173-181))が好適に挙げられる。
完全にヒト型のVλ配列は、下記のみに限定されるものではないが、例えばVL1サブグループに分類されるV1-2、V1-3、V1-4、V1-5、V1-7、V1-9、V1-11、V1-13、V1-16、V1-17、V1-18、V1-19、V1-20、V1-22、VL1サブグループに分類されるV2-1、V2-6、V2-7、V2-8、V2-11、V2-13、V2-14、V2-15、V2-17、V2-19、VL3サブグループに分類されるV3-2、V3-3、V3-4、VL4サブグループに分類されるV4-1、V4-2、V4-3、V4-4、V4-6、VL5サブグループに分類されるV5-1、V5-2、V5-4、V5-6等(Kawasakiら(Genome Res. (1997) 7, 250-261))が好適に挙げられる。
通常これらのフレームワーク配列は一またはそれ以上のアミノ酸残基の相違により互いに異なっている。これらのフレームワーク配列は本発明の「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」と共に使用され得る。本発明の「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」と共に使用される完全にヒト型のフレームワークの例としては、これだけに限定されるわけではないが、ほかにもKOL、NEWM、REI、EU、TUR、TEI、LAY、POM等が挙げられる(例えば、前記のKabatら (1991)およびWuら(J. Exp. Med. (1970) 132, 211-250))。
本発明は特定の理論に拘束されるものではないが、生殖細胞系の配列の使用がほとんどの個人において有害な免疫反応を排除すると期待されている一つの理由は、以下の通りであると考えられている。通常の免疫反応中に生じる親和性成熟ステップの結果、免疫グロブリンの可変領域に体細胞の突然変異が頻繁に生じる。これらの突然変異は主にその配列が超可変的であるCDRの周辺に生じるが、フレームワーク領域の残基にも影響を及ぼす。これらのフレームワークの突然変異は生殖細胞系の遺伝子には存在せず、また患者の免疫原性になる可能性は少ない。一方、通常のヒトの集団は生殖細胞系の遺伝子によって発現されるフレームワーク配列の大多数にさらされており、免疫寛容の結果、これらの生殖細胞系のフレームワークは患者において免疫原性が低いあるいは非免疫原性であると予想される。免疫寛容の可能性を最大にするため、可変領域をコード化する遺伝子が普通に存在する機能的な生殖細胞系遺伝子の集合から選択され得る。
本発明の、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が前記のフレームワーク配列に含まれる抗原結合分子を作製するために部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。
例えば、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が予め含まれているフレームワーク配列として選択された軽鎖可変領域と、ランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによって本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、配列番号:2(Vk5-2)に記載された軽鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせたライブラリが好適に挙げられる。
また、前記のカルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が予め含まれているフレームワーク配列として選択された軽鎖可変領域の配列に、当該アミノ酸残基以外の残基として多様なアミノ酸が含まれるように設計することも可能である。本発明においてそのような残基は、フレキシブル残基と指称される。本発明の抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、イオン濃度がカルシウムイオン濃度である場合には、配列番号:2(Vk5-2)に記載された軽鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、表1または表2に記載されたアミノ酸残基が挙げられる。
Figure 2018172384
なお、Kabatナンバリングで表される92位がAsn(N)の場合、94位はSer(S)ではなくLeu(L)とすることができる。
Figure 2018172384
なお、Kabatナンバリングで表される92位がAsn(N)の場合、94位はSer(S)ではなくLeu(L)とすることができる。
本明細書においては、フレキシブル残基とは、公知のかつ/または天然抗体または抗原結合ドメインのアミノ酸配列を比較した場合に、その位置で提示されるいくつかの異なるアミノ酸を持つ軽鎖および重鎖可変領域上のアミノ酸が非常に多様である位置に存在するアミノ酸残基のバリエーションをいう。非常に多様である位置は一般的にCDR領域に存在する。一態様では、公知のかつ/または天然抗体の非常に多様な位置を決定する際には、Kabat, Sequences of Proteins of Immunological Interest (National Institute of Health Bethesda Md.) (1987年および1991年)が提供するデータが有効である。また、インターネット上の複数のデータベース(http://vbase.mrc-cpe.cam.ac.uk/、http://www.bioinf.org.uk/abs/index.html)では収集された多数のヒト軽鎖および重鎖の配列とその配置が提供されており、これらの配列とその配置の情報は本発明における非常に多様な位置の決定に有用である。本発明によると、アミノ酸がある位置で好ましくは約2から約20、好ましくは約3から約19、好ましくは約4から約18、好ましくは5から17、好ましくは6から16、好ましくは7から15、好ましくは8から14、好ましくは9から13、好ましくは10から12個の可能な異なるアミノ酸残基の多様性を有する場合は、その位置は非常に多様といえる。いくつかの実施形態では、あるアミノ酸位置は、好ましくは少なくとも約2、好ましくは少なくとも約4、好ましくは少なくとも約6、好ましくは少なくとも約8、好ましくは約10、好ましくは約12の可能な異なるアミノ酸残基の多様性を有し得る。
また、前記のイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによっても、本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、配列番号:3(Vk1)、配列番号:4(Vk2)、配列番号:5(Vk3)、配列番号:6(Vk4)等の生殖細胞系列の特定の残基が、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基に置換された軽鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせたライブラリが好適に挙げられる。当該アミノ酸残基の非限定な例として軽鎖のCDR1に含まれるアミノ酸残基が例示される。ほかにも、当該アミノ酸残基の非限定な例として軽鎖のCDR2に含まれるアミノ酸残基が例示される。また、当該アミノ酸残基の非限定な別の例として軽鎖のCDR3に含まれるアミノ酸残基もまた例示される。
前記のように、当該アミノ酸残基が軽鎖のCDR1に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR1中のEUナンバリングで表される30位、31位、および/または32位のアミノ酸残基が挙げられる。また、当該アミノ酸残基が軽鎖のCDR2に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR2中のKabatナンバリングで表される50位のアミノ酸残基が挙げられる。さらに、当該アミノ酸残基が軽鎖のCDR3に含まれアミノ酸残基の非限定な例として、軽鎖可変領域のCDR3中のKabatナンバリングで表される92位のアミノ酸残基が挙げられる。また、これらのアミノ酸残基が、カルシウム結合モチーフを形成し、および/または、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。また、複数個のカルシウムイオン結合部位を有し、分子進化上共通の起源から由来したと考えられるトロポニンC、カルモジュリン、パルブアルブミン、ミオシン軽鎖等が知られており、その結合モチーフが含まれるように軽鎖CDR1、CDR2および/またはCDR3を設計することも可能である。例えば、上記の目的でカドヘリンドメイン、カルモジュリンに含まれるEFハンド、Protein kinase Cに含まれるC2ドメイン、血液凝固タンパク質FactorIXに含まれるGlaドメイン、アシアログライコプロテインレセプターやマンノース結合レセプターに含まれるC型レクチン、LDL受容体に含まれるAドメイン、アネキシン、トロンボスポンジン3型ドメインおよびEGF様ドメインが適宜使用され得る。
前記のイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせる場合でも、前記と同様に、フレキシブル残基が当該軽鎖可変領域の配列に含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、イオン濃度がカルシウムイオン濃度である場合には、軽鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、表1または表2に記載されたアミノ酸残基が挙げられる。
組み合わされる重鎖可変領域の例として、ランダム化可変領域ライブラリが好適に挙げられる。ランダム化可変領域ライブラリの作製方法は公知の方法が適宜組み合わされる。本発明の非限定な一態様では、特定の抗原で免疫された動物、感染症患者やワクチン接種して血中抗体価が上昇したヒト、癌患者、自己免疫疾患のリンパ球由来の抗体遺伝子をもとに構築された免疫ライブラリが、ランダム化可変領域ライブラリとして好適に使用され得る。
また、本発明の非限定な一態様では、ゲノムDNA におけるV 遺伝子や再構築され機能的なV遺伝子のCDR配列が、適当な長さのコドンセットをコードする配列を含む合成オリゴヌクレオチドセットで置換された合成ライブラリもまた、ランダム化可変領域ライブラリとして好適に使用され得る。この場合、重鎖のCDR3の遺伝子配列の多様性が観察されることから、CDR3の配列のみを置換することもまた可能である。抗原結合分子の可変領域においてアミノ酸の多様性を生み出す基準は、抗原結合分子の表面に露出した位置のアミノ酸残基に多様性を持たせることである。表面に露出した位置とは、抗原結合分子の構造、構造アンサンブル、および/またはモデル化された構造にもとづいて、表面露出が可能、かつ/または抗原との接触が可能と判断される位置のことをいうが、一般的にはそのCDRである。好ましくは、表面に露出した位置は、InsightIIプログラム(Accelrys)のようなコンピュータプログラムを用いて、抗原結合分子の3次元モデルからの座標を使って決定される。表面に露出した位置は、当技術分野で公知のアルゴリズム(例えば、LeeおよびRichards(J.Mol.Biol. (1971) 55, 379-400)、Connolly(J.Appl.Cryst. (1983) 16, 548-558))を使用して決定され得る。表面に露出した位置の決定は、タンパク質モデリングに適したソフトウェアおよび抗体から得られる三次元構造情報を使って行われ得る。このような目的のために利用できるソフトウェアとして、SYBYL生体高分子モジュールソフトウェア(Tripos Associates)が好適に挙げられる。一般的に、また好ましくは、アルゴリズムがユーザーの入力サイズパラメータを必要とする場合は、計算において使われるプローブの「サイズ」は半径約1.4オングストローム以下に設定される。さらに、パーソナルコンピュータ用のソフトウェアを使用した表面に露出した領域およびエリアの決定法が、Pacios(Comput.Chem. (1994) 18 (4), 377-386およびJ.Mol.Model. (1995) 1, 46-53)に記載されている。
さらに、本発明の非限定な一態様では、健常人のリンパ球由来の抗体遺伝子から構築され、そのレパートリーにバイアスを含まない抗体配列であるナイーブ配列からなるナイーブライブラリもまた、ランダム化可変領域ライブラリとして特に好適に使用され得る(Gejimaら(Human Antibodies (2002) 11,121-129)およびCardosoら(Scand. J. Immunol. (2000) 51, 337-344))。本発明で記載されるナイーブ配列を含むアミノ酸配列とは、このようなナイーブライブラリから取得されるアミノ酸配列をいう。
本発明の一つの態様では、「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が予め含まれているフレームワーク配列として選択された重鎖可変領域と、ランダム化可変領域配列ライブラリとして作製された軽鎖可変領域とを組み合わせることによって本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリから、本発明の抗原結合ドメインが取得され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、配列番号:7(6RL#9-IgG1)または配列番号:8(6KC4-1#85-IgG1)に記載された重鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。また、ランダム化可変領域配列ライブラリとして作製された軽鎖可変領域の代わりに、生殖細胞系列の配列を有する軽鎖可変領域の中から適宜選択することによって作製され得る。例えば、配列番号:7(6RL#9-IgG1)または配列番号:8(6KC4-1#85-IgG1)に記載された重鎖可変領域配列と生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。
また、前記の「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が予め含まれているフレームワーク配列として選択された重鎖可変領域の配列に、フレキシブル残基が含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、イオン濃度がカルシウムイオン濃度である場合には、配列番号:7(6RL#9-IgG1)に記載された重鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、重鎖CDR1およびCDR2の全てのアミノ酸残基のほか重鎖CDR3の95位、96位および/または100a位以外のCDR3のアミノ酸残基が挙げられる。または配列番号:8(6KC4-1#85-IgG1)に記載された重鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、重鎖CDR1およびCDR2の全てのアミノ酸残基のほか重鎖CDR3の95位および/または101位以外 のCDR3のアミノ酸残基もまた挙げられる。
また、前記の「イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が導入された重鎖可変領域とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域または生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせることによっても、複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。このような非限定的な例として、イオン濃度がカルシウムイオン濃度である場合には、例えば、重鎖可変領域の特定の残基が、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基に置換された重鎖可変領域配列とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域または生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせたライブラリが好適に挙げられる。当該アミノ酸残基の非限定な例として重鎖のCDR1に含まれるアミノ酸残基が例示される。ほかにも、当該アミノ酸残基の非限定な例として重鎖のCDR2に含まれるアミノ酸残基が例示される。また、当該アミノ酸残基の非限定な別の例として重鎖のCDR3に含まれるアミノ酸残基もまた例示される。当該アミノ酸残基が重鎖のCDR3に含まれアミノ酸残基の非限定な例として、重鎖可変領域のCDR3中のKabatナンバリングで表される95位、96位、100a位および/または101位のアミノ酸が挙げられる。また、これらのアミノ酸残基が、カルシウム結合モチーフを形成し、および/または、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。
前記の、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が導入された重鎖可変領域とランダム化可変領域配列ライブラリとして作製された軽鎖可変領域または生殖細胞系列の配列を有する軽鎖可変領域とを組み合わせる場合でも、前記と同様に、フレキシブル残基が当該重鎖可変領域の配列に含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。また、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸残基以外の重鎖可変領域のCDR1、CDR2および/またはCDR3のアミノ酸配列としてランダム化可変領域ライブラリも好適に使用され得る。軽鎖可変領域として生殖細胞系列の配列が用いられる場合には、例えば、配列番号:3(Vk1)、配列番号:4(Vk2)、配列番号:5(Vk3)、配列番号:6(Vk4)等の生殖細胞系列の配列が非限定な例として挙げられ得る。
前記の、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸としては、カルシウム結合モチーフを形成する限り、いずれのアミノ酸も好適に使用され得るが、そのようなアミノ酸としては具体的に電子供与性を有するアミノ酸が挙げられる。こうした電子供与性を有するアミノ酸としては、セリン、スレオニン、アスパラギン、グルタミン、アスパラギン酸またはグルタミン酸が好適に例示される。
水素イオン濃度の条件
また、本発明の一つの態様では、イオン濃度の条件とは水素イオン濃度の条件またはpHの条件をいう。本発明で、プロトンすなわち水素原子の原子核の濃度の条件は、水素指数(pH)の条件とも同義に取り扱われる。水溶液中の水素イオンの活動量をaH+で表すと、pHは-log10aH+と定義される。水溶液中のイオン強度が(例えば10-3より)低ければ、aH+は水素イオン強度にほぼ等しい。例えば25℃、1気圧における水のイオン積はKw=aH+aOH=10-14であるため、純水ではaH+=aOH=10-7である。この場合のpH=7が中性であり、pHが7より小さい水溶液は酸性、pHが7より大きい水溶液はアルカリ性である。
本発明においては、イオン濃度の条件としてpHの条件が用いられる場合には、pHの条件として高水素イオン濃度または低pHすなわちpH酸性域の条件と低水素イオン濃度または高pHすなわちpH中性域の条件が挙げられる。pHの条件によって結合活性が変化するとは、高水素イオン濃度または低pH(pH酸性域)と低水素イオン濃度または高pH(pH中性域)の条件の違いによって抗原に対する抗原結合分子の結合活性が変化することをいう。例えば、pH酸性域の条件における抗原に対する抗原結合分子の結合活性よりもpH中性域の条件における抗原に対する抗原結合分子の結合活性の方が高い場合が挙げられる。また、pH中性域の条件における抗原に対する抗原結合分子の結合活性よりもpH酸性域の条件における抗原に対する抗原結合分子の結合活性の方が高い場合もまた挙げられる。
本明細書において、pH中性域とはとくに一義的な数値に限定されるわけではないが、好適にはpH6.7からpH10.0の間から選択され得る。また、別の態様では、pH6.7からpH9.5の間から選択され得る。また、異なる態様ではpH7.0からpH9.0の間から選択され得るし、ほかの態様ではpH7.0からpH8.0の間から選択され得る。特に生体内の細胞外でのpH、中でも血漿中(血中)でのpHに近いpH7.4が好適に挙げられる。
本明細書において、pH酸性域とはとくに一義的な数値に限定されるわけではないが、好適にはpH4.0からpH6.5の間から選択され得る。また、別の態様では、pH4.5からpH6.5の間から選択され得る。また、異なる態様ではpH5.0からpH6.5の間から選択され得るし、ほかの態様ではpH5.5からpH6.5の間から選択され得る。特に生体内の細胞外でのpH、中でも早期エンドソーム内でのpHに近いpH5.8が好適に挙げられる。
本発明において、抗原結合分子の高水素イオン濃度または低pH(pH酸性域)の条件における抗原に対する結合活性が低水素イオン濃度または高pH(pH中性域)の条件における抗原に対する結合活性より低いとは、抗原結合分子のpH4.0からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH6.7からpH10.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。好ましくは、抗原結合分子のpH4.5からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH6.7からpH9.5の間から選択されるpHでの抗原に対する結合活性より弱いことを意味し、より好ましくは、抗原結合分子のpH5.0からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH7.0からpH9.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。また、好ましくは抗原結合分子のpH5.5からpH6.5の間から選択されるpHでの抗原に対する結合活性が、pH7.0からpH8.0の間から選択されるpHでの抗原に対する結合活性より弱いことを意味する。特に好ましくは、生体内の早期エンドソーム内のpHにおける抗原結合活性が、生体内の血漿中のpHにおける抗原結合活性より弱いことを意味し、具体的には、抗原結合分子のpH5.8での抗原に対する結合活性が、pH7.4での抗原に対する結合活性より弱いことを意味する。
pHの条件によって抗原に対する抗原結合分子の結合活性が変化しているか否かは、例えば前記の結合活性の項で記載されたような公知の測定方法を使用することによって決定され得る。すなわち、当該測定方法に際して異なるpHの条件下での結合活性が測定される。例えば、pH酸性域の条件下における抗原に対する抗原結合分子の結合活性よりもpH中性域の条件下における抗原に対する抗原結合分子の結合活性の方が高く変化することを確認するためには、pH酸性域およびpH中性域の条件下における抗原に対する抗原結合分子の結合活性が比較される。
さらに本発明において、「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い」という表現は、抗原結合分子の低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性よりも高いと表現することもできる。なお本発明においては、「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い」を「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合能よりも弱い」と記載する場合もあり、また、「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低下させる」を「高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合能よりも弱くする」と記載する場合もある。
抗原への結合活性を測定する際の水素イオン濃度またはpH以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合分子と抗原との結合活性の測定は、抗原が可溶型抗原である場合は、抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことで可溶型抗原への結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合分子をアナライトとして流すことで膜型抗原への結合活性を評価することが可能である。
本発明の抗原結合分子において、高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性よりも弱い限り、高水素イオン濃度または低pHすなわちpH酸性域の条件下における抗原に対する結合活性と低水素イオン濃度または高pHすなわちpH中性域の条件下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する高水素イオン濃度または低pHすなわちpH酸性域の条件におけるKD(Dissociation constant:解離定数)と低水素イオン濃度または高pHすなわちpH中性域の条件におけるKDの比であるKD (pH5.8)/KD (pH7.4)の値が2以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が10以上であり、さらに好ましくはKD (pH5.8)/KD (pH7.4)の値が40以上である。KD (pH5.8)/KD (pH7.4)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
抗原に対する結合活性の値として、抗原が可溶型抗原の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を用いることが可能である。
また、本発明の抗原結合分子の高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性と低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対する高水素イオン濃度または低pHすなわちpH酸性域の条件におけるkd(解離速度定数)と低水素イオン濃度または高pHすなわちpH中性域の条件におけるkd(解離速度定数)の比であるkd(pH酸性域の条件における)/kd(pH中性域の条件における)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(pH酸性域の条件における)/kd(pH中性域の条件における)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。
抗原結合活性の値として、抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、異なる水素イオン濃度すなわちpHにおける抗原結合分子の抗原に対する結合活性を測定する際は、水素イオン濃度すなわちpH以外の条件は同一とすることが好ましい。
例えば、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(c)を含む抗原結合ドメイン(または抗原結合分子)のスクリーニングによって取得され得る。
(a) pH酸性域の条件における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(b) pH中性域の条件における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(c) pH酸性域の条件における抗原結合活性が、pH中性域の条件における抗原結合活性より低い抗原結合ドメイン(または抗原結合分子)を選択する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(c)を含む抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) pH中性域の条件における抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)をpH酸性域の条件に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメイン(または抗原結合分子)を単離する工程。
また、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(d)を含む抗原結合ドメイン(または抗原結合分子)若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) pH酸性域の条件で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン(または抗原結合分子)を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン(または抗原結合分子)をpH中性域の条件で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムにpH中性域の条件で抗原結合ドメイン(または抗原結合分子)のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン(または抗原結合分子)をpH酸性域の条件でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメイン(または抗原結合分子)を単離する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムにpH酸性域の条件で抗原結合ドメイン(または抗原結合分子)のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン(または抗原結合分子)を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン(または抗原結合分子)をpH中性域の条件で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
さらに、本発明が提供する一つの態様である高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原に対する結合活性が、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)は、以下の工程(a)〜(d)を含むスクリーニング方法によって取得され得る。
(a) pH中性域の条件で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン(または抗原結合分子)をpH酸性域の条件に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン(または抗原結合分子)を単離する工程。
なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)〜(c)あるいは(a)〜(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得されたpH酸性域の条件における抗原に対する結合活性がpH中性域の条件における抗原に対する結合活性より低い抗原結合ドメイン(または抗原結合分子)が提供される。(a)〜(c)あるいは(a)〜(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
本発明のスクリーニング方法において、高水素イオン濃度条件または低pHすなわちpH酸性域における抗原結合ドメイン(または抗原結合分子)の抗原結合活性は、pHが4.0〜6.5の間の抗原結合活性であれば特に限定されないが、好ましいpHとして、pHが4.5〜6.6の間の抗原結合活性を挙げることができる。別の好ましいpHとして、pHが5.0〜6.5の間の抗原結合活性、さらにpHが5.5〜6.5の間の抗原結合活性を挙げることができる。より好ましいpHとして、生体内の早期エンドソーム内のpHが挙げられ、具体的にはpH5.8における抗原結合活性を挙げることができる。また、低水素イオン濃度条件または高pHすなわちpH中性域における抗原結合ドメイン(または抗原結合分子)の抗原結合活性は、pHが6.7〜10の間の抗原結合活性であれば特に限定されないが、好ましいpHとしてpHが6.7〜9.5の間の抗原結合活性を挙げることができる。別の好ましいpHとして、pHが7.0〜9.5の間の抗原結合活性、さらにpHが7.0〜8.0の間の抗原結合活性を挙げることができる。より好ましいpHとして、生体内の血漿中でのpHを挙げることができ、具体的にはpHが7.4における抗原結合活性を挙げることができる。
抗原結合ドメイン(または抗原結合分子)の抗原結合活性は当業者に公知の方法により測定することが可能であり、イオン化カルシウム濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン(または抗原結合分子)の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore (GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
本発明において、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い抗原結合ドメイン(または抗原結合分子)を選択する工程は、高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性が低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性より低い抗原結合ドメイン(または抗原結合分子)を選択する工程と同じ意味である。
低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い限り、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性と高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性の差は特に限定されないが、好ましくは低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
前記のスクリーニング方法によりスクリーニングされる本発明の抗原結合ドメイン(または抗原結合分子)はいかなる抗原結合ドメイン(または抗原結合分子)でもよく、例えば上述の抗原結合ドメイン(または抗原結合分子)をスクリーニングすることが可能である。例えば、天然の配列を有する抗原結合ドメイン(または抗原結合分子)をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合ドメイン(または抗原結合分子)をスクリーニングしてもよい。
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン(または抗原結合分子)はどのように調製されてもよく、例えば、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリに側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸変異を導入した抗体又はライブラリ(側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)又は非天然アミノ酸の含有率を高くしたライブラリや特定箇所に側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)又は非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である。
動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗原結合ドメイン(または抗原結合分子)から、低水素イオン濃度または高pHすなわちpH中性域の条件における抗原結合活性が高水素イオン濃度または低pHすなわちpH酸性域の条件における抗原結合活性より高い抗原結合ドメイン(または抗原結合分子)を取得する方法として、例えば、国際公開WO2009/125825で記載されるような抗原結合ドメインまたは抗体中のアミノ酸の少なくとも一つが、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸変異に置換されているもしくは抗原結合ドメインまたは抗体中に、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入されている抗原結合分子または抗体が好適に挙げられる。
側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異が導入される位置は特に限定されず、置換または挿入前と比較してpH酸性域における抗原結合活性がpH中性域における抗原結合活性より弱くなる(KD(pH酸性域)/KD(pH中性域)の値が大きくなる、又はkd(pH酸性域)/kd(pH中性域)の値が大きくなる)限り、如何なる部位でもよい。例えば、抗原結合分子が抗体の場合には、抗体の可変領域やCDRなどが好適に挙げられる。側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸に置換されるアミノ酸の数、又は挿入されるアミノ酸の数は当業者が適宜決定することができ、側鎖のpKaが4.0-8.0である1つのアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸によって置換され得るし、側鎖のpKaが4.0-8.0である1つのアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入され得るし、側鎖のpKaが4.0-8.0である2つ以上の複数のアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸によって置換され得るし、側鎖のpKaが4.0-8.0である2つ以上のアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸が挿入され得る。又、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換又は側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の挿入以外に、他のアミノ酸の欠失、付加、挿入および/または置換などが同時に行われ得る。側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換又は側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の挿入は、当業者の公知のアラニンscanningのアラニンをヒスチジン等に置き換えたヒスチジン等scanning等の方法によってランダムに行われ得るし、側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換または挿入の変異がランダムに導入された抗原結合ドメインまたは抗体の中から、変異前と比較してKD(pH酸性域)/KD(pH中性域)又はkd(pH酸性域)/kd(pH中性域)の値が大きくなった抗原結合分子が選択され得る。
前記のようにその側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異が行われ、かつpH酸性域での抗原結合活性がpH中性域での抗原結合活性よりも低い抗原結合分子の好ましい例として、例えば、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異後のpH中性域での抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への変異前のpH中性域での抗原結合活性と同等である抗原結合分子が好適に挙げられる。本発明において、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後の抗原結合分子が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前の抗原結合分子と同等の抗原結合活性を有するとは、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前の抗原結合分子の抗原結合活性を100%とした場合に、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後の抗原結合分子の抗原結合活性が少なくとも10%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上であることをいう。その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異後のpH7.4での抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異前のpH7.4での抗原結合活性より高くなってもよい。その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸への置換または挿入により抗原結合分子の抗原結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などによって、抗原結合活性が、その側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換又は挿入前の抗原結合活性と同等にされ得る。本発明においては、そのような側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の置換又は挿入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことによって結合活性が同等となった抗原結合分子も含まれる。
水素イオン濃度の条件によって抗原に対する抗原結合ドメインの結合活性を変化させるアミノ酸
前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン(または抗原結合分子)はどのように調製されてもよく、例えば、イオン濃度の条件が水素イオン濃度の条件もしくはpHの条件である場合には、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリに側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異を導入した抗体又はライブラリ(側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の含有率を高くしたライブラリや特定箇所に側鎖のpKaが4.0-8.0であるアミノ酸(例えばヒスチジンやグルタミン酸)や非天然アミノ酸の変異を導入したライブラリ等)などを用いることが可能である 。
本発明の一つの態様として、「水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによっても、本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。
当該アミノ酸残基の非限定な例として軽鎖のCDR1に含まれるアミノ酸残基が例示される。ほかにも、当該アミノ酸残基の非限定な例として軽鎖のCDR2に含まれるアミノ酸残基が例示される。また、当該アミノ酸残基の非限定な別の例として軽鎖のCDR3に含まれるアミノ酸残基もまた例示される。
前記のように、当該アミノ酸残基が軽鎖のCDR1に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR1中のKabatナンバリングで表される24位、27位、28位、31位、32位および/または34位のアミノ酸残基が挙げられる。また、当該アミノ酸残基が軽鎖のCDR2に含まれるアミノ酸残基の非限定な例として、軽鎖可変領域のCDR2中のKabatナンバリングで表される50位、51位、52位、53位、54位、55位および/または56位のアミノ酸残基が挙げられる。さらに、当該アミノ酸残基が軽鎖のCDR3に含まれアミノ酸残基の非限定な例として、軽鎖可変領域のCDR3中のKabatナンバリングで表される89位、90位、91位、92位、93位、94位および/または95A位のアミノ酸残基が挙げられる。また、これらのアミノ酸残基が、水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する限り、これらのアミノ酸残基が単独で含まれ得るし、これらのアミノ酸が二つ以上組み合わされて含まれ得る。
前記の「水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基」が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせる場合でも、前記と同様に、フレキシブル残基が当該軽鎖可変領域の配列に含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、水素イオン濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。例えば、軽鎖可変領域配列に導入されるフレキシブル残基の非限定的な例として、表3または表4に記載されたアミノ酸残基が挙げられる。また、水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸残基やフレキシブル残基以外の軽鎖可変領域のアミノ酸配列としては、非限定な例としてVk1(配列番号:3)、Vk2(配列番号:4)、Vk3(配列番号:5)、Vk4(配列番号:6)等の生殖細胞系列の配列が好適に使用され得る。
Figure 2018172384
なお、Kabatナンバリングで表わされる92位がAsn(N)の場合は、94位のSer(S)を除外することができる。
Figure 2018172384
なお、Kabatナンバリングで表わされる92位がAsn(N)の場合は、94位のSer(S)を除外することができる。
前記の、水素イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸残基としては、いずれのアミノ酸残基も好適に使用され得るが、そのようなアミノ酸残基としては、具体的に側鎖のpKaが4.0-8.0であるアミノ酸が挙げられる。こうした電子供与性を有するアミノ酸としては、ヒスチジンまたはグルタミン酸等の天然のアミノ酸のほか、ヒスチジンアナログ(US2009/0035836)もしくはm-NO2-Tyr(pKa 7.45)、3,5-Br2-Tyr(pKa 7.21)または3,5-I2-Tyr(pKa 7.38)等の非天然のアミノ酸(Bioorg. Med. Chem. (2003) 11 (17), 3761-3768が好適に例示される。また、当該アミノ酸残基の特に好適な例としては、側鎖のpKaが6.0-7.0であるアミノ酸が挙げられる。こうした電子供与性を有するアミノ酸としては、ヒスチジンが好適に例示される。
抗原結合ドメインのアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法もまた採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。
組み合わされる重鎖可変領域の例として、ランダム化可変領域ライブラリが好適に挙げられる。ランダム化可変領域ライブラリの作製方法は公知の方法が適宜組み合わされる。本発明の非限定な一態様では、特定の抗原で免疫された動物、感染症患者やワクチン接種して血中抗体価が上昇したヒト、癌患者、自己免疫疾患のリンパ球由来の抗体遺伝子をもとに構築された免疫ライブラリが、ランダム化可変領域ライブラリとして好適に使用され得る。
また、本発明の非限定な一態様では、前記と同様に、ゲノムDNAにおけるV遺伝子や再構築され機能的なV遺伝子のCDR配列が、適当な長さのコドンセットをコードする配列を含む合成オリゴヌクレオチドセットで置換された合成ライブラリもまた、ランダム化可変領域ライブラリとして好適に使用され得る。この場合、重鎖のCDR3の遺伝子配列の多様性が観察されることから、CDR3の配列のみを置換することもまた可能である。抗原結合分子の可変領域においてアミノ酸の多様性を生み出す基準は、抗原結合分子の表面に露出した位置のアミノ酸残基に多様性を持たせることである。表面に露出した位置とは、抗原結合分子の構造、構造アンサンブル、および/またはモデル化された構造にもとづいて、表面に露出が可能、かつ/または抗原との接触が可能と判断される位置のことをいうが、一般的にはそのCDRである。好ましくは、表面に露出した位置は、InsightIIプログラム(Accelrys)のようなコンピュータプログラムを用いて、抗原結合分子の3次元モデルからの座標を使って決定される。表面に露出した位置は、当技術分野で公知のアルゴリズム(例えば、LeeおよびRichards(J. Mol. Biol. (1971) 55, 379-400)、Connolly(J. Appl. Cryst. (1983) 16, 548-558))を使用して決定され得る。表面に露出した位置の決定は、タンパク質モデリングに適したソフトウェアおよび抗体から得られる三次元構造情報を使って行われ得る。このような目的のために利用できるソフトウェアとして、SYBYL生体高分子モジュールソフトウェア(Tripos Associates)が好適に挙げられる。一般的に、また好ましくは、アルゴリズムがユーザーの入力サイズパラメータを必要とする場合は、計算において使われるプローブの「サイズ」は半径約1.4オングストローム以下に設定される。さらに、パーソナルコンピュータ用のソフトウェアを使用した表面に露出した領域およびエリアの決定法が、Pacios(Comput. Chem. (1994) 18 (4), 377-386およびJ. Mol. Model. (1995) 1, 46-53)に記載されている。
さらに、本発明の非限定な一態様では、健常人のリンパ球由来の抗体遺伝子から構築され、そのレパートリーにバイアスを含まない抗体配列であるナイーブ配列からなるナイーブライブラリもまた、ランダム化可変領域ライブラリとして特に好適に使用され得る(Gejimaら(Human Antibodies (2002) 11,121-129)およびCardosoら(Scand. J. Immunol. (2000) 51, 337-344))。
Fc領域
Fc領域は、抗体重鎖の定常領域に由来するアミノ酸配列を含む。Fc領域は、EUナンバリングで表されるおよそ216位のアミノ酸における、パパイン切断部位のヒンジ領域のN末端から、当該ヒンジ、CH2およびCH3ドメインを含める抗体の重鎖定常領域の部分である。Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のサブクラスに限定されるものでもない。当該Fc領域の好適な例として、後述されるようにpH酸性域におけるFcRnに対する結合活性を有するFc領域が挙げられる。また当該Fc領域の好適な例として、後述されるようにFcγレセプターに対する結合活性を有するFc領域が挙げられる。そのようなFc領域の非限定な一態様として、ヒトIgG1(配列番号:9)、IgG2(配列番号:10)、IgG3(配列番号:11)、またはIgG4(配列番号:12)で表されるFc領域が例示される。また、ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242 に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリングで表される356-358位のアミノ酸配列がDELであってもEEMであってもよい。また、Fc領域は、FcγRおよび/またはFcRnに結合するドメインを含んでいれば上述のヒトIgG定常領域に由来するFc領域である必要は無い。
FcRn
免疫グロブリンスーパーファミリーに属するFcγレセプターと異なり、ヒトFcRnは構造的には主要組織不適合性複合体(MHC)クラスIのポリペプチドに構造的に類似しクラスIのMHC分子と22から29%の配列同一性を有する(Ghetieら,Immunol. Today (1997) 18 (12), 592-598)。FcRnは、可溶性βまたは軽鎖(β2マイクログロブリン)と複合体化された膜貫通αまたは重鎖よりなるヘテロダイマーとして発現される。MHCのように、FcRnのα鎖は3つの細胞外ドメイン(α1,α2,α3)よりなり、短い細胞質ドメインはタンパク質を細胞表面に繋留する。α1およびα2ドメインが抗体のFc領域中のFcRn結合ドメインと相互作用する(Raghavanら(Immunity (1994) 1, 303-315)。
FcRnは、哺乳動物の母性胎盤または卵黄嚢で発現され、それは母親から胎児へのIgGの移動に関与する。加えてFcRnが発現するげっ歯類新生児の小腸では、FcRnが摂取された初乳または乳から母性IgGの刷子縁上皮を横切る移動に関与する。FcRnは多数の種にわたって多数の他の組織、並びに種々の内皮細胞系において発現している。それはヒト成人血管内皮、筋肉血管系、および肝臓洞様毛細血管でも発現される。FcRnは、IgGに結合し、それを血清にリサイクルすることによって、IgGの血漿中濃度を維持する役割を演じていると考えられている。FcRnのIgG分子への結合は、通常、厳格にpHに依存的であり、最適結合は7.0未満のpH酸性域において認められる。
配列番号:13で表されたシグナル配列を含むポリペプチドを前駆体とするヒトFcRnは、生体内で(配列番号:14にシグナル配列を含むそのポリペプチドが記載されている)ヒトβ2-ミクログロブリンとの複合体を形成する。β2-ミクログロブリンと複合体を形成している可溶型ヒトFcRnが通常の組換え発現手法を用いることによって製造される。このようなβ2-ミクログロブリンと複合体を形成している可溶型ヒトFcRnに対する本発明のFc領域の結合活性が評価され得る。本発明において、特に記載のない場合は、ヒトFcRnは本発明のFc領域に結合し得る形態であるものを指し、例としてヒトFcRnとヒトβ2-ミクログロブリンとの複合体が挙げられる。
FcRn、特にヒトFcRnに対するFc領域の結合活性
本発明により提供されるFc領域のFcRn、特にヒトFcRnに対する結合活性は、前記結合活性の項で述べられているように、当業者に公知の方法により測定することが可能であり、pH以外の条件については当業者が適宜決定することが可能である。抗原結合分子の抗原結合活性とヒトFcRn結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度)、又は見かけのkd(Apparent dissociation:見かけの解離速度)等として評価され得る。これらは当業者公知の方法で測定され得る。例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等が使用され得る。
本発明のFc領域のヒトFcRnに対する結合活性を測定する際のpH以外の条件は当業者が適宜選択することが可能であり、特に限定されない。例えば、国際公開WO2009/125825に記載されているようにMESバッファー、37℃の条件において測定され得る。また、本発明のFc領域のヒトFcRnに対する結合活性の測定は当業者公知の方法により行うことが可能であり、例えば、Biacore(GE Healthcare)などを用いて測定され得る。本発明のFc領域とヒトFcRnの結合活性の測定は、Fc領域またはFc領域を含む本発明の抗原結合分子あるいはヒトFcRnを固定化したチップへ、それぞれヒトFcRnあるいはFc領域またはFc領域を含む本発明の抗原結合分子をアナライトとして流すことによって評価され得る。
本発明の抗原結合分子に含まれるFc領域とFcRnとの結合活性を有する条件としてのpH中性域とは、通常pH6.7〜pH10.0を意味する。pH中性域とは、好ましくはpH7.0〜pH8.0の任意のpH値によって示される範囲であり、好ましくはpH7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、および8.0から選択され、特に好ましくは生体内の血漿中(血中)のpHに近いpH7.4である。pH7.4でのヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーが低いためにその結合アフィニティーを評価することが難しい場合には、pH7.4の代わりにpH7.0を用いることができる。本発明において、本発明の抗原結合分子に含まれるFc領域とFcRnとの結合活性を有する条件としてのpH酸性域とは、通常pH4.0〜pH6.5を意味する。好ましくはpH5.5〜pH6.5を意味し、特に好ましくは、生体内の早期エンドソーム内のpHに近いpH5.8〜pH6.0を意味する。測定条件に使用される温度として、ヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーは、10℃〜50℃の任意の温度で評価してもよい。好ましくは、ヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーを決定するために、15℃〜40℃の温度が使用される。より好ましくは、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、および35℃のいずれか1つのような20℃から35℃までの任意の温度も同様に、ヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーを決定するために使用される。25℃という温度は本発明の態様の非限定な一例である。
The Journal of Immunology (2009) 182, 7663-7671によれば、天然型ヒトIgG1のヒトFcRn結合活性はpH酸性域(pH6.0)でKD 1.7μMであるが、pH中性域では活性をほとんど検出できていない。よって、好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 20μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。より好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 2.0μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。さらにより好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 0.5μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。上記のKD値は、The Journal of Immunology (2009) 182: 7663-7671に記載された方法(抗原結合分子をチップに固定し、アナライトとしてヒトFcRnを流す)によって決定される。
本発明においては、pH酸性域の条件下でFcRnに対する結合活性を有するFc領域が好ましい。当該ドメインは、あらかじめpH酸性域の条件下でFcRnに対する結合活性を有しているFc領域であればそのまま用いられ得る。当該ドメインがpH酸性域の条件下でFcRnに対する結合活性がない若しくは弱い場合には、抗原結合分子中のアミノ酸を改変することによって所望のFcRnに対する結合活性を有するFc領域が取得され得るが、Fc領域中のアミノ酸を改変することによってpH酸性域の条件下で所望のFcRnに対する結合活性を有する、または増強されたFc領域も好適に取得され得る。そのような所望の結合活性をもたらすFc領域のアミノ酸改変は、アミノ酸改変前と改変後のpH酸性域の条件下でFcRnに対する結合活性を比較することによって見出され得る。前記のFcγレセプターに対する結合活性を改変するために用いられる手法と同様の公知の手法を用いて当業者は適宜アミノ酸の改変を実施することができる。
本発明の抗原結合分子に含まれるpH酸性域の条件下でFcRnに対する結合活性を有するFc領域はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によってpH酸性域の条件下でFcRnに対する結合活性を有する、または増強されたFcRn結合ドメインが取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えばヒトIgG(IgG1、IgG2、IgG3、またはIgG4、およびそれらの改変体)のFc領域が挙げられる。他のアミノ酸への改変は、pH酸性域の条件下でFcRnに対する結合活性を有する、もしくは酸性域の条件下でヒトFcRnに対する結合活性を高められるかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変が含まれていることが好ましい。そのような改変が可能なアミノ酸として、例えば、国際公開WO1997/034631に記載されているように、EUナンバリングで表される252位、254位、256位、309位、311位、315位、433位、または434位群から選択される少なくとも一つ以上のアミノ酸、ならびにこれらのアミノ酸に組み合わせる253位、310位、435位、または426位の群から選択される少なくとも一つ以上のアミノ酸が挙げられる。国際公開WO2000/042072に記載されるように、EUナンバリングで表される238位、252位、253位、254位、255位、256位、265位、272位、286位、288位、303位、305位、307位、309位、311位、312位、317位、340位、356位、360位、362位、376位、378位、380位、382位、386位、388位、400位、413位、415位、424位、433位、434位、435位、436位、439位または447位の群から選択される少なくとも一つ以上のアミノ酸が好適に挙げられる。同様に、そのような改変が可能なアミノ酸として、例えば国際公開WO2002/060919に記載されているように、EUナンバリングで表される251位、252位、254位、255位、256位、308位、309位、311位、312位、385位、386位、387位、389位、428位、433位、434位または436位の群から選択される少なくとも一つ以上のアミノ酸も好適に挙げられる。さらに、そのような改変が可能なアミノ酸として、国際公開WO2004/092219に記載されているように、EUナンバリングで表される250位、314位および428位のアミノ酸も挙げられる。加えて、そのような改変が可能なアミノ酸として、例えば国際公開WO2006/020114に記載されているように、238位、244位、245位、249位、252位、256位、257位、258位、260位、262位、270位、272位、279位、283位、285位、286位、288位、293位、307位、311位、312位、316位、317位、318位、332位、339位、341位、343位、375位、376位、377位、378位、380位、382位、423位、427位、430位、431位、434位、436位、438位、440位、または442位の群から選択される少なくとも一つ以上のアミノ酸も好適に挙げられる。また、そのような改変が可能なアミノ酸として、例えば国際公開WO2010/045193に記載されているように、EUナンバリングで表される251位、252位、307位、308位、378位、428位、430位、434位および/または436位のアミノ酸も好適に挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH酸性域の条件下でFcRnに対する結合が増強される。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
251位のアミノ酸がArgまたはLeuのいずれか、
252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
254位のアミノ酸がSerまたはThrのいずれか、
255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、またはThrのいずれか、
308位のアミノ酸がIleまたはThrのいずれか、
309位のアミノ酸がPro、
311位のアミノ酸がGlu、Leu、またはSerのいずれか、
312位のアミノ酸がAlaまたはAspのいずれか、
314位のアミノ酸がAlaまたはLeuのいずれか、
385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
389位のアミノ酸がAsn、Pro、またはSerのいずれか、
428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
434位のアミノ酸がHis、Phe、またはTyrのいずれか、もしくは
436位のアミノ酸がArg、Asn、His、Lys、Met、またはThrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、308位のアミノ酸がIle、309位のアミノ酸がPro、および/または311位のアミノ酸がGluを含む改変であり得る。また、当該改変の別の非限定な一態様は、308位のアミノ酸がThr、309位のアミノ酸がPro、311位のアミノ酸がLeu、312位のアミノ酸がAla、および/または314位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、308位のアミノ酸がIleまたはThr、309位のアミノ酸がPro、311位のアミノ酸がGlu、Leu、またはSer、312位のアミノ酸がAla、および/または314位のアミノ酸がAlaまたはLeuを含む改変であり得る。当該改変の異なる非限定な一態様は、308位のアミノ酸がThr、309位のアミノ酸がPro、311位のアミノ酸がSer、312位のアミノ酸がAsp、および/または314位のアミノ酸がLeuを含む改変であり得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、251位のアミノ酸がLeu、252位のアミノ酸がTyr、254位のアミノ酸がSer、またはThr、255位のアミノ酸がArg、および/または256位のアミノ酸がGluを含む改変であり得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか、433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、434位のアミノ酸がHis、Phe、またはTyrのいずれか、および/または436位のアミノ酸がArg、Asn、His、Lys、Met、またはThrの群から選択される少なくとも一つ以上のいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、428位のアミノ酸がHisまたはMet、および/または434位のアミノ酸がHisまたはMetを含む改変であり得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、385位のアミノ酸がArg、386位のアミノ酸がThr、387位のアミノ酸がArg、および/または389位のアミノ酸がProを含む改変であり得る。また、当該改変の別の非限定な一態様は、385位のアミノ酸がAsp、386位のアミノ酸がProおよび/または389位のアミノ酸がSerを含む改変であり得る。
さらに、Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
250位のアミノ酸がGlnまたはGluのいずれか、もしくは
428位のアミノ酸がLeuまたはPheのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所のアミノ酸が改変され得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、250位のアミノ酸がGln、および/または428位のアミノ酸がLeuまたはPheのいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、250位のアミノ酸がGlu、および/または428位のアミノ酸がLeuまたはPheのいずれかを含む改変であり得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
251位のアミノ酸がAspまたはGluのいずれか、
252位のアミノ酸がTyr、
307位のアミノ酸がGln、
308位のアミノ酸がPro、
378位のアミノ酸がVal、
380位のアミノ酸がAla、
428位のアミノ酸がLeu、
430位のアミノ酸がAla、またはLysのいずれか、
434位のアミノ酸がAla、His、Ser、またはTyrのいずれか、もしくは
436位のアミノ酸がIle、
の群から選択される少なくとも二つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、二箇所のみのアミノ酸が改変され得るし、三箇所以上のアミノ酸が改変され得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、307位のアミノ酸がGln、および434位のアミノ酸がAlaまたはSerのいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、308位のアミノ酸がPro、および434位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、252位のアミノ酸がTyr、および434位のアミノ酸がAlaを含む改変であり得る。当該改変の異なる非限定な一態様は、378位のアミノ酸がVal、および434位のアミノ酸がAlaを含む改変であり得る。当該改変の別の異なる非限定な一態様は、428位のアミノ酸がLeu、および434位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の異なる非限定な一態様は、434位のアミノ酸がAla、および436位のアミノ酸がIleを含む改変であり得る。さらに、当該改変のもう一つの非限定な一態様は、308位のアミノ酸がPro、および434位のアミノ酸がTyrを含む改変であり得る。さらに、当該改変の別のもう一つの非限定な一態様は、307位のアミノ酸がGln、および436位のアミノ酸がIleを含む改変であり得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、307位のアミノ酸がGln、380位のアミノ酸がAla、および434位のアミノ酸がSerのいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、307位のアミノ酸がGln、380位のアミノ酸がAla、および434位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、252位のアミノ酸がTyr、308位のアミノ酸がPro、および434位のアミノ酸がTyrを含む改変であり得る。当該改変の異なる非限定な一態様は、251位のアミノ酸がAsp、307位のアミノ酸がGln、および434位のアミノ酸がHisを含む改変であり得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
238位のアミノ酸がLeu、
244位のアミノ酸がLeu、
245位のアミノ酸がArg、
249位のアミノ酸がPro、
252位のアミノ酸がTyr、
256位のアミノ酸がPro、
257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
258位のアミノ酸がAsp、
260位のアミノ酸がSer、
262位のアミノ酸がLeu、
270位のアミノ酸がLys、
272位のアミノ酸がLeu、またはArgのいずれか、
279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
285位のアミノ酸がAsn、
286位のアミノ酸がPhe、
288位のアミノ酸がAsn、またはProのいずれか、
293位のアミノ酸がVal、
307位のアミノ酸がAla、Glu、またはMetのいずれか、
311位のアミノ酸がAla、Ile、Lys、Leu、Met、Val、またはTrpのいずれか、
312位のアミノ酸がPro、
316位のアミノ酸がLys、
317位のアミノ酸がPro、
318位のアミノ酸がAsn、またはThrのいずれか、
332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
341位のアミノ酸がPro、
343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
375位のアミノ酸がArg、
376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
377位のアミノ酸がLys、
378位のアミノ酸がAsp、またはAsnのいずれか、
380位のアミノ酸がAsn、Ser、またはThrのいずれか、
382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
423位のアミノ酸がAsn、
427位のアミノ酸がAsn、
430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
431位のアミノ酸がHis、またはAsnのいずれか、
434位のアミノ酸がPhe、Gly、His、Trp、またはTyrのいずれか、
436位のアミノ酸がIle、Leu、またはThrのいずれか、
438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
440位のアミノ酸がLys、もしくは、
442位のアミノ酸がLys、
の群から選択される少なくとも二つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、二箇所のみのアミノ酸が改変され得るし、三箇所以上のアミノ酸が改変され得る。
Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、257位のアミノ酸がIle、および311位のアミノ酸がIleを含む改変であり得る。また、当該改変の別の非限定な一態様は、257位のアミノ酸がIle、および434位のアミノ酸がHisを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、376位のアミノ酸がVal、および434位のアミノ酸がHisを含む改変であり得る。
また、別の非限定な一態様では、上記に記載されたpH酸性域におけるヒトFcRnに対する結合活性という特徴に代えて、pH中性域におけるヒトFcRnに対する結合活性という特徴を有するFc領域を含む抗原結合分子もまたスクリーニングされ得る。より好ましい態様においては、pH中性域におけるヒトFcRn結合活性がKD 40μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。さらにより好ましい態様においては、pH中性域におけるヒトFcRnに対する結合活性がKD 15μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。
また、別の非限定な一態様では、上記に記載されたpH酸性域におけるヒトFcRnに対する結合活性という特徴に加えて、pH中性域におけるヒトFcRnに対する結合活性という特徴を有するFc領域を含む抗原結合分子もまたスクリーニングされ得る。より好ましい態様においては、pH中性域におけるヒトFcRn結合活性がKD 40μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。さらにより好ましい態様においては、pH中性域におけるヒトFcRnに対する結合活性がKD 15μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。
本発明において、pH酸性域および/またはpH中性域においてヒトFcRnに対する結合活性を有するFc領域が好ましい。当該Fc領域は、あらかじめpH酸性域および/またはpH中性域においてヒトFcRnに対する結合活性を有しているFc領域であればそのまま用いられ得る。当該Fc領域がpH酸性域および/またはpH中性域においてヒトFcRn結合活性がない若しくは弱い場合には、抗原結合分子に含まれるFc領域中のアミノ酸を改変することによって所望のヒトFcRnに対する結合活性を有するFc領域を含む抗原結合分子が取得され得るが、ヒトFc領域中のアミノ酸を改変することによってpH酸性域および/またはpH中性域における所望のヒトFcRnに対する結合活性を有するFc領域も好適に取得され得る。また、あらかじめpH酸性域および/またはpH中性域においてヒトFcRn結合活性を有しているFc領域中のアミノ酸の改変によって、所望のヒトFcRnに対する結合活性を有するFc領域を含む抗原結合分子も取得され得る。そのような所望の結合活性をもたらすヒトFc領域のアミノ酸改変は、アミノ酸改変前と改変後のpH酸性域および/またはpH中性域におけるヒトFcRnに対する結合活性を比較することによって見出され得る。公知の手法を用いて当業者は適宜アミノ酸の改変を実施することができる。
本発明において、Fc領域の「アミノ酸の改変」または「アミノ酸改変」とは、出発Fc領域のアミノ酸配列とは異なるアミノ酸配列に改変することを含む。出発Fc領域の修飾改変体がpH酸性域においてヒトFcRnに結合することができる限り(ゆえに、出発Fc領域はpH中性域の条件下におけるヒトFcRnに対する結合活性を必ずしも必要とするわけではない)いずれのFc領域も出発ドメインとして使用され得る。出発Fc領域の例としては、IgG抗体のFc領域、すなわち天然型のFc領域が好適に挙げられる。また、既に改変が加えられたFc領域を出発Fc領域としてさらなる改変が加えられた改変Fc領域も本発明の改変Fc領域として好適に使用され得る。出発Fc領域とは、ポリペプチドそのもの、出発Fc領域を含む組成物、または出発Fc領域をコードするアミノ酸配列を意味し得る。出発Fc領域には、抗体の項で概説された組換えによって産生された公知のIgG抗体のFc領域が含まれ得る。出発Fc領域の起源は、限定されないが非ヒト動物の任意の生物またはヒトから取得され得る。好ましくは、任意の生物としては、マウス、ラット、モルモット、ハムスター、アレチネズミ、ネコ、ウサギ、イヌ、ヤギ、ヒツジ、ウシ、ウマ、ラクダ、および非ヒト霊長類から選択される生物が好適に挙げられる。別の態様において、出発Fc領域はまた、カニクイザル、マーモセット、アカゲザル、チンパンジー、またはヒトから取得され得る。好ましくは、出発Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のサブクラスに限定されるものでもない。このことは、ヒトIgG1(配列番号:9)、IgG2(配列番号:10)、IgG3(配列番号:11)、またはIgG4(配列番号:12)で表されるFc領域を出発Fc領域として適宜用いることができることを意味する。同様に、本明細書において、前記の任意の生物からのIgGの任意のクラスまたはサブクラスのFc領域を、好ましくは出発Fc領域として用いることができることを意味する。天然に存在するIgGのバリアントまたは操作された型の例は、公知の文献(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91、Curr. Opin. Immunol. (2008) 20 (4), 460-470、Protein Eng. Des. Sel. (2010) 23 (4), 195-202、国際公開WO2009/086320、WO2008/092117、WO2007/041635、およびWO2006/105338)に記載されるがそれらに限定されない。
改変の例としては一以上の変異、例えば、出発Fc領域のアミノ酸とは異なるアミノ酸残基に置換された変異、あるいは出発Fc領域のアミノ酸に対して一以上のアミノ酸残基の挿入または出発Fc領域のアミノ酸から一以上のアミノ酸の欠失等が含まれる。好ましくは、改変後のFc領域のアミノ酸配列には、天然に生じないFc領域の少なくとも部分を含むアミノ酸配列を含む。そのような変種は必然的に出発Fc領域と100%未満の配列同一性または類似性を有する。好ましい実施形態において、変種は出発Fc領域のアミノ酸配列と約75%〜100%未満のアミノ酸配列同一性または類似性、より好ましくは約80%〜100%未満、より好ましくは約85%〜100%未満の、より好ましくは約90%〜100%未満、最も好ましくは約95%〜100%未満の同一性または類似性のアミノ酸配列を有する。本発明の非限定な一態様において、出発Fc領域および本発明の改変されたFc領域の間には少なくとも1つのアミノ酸の差がある。出発Fc領域と改変Fc領域のアミノ酸の違いは、特に前述のEUナンバリングで表されるアミノ酸残基の位置の特定されたアミノ酸の違いによっても好適に特定可能である。
Fc領域のアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法も採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。
本発明の抗原結合分子に含まれるpH酸性域におけるヒトFcRnに対する結合活性を有するFc領域はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によってpH酸性域におけるヒトFcRnに対する結合活性がKD 20μMまたはそれより強いFc領域、より好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 2.0μMまたはそれより強いFc領域、さらにより好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 0.5μMまたはそれより強いFc領域、を含む抗原結合分子がスクリーニングされ得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えば、配列番号:9、配列番号:10、配列番号:11、または配列番号:12でそれぞれ表されるIgG1、IgG2、IgG3またはIgG4等のヒトIgG、およびそれらの改変体のFc領域が挙げられる。
抗原結合分子が、Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によって上記の所望の効果をもたらす改変が可能なアミノ酸として、例えば、国際公開WO2000/042072に記載されるように、EUナンバリングで表される238位、252位、253位、254位、255位、256位、265位、272位、286位、288位、303位、305位、307位、309位、311位、312位、317位、340位、356位、360位、362位、376位、378位、380位、382位、386位、388位、400位、413位、415位、424位、433位、434位、435位、436位、439位または447位の群から選択される少なくとも一つ以上のアミノ酸が好適に挙げられる。同様に、そのような改変が可能なアミノ酸として、例えば国際公開WO2002/060919に記載されているように、EUナンバリングで表される251位、252位、254位、255位、256位、308位、309位、311位、312位、385位、386位、387位、389位、428位、433位、434位または436位の群から選択される少なくとも一つ以上のアミノ酸も好適に挙げられる。さらに、そのような改変が可能なアミノ酸として、国際公開WO2004/092219に記載されているように、EUナンバリングで表される250位、314位および428位のアミノ酸も挙げられる。また、そのような改変が可能なアミノ酸として、例えば国際公開WO2010/045193に記載されているように、EUナンバリングで表される251位、252位、307位、308位、378位、428位、430位、434位または436位の群から選択される少なくとも一つ以上のアミノ酸も好適に挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH酸性域の条件下におけるFcRnに対する結合が増強される。
出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によって、pH中性域におけるヒトFcRnに対する結合活性を有するFc領域もまた取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えば、配列番号:9、配列番号:10、配列番号:11、または配列番号:12でそれぞれ表されるIgG1、IgG2、IgG3またはIgG4等のヒトIgG、およびそれらの改変体のFc領域が挙げられる。他のアミノ酸への改変は、pH中性域におけるヒトFcRnに対する結合活性を有する、もしくは中性域におけるヒトFcRnに対する結合活性を高められるかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、ヒトFc領域としてヒトIgG1のFc領域を含んでいる場合、pH中性域におけるヒトFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変が含まれていることが好ましい。そのような改変が可能なアミノ酸として、例えば、EUナンバリング221位〜225位、227位、228位、230位、232位、233位〜241位、243位〜252位、254位〜260位、262位〜272位、274位、276位、278位〜289位、291位〜312位、315位〜320位、324位、325位、327位〜339位、341位、343位、345位、360位、362位、370位、375位〜378位、380位、382位、385位〜387位、389位、396位、414位、416位、423位、424位、426位〜438位、440位および442位の群から選択される少なくとも一つ以上のアミノ酸が挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH中性域におけるヒトFcRnに対する結合が増強される。
本発明に使用するために、これらの改変のうち、pH中性域においてもヒトFcRnに対する結合を増強する改変が適宜選択される。特に好ましいFc領域改変体のアミノ酸として、例えばEUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位および436位のアミノ酸が挙げられる。これらのアミノ酸から選択される少なくとも1つのアミノ酸を他のアミノ酸に置換することによって、抗原結合分子に含まれるFc領域のpH中性域におけるヒトFcRnに対する結合活性を増強することができる。
特に好ましい改変としては、例えば、Fc領域のEUナンバリングで表される
237位のアミノ酸がMet、
248位のアミノ酸がIle、
250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
254位のアミノ酸がThr、
255位のアミノ酸がGlu、
256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
258位のアミノ酸がHis、
265位のアミノ酸がAla、
286位のアミノ酸がAlaまたはGluのいずれか、
289位のアミノ酸がHis、
297位のアミノ酸がAla、
303位のアミノ酸がAla、
305位のアミノ酸がAla、
307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
311位のアミノ酸がAla、His、またはIleのいずれか、
312位のアミノ酸がAlaまたはHisのいずれか、
314位のアミノ酸がLysまたはArgのいずれか、
315位のアミノ酸がAla、AspまたはHisのいずれか、
317位のアミノ酸がAla、
332位のアミノ酸がVal、
334位のアミノ酸がLeu、
360位のアミノ酸がHis、
376位のアミノ酸がAla、
380位のアミノ酸がAla、
382位のアミノ酸がAla、
384位のアミノ酸がAla、
385位のアミノ酸がAspまたはHisのいずれか、
386位のアミノ酸がPro、
387位のアミノ酸がGlu、
389位のアミノ酸がAlaまたはSerのいずれか、
424位のアミノ酸がAla、
428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
433位のアミノ酸がLys、
434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
群から選択される少なくとも一つ以上のアミノ酸が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。これらのアミノ酸の改変の組合せとしては、例えば表5−1〜5−32に示すアミノ酸の改変が挙げられる。
Figure 2018172384
表5−2は表5−1の続きの表である。
Figure 2018172384
表5−3は表5−2の続きの表である。
Figure 2018172384
表5−4は表5−3の続きの表である。
Figure 2018172384
表5−5は表5−4の続きの表である。
Figure 2018172384
表5−6は表5−5の続きの表である。
Figure 2018172384
表5−7は表5−6の続きの表である。
Figure 2018172384
表5−8は表5−7の続きの表である。
Figure 2018172384
表5−9は表5−8の続きの表である。
Figure 2018172384
表5−10は表5−9の続きの表である。
Figure 2018172384
表5−11は表5−10の続きの表である。
Figure 2018172384
表5−12は表5−11の続きの表である。
Figure 2018172384
表5−13は表5−12の続きの表である。
Figure 2018172384
表5−14は表5−13の続きの表である。
Figure 2018172384
表5−15は表5−14の続きの表である。
Figure 2018172384
表5−16は表5−15の続きの表である。
Figure 2018172384
表5−17は表5−16の続きの表である。
Figure 2018172384
表5−18は表5−17の続きの表である。
Figure 2018172384
表5−19は表5−18の続きの表である。
Figure 2018172384
表5−20は表5−19の続きの表である。
Figure 2018172384
表5−21は表5−20の続きの表である。
Figure 2018172384
表5−22は表5−21の続きの表である。
Figure 2018172384
表5−23は表5−22の続きの表である。
Figure 2018172384
表5−24は表5−23の続きの表である。
Figure 2018172384
表5−25は表5−24の続きの表である。
Figure 2018172384
表5−26は表5−25の続きの表である。
Figure 2018172384
表5−27は表5−26の続きの表である。
Figure 2018172384
表5−28は表5−27の続きの表である。
Figure 2018172384
表5−29は表5−28の続きの表である。
Figure 2018172384
表5−30は表5−29の続きの表である。
Figure 2018172384
表5−31は表5−30の続きの表である。
Figure 2018172384
表5−32は表5−31の続きの表である。
Figure 2018172384
Fcγレセプター
Fcγレセプター(FcγRとも記載される)とは、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合し得るレセプターをいい、実質的にFcγレセプター遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131およびR131を含む。即ち、FcγRIIa (H)およびFcγRIIa (R))、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む。即ち、FcγRIIIa (V)およびFcγRIIIa (F))およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。FcγRは、ヒト、マウス、ラット、ウサギおよびサルを含むが、これらに限定されるものではない、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(FcγRIV、CD16-2)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγレセプターの好適な例としてはヒトFcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及び/又はFcγRIIIb(CD16)が挙げられる。ヒトFcγRIのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:15(NM_000566.3)及び16(NP_000557.1)に、ヒトFcγRIIa(アロタイプH131)のポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:17(BC020823.1)及び18(AAH20823.1)に(アロタイプR131は配列番号:18の166番目のアミノ酸がArgに置換されている配列である)、FcγRIIbのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:19(BC146678.1)及び20(AAI46679.1)に、FcγRIIIaのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:21(BC033678.1)及び22(AAH33678.1)に、及びFcγRIIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:23(BC128562.1)及び24(AAI28563.1)に記載されている(カッコ内はRefSeq登録番号を示す)。例えばアロタイプV158が用いられる場合にFcγRIIIaVと表記されているように、特記されないかぎり、アロタイプF158が用いられているが、本願で記載されるアイソフォームFcγRIIIaのアロタイプが特に限定して解釈されるものではない。
FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)ならびにアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)は、IgGのFc部分と結合するα鎖と細胞内に活性化シグナルを伝達するITAMを有する共通γ鎖が会合する。一方、アイソフォームFcγRIIa(アロタイプH131およびR131を含む)およびFcγRIIcを含むFcγRII(CD32)の自身の細胞質ドメインにはITAMが含まれている。これらのレセプターは、マクロファージやマスト細胞、抗原提示細胞等の多くの免疫細胞に発現している。これらのレセプターがIgGのFc部分に結合することによって伝達される活性化シグナルによって、マクロファージの貪食能や炎症性サイトカインの産生、マスト細胞の脱顆粒、抗原提示細胞の機能亢進が促進される。上記のように活性化シグナルを伝達する能力を有するFcγレセプターは、本発明においても活性型Fcγレセプターと呼ばれる。
一方、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)の自身の細胞質内ドメインには抑制型シグナルを伝達するITIMが含まれている。B細胞ではFcγRIIbとB細胞レセプター(BCR)との架橋によってBCRからの活性化シグナルが抑制される結果BCRの抗体産生が抑制される。マクロファージでは、FcγRIIIとFcγRIIbとの架橋によって貪食能や炎症性サイトカインの産生能が抑制される。上記のように抑制化シグナルを伝達する能力を有するFcγレセプターは、本発明においても抑制型Fcγレセプターと呼ばれる。
FcγRに対するFc領域の結合活性
前述されるように、本発明の抗原結合分子に含まれるFc領域として、Fcγレセプターに対する結合活性を有するFc領域が挙げられる。そのようなFc領域の非限定な一態様として、ヒトIgG1(配列番号:9)、IgG2(配列番号:10)、IgG3(配列番号:11)、またはIgG4(配列番号:12)で表されるFc領域が例示される。Fcγレセプターが、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合活性を有するか否かは、上記に記載されるFACSやELISAフォーマットのほか、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって確認され得る(Proc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010)。
ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルを検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。
例えば、ドナービーズにビオチン標識されたFc領域を含む抗原結合分子が結合され、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化されたFcγレセプターが結合される。競合するFc領域改変体を含む抗原結合分子の非存在下では、野生型Fc領域を有するポリペプチド会合体とFcγレセプターは相互作用し520-620 nmのシグナルを生ずる。タグ化されていないFc領域改変体を含む抗原結合分子は、天然型Fc領域を有する抗原結合分子とFcγレセプター間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合親和性が決定され得る。抗体等の抗原結合分子をSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。FcγレセプターをGSTでタグ化する方法としては、FcγレセプターをコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子が作動可能に連結されたベクターに保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウェアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。
相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比からアフィニティー(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010において記載されている。
本発明が含むFc領域として、ヒトIgG1(配列番号:9)、IgG2(配列番号:10)、IgG3(配列番号:11)、またはIgG4(配列番号:12)で表されるFc領域のほかに、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFcγR結合改変Fc領域も適宜使用され得る。本明細書において、「天然型ヒトIgGのFc領域」とは、配列番号:9、10、11または12で例示されるヒトIgG1、IgG2、IgG3またはIgG4のFc領域のEUナンバリング297位に結合した糖鎖がフコース含有糖鎖であるFc領域を意味する。そのようなFcγR結合改変Fc領域は、天然型ヒトIgGのFc領域のアミノ酸を改変することによって作製され得る。FcγR結合改変Fc領域のFcγRに対する結合活性が、天然型ヒトIgGのFc領域のFcγRに対する結合活性より高いか否かは、前記の結合活性の項で記載された方法を用いて適宜実施され得る。
本発明において、Fc領域の「アミノ酸の改変」または「アミノ酸改変」とは、出発Fc領域のアミノ酸配列とは異なるアミノ酸配列に改変することを含む。出発Fc領域の修飾改変体がpH中性域においてヒトFcγレセプターに結合することができる限り、いずれのFc領域も出発Fc領域として使用され得る。また、既に改変が加えられたFc領域を出発Fc領域としてさらなる改変が加えられたFc領域も本発明のFc領域として好適に使用され得る。出発Fc領域とは、ポリペプチドそのもの、出発Fc領域を含む組成物、または出発Fc領域をコードするアミノ酸配列を意味し得る。出発Fc領域には、抗体の項で概説された組換えによって産生された公知のFc領域が含まれ得る。出発Fc領域の起源は、限定されないが非ヒト動物の任意の生物またはヒトから取得され得る。好ましくは、任意の生物としては、マウス、ラット、モルモット、ハムスター、アレチネズミ、ネコ、ウサギ、イヌ、ヤギ、ヒツジ、ウシ、ウマ、ラクダ、および非ヒト霊長類から選択される生物が好適に挙げられる。別の態様において、出発Fc領域はまた、カニクイザル、マーモセット、アカゲザル、チンパンジー、またはヒトから取得され得る。好ましくは、出発Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のクラスに限定されるものでもない。このことは、ヒトIgG1、IgG2、IgG3、またはIgG4のFc領域を出発Fc領域として適宜用いることができることを意味する。同様に、本明細書において、前記の任意の生物からのIgGの任意のクラスまたはサブクラスのFc領域を、好ましくは出発Fc領域として用いることができることを意味する。天然に存在するIgGのバリアントまたは操作された型の例は、公知の文献(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91、Curr. Opin. Immunol. (2008) 20 (4), 460-470、Protein Eng. Des. Sel. (2010) 23 (4), 195-202、国際公開WO2009/086320、WO2008/092117、WO2007/041635、およびWO2006/105338)に記載されるがそれらに限定されない。
改変の例としては一以上の変異、例えば、出発Fc領域のアミノ酸とは異なるアミノ酸残基に置換された変異、あるいは出発Fc領域のアミノ酸に対して一以上のアミノ酸残基の挿入または出発Fc領域のアミノ酸から一以上のアミノ酸の欠失等が含まれる。好ましくは、改変後のFc領域のアミノ酸配列には、天然に生じないFc領域の少なくとも部分を含むアミノ酸配列を含む。そのような変種は必然的に出発Fc領域と100%未満の配列同一性または類似性を有する。好ましい実施形態において、変種は出発Fc領域のアミノ酸配列と約75%〜100%未満のアミノ酸配列同一性または類似性、より好ましくは約80%〜100%未満、より好ましくは約85%〜100%未満の、より好ましくは約90%〜100%未満、最も好ましくは約95%〜100%未満の同一性または類似性のアミノ酸配列を有する。本発明の非限定の一態様において、出発Fc領域および本発明のFcγR結合改変Fc領域の間には少なくとも1つのアミノ酸の差がある。出発Fc領域と本発明のFcγR結合改変Fc領域のアミノ酸の違いは、特に前述のEUナンバリングで特定されるアミノ酸残基の位置の特定されたアミノ酸の違いによっても好適に特定可能である。
Fc領域のアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法も採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。
本発明の抗原結合分子に含まれる、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFcγR結合改変Fc領域(FcγR結合改変Fc領域)はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によって当該FcγR結合改変Fc領域が取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えば、配列番号:9、10、11または12で例示されるヒトIgG(IgG1、IgG2、IgG3、またはIgG4、およびそれらの改変体)のFc領域が挙げられる。
他のアミノ酸への改変は、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、ヒトFc領域としてヒトIgG1のFc領域を含んでいる場合、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高い効果をもたらす改変が含まれていることが好ましい。こうしたアミノ酸の改変としては、例えば国際公開WO2007/024249、WO2007/021841、WO2006/031370、WO2000/042072、WO2004/029207、WO2004/099249、WO2006/105338、WO2007/041635、WO2008/092117、WO2005/070963、WO2006/020114、WO2006/116260およびWO2006/023403などにおいて報告されている。
そのような改変が可能なアミノ酸として、例えば、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくとも一つ以上のアミノ酸が挙げられる。これらのアミノ酸の改変によって、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFc領域(FcγR結合改変Fc領域)を取得することができる。
本発明に使用するために、特に好ましい改変としては、例えば、Fc領域のEUナンバリングで表される;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、もしくは
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。二箇所以上のアミノ酸の改変の組合せとしては、例えば表6(表6−1〜表6−3)に記載されるような組合せが挙げられる。
Figure 2018172384
表6−2は表6−1の続きの表である。
Figure 2018172384
表6−3は表6−2の続きの表である。
Figure 2018172384
本発明の抗原結合分子に含まれるFc領域とFcγレセプターとの結合活性を測定するpHの条件はpH酸性域またはpH中性域の条件が適宜使用され得る。本発明の抗原結合分子に含まれるFc領域とFcγレセプターとの結合活性を測定する条件としてのpH中性域とは、通常pH6.7〜pH10.0を意味する。好ましくはpH7.0〜pH8.0の任意のpH値によって示される範囲であり、好ましくはpH7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、および8.0から選択され、特に好ましくは生体内の血漿中(血中)のpHに近いpH7.4である。本発明において、本発明の抗原結合分子に含まれるFc領域とFcγレセプターとの結合活性を有する条件としてのpH酸性域とは、通常pH4.0〜pH6.5を意味する。好ましくはpH5.5〜pH6.5を意味し、特に好ましくは、生体内の早期エンドソーム内のpHに近いpH5.8〜pH6.0を意味する。測定条件に使用される温度として、Fc領域とFcγレセプターとの結合アフィニティーは、10℃〜50℃の任意の温度で評価され得る。好ましくは、Fc領域とFcγレセプターとの結合アフィニティーを決定するために、15℃〜40℃の温度が使用される。より好ましくは、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、および35℃のいずれか1つのような20℃から35℃までの任意の温度も同様に、Fc領域とFcγレセプターとの結合アフィニティーを決定するために使用される。25℃という温度は本発明の態様の非限定な一例である。
本明細書において、FcγR結合改変Fc領域のFcγレセプターに対する結合活性が天然型Fc領域のFcγレセプターに対する結合活性よりも高いとは、FcγR結合改変Fc領域のFcγRI、FcγRIIa、FcγRIIb、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性が、これらのヒトFcγレセプターに対する天然型Fc領域の結合活性よりも高いことをいう。例えば、上記の解析方法にもとづいて、対照とするヒトIgGの天然型Fc領域を含む抗原結合分子の結合活性に比較してFcγR結合改変Fc領域を含む抗原結合分子の結合活性が、105%以上、好ましくは110%以上、115%以上、120%以上、125%以上、特に好ましくは130%以上、135%以上、140%以上、145%以上、150%以上、155%以上、160%以上、165%以上、170%以上、175%以上、180%以上、185%以上、190%以上、195%以上、2倍以上、2.5倍以上、3倍以上、3.5倍以上、4倍以上、4.5倍以上、5倍以上、7.5倍以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、60倍以上、70倍以上、80倍以上、90倍以上、100倍以上の結合活性を示すことをいう。天然型Fc領域としては、出発Fc領域も使用され得るし、同じサブクラスの抗体の天然型Fc領域も使用され得る。
本発明では、対照とするヒトIgGの天然型Fc領域として、EUナンバリングで表される297位のアミノ酸に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域が好適に用いられる。EUナンバリングで表される297位のアミノ酸に結合した糖鎖がフコース含有糖鎖であるか否かは、非特許文献6に記載された手法が用いられ得る。例えば、下記のような方法によって、天然型ヒトIgGのFc領域に結合した糖鎖がフコース含有糖鎖であるか否かを判定することが可能である。被験天然型ヒトIgGにN-Glycosidase F(Roche diagnostics)を反応させることによって、被験天然型ヒトIgGから糖鎖が遊離される(Weitzhandlerら(J. Pharma. Sciences (1994) 83, 12, 1670-1675)。次に、エタノールを反応させてタンパク質が除かれた反応液(Schenkら(J. Clin. Investigation (2001) 108 (11) 1687-1695)の濃縮乾固物が、2-アミノピリジンによって蛍光標識される(Biggeら(Anal. Biochem. (1995) 230 (2) 229-238)。セルロースカートリッジを用いた固相抽出により脱試薬された、蛍光標識された2-AB化糖鎖が、順相クロマトグラフィによって解析される。検出されるクロマトグラムのピークを観察することによって、ヒトIgGの天然型Fc領域に結合した糖鎖がフコース含有糖鎖であるか否かを判定することが可能である。
対照とする同じサブクラスの天然型抗体のFc領域を含む抗原結合分子としては、IgGモノクローナル抗体のFc領域を有する抗原結合分子が適宜使用され得る。当該Fc領域の構造は、配列番号:9(RefSeq登録番号AAC82527.1のN末にA付加)、10(RefSeq登録番号AAB59393.1のN末にA付加)、11(RefSeq登録番号CAA27268.1)、および12(RefSeq登録番号AAB59394.1のN末にA付加)に記載されている。また、ある特定のアイソタイプの抗体のFc領域を含む抗原結合分子を被検物質として使用する場合には、当該特定のアイソタイプのIgGモノクローナル抗体のFc領域を有する抗原結合分子を対照として用いることによって、被験Fc領域を含む抗原結合分子によるFcγレセプターに対する結合活性の効果が検証される。上記のようにして、Fcγレセプターに対する結合活性が高いことが検証されたFc領域を含む抗原結合分子が適宜選択される。
選択的なFcγレセプターに対する結合活性を有するFc領域
本発明において好適に用いられる、Fc領域の例として、特定のFcγレセプターに対する結合活性がそのほかのFcγレセプターに対する結合活性よりも高い性質を有するFc領域(選択的なFcγレセプターに対する結合活性を有するFc領域)もまた好適に挙げられる。抗原結合分子として抗体が用いられる場合には、一分子の抗体は一分子のFcγレセプターとしか結合できないため、一分子の抗原結合分子は抑制型Fcγレセプターに結合した状態で他の活性型FcγRに結合することはできないし、活性型Fcγレセプターに結合した状態で他の活性型Fcγレセプターや抑制型Fcγレセプターに結合することはできない。
上述したように、活性型Fcγレセプターとしては、FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)ならびにアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、及びFcγRIIa(アロタイプH131およびR131を含む)が好適に挙げられる。また、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)が抑制型Fcγレセプターの好適な例として挙げられる。
本明細書において、特定のFcγレセプターに対する結合活性がそれ以外のFcγレセプターに対する結合活性よりも高い例として、例えば、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高い場合が挙げられる。この場合、Fc領域のFcγRIIbに対する結合活性が、FcγRIa、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性よりも高いことをいう。例えば、上記の解析方法にもとづいて、Fc領域を含む抗原結合分子のFcγRIIbに対する結合活性が、FcγRIa、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性の、105%以上、好ましくは110%以上、120%以上、130%以上、140%以上、特に好ましくは150%以上、160%以上、170%以上、180%以上、190%以上、200%%以上、250%以上、300%以上、350%以上、400%以上、450%以上、500%以上、750%以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍、60倍、70倍、80倍、90倍、100倍以上の結合活性を示すことをいう。
本発明の非限定な一態様では、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高い(抑制型Fcγレセプターに対する選択的な結合活性を有する)Fc領域の例として、前記Fc領域のアミノ酸のうちEUナンバリングで表される238位または328位のアミノ酸が天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられる。
また本発明の非限定な一態様では、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高い(抑制型Fcγレセプターに対する選択的な結合活性を有する)Fc領域の例として、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluのいずれかひとつ以上に改変されているFc領域が好適に挙げられる。また、抑制型Fcγレセプターに対する選択的な結合活性を有するFc領域として、US2009/0136485に記載されているFc領域あるいは改変も適宜選択することができる。
また本発明の非限定な一態様では、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluのいずれかひとつ以上に改変されているFc領域が好適に挙げられる。
さらに本発明の非限定な一態様では、EUナンバリングで表される238位のProのAspへの置換、およびEUナンバリングで表される237位のアミノ酸がTrp、EUナンバリングで表される237位のアミノ酸がPhe、EUナンバリングで表される267位のアミノ酸がVal、EUナンバリングで表される267位のアミノ酸がGln、EUナンバリングで表される268位のアミノ酸がAsn、EUナンバリングで表される271位のアミノ酸がGly、EUナンバリングで表される326位のアミノ酸がLeu、EUナンバリングで表される326位のアミノ酸がGln、EUナンバリングで表される326位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がMet、EUナンバリングで表される239位のアミノ酸がAsp、EUナンバリングで表される267位のアミノ酸がAla、EUナンバリングで表される234位のアミノ酸がTrp、EUナンバリングで表される234位のアミノ酸がTyr、EUナンバリングで表される237位のアミノ酸がAla、EUナンバリングで表される237位のアミノ酸がAsp、EUナンバリングで表される237位のアミノ酸がGlu、EUナンバリングで表される237位のアミノ酸がLeu、EUナンバリングで表される237位のアミノ酸がMet、EUナンバリングで表される237位のアミノ酸がTyr、EUナンバリングで表される330位のアミノ酸がLys、EUナンバリングで表される330位のアミノ酸がArg、EUナンバリングで表される233位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がSer、EUナンバリングで表される326位のアミノ酸がThr、EUナンバリングで表される323位のアミノ酸がIle、EUナンバリングで表される323位のアミノ酸がLeu、EUナンバリングで表される323位のアミノ酸がMet、EUナンバリングで表される296位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がAla、EUナンバリングで表される326位のアミノ酸がAsn、EUナンバリングで表される330位のアミノ酸がMet、のいずれかひとつ以上に改変されているFc領域が好適に挙げられる。
抗原結合分子
本発明において、抗原結合分子は抗原結合ドメインおよびFc領域を含む分子を表す最も広義な意味として使用されており、具体的には、それらが抗原に対する結合活性を示す限り、様々な分子型が含まれる。例えば、抗原結合ドメインがFc領域と結合した分子の例として、抗体が挙げられる。抗体には、単一のモノクローナル抗体(アゴニストおよびアンタゴニスト抗体を含む)、ヒト抗体、ヒト化抗体、キメラ抗体等が含まれ得る。また抗体の断片として使用される場合としては、抗原結合ドメインおよび抗原結合断片(例えば、Fab、F(ab')2、scFvおよびFv)が好適に挙げられ得る。既存の安定なα/βバレルタンパク質構造等の立体構造が scaffold(土台)として用いられ、その一部分の構造のみが抗原結合ドメインの構築のためにライブラリ化されたスキャフォールド分子も、本発明の抗原結合分子に含まれ得る 。
本発明の抗原結合分子は、FcRnに対する結合およびFcγレセプターに対する結合を媒介するFc領域の少なくとも部分を含むことができる。例えば、非限定な一態様において、抗原結合分子は抗体またはFc融合タンパク質であり得る。融合タンパク質とは、天然ではそれが自然に連結しない第二のアミノ酸配列を有するポリペプチドに連結された第一のアミノ酸配列を含むポリペプチドを含むキメラポリペプチドをいう。例えば、融合タンパク質は、Fc領域の少なくとも部分(例えば、FcRnに対する結合を付与するFc領域の部分やFcγレセプターに対する結合を付与するFc領域の部分)をコードするアミノ酸配列、および、例えばレセプターのリガンド結合ドメインまたはリガンドのレセプター結合ドメインをコードするアミノ酸配列を含む非免疫グロブリンポリペプチド、を含むことができる。アミノ酸配列は、一緒に融合タンパク質に運ばれる別々のタンパク質に存在できるか、あるいはそれらは通常は同一タンパク質に存在できるが、融合ポリペプチド中の新しい再編成に入れられる。融合タンパク質は、例えば、化学合成によって、またはペプチド領域が所望の関係でコードされたポリヌクレオチドを作成し、それを発現する遺伝子組換えの手法によって作製され得る。
本発明の抗原結合ドメイン、Fc領域等の各ドメインはポリペプチド結合によって直接連結され得るし、リンカーを介して連結され得る。リンカーとしては、遺伝子工学により導入し得る任意のペプチドリンカー、又は合成化合物リンカー(例えば、Protein Engineering (1996) 9 (3), 299-305)に開示されるリンカー等が使用され得るが、本発明においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することが可能であるが、好ましい長さは5アミノ酸以上(上限は特に限定されないが、通常、30アミノ酸以下、好ましくは20アミノ酸以下)であり、特に好ましくは15アミノ酸である。
例えば、ペプチドリンカーの場合:
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:25)
Ser・Gly・Gly・Gly(配列番号:26)
Gly・Gly・Gly・Gly・Ser(配列番号:27)
Ser・Gly・Gly・Gly・Gly(配列番号:28)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:29)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:30)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:31)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:32)
(Gly・Gly・Gly・Gly・Ser(配列番号:27))n
(Ser・Gly・Gly・Gly・Gly(配列番号:28))n
[nは1以上の整数である]等が好適に挙げられる。但し、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
合成化学物リンカー(化学架橋剤)は、ペプチドの架橋に通常用いられている架橋剤、例えばN-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスベレート(DSS)、ビス(スルホスクシンイミジル)スベレート(BS3)、ジチオビス(スクシンイミジルプロピオネート)(DSP)、ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ−EGS)、ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ−DST)、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、ビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)などであり、これらの架橋剤は市販されている。
各ドメインを連結するリンカーが複数用いられる場合には、全て同種のリンカーが用いられ得るし、異種のリンカーも用いられ得る。
また、上記記載で例示されるリンカーのほか、例えばHisタグ、HAタグ、mycタグ、FLAGタグ等のペプチドタグを有するリンカーも適宜使用され得る。また、水素結合、ジスルフィド結合、共有結合、イオン性相互作用またはこれらの結合の組合せにより互いに結合する性質もまた好適に利用され得る。例えば、抗体のCH1とCL間の親和性が利用されたり、ヘテロFc領域の会合に際して前述の二重特異性抗体を起源とするFc領域が用いられたりする。さらに、ドメイン間に形成されるジスルフィド結合もまた好適に利用され得る。
各ドメインをペプチド結合で連結するために、当該ドメインをコードするポリヌクレオチドがインフレームで連結される。ポリヌクレオチドをインフレームで連結する方法としては、制限断片のライゲーションやフュージョンPCR、オーバーラップPCR等の手法が公知であり、本発明の抗原結合分子の作製にも適宜これらの方法が単独または組合せで使用され得る。本発明では、用語「連結され」、「融合され」、「連結」または「融合」は相互交換的に用いられる。これらの用語は、上記の化学結合手段または組換え手法を含めた全ての手段によって、二以上のポリペプチド等のエレメントまたは成分を一つの構造を形成するように連結することをいう。インフレームで融合するとは、二以上のエレメントまたは成分がポリペプチドである場合に、当該ポリペプチドの正しい読み取り枠を維持するように連続したより長い読み取り枠を形成するための二以上の読取り枠の単位の連結をいう。二分子のFabが抗原結合ドメインとして用いられた場合、当該抗原結合ドメインとFc領域がリンカーを介することなくペプチド結合によってインフレームで連結された本発明の抗原結合分子である抗体は、本願の好適な抗原結合分子として使用され得る。
血漿中において、会合化した抗原が会合化していない抗原よりも優先して消失する抗原結合分子
本発明の抗原結合分子は、会合化していない抗原に対する結合活性と比較したときの、会合化した抗原に対する結合活性がより高いものを選択すれば、その消失効果をより高めることができる。そのような抗原結合分子は、例えば、後述の抗原結合分子の製造方法の記載に従って作製した抗原結合分子の中から、会合化した抗原に対する結合活性と会合していない抗原に対する結合活性の差がより大きな抗原結合分子を選択することによって得ることができる。
当該消失効果を高めるためには、会合化した抗原に特異的なエピトープに結合する抗原結合分子を選択することによっても達成することができる。そのようなエピトープに結合する抗原結合分子は、公知の方法を用いて得ることができる。例えば、会合化した抗原に結合する分子を取得後、その抗原結合分子の会合化した抗原への結合と会合化していない抗原を比較し、会合化した抗原への結合が高い抗原結合分子を選択することで得ることができる(国際公開2006/016644、EMBO J. (1994)13, 1166-75.、国際公開2009/008529等)。
また、当該消失効果を高めるためには、会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高いものを選択することによっても達成することができる。そのような抗原結合分子は、例えば、後述の抗原結合分子の製造方法の記載に従って得られた抗原結合分子に前述のFcRn又はFcγレセプターに対する結合が増強する効果をもたらす改変を導入し、当該改変が導入された抗原結合分子と会合化した抗原あるいは会合していない抗原とで複合体を形成させ、当該複合体のFcRnあるいはFcγレセプターに対する結合活性の差がより大きな抗原結合分子を選択することによって得ることができる。
本発明において、会合化した抗原が会合化していない抗原よりも優先して消失しているかどうかは、血漿中における会合化した抗原のクリアランスと会合化していない抗原のクリアランスを比較することによって、確認することができる。具体的には、被験抗原結合分子の非存在下での会合化した抗原のクリアランスに対する、当該抗原結合分子の存在下での会合化した抗原のクリアランス比(抗原結合分子存在下での会合化した抗原のクリアランス/抗原結合分子非存在下での会合化した抗原のクリアランス)が、会合化していない抗原のクリアランス比(抗原結合分子存在下での会合化していない抗原のクリアランス/抗原結合分子非存在下での会合化していない抗原のクリアランス)よりも高ければ、当該抗原結合分子は、会合化した抗原を会合化していない抗原よりも優先して消失していると判断することができる。本発明においては当該会合化した抗原のクリアランス比は、会合化していない抗原のクリアランス比の1.5倍(会合化した抗原のクリアランス比/会合化していない抗原のクリアランス比)以上であることが好ましい。
本発明において、抗原結合分子の使用は、血漿中から当該会合化した抗原を消失させることができればよく、その使用の態様は特に限定されない。そのような使用の非限定な一態様として、本発明が提供する抗原結合分子を含む医薬組成物、または本発明が提供する抗原結合分子を対象に投与することを含む方法等が例示される。また、非限定な別の一態様として、対象から単離された血漿を本発明の抗原結合分子と接触せしめ形成させた、当該抗原結合分子、および、会合化した抗原を含む免疫複合体を、FcRnまたはFcγレセプターを発現する細胞に接触させることを含む、血漿中から当該会合化した抗原を消失させるためのex vivoの方法における当該抗原結合分子の使用も例示される。
優先性の改善
本発明において、「会合化した抗原を血漿中から消失させる」とは、抗原結合分子が生体内に投与された、あるいは、抗原結合分子の生体内への分泌が生じた際に、血漿中に存在する抗原を血漿中から消失させる能力のことをいう。従って、本発明において、「抗原結合分子の血漿中における会合化した抗原の消失が優先される」とは、抗原結合分子を投与した際に、会合化していない抗原と比較して、血漿中における会合化した抗原の消失が促進されていればよい。抗原結合分子の血漿中における会合化した抗原の消失が優先されているか否かは、例えば、上述のクリアランス比を測定することにより判断することが可能である。会合化した抗原に結合可能な抗原結合分子の、pH酸性域における抗原に対する結合活性をpH中性域における抗原に対する結合活性より低下させる(または、低カルシウムイオン濃度における抗原に対する結合活性を高カルシウムイオン濃度における抗原に対する結合活性より低下させる)等によりイオン濃度によって抗原に対する結合活性が変化した抗原結合分子について上述のクリアランス比を測定し、会合化してない抗原に対するクリアランス比との違い(クリアランス比(会合化した抗原)/クリアランス比(会合化していない抗原))が大きくなれば優先性が向上したと判断することができる。
また、会合化した抗原と会合化していない抗原が共存する生体液を有する生体に、当該抗原結合分子を投与することによって、あるいは、当該抗原結合分子が分泌されることによって、抗原結合分子投与前と比較して、会合化した抗原の血漿中濃度の減少の程度が、会合化していない抗原の血漿中濃度の減少の程度よりも大きければ優先性が向上したと判断することができる。
薬物動態の改善
本発明において「薬物動態の向上」、「薬物動態の改善」、および「優れた薬物動態」は、「血漿中(血中)滞留性の向上」、「血漿中(血中)滞留性の改善」、「優れた血漿中(血中)滞留性」、「血漿中(血中)滞留性を長くする」と言い換えることが可能であり、これらの語句は同じ意味で使用される。
本発明において「薬物動態が改善する」とは、抗原結合分子がヒト、またはマウス、ラット、サル、ウサギ、イヌなどの非ヒト動物に投与されてから、血漿中から消失するまで(例えば、細胞内で分解される等して抗原結合分子が血漿中に戻ることが不可能な状態になるまで)の時間が長くなることのみならず、抗原結合分子が投与されてから分解されて消失するまでの間に抗原に結合可能な状態(例えば、抗原結合分子が抗原に結合していない状態)で血漿中に滞留する時間が長くなることも含む。天然型Fc領域を有するヒトIgGは、非ヒト動物由来のFcRnに結合することができる。例えば、天然型Fc領域を有するヒトIgGはヒトFcRnよりマウスFcRnに強く結合することができることから(Int. Immunol. (2001) 13 (12), 1551-1559)、本発明の抗原結合分子の特性を確認する目的で、好ましくはマウスを用いて投与を行うことができる。別の例として、本来のFcRn遺伝子が破壊されており、ヒトFcRn遺伝子に関するトランスジーンを有して発現するマウス(Methods Mol. Biol. (2010) 602, 93-104)もまた、以下に記載する本発明の抗原結合分子の特性を確認する目的で、投与を行うために用いることができる。具体的には、「薬物動態が改善する」とはまた、抗原に結合していない抗原結合分子(抗原非結合型抗原結合分子)が分解されて消失するまでの時間が長くなることを含む。抗原結合分子が血漿中に存在していても、その抗原結合分子にすでに抗原が結合している場合は、その抗原結合分子は新たな抗原に結合できない。そのため抗原結合分子が抗原に結合していない時間が長くなれば、新たな抗原に結合できる時間が長くなり(新たな抗原に結合できる機会が多くなり)、生体内で抗原が抗原結合分子に結合していない時間を減少させることができ、抗原が抗原結合分子に結合している時間を長くすることが可能となる。抗原結合分子の投与によって血漿中からの抗原の消失を加速することができれば、抗原非結合型抗原結合分子の血漿中濃度が増加し、また、抗原が抗原結合分子に結合している時間が長くなる。つまり、本発明における「抗原結合分子の薬物動態の改善」とは、抗原非結合型抗原結合分子のいずれかの薬物動態パラメーターの改善(血漿中半減期の増加、平均血漿中滞留時間の増加、血漿中クリアランスの低下のいずれか)、あるいは、抗原結合分子投与後に抗原が抗原結合分子に結合している時間の延長、あるいは、抗原結合分子による血漿中からの抗原の消失が加速されること、を含む。抗原結合分子あるいは抗原非結合型抗原結合分子の血漿中半減期、平均血漿中滞留時間、血漿中クリアランス等のいずれかのパラメーター(ファーマコキネティクス 演習による理解(南山堂))を測定することにより判断することが可能である。例えば、抗原結合分子をマウス、ラット、サル、ウサギ、イヌ、ヒトなどに投与した場合、抗原結合分子あるいは抗原非結合型抗原結合分子の血漿中濃度を測定し、各パラメーターを算出し、血漿中半減期が長くなった又は平均血漿中滞留時間が長くなった場合等には、抗原結合分子の薬物動態が改善したといえる。これらのパラメーターは当業者に公知の方法により測定することが可能であり、例えば、薬物動態解析ソフトWinNonlin(Pharsight)を用いて、付属の手順書に従いノンコンパートメント(Noncompartmental)解析することによって適宜評価することができる。抗原に結合していない抗原結合分子の血漿中濃度の測定は当業者公知の方法で実施することが可能であり、例えば、Clin. Pharmacol. (2008) 48 (4), 406-417において測定されている方法を用いることができる。
本発明において「薬物動態が改善する」とは、抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたことも含む。抗原結合分子投与後に抗原が抗原結合分子に結合している時間が延長されたか否かは、遊離抗原の血漿中濃度を測定し、遊離抗原の血漿中濃度、あるいは、総抗原濃度に対する遊離抗原濃度の割合が上昇してくるまでの時間により判断することが可能である。
抗原結合分子に結合していない遊離抗原の血漿中濃度、あるいは、総抗原濃度に対する遊離抗原濃度の割合は当業者公知の方法で決定され得る。例えば、Pharm. Res. (2006) 23 (1), 95-103において使用されている方法を用いて決定され得る。また、抗原が何らかの機能を生体内で示す場合、抗原が抗原の機能を中和する抗原結合分子(アンタゴニスト分子)と結合しているかどうかは、その抗原の機能が中和されているかどうかで評価することも可能である。抗原の機能が中和されているかどうかは、抗原の機能を反映する何らかの生体内マーカーを測定することによって評価され得る。抗原が抗原の機能を活性化する抗原結合分子(アゴニスト分子)と結合しているかどうかは、抗原の機能を反映する何らかの生体内マーカーを測定することによって評価され得る。
遊離抗原の血漿中濃度の測定、血漿中の総抗原量に対する血漿中の遊離抗原量の割合の測定、生体内マーカーの測定などの測定は特に限定されないが、抗原結合分子が投与されてから一定時間が経過した後に行われることが好ましい。本発明において抗原結合分子が投与されてから一定時間が経過した後とは、特に限定されず、投与された抗原結合分子の性質等により当業者が適時決定することが可能であり、例えば抗原結合分子を投与してから1日経過後、抗原結合分子を投与してから3日経過後、抗原結合分子を投与してから7日経過後、抗原結合分子を投与してから14日経過後、抗原結合分子を投与してから28日経過後などが挙げられる。本発明において、「血漿中抗原濃度」とは、抗原結合分子結合抗原と抗原結合分子非結合抗原とを合計した濃度である「血漿中総抗原濃度」、または抗原結合分子非結合抗原濃度である「血漿中遊離抗原濃度」のいずれも含まれる概念である。
血漿中総抗原濃度は、抗原結合分子として、抗原に対する結合活性がイオン濃度非依存的である抗原結合ドメインを含む抗原結合分子、または、FcγRに対する結合活性が損なわれたFc領域を含む抗原結合分子、を投与した場合と比較して、または本発明の抗原結合分子を投与しない場合と比較して、本発明の抗原結合分子の投与により、2倍、5倍、10倍、20倍、50倍、100倍、200倍、500倍、1,000倍またはそれ以上低減し得る。
抗原/抗原結合分子モル比は、以下に示す通りに算出され得る:
A値=各時点での抗原のモル濃度
B値=各時点での抗原結合分子のモル濃度
C値=各時点での抗原結合分子のモル濃度あたりの抗原のモル濃度(抗原/抗原結合分子モル比)
C=A/B。
C値がより小さい場合は、抗原結合分子あたりの抗原消失効率がより高いことを示し、C値がより大きい場合は、抗原結合分子あたりの抗原消失効率がより低いことを示す。
抗原/抗原結合分子モル比は、抗原結合分子として、本発明で開示される免疫複合体を形成することができない抗原結合分子、抗原に対する結合活性がイオン濃度非依存的である抗原結合ドメインを含む抗原結合分子、もしくは、FcγRまたはFcRnに対する結合活性が損なわれたFc領域を含む抗原結合分子、を投与した場合と比較して、本発明の抗原結合分子の投与により2倍、5倍、10倍、20倍、50倍、100倍、200倍、500倍、1,000倍またはそれ以上低減しうる。
本発明において、本発明の抗原結合分子と比較する参照抗原結合分子として、本発明で開示される免疫複合体を形成することができない抗原結合分子、抗原に対する結合活性がイオン濃度非依存的である抗原結合ドメインを含む抗原結合分子、もしくは、FcγRまたはFcRnに対する結合活性が損なわれたFc領域を含む抗原結合分子、が用いられる。
血漿中から細胞内への本発明の抗原結合分子の取込みにFcRnが介在する経路が利用される場合の血漿中総抗原濃度または抗原/抗体モル比の減少は、抗原結合分子がマウスカウンターパート抗原と交差反応しない場合は、ヒトFcRnトランスジェニックマウス系統32または系統276(Jackson Laboratories, Methods Mol. Biol. (2010) 602, 93-104)を用い、抗原抗体同時注射モデルまたは定常状態抗原注入モデルのいずれかによって評価することもできる。抗原結合分子がマウスカウンターパートと交差反応する場合は、ヒトFcRnトランスジェニックマウス系統32または系統276(Jackson Laboratories)に抗原結合分子を単に注射することによって評価することもできる。同時注射モデルでは、抗原結合分子と抗原の混合物をマウスに投与する。定常状態抗原注入モデルでは、一定の血漿中抗原濃度を達成するためにマウスに抗原溶液を充填した注入ポンプを埋め込んで、次に抗原結合分子をマウスに注射する。試験抗原結合分子を同じ用量で投与する。血漿中総抗原濃度、血漿中遊離抗原濃度、および血漿中抗原結合分子濃度を、当業者公知の方法を用いて適切な時点で測定する。
血漿中から細胞内への本発明の抗原結合分子の取込みにFcγRが介在する経路が利用される場合の血漿中総抗原濃度または抗原/抗体モル比の減少は、抗原結合分子がマウスカウンターパート抗原と交差反応しない場合は、通常用いられるC57BL/6Jマウス(Charles River Japan)を用い、抗原抗体同時注射モデルまたは定常状態抗原注入モデルのいずれかによって評価することもできる。抗原結合分子がマウスカウンターパートと交差反応する場合は、通常用いられるC57BL/6Jマウス(Charles River Japan)に抗原結合分子を単に注射することによって評価することもできる。
同時注射モデルでは、抗原結合分子と抗原の混合物をマウスに投与する。定常状態抗原注入モデルでは、一定の血漿中抗原濃度を達成するためにマウスに抗原溶液を充填した注入ポンプを埋め込んで、次に抗原結合分子をマウスに注射する。試験抗原結合分子を同じ用量で投与する。血漿中総抗原濃度、血漿中遊離抗原濃度、および血漿中抗原結合分子濃度を、当業者公知の方法を用いて適切な時点で測定する。
投与2日後、4日後、7日後、14日後、28日後、56日後、または84日後に血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定して、本発明の長期効果を評価することができる。言い換えれば、本発明の抗原結合分子の特性を評価する目的で、長期間の血漿中抗原濃度が、抗原結合分子の投与2日後、4日後、7日後、14日後、28日後、56日後、または84日後に血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定することによって決定される。本発明に記載の抗原結合分子によって血漿中抗原濃度または抗原/抗原結合分子モル比の減少が達成されるか否かは、先に記載した任意の1つまたは複数の時点でその減少を評価することにより決定され得る。
投与15分後、1時間後、2時間後、4時間後、8時間後、12時間後、または24時間後に、血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定して、本発明の短期効果を評価することができる。言い換えれば、本発明の抗原結合分子の特性を評価する目的で、短期間の血漿中抗原濃度が、抗原結合分子の投与15分後、1時間後、2時間後、4時間後、8時間後、12時間後、または24時間後に血漿中の総抗原濃度または遊離抗原濃度および抗原/抗原結合分子モル比を測定することによって決定される。
本発明の抗原結合分子の投与経路は、皮内注射、静脈内注射、硝子体内注射、皮下注射、腹腔内注射、非経口注射、および筋肉内注射から選択することができる。
本発明においては、ヒトにおける抗原結合分子の薬物動態が改善することが好ましい。ヒトでの血漿中滞留性を測定することが困難である場合には、マウス(例えば、正常マウス、ヒト抗原発現トランスジェニックマウス、ヒトFcRn発現トランスジェニックマウス、等)またはサル(例えば、カニクイザルなど)での血漿中滞留性をもとに、ヒトでの血漿中滞留性を予測することができる。
本発明における「抗原結合分子の薬物動態の改善、血漿中滞留性の向上」とは抗原結合分子を生体に投与した際のいずれかの薬物動態パラメーターが改善されていること(血漿中半減期の増加、平均血漿中滞留時間の増加、血漿中クリアランスの低下、バイオアベイラビリティのいずれか)、あるいは、投与後の適切な時間における抗原結合分子の血漿中濃度が向上していることを意味する。抗原結合分子の血漿中半減期、平均血漿中滞留時間、血漿中クリアランス、バイオアベイラビリティ等のいずれかのパラメーター(ファーマコキネティクス 演習による理解(南山堂))を測定することにより判断することが可能である。例えば、抗原結合分子をマウス(ノーマルマウスおよびヒトFcRnトランスジェニックマウス)、ラット、サル、ウサギ、イヌ、ヒトなどに投与した場合、抗原結合分子の血漿中濃度を測定し、各パラメーターを算出し、血漿中半減期が長くなった又は平均血漿中滞留時間が長くなった場合等には、抗原結合分子の薬物動態が改善したといえる。これらのパラメーターは当業者に公知の方法により測定することが可能であり、例えば、薬物動態解析ソフトWinNonlin(Pharsight)を用いて、付属の手順書に従いノンコンパートメント(Noncompartmental)解析することによって適宜評価することができる。
特定の理論に拘束されるものではないが、本発明の、会合化した抗原に結合し、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン及びFc領域を含む抗原結合分子が、血漿中から当該会合化した抗原を消失させる可能性のある一つのメカニズムとして、後述の実施例の考察に記載のようなメカニズムが例示される。
会合化した抗原に対する天然IgG1型の定常領域を含むpHあるいはCa依存的結合抗体が大きな免疫複合体を形成して、avidityでFcgR、FcRn、補体レセプター等に結合することが出来れば、会合化した抗原の消失優先的に大幅に加速することが出来ると考えられる。会合化したヒトIgAに結合するGA2-IgG1が投与された場合にも、そのような大きな免疫複合体が形成されていると考えられた。GA2-IgG1が会合化したヒトIgAの消失を大幅に加速することができたのは、会合化抗原であるヒトIgAとGA2-IgG1を含む免疫複合体が、FcγRあるいはFcRn等のFc受容体に対してavidityで結合し、Fc受容体を発現する細胞に速やかに取り込まれたためと考えられた。当該免疫複合体を取り込んだ細胞のエンドソーム内で当該免疫複合体から解離したIgAはライソソームで分解される。それとともに、当該エンドソーム内でFcRnに結合後血漿中にリサイクルされたIgAを解離した抗体は、再度血漿中のIgAに結合することが可能となる。このようにして、血漿中のヒトIgAの消失が大幅に加速されたと考えられる。抗原の血漿中からの消失を加速する方法として、pH中性域でFcRnに対して結合するFc領域のアミノ酸の改変体を用いる方法が国際公開WO2011/122011に記載されている。本発明は、上述の改変体を用いることなく、会合化した抗原の血漿中からの消失を加速する方法として有用であるとともに、上述の改変体と組み合わせることによって会合化した抗原の血漿中からの消失をさらに加速させることが可能である。また、会合化抗原を消失させるのは上記の血漿中以外でも、間質液、関節液、腹水、胸水、心嚢水に接触する細胞がFcγRまたはFcRnを発現している限り、これらの間質液、関節液、腹水、胸水、心嚢水からも消失させることが可能である。そのような細胞の非限定な一態様として間質液、関節液、腹水、胸水、心嚢水に存在する免疫細胞等が例示される。
血漿中から当該会合した抗原を消失させるためのex vivoの方法
本発明によって提供される、血漿中から当該会合した抗原を消失させるための方法における抗原結合分子の使用の非限定な一態様として、対象から単離された血漿を本発明の抗原結合分子と接触せしめ形成させた、当該抗原結合分子、および、会合した抗原を含む免疫複合体を、FcRnおよび/またはFcγレセプターを発現する細胞に接触させることを含む、血漿中から当該会合した抗原を消失させるための、いわゆるex vivoの方法における当該抗原結合分子の使用も例示される。
また、本発明によって提供される、血漿中から当該会合した抗原を消失させるための方法における抗原結合分子の使用の非限定な一態様として、本発明の抗原結合分子が投与された対象から単離された血漿中に存在する、当該抗原結合分子、および、会合した抗原を含む免疫複合体を、FcRnおよび/またはFcγレセプターを発現する細胞に接触させることを含む、血漿中から当該会合した抗原を消失させるための、いわゆるex vivoの方法における当該抗原結合分子の使用も例示される。
当該会合した抗原が血漿から会合していない抗原よりも優先して消失しているか否かは、前述の血漿中の会合化した抗原のクリアランス比(抗原結合分子存在下での会合化した抗原のクリアランス/抗原結合分子非存在下での会合化した抗原のクリアランス)と、会合化していない抗原のクリアランス比(抗原結合分子存在下での会合化していない抗原のクリアランス/抗原結合分子非存在下での会合化していない抗原のクリアランス)を比較して評価すること等によって確認され得る。
Fc領域および抗原に対する結合活性がイオン濃度依存的である抗原結合ドメインを含む抗原結合分子の製造方法
本発明の非限定な一態様では、前記のように選択された条件によって結合活性が変化する抗原結合ドメインをコードするポリヌクレオチドが単離された後に、当該ポリヌクレオチドが適切な発現ベクターに挿入される。例えば、抗原結合ドメインが抗体の可変領域である場合には、当該可変領域をコードするcDNAが得られた後に、当該cDNAの両末端に挿入された制限酵素サイトを認識する制限酵素によって該cDNAが消化される。好ましい制限酵素は、抗原結合分子の遺伝子を構成する塩基配列に出現する頻度が低い塩基配列を認識して消化する。更に1コピーの消化断片をベクターに正しい方向で挿入するためには、付着末端を与える制限酵素の挿入が好ましい。上記のように消化された抗原結合分子の可変領域をコードするcDNAを適当な発現ベクターに挿入することによって、本発明の抗原結合分子の発現ベクターが取得され得る。このとき、抗体定常領域(C領域)をコードする遺伝子と、前記可変領域をコードする遺伝子とがインフレームで融合され得る。
所望の抗原結合分子を製造するために、抗原結合分子をコードするポリヌクレオチドが制御配列に作動可能に連結された態様で発現ベクターに組み込まれる。制御配列とは、例えば、エンハンサーやプロモーターを含む。また、発現した抗原結合分子が細胞外に分泌されるように、適切なシグナル配列がアミノ末端に連結され得る。例えばシグナル配列として、アミノ酸配列MGWSCIILFLVATATGVHS(配列番号:1)を有するペプチドが使用されるが、これ以外にも適したシグナル配列が連結され得る。発現されたポリペプチドは上記配列のカルボキシル末端部分で切断され、切断されたポリペプチドが成熟ポリペプチドとして細胞外に分泌され得る。次いで、この発現ベクターによって適当な宿主細胞が形質転換されることによって、所望の抗原結合分子をコードするポリヌクレオチドを発現する組換え細胞が取得され得る。当該組換え細胞から、本発明の抗原結合分子を製造する方法は、前記の抗体の項で記載した方法に準じて製造され得る。
核酸に関して「作動可能に連結した」は、その核酸が他の核酸配列と機能的な関係にあることを意味する。例えば、プレシーケンス(presequence)または分泌リーダーのDNAは、あるポリペプチドの分泌に関わっている前駆体タンパク質として発現する場合は、そのポリペプチドのDNAと作動可能的に結合している。プロモーターまたはエンハンサーは、それがあるコード配列の転写に影響する場合はその配列と作動可能に連結している。または、リボソーム結合部は、それが翻訳を容易にする位置にある場合は作動可能にコード配列と連結している。通常、「作動可能に連結した」は、結合したDNA配列が連続しており、分泌リーダーの場合は連続して読取り枠内にあることを意味する。しかし、エンハンサーは連続する必要はない。連結は適切な制限部位でライゲーションによって達成される。このような部位が存在しない場合、合成オリゴヌクレオチドアダプターまたはリンカーが、従来の慣行に従って使用される。また前記のOverlap Extension PCRの手法によっても連結された核酸が作製され得る。
本発明の非限定な一態様において、前記のように選択された条件によって結合活性が変化する抗原結合分子分子をコードするポリヌクレオチドが単離された後に、当該ポリヌクレオチドの改変体が適切な発現ベクターに挿入される。このような改変体の一つとして、ランダム化可変領域ライブラリとして、合成ライブラリや非ヒト動物を起源として作製された免疫ライブラリを用いることによってスクリーニングされた本発明の抗原結合分子をコードするポリヌクレオチド配列がヒト化された改変体が好適に挙げられる。ヒト化された抗原結合分子の改変体の作製方法は、前記のヒト化抗体の作製方法と同様の方法が採用され得る。
また、改変体のその他の態様として、ランダム化可変領域ライブラリとして合成ライブラリやナイーブライブラリを用いることによってスクリーニングされた本発明の抗原結合分子の抗原に対する結合親和性の増強(アフィニティ成熟化)をもたらすような改変が、単離されたポリヌクレオチド配列に施された改変体が好適に挙げられる。そのような改変体はCDRの変異誘導(Yangら(J. Mol. Biol. (1995) 254, 392-403))、鎖シャッフリング(Marksら(Bio/Technology (1992) 10, 779-783))、E.coliの変異誘発株の使用(Lowら(J. Mol. Biol. (1996) 250, 359-368))、DNAシャッフリング(Pattenら(Curr. Opin. Biotechnol. (1997) 8, 724-733))、ファージディスプレイ(Thompsonら(J. Mol. Biol. (1996) 256, 77-88))および有性PCR(sexual PCR)(Clameriら(Nature (1998) 391, 288-291))を含む種々のアフィニティー成熟化の公知の手順によって取得され得る。
前記のように、本発明の製造方法によって作製される抗原結合分子として、Fc領域を含む抗原結合分子が挙げられるが、Fc領域として様々な改変体が使用され得る。このようなFc領域の改変体をコードするポリヌクレオチドと、前記のように選択された条件によって結合活性が変化する抗原結合分子分子をコードするポリヌクレオチドとがインフレームで連結された重鎖を有する抗原結合分子をコードするポリヌクレオチドも、本発明の改変体の一態様として好適に挙げられる。
本発明の非限定な一態様では、Fc領域として、例えば、配列番号:9で表されるIgG1(N末端にAla が付加されたAAC82527.1)、配列番号:10で表されるIgG2(N末端にAlaが 付加されたAAB59393.1)、配列番号:11で表されるIgG3(CAA27268.1)、配列番号:12で表されるIgG4(N末端にAlaが付加されたAAB59394.1)等の抗体のFc定常領域が好適に挙げられる。また、ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242 に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリングで表される356-358位のアミノ酸配列がDELであってもEEMであってもよい。IgG分子の血漿中滞留性が比較的長い(血漿中からの消失が遅い)のは、IgG分子のサルベージレセプターとして知られているFcRn特にヒトFcRnが機能しているためである。ピノサイトーシスによってエンドソームに取り込まれたIgG分子は、エンドソーム内の酸性条件下においてエンドソーム内に発現しているFcRn特にヒトFcRnに結合する。FcRn特にヒトFcRnに結合できなかったIgG分子はライソソームへと進み、そこで分解されるが、FcRn特にヒトFcRnへ結合したIgG分子は細胞表面へ移行し血漿中の中性条件下においてFcRn特にヒトFcRnから解離することで再び血漿中に戻る。
通常のFc領域を含む抗体は血漿中のpH中性域の条件下においてFcRn特にヒトFcRnに対する結合活性を有しないため、通常の抗体および抗体−抗原複合体は、非特異的なエンドサイトーシスによって細胞に取り込まれ、エンドソーム内のpH酸性域の条件下でFcRn特にヒトFcRnに結合することで細胞表面に輸送される。FcRn特にヒトFcRnは抗体をエンドソーム内から細胞表面に輸送するため、FcRn特にヒトFcRnの一部は細胞表面にも存在していると考えられるが、細胞表面のpH中性域の条件下では抗体はFcRn特にヒトFcRnから解離するため、抗体は血漿中にリサイクルされる。
本発明の抗原結合分子に含むことが可能であるpH中性域におけるヒトFcRnに対する結合活性を有するFc領域はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によってpH中性域におけるヒトFcRnに対する結合活性を有するFc領域が取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えばヒトIgG(IgG1、IgG2、IgG3、またはIgG4、およびそれらの改変体)のFc領域が挙げられる。他のアミノ酸への改変は、pH中性域におけるヒトFcRnに対する結合活性を有する、もしくは中性域におけるヒトFcRnに対する結合活性を高められるかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、ヒトFc領域としてヒトIgG1のFc領域を含んでいる場合、pH中性域におけるヒトFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変が含まれていることが好ましい。そのような改変が可能なアミノ酸として、例えば、EUナンバリング221位〜225位、227位、228位、230位、232位、233位〜241位、243位〜252位、254位〜260位、262位〜272位、274位、276位、278位〜289位、291位〜312位、315位〜320位、324位、325位、327位〜339位、341位、343位、345位、360位、362位、370位、375位〜378位、380位、382位、385位〜387位、389位、396位、414位、416位、423位、424位、426位〜438位、440位および442位の位置のアミノ酸が挙げられる。より具体的には、例えば表5に記載のようなアミノ酸の改変が挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH中性域におけるヒトFcRnに対する結合が増強される。
本発明に使用するために、これらの改変のうち、pH中性域においてもヒトFcRnに対する結合を増強する改変が適宜選択される。特に好ましいFc領域改変体のアミノ酸として、例えばEUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位および436位のアミノ酸が挙げられる。これらのアミノ酸から選択される少なくとも1つのアミノ酸を他のアミノ酸に置換することによって、抗原結合分子に含まれるFc領域のpH中性域におけるヒトFcRnに対する結合活性を増強することができる。
特に好ましい改変としては、例えば、Fc領域のEUナンバリングで表される
237位のアミノ酸がMet、
248位のアミノ酸がIle、
250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
254位のアミノ酸がThr、
255位のアミノ酸がGlu、
256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
258位のアミノ酸がHis、
265位のアミノ酸がAla、
286位のアミノ酸がAlaまたはGluのいずれか、
289位のアミノ酸がHis、
297位のアミノ酸がAla、
303位のアミノ酸がAla、
305位のアミノ酸がAla、
307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
311位のアミノ酸がAla、His、またはIleのいずれか、
312位のアミノ酸がAlaまたはHisのいずれか、
314位のアミノ酸がLysまたはArgのいずれか、
315位のアミノ酸がAla、AspまたはHisのいずれか、
317位のアミノ酸がAla、
332位のアミノ酸がVal、
334位のアミノ酸がLeu、
360位のアミノ酸がHis、
376位のアミノ酸がAla、
380位のアミノ酸がAla、
382位のアミノ酸がAla、
384位のアミノ酸がAla、
385位のアミノ酸がAspまたはHisのいずれか、
386位のアミノ酸がPro、
387位のアミノ酸がGlu、
389位のアミノ酸がAlaまたはSerのいずれか、
424位のアミノ酸がAla、
428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
433位のアミノ酸がLys、
434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
の群から選択される少なくともひとつ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。二箇所以上のアミノ酸の改変の組合せとしては、例えば表5−1〜5−32に記載されるような組合せが挙げられる。
また、本発明が含むFc領域として、ヒトIgG1(配列番号:9)、IgG2(配列番号:10)、IgG3(配列番号:11)、またはIgG4(配列番号:12)で表されるFc領域のほかに、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFcγR結合改変Fc領域も適宜使用され得る。そのようなFcγR結合改変Fc領域は、天然型ヒトIgGのFc領域のアミノ酸を改変することによって作製され得る。Fc領域のFcγRに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγRに対する結合活性より高いか否かは、前述のような方法を用いて適宜評価され得る。
本発明において、Fc領域の「アミノ酸の改変」または「アミノ酸改変」とは、出発Fc領域のアミノ酸配列とは異なるアミノ酸配列に改変することを含む。出発Fc領域の修飾改変体がpH中性域においてヒトFcγレセプターに結合することができる限り、いずれのFc領域も出発Fc領域として使用され得る。また、既に改変が加えられたFc領域を出発Fc領域としてさらなる改変が加えられたFc領域も本発明のFc領域として好適に使用され得る。出発Fc領域とは、ポリペプチドそのもの、出発Fc領域を含む組成物、または出発Fc領域をコードするアミノ酸配列を意味し得る。出発Fc領域には、抗体の項で概説された組換えによって産生された公知のFc領域が含まれ得る。出発Fc領域の起源は、限定されないが非ヒト動物の任意の生物またはヒトから取得され得る。好ましくは、任意の生物としては、マウス、ラット、モルモット、ハムスター、アレチネズミ、ネコ、ウサギ、イヌ、ヤギ、ヒツジ、ウシ、ウマ、ラクダ、および非ヒト霊長類から選択される生物が好適に挙げられる。別の態様において、出発Fc領域はまた、カニクイザル、マーモセット、アカゲザル、チンパンジー、またはヒトから取得され得る。好ましくは、出発Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のクラスに限定されるものでもない。このことは、ヒトIgG1、IgG2、IgG3、またはIgG4のFc領域を出発Fc領域として適宜用いることができることを意味する。同様に、本明細書において、前記の任意の生物からのIgGの任意のクラスまたはサブクラスのFc領域を、好ましくは出発Fc領域として用いることができることを意味する。天然に存在するIgGのバリアントまたは操作された型の例は、公知の文献(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91、Curr. Opin. Immunol. (2008) 20 (4), 460-470、Protein Eng. Des. Sel. (2010) 23 (4), 195-202、国際公開WO2009/086320、WO2008/092117、WO2007/041635、およびWO2006/105338)に記載されるがそれらに限定されない。
改変の例としては一以上の変異、例えば、出発Fc領域のアミノ酸とは異なるアミノ酸残基に置換された変異、あるいは出発Fc領域のアミノ酸に対して一以上のアミノ酸残基の挿入または出発Fc領域のアミノ酸から一以上のアミノ酸の欠失等が含まれる。好ましくは、改変後のFc領域のアミノ酸配列には、天然に生じないFc領域の少なくとも部分を含むアミノ酸配列を含む。そのような変種は必然的に出発Fc領域と100%未満の配列同一性または類似性を有する。好ましい実施形態において、変種は出発Fc領域のアミノ酸配列と約75%〜100%未満のアミノ酸配列同一性または類似性、より好ましくは約80%〜100%未満、より好ましくは約85%〜100%未満の、より好ましくは約90%〜100%未満、最も好ましくは約95%〜100%未満の同一性または類似性のアミノ酸配列を有する。本発明の非限定の一態様において、出発Fc領域および本発明のFcγR結合改変Fc領域の間には少なくとも1つのアミノ酸の差がある。出発Fc領域と本発明のFcγR結合改変Fc領域のアミノ酸の違いは、特に前述のEUナンバリングで特定されるアミノ酸残基の位置の特定されたアミノ酸の違いによっても好適に特定可能である。
本発明の抗原結合分子に含まれる、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高い(FcγR結合改変Fc領域)はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によって当該FcγR結合改変Fc領域が取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えばヒトIgG(IgG1、IgG2、IgG3、またはIgG4、およびそれらの改変体)のFc領域が挙げられる。
他のアミノ酸への改変は、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、ヒトFc領域としてヒトIgG1のFc領域を含んでいる場合、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高い効果をもたらす改変が含まれていることが好ましい。こうしたアミノ酸の改変としては、例えば国際公開WO2007/024249、WO2007/021841、WO2006/031370、WO2000/042072、WO2004/029207、WO2004/099249、WO2006/105338、WO2007/041635、WO2008/092117、WO2005/070963、WO2006/020114、WO2006/116260およびWO2006/023403などにおいて報告されている。
そのような改変が可能なアミノ酸として、例えば、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくともひとつ以上のアミノ酸が挙げられる。これらのアミノ酸の改変によって、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFc領域(FcγR結合改変Fc領域)を取得することができる。
本発明に使用するために、特に好ましい改変としては、例えば、Fc領域のEUナンバリングで表される;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、もしくは
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。二箇所以上のアミノ酸の改変の組合せとしては、例えば表6(表6−1〜表6−3)に記載されるような組合せが挙げられる。
また、本発明において好適に用いられるFc領域のうち、特定のFcγレセプターに対する結合活性がそのほかのFcγレセプターに対する結合活性よりも高い性質を有するFc領域(選択的なFcγレセプターに対する結合活性を有するFc領域)の非限定な一態様として用いられる、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高い(抑制型Fcγレセプターに対する選択的な結合活性を有する)Fc領域の例として、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluのいずれかひとつ以上に改変されているFc領域が好適に挙げられる。また、抑制型Fcγレセプターに対する選択的な結合活性を有するFc領域として、US2009/0136485に記載されているFc領域あるいは改変も適宜選択することができる。
また本発明の非限定な一態様では、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluのいずれかひとつ以上に改変されているFc領域が好適に挙げられる。
さらに本発明の非限定な一態様では、EUナンバリングで表される238位のProのAspへの置換、およびEUナンバリングで表される237位のアミノ酸がTrp、EUナンバリングで表される237位のアミノ酸がPhe、EUナンバリングで表される267位のアミノ酸がVal、EUナンバリングで表される267位のアミノ酸がGln、EUナンバリングで表される268位のアミノ酸がAsn、EUナンバリングで表される271位のアミノ酸がGly、EUナンバリングで表される326位のアミノ酸がLeu、EUナンバリングで表される326位のアミノ酸がGln、EUナンバリングで表される326位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がMet、EUナンバリングで表される239位のアミノ酸がAsp、EUナンバリングで表される267位のアミノ酸がAla、EUナンバリングで表される234位のアミノ酸がTrp、EUナンバリングで表される234位のアミノ酸がTyr、EUナンバリングで表される237位のアミノ酸がAla、EUナンバリングで表される237位のアミノ酸がAsp、EUナンバリングで表される237位のアミノ酸がGlu、EUナンバリングで表される237位のアミノ酸がLeu、EUナンバリングで表される237位のアミノ酸がMet、EUナンバリングで表される237位のアミノ酸がTyr、EUナンバリングで表される330位のアミノ酸がLys、EUナンバリングで表される330位のアミノ酸がArg、EUナンバリングで表される233位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がSer、EUナンバリングで表される326位のアミノ酸がThr、EUナンバリングで表される323位のアミノ酸がIle、EUナンバリングで表される323位のアミノ酸がLeu、EUナンバリングで表される323位のアミノ酸がMet、EUナンバリングで表される296位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がAla、EUナンバリングで表される326位のアミノ酸がAsn、EUナンバリングで表される330位のアミノ酸がMet、のいずれかひとつ以上に改変されているFc領域が好適に挙げられる。
Fc領域のアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法も採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。
前記のようなアミノ酸の変異が加えられたFc領域の改変体をコードするポリヌクレオチドと、前記のように選択された条件によって結合活性が変化する抗原結合分子をコードするポリヌクレオチドとがインフレームで連結された重鎖を有する抗原結合分子をコードするポリヌクレオチドも、本発明の改変体の一態様として作製される。
本発明によって、Fc領域をコードするポリヌクレオチドとインフレームで連結されたイオン濃度の条件によって結合活性が変化する抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞の培養液から抗原結合分子を回収することを含む抗原結合分子の製造方法が提供される。また、ベクター中に予め作動可能に連結されたFc領域をコードするポリヌクレオチドと、イオン濃度の条件によって結合活性が変化する抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞の培養液から抗原結合分子を回収することを含む抗原結合分子の製造方法もまた提供される。
医薬組成物
本発明は、本発明の抗原結合分子、本発明の改変方法により作製された抗原結合分子、または本発明の製造方法により製造された抗原結合分子を含む医薬組成物に関する。本発明の抗原結合分子または本発明の製造方法により製造された抗原結合分子はその投与により通常の抗原結合分子と比較して血漿中の抗原濃度を低下させる作用が高い上に、投与された生体による免疫応答や当該生体中の薬物動態等が改変されていることから医薬組成物として有用である。本発明の医薬組成物には医薬的に許容される担体が含まれ得る。
本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査・診断のための薬剤をいう。
本発明の医薬組成物は、当業者に公知の方法を用いて製剤化され得る。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用され得る。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤等と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化され得る。これら製剤における有効成分量は、指示された範囲の適当な容量が得られるように設定される。
注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施にしたがって処方され得る。注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)を含む等張液が挙げられる。適切な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソルベート80(TM)、HCO-50等)が併用され得る。
油性液としてはゴマ油、大豆油が挙げられ、溶解補助剤として安息香酸ベンジル及び/またはベンジルアルコールも併用され得る。また、緩衝剤(例えば、リン酸塩緩衝液及び酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸プロカイン)、安定剤(例えば、ベンジルアルコール及びフェノール)、酸化防止剤と配合され得る。調製された注射液は通常、適切なアンプルに充填される。
本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物が投与される。例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与され得る。
投与方法は、患者の年齢、症状により適宜選択され得る。抗原結合分子を含有する医薬組成物の投与量は、例えば、一回につき体重1 kgあたり0.0001 mgから1000 mgの範囲に設定され得る。または、例えば、患者あたり0.001〜100000 mgの投与量が設定され得るが、本発明はこれらの数値に必ずしも制限されるものではない。投与量及び投与方法は、患者の体重、年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投与量及び投与方法を設定することが可能である。
また本発明は、少なくとも本発明の抗原結合分子を含む、本発明の方法に用いるためのキットを提供する。該キットには、その他、薬学的に許容される担体、媒体、使用方法を記載した指示書等をパッケージしておくこともできる。
なお、本発明で記載されているアミノ酸配列に含まれるアミノ酸は翻訳後に修飾(例えば、N末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である)を受ける場合もあるが、そのようにアミノ酸が翻訳後修飾された場合であっても当然のことながら本発明で記載されているアミノ酸配列に含まれる。
スクリーニング方法および製造方法
本発明が提供する一つの態様である、会合化した抗原に結合し、該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子は、以下の工程を含む抗原結合分子のスクリーニングによって取得され得る。
(a) 細胞内イオン濃度条件下における抗原結合分子の会合化した抗原に対する抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低い抗原結合分子を選択する工程。
本発明のスクリーニング方法において、イオン濃度は上述のイオン濃度を用いることができる。細胞内イオン濃度条件は、例えば、イオン化カルシウムの場合には、上述の低カルシウム濃度条件に該当し、水素イオン又はpHの場合には、上述の高水素イオン濃度または低pHすなわちpH酸性域の条件に該当する。一方、細胞外イオン濃度条件は、例えば、イオン化カルシウムの場合には、上述の高カルシウム濃度条件に該当し、水素イオン又はpHの場合には、上述の低水素イオン濃度または高pHすなわちpH中性域の条件に該当する。細胞内イオン濃度条件下における抗原結合分子の抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低いかどうかは、それぞれのイオン濃度条件下において、上述の結合活性の項で記載されたような公知の測定方法に従って測定することで確認することができる。
本発明のスクリーニング方法は、更に、以下の工程を含むものを包含し、これらの工程を行うことで、会合化した抗原が会合化していない抗原よりもより優先して消失させる機能を有する抗原結合分子を取得することができる。
(b):
(i) 細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性よりも高くなる抗原結合分子を選択する工程、
及び/又は、
(ii) 細胞外イオン濃度条件下における会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高くなる抗原結合分子を選択する工程。
細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性よりも高くなるかどうかは、上述のFcRnあるいはFcγレセプターに対する結合活性を測定する方法に従って、細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性と会合化していない抗原に対する結合活性をそれぞれ測定することによって確認することができる。
また、細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性よりも高くなることは、細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する解離が、会合化していない抗原に対する解離よりも遅くなることと言い換えることもできる。解離が遅くなっているかどうかは、例えは、Biacore T200(GE Healthcare)を用いて、細胞外イオン濃度条件下から細胞内イオン濃度条件へその条件を変化させたときの解離相の傾きを、会合化した抗原と会合化していない抗原の場合の解離相を比較することで確認することができる。具体的な方法は、実施例2(2)に記載の通りである。
本発明が提供する一つの態様である、会合化した抗原に結合し、該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子は、上述の工程(a)、又は、工程(a)及び工程(b)に加え、以下の工程を含む抗原結合分子の製造方法によって取得されうる。
(c) 前記工程(a)、又は、前記工程(a)及び(b)で選択された抗原結合分子をコードする遺伝子を含むベクターを含む宿主細胞を培養する工程、
(d) 前記工程(c)で得られた培養液から抗原結合分子を単離する工程。
これらの工程は、上述の抗体の項で記載されたような公知の抗体作製方法を用いて行うことができる。
なお本明細書において引用されたすべての先行技術文献は、参照として本明細書に組み入れられる。
Figure 2018172384
Figure 2018172384
〔実施例1〕カルシウム依存的にヒトIgAに結合する抗体の調製
(1−1)MRA-hIgA、GC-hIgA-FLAG、GC-hIgA-MYCの調製
ヒトIgAとして、MRA-hIgA(重鎖配列番号:33、軽鎖配列番号:36)GC-hIgA-FLAG(重鎖配列番号:34、軽鎖配列番号:37)およびGC-hIgA- MYC(重鎖配列番号:35、軽鎖配列番号:37)を以下のように調製した。
MRA-hIgAの調製
ヒトIgAの組換え体であるMRA-hIgA(以下MRA-hIgA)は以下のように調製された。MRA-hIgA(重鎖配列番号:33、軽鎖配列番号:36)をコードする遺伝子断片が、動物細胞発現用ベクターに組み込まれた。構築されたプラスミドベクターは、FreeStyle293 (Invitrogen)に293Fectin (Invitrogen)を用いて、EBNA1を発現する遺伝子と共に導入された。その後、遺伝子導入された細胞を37℃、CO2 8%で培養して、MRA-IgAタンパク質を培養上清中に分泌させた。当業者公知の方法によってイオン交換クロマトグラフィーおよびゲルろ過クロマトグラフィーを用いて精製した。
GC-hIgA-FLAGの調製
ヒトIgAの組換え体であるGC-hIgA-FLAG(以下GC-hIgA-FLAG)は、以下のように調製された。GC-hIgA-FLAG(重鎖配列番号:34、軽鎖配列番号:37)をコードする遺伝子断片が、動物細胞発現用ベクターに組み込まれた。構築されたプラスミドベクターは、FreeStyle293 (Invitrogen)に293Fectin (Invitrogen)を用いて、EBNA1を発現する遺伝子と共に導入された。その後、遺伝子導入された細胞を37℃、CO2 8%で6日間培養して、GC-hIgAタンパク質を培養上清中に分泌させた。
GC-hIgA-FLAGを含む細胞培養液を、0.22μmボトルトップフィルターでろ過し培養上清を得た。当業者公知の方法によってイオン交換クロマトグラフィーおよびゲルろ過クロマトグラフィーを用いて精製し、精製GC-hIgA-FLAGを得た。
GC-hIgA-MYCの調製
ヒトIgAの組換え体であるGC-hIgA-MYC(以下GC-hIgA-MYC)は、以下のように調製された。GC-hIgA- MYC(重鎖配列番号:35、軽鎖配列番号:37)をコードする遺伝子断片が、動物細胞発現用ベクターに組み込まれた。構築されたプラスミドベクターは、FreeStyle293 (Invitrogen)に293Fectin (Invitrogen)を用いて、EBNA1を発現する遺伝子と共に導入された。その後、遺伝子導入された細胞を37℃、CO2 8%で6日間培養して、GC-hIgAタンパク質を培養上清中に分泌させた。
GC-hIgA-MYCを含む細胞培養液を、0.22μmボトルトップフィルターでろ過し培養上清を得た。当業者公知の方法によってイオン交換クロマトグラフィーおよびゲルろ過クロマトグラフィーを用いて精製し、精製GC-hIgA-MYCを得た。
(1−2)カルシウム依存的結合抗体について
国際公開WO 2009/125825に記載されているH54/L28-IgG1はヒト化抗IL-6レセプター抗体であり、Fv4-IgG1は、H54/L28-IgG1に対して可溶型ヒトIL-6レセプターへpH依存的に結合する特性(中性条件下において結合し、酸性条件下において解離する)を付与したヒト化抗IL-6レセプター抗体である。国際公開WO 2009/125825に記載されているマウスのin vivo試験において、H54/L28-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群と比較して、Fv4-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群において、可溶型ヒトIL-6レセプターの消失を大幅に加速できることが示された。
通常の可溶型ヒトIL-6レセプターに結合する抗体に結合した可溶型ヒトIL-6レセプターは、抗体とともにFcRnによって血漿中にリサイクルされるのに対して、pH依存的に可溶型ヒトIL-6レセプターに結合する抗体は、エンドソーム内の酸性条件下において抗体に結合した可溶型ヒトIL-6レセプターを解離する。解離した可溶型ヒトIL-6レセプターはライソソームによって分解されるため、可溶型ヒトIL-6レセプターの消失を大幅に加速することが可能となり、さらにpH依存的に可溶型ヒトIL-6レセプターに結合する抗体はFcRnによって血漿中にリサイクルされ、リサイクルされた抗体は再び可溶型ヒトIL-6レセプターに結合することができ、これが繰り返されることによってひとつの抗体分子が複数回繰り返し可溶型ヒトIL-6レセプターに結合することが可能となる(図1)。
さらに、国際公開WO 2011/122011に記載されているように、H54/L28-IgG1はヒト化抗IL-6レセプター抗体であり、Fv4-IgG1は、H54/L28-IgG1に対して可溶型ヒトIL-6レセプターへpH依存的に結合する特性(中性条件下において結合し、酸性条件下において解離する)を付与したヒト化抗IL-6レセプター抗体であり、Fv4-IgG1-v2は、Fv4-IgG1に対して中性条件下においてFcRnへの結合を増強したヒト化抗IL-6レセプター抗体である。国際公開WO 2011/122011に記載されているマウスのin vivo試験において、Fv4-IgG1と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群と比較して、Fv4-IgG1-v2と抗原である可溶型ヒトIL-6レセプターの混合物を投与した群において、可溶型ヒトIL-6レセプターの消失を大幅に加速できることが示された。すなわち、pH依存的抗原結合抗体に対して、中性条件下(pH7.4)におけるFcRn結合を増強することによって、抗原に繰り返し結合できる効果、および、抗原の血漿中からの消失を促進する効果をさらに向上させ、抗体を投与することによって血漿中からの抗原の消失を除去することが可能であることが報告された(図2)。
図1および図2に示したpH依存的結合抗体による作用においては、血漿中とエンドソーム内の環境の違い、すなわちpHの違い(血漿中:pH7.4、エンドソーム内:pH6.0)を利用して、血漿中では抗原に強く結合させ、エンドソーム内では抗原から解離させることが重要である。血漿中とエンドソーム内でpH依存的結合抗体の抗原への結合能にこのような差異を作りだすためには、血漿中とエンドソーム内の環境の違いの大きさが重要である。pHの違いはすなわち水素イオン濃度の違いである。つまり、pH7.4の血漿中の水素イオン濃度は約40 nMであり、pH6.0のエンドソーム内の水素イオン濃度は約1000 nMであり、血漿中とエンドソーム内で因子(水素イオン)の濃度に約25倍の違いがある。
図1および図2に示した作用をより容易に達成するため、あるいは、その作用を増強するためには、血漿中とエンドソーム内の水素イオン濃度の違いより、濃度の違いが大きい因子に依存する抗体を使用すれば良いと考えられた。血漿中とエンドソーム内で濃度の違いが大きい因子を探索した結果、カルシウムが見出された。血漿中のイオン化カルシウム濃度は1.1-1.3 mM程度であり、エンドソーム内のイオン化カルシウム濃度は3μM程度であり、血漿中とエンドソーム内で因子(カルシウム)の濃度に約400倍の違いがあり、その差は水素イオン濃度差(25倍)よりも大きいことが見出された。すなわち、高カルシウム濃度条件下(1.1-1.3 mM)において抗原に結合し、低カルシウム濃度条件下(3μM)において抗原から解離するようなイオン化カルシウム濃度依存的結合抗体を用いることで、pH依存的結合抗体と同等またはそれ以上にエンドソーム内で抗原を抗体から解離することが可能であると考えられた。
(1−3)ヒトIgAに結合する抗体の発現と精製
GA2-IgG1(重鎖配列番号:38、軽鎖配列番号:39)は新規に取得されたヒトIgAに結合する抗体である。GA2-IgG1(重鎖配列番号:38、軽鎖配列番号:39)をコードするDNA配列が動物細胞発現用プラスミドに当業者公知の方法で組み込まれた。抗体の発現は以下の方法を用いて行った。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)をFreeStyle 293 Expression Medium培地(Invitrogen)へ懸濁し、1.33 x 106個 /mLの細胞密度で6well plateの各ウェルへ3 mLずつ蒔きこみ、リポフェクション法により調製したプラスミドを細胞へ導入した。CO2インキュベーター(37℃、8%CO2, 90 rpm)で5日間培養を行い、得られた培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定した。得られた値からPACE法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
(1−4)取得された抗体のヒトIgAに対するカルシウム依存的結合能評価
取得された抗体を、Biacore T200(GE Healthcare)を用いてヒトIgA結合活性(解離定数KD (M))に関して評価した。ランニングバッファーとして3μMもしくは1.2 mM CaCl2を含有する0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl(pH7.4およびpH5.8)、0.1μMもしくは10 mM CaCl2を含有する0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl、pH8.0を用いて測定を行った。
Sensor chip CM5(GE Healthcare)上にアミノカップリング法で組換え型プロテインA/G(Thermo Scientific)を適当量固定化した後、抗体を結合させた。アナライトとして適切な濃度のMRA-hIgA((1−1)に記載)をインジェクトし、センサーチップ上の抗体と相互作用させた。その後、10 mmol/L Glycine-HCl, pH1.5をインジェクトし、センサーチップを再生した。測定を37℃で行った。測定結果をBiacore T200 Evaluation Software(GE Healthcare)を用い、カーブフィッティングによる解析および平衡値解析により、解離定数KD (M)を算出した。その結果を表8に示す。GA2-IgG1はCa2+濃度が1.2 mMにおいてはヒトIgAに強く結合するが、Ca2+濃度が3μMにおいてはヒトIgAに弱く結合することが示された。また、GA2-IgG1はCa2+濃度が1.2 mMの条件下において、pH7.4においてはヒトIgAに強く結合するが、pH5.8においてはヒトIgAに弱く結合することが示された。すなわち、GA2-IgG1は、ヒトIgAに対して、pH依存的、および、カルシウム依存的に結合することが明らかとなった。
Figure 2018172384
〔実施例2〕
(2−1)会合化したhIgAの調製
架橋剤SPDP (N-Succinimidyl 3-(2-pyridyldithio)propionate、Thermo scientific)を用いて会合化したhIgAを調製した。実施例1で調製したGC-hIgA-MYCをSPDPで修飾し、その後何も処理しない画分と還元条件で処理した画分を混合することにより、hIgA同士を架橋させた。架橋反応後、ゲルろ過クロマトグラフィーにて高分子成分を分画し、会合化したhIgAとした。会合化したhIgAのゲルろ過クロマトグラフィー分析の結果を図3に示した。分子量マーカーの溶出位置から算出した会合したhIgAの見かけの分子量は、780 kDaであった。溶出ピークがブロードであることから、様々な大きさの会合体を形成していると考えられる。対象として、SPDPで処理していないGC-hIgA-FLAGを会合化していないhIgAとして用いた。
(2−2)取得された抗体の会合化したhIgAに対するpH/Ca依存的結合能評価
取得された抗体を、Biacore T200(GE Healthcare)を用いて、会合化していないhIgA及び会合化したhIgAへの結合に関して評価した。ランニングバッファーとして3μMもしくは1.2 mM CaCl2を含有する0.05% tween20, 20 mmol/l ACES, 150 mmol/l NaCl(pH7.4およびpH5.8)、を用いて測定を行った。
Sensor chip CM5(GE Healthcare)上にアミノカップリング法で組換え型プロテインA/G(Thermo Scientific)を適当量固定化した後、抗体を結合させた。アナライトとして適切な濃度のhIgA(実施例1に記載)をインジェクトし、センサーチップ上の抗体と相互作用させた。その後、10 mmol/L Glycine-HCl, pH1.5をインジェクトし、センサーチップを再生した。測定を37℃で行った。得られたセンサーグラムを図4に示した。
GA2-IgG1はCa2+濃度が1.2 mMにおいては会合化していないhIgAに強く結合するが、Ca2+濃度が3μMにおいては弱く結合することが明らかに示された。会合化していないhIgAと会合化したhIgAの結果を比較すると、会合化したhIgAにおける解離相の傾きが緩くなり、GA2-IgG1が解離しにくくなっていた。これは、会合化したhIgA一分子には複数の結合部位が含まれておりGA2-IgG1がavidityで結合したため、解離が遅くなったと考えられる。
〔実施例3〕ノーマルマウスを用いたヒトIgA結合抗体の会合化したhIgA及び会合化していないhIgAの血漿中滞留性への影響評価
(3−1)ノーマルマウスを用いたin vivo試験
ノーマルマウス(C57BL/6J mouse、Charles River Japan)に会合化していないhIgA(実施例1にて作製)及び会合化したhIgA(実施例2にて作製)を単独投与、もしくは1日前に抗hIgA抗体を投与した後に会合化していないhIgA及び会合したhIgAを投与した際の抗hIgA抗体及びhIgAの体内動態を評価した。抗hIgA抗体、会合化していないhIgA溶液(300 ug/mL)及び会合化したhIgA溶液(300 ug/mL)は尾静脈に10 mL/kgで投与された。抗hIgA抗体としては、上述のGA2-IgG1を使用した。
混合溶液中のヒトIgA濃度は全て300 μg/mLであるが、抗hIgA抗体濃度は30 ug/mL(0.3mg/kg)、100 ug/mL(1 mg/kg)、300 ug/mL(3 mg/kg)とした。このとき、抗hIgA抗体濃度30 ug/mLおよび100 ug/mLの時には、抗hIgA抗体に対してhIgAが過剰に存在することから、抗hIgA抗体の大部分がhIgAに結合していると考えられる。逆にhIgAは、半分以上が抗体と結合しない状態である。一方、抗hIgA抗体濃度300 ug/mLの時には、抗hIgA抗体とhIgAが同程度存在し、GA2-IgG1のaffinityを考えると抗hIgA抗体及びhIgAはともに80%程度が結合していると推察される。
投与後5分間、1時間、2時間、4時間、7時間、1日間、2日間、3日間で採血を行った。採取した血液は直ちに4℃、12,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。
(3−2)ELISA法によるノーマルマウス血漿中の抗ヒトIgA抗体濃度測定
マウス血漿中の抗ヒトIgA抗体濃度はELISA法にて測定した。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) をNunc-Immuno Plate, MaxiSoup(Nalge nunc International)に分注し、4℃で1晩静置しAnti-Human IgG固相化プレートを作成した。血漿中濃度として2、1、0.5、0.25、0.125、0.0625、0.03125 μg/mLの検量線試料および100倍以上希釈したマウス血漿測定試料を調製し、Anti-Human IgG固相化プレートに分注して室温で1時間インキュベーションした。その後Goat Anti-Human IgG (γ chain specific) Biotin (BIOT) Conjugate(Southern Biotechnology Associats Inc.)を室温で1時間反応させ、さらにStreptavidin-PolyHRP80(Stereospecific Detection Technologies)を室温で1時間反応させた。次にTMB One Component HRP Microwell Substrate(BioFX Laboratories)を基質として用い発色反応を行い、1N-Sulfuric acid(Showa Chemical)で反応停止後、マイクロプレートリーダーにて450 nmの吸光度を測定した。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後のノーマルマウスにおけるGA2-IgG1の血漿中抗体濃度推移を図5に示した。
(3−3)ELISA法による血漿中ヒトIgA濃度測定
マウスの血漿中の会合化していないヒトIgA(単量体ヒトIgA)濃度はELISA法にて測定した。まずMouse anti-FLAG Antibody(SIGMA)をNunc-Immuno Plate, MaxiSoup(Nalge nunc International)に分注し、4℃で1晩静置しAnti-FLAG固相化プレートを作成した。血漿中濃度として20、10、5、2.5、1.25、0.625、0.3125μg/mLのヒトIgA検量線試料および100倍以上希釈したマウス血漿測定試料を調製し、Anti-FLAG固相化プレートに分注して室温で1晩インキュベーションした。その後500 ng/mLのGPC3(R&D Systems)を100μL加え、室温で1時間反応させ、さらに1 ug/mLのAnti-GPC3 Antibody Biotinylatedを100μL加え、室温で1時間反応させた。次にStreptavidin-PolyHRP80(Stereospecific Detection Technologies)を室温で1時間反応させ、TMB One Component HRP Microwell Substrate(BioFX Laboratories)を基質として用い発色反応を行い、1N-Sulfuric acid(Showa Chemical)で反応停止後、マイクロプレートリーダーにて450 nmの吸光度を測定した。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。
また、マウスの血漿中ヒトIgA-SPDP-Polymer(会合化したヒトIgA)濃度はECL法にて測定した。まずMouse Anti-c-MYC Antibody(SIGMA)をMULTI-ARRAY-96-well Plate(MSD)に分注後、室温で1h静置しAnti-MYC固相化プレートを作成した。血漿中濃度として10、5、2.5、1.25、0.625、0.3125、0.1563μg/mLのヒトIgA-SPDP-Polymer検量線試料および100倍以上希釈したマウス血漿測定試料を調製した。これら調製時にはまず10mM EDTAを含むbufferにて50倍希釈血漿を含むSTD、マウス血漿測定試料を調製後、投与抗体20ug/mL(10mM EDTA buffer)と等量で混合し、室温30mインキュベーションすることでプレート添加用サンプルとした。これら試料をAnti-MYC固相化プレートに分注して室温で1時間インキュベーションした。その後1 ug/mLのRabbit Anti-human-IgA-Antibody Biotinylated(BETHYL)を100μL加え、室温で1時間反応させ、さらに Streptavidin-PolyHRP80(Stereospecific Detection Technologies)を室温で1時間反応させた。次にRead Buffer を添加後、Sector Imager 2400 (MSD)にて測定した。マウス血漿中濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。
この方法で測定した静脈内投与後のノーマルマウスにおける血漿中ヒトIgA(会合化していないヒトIgA(単量体ヒトIgA))の濃度推移を図6に、ヒトIgA-SPDP-Polymer(会合化ヒトIgA)の濃度推移を図7に、これらのクリアランス値等を表9に示した。
Figure 2018172384
また、単量体ヒトIgA(会合化していないヒトIgA)、あるいは、会合化ヒトIgAのみを投与した際と比較して、GA2-IgG1投与による両ヒトIgAの消失がどの程度加速したかを示す指標として、「GA2-IgG1投与後の会合化していないヒトIgA濃度/ヒトIgA濃度単独を投与した際の会合していないヒトIgA濃度」の時間推移、および、「GA2-IgG1投与後の会合化したヒトIgA濃度/ヒトIgA濃度単独を投与した際の会合化したヒトIgA濃度」の時間推移、を図8に示した。
これらの結果から、GA2-IgG1はいずれの投与量においても、会合化していないヒトIgAと比較して、会合化したヒトIgAの消失を優先的により加速していることが示された。特にGA2-IgG1 3mg/kgにおいては、クリアランス比として10倍以上優先的に会合化したヒトIgAの消失を加速することができた。
考察
結果として、単独投与時の会合化していないヒトIgAの消失と比較すると、GA2-IgG1との同時投与時の会合化していないヒトIgAの消失がわずかに早くなるだけであったのに対して、会合化したヒトIgAにおいては、単独投与時の消失と比較して、GA2-IgG1との同時投与時の消失が大幅に加速していた。会合化していないヒトIgAの単独投与時と抗体同時投与時のクリアランスの比が1.1〜1.6倍なのに対し、会合化したヒトIgAの単独投与時と抗体同時投与時のクリアランスの比は1.8〜16.2倍となり、会合化していないヒトIgAよりも会合化したヒトIgAの方が抗体同時投与時の消失の加速度が大きいことが示された。
GA2-IgG1の薬物動態は、会合化していないヒトIgA及び会合化したヒトIgAとのいずれの同時投与時においても、投与後1日以降の消失は緩やかであった。
会合化していないヒトIgAの消失よりも会合化したヒトIgAの消失の方が大幅に加速した理由としては以下のメカニズムが考えられる。
会合化した抗原は、一分子中に複数の抗体結合部位が含まれているため、会合化していない単量体抗原と比較して、複数分子の抗体が多価で強固に結合し解離しにくくなり、巨大な免疫複合体を形成する。抗体が複数分子含まれている巨大な免疫複合体は、図9に示すように、細胞表面の受容体(FcγR、FcRn、補体レセプター等)に対して多価のFc領域を介して多価で強固に結合することが可能であるため、これらのレセプターを発現する細胞に効率的に取り込まれる。その後、エンドソーム内で当該会合した抗原がpHあるいはCa依存的結合抗体から解離することで、免疫複合体の形成が解消される。当該会合した抗原はFcRnに結合することができないため、ライソソームに移行し分解されるのに対して、抗体は免疫複合体を形成していないためFcRnによって血漿中にリサイクルされると考えられる。対して、複数の抗体を含まない小さな免疫複合体は、図10に示すように、天然IgG1型の受容体に対する親和性が十分ではないため、細胞への取り込みは効率が低い、もしくは非特異的にしか起こらないと考えられる。
図4に示すように、GA2-IgG1は会合化したヒトIgAと相互作用させた際に解離相が緩やかになっており、会合化していないヒトIgAに対してよりも会合化したヒトIgAに対して解離しにくい性質を持っている。すなわち、会合化したヒトIgAに対しては、複数分子のGA2-IgG1が多価で結合し解離しにくいため、会合化していないヒトIgAとGA2-IgG1の免疫複合体よりも巨大な免疫複合体を形成すると考えられる。巨大な免疫複合体は、FcγR、FcRn、補体レセプター等に対して多価のFc領域を介して強固に結合するため、これらのレセプターを発現する細胞に速やかに取り込まれ、その後、会合したヒトIgAはエンドソーム内でGA2-IgG1から解離しライソソームに移行し分解されるため、単独投与時よりも大幅に消失が加速したと考えられる。また、GA2-IgG1は、会合化したヒトIgAが解離し免疫複合体を解消した後、FcRnによって血漿中にリサイクルしたと考えられた。
すなわち、GA2-IgG1は、会合していないヒトIgAよりも会合化したヒトIgAに対して強固に多価で結合し巨大な免疫複合体を形成することと、複数のFcを介して各種Fcレセプターに対して強固に多価で結合する、という2つの多価結合効果によって、会合化したヒトIgAの消失の大幅な加速を達成したと考えられる。
このようにGA2-IgG1は、会合化していないヒトIgAよりも優位に会合化したヒトIgAを血漿中から除去する作用を持つことが示された。
したがって、会合化した抗原に結合し、Fc領域を含む抗原結合分子にpH及び/又はCa濃度依存的な結合活性を有する機能を持たせることで、会合化していない抗原と会合化した抗原の共存下において、会合化した抗原の消失を優先的に加速することが可能である。更に、会合化していない抗原よりも会合化した抗原に対してより強固に結合する適切なpH及びCa依存性抗体を選択することができれば、その優先性を高め、会合化した抗原の消失をより加速することが可能であると考えられる。
このように、会合化していない抗原よりも優位に会合化した抗原を血漿中から除去する作用を持つ抗原結合分子は、会合体が病因となっている疾患、例えばアミロイドーシス、ポリグルタミン病、セルピン病、IgA腎症などの治療薬として適用できると考えられる。

Claims (34)

  1. 会合化した抗原に結合し、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン及びFc領域を含む、抗原結合分子。
  2. 会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性より高い、請求項1に記載の抗原結合分子。
  3. 会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高い、請求項1または2に記載の抗原結合分子。
  4. 血漿中において、会合化した抗原が会合化していない抗原よりも優先して消失する、請求項1から3のいずれかに記載の抗原結合分子。
  5. 血漿中において、抗原結合分子の非存在下での会合化した抗原のクリアランスに対する当該抗原結合分子の存在下での会合化した抗原のクリアランス比が、会合化していない抗原の同クリアランス比の1.5倍以上である、請求項1から4のいずれかに記載の抗原結合分子。
  6. 前記抗原結合ドメインが、カルシウムイオン濃度の条件によって抗原に対する結合活性が変化する、請求項1から5のいずれかに記載の抗原結合分子。
  7. 前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での抗原に対する結合活性が高カルシウムイオン濃度の条件下での抗原に対する結合活性よりも低い抗原結合ドメインである、請求項6に記載の抗原結合分子。
  8. 前記抗原結合ドメインが、pHの条件によって抗原に対する結合活性が変化する抗原結合ドメインである、請求項1から7のいずれかに記載の抗原結合分子。
  9. 前記抗原結合ドメインが、pH酸性域における抗原に対する結合活性がpH中性域の条件における抗原に対する結合活性よりも低い抗原結合ドメインである、請求項8に記載の抗原結合分子。
  10. 前記抗原が、血漿中において会合化する抗原である、請求項1〜9のいずれかに記載の抗原結合分子。
  11. 前記抗原が、ハンチンチン、ataxin-1、ataxin-2、Caチャンネルα1A、ataxin-7、TATA binding protein、MDJ、DRPLA、アンドロゲンレセプター、α1-アンチトリプシン、α1-アンチキモトリプシン、ニューロセルピン、C1インヒビター、アンチトロンビンIII、Aβ、L-ch、トランスサイレチン、SAA、β2M、H-ch、シスタチンC、αシヌクレイン、amylin、ヘモグロビン、クリスタリン、IgA、Tauタンパク、TAR DNA-binding protein 43kDa (TDP-43)、Superoxide dismutase (SOD1)、FUS(Fused in Sarcoma gene)、Prion、PHOX2B、ARX、poly-adenylate binding protein nuclear 1(PABPN1)、ジスフェルリン、デスミン、またはGFAP、ケラチン5/14のいずれかである請求項10に記載の抗原結合分子。
  12. 前記Fc領域が、それぞれ配列番号:9、10、11、または12のいずれかで表されるFc領域である、請求項1から11のいずれかに記載の抗原結合分子。
  13. 前記Fc領域のpH酸性域の条件下でのFcRnに対する結合活性が、配列番号:9、10、11、または12のいずれかで表されるFc領域のFcRnに対する結合活性より増強されているFc領域である、請求項1から11のいずれかに記載の抗原結合分子。
  14. 前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される238位、244位、245位、249位、250位、251位、252位、253位、254位、255位、256位、257位、258位、260位、262位、265位、270位、272位、279位、283位、285位、286位、288位、293位、303位、305位、307位、308位、309位、311位、312位、314位、316位、317位、318位、332位、339位、340位、341位、343位、356位、360位、362位、375位、376位、377位、378位、380位、382位、385位、386位、387位、388位、389位、400位、413位、415位、423位、424位、427位、428位、430位、431位、433位、434位、435位、436位、438位、439位、440位、442位または447位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である請求項13に記載の抗原結合分子。
  15. 前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
    238位のアミノ酸がLeu、
    244位のアミノ酸がLeu、
    245位のアミノ酸がArg、
    249位のアミノ酸がPro、
    250位のアミノ酸がGlnまたはGluのいずれか、もしくは
    251位のアミノ酸がArg、Asp、Glu、またはLeuのいずれか、
    252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
    254位のアミノ酸がSerまたはThrのいずれか、
    255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
    256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、Pro、またはThrのいずれか、
    257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
    258位のアミノ酸がAsp、
    260位のアミノ酸がSer、
    262位のアミノ酸がLeu、
    270位のアミノ酸がLys、
    272位のアミノ酸がLeu、またはArgのいずれか、
    279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
    283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
    285位のアミノ酸がAsn、
    286位のアミノ酸がPhe、
    288位のアミノ酸がAsn、またはProのいずれか、
    293位のアミノ酸がVal、
    307位のアミノ酸がAla、Glu、Gln、またはMetのいずれか、
    311位のアミノ酸がAla、Glu、Ile、Lys、Leu、Met、Ser 、Val、またはTrpのいずれか、
    309位のアミノ酸がPro、
    312位のアミノ酸がAla、Asp、またはProのいずれか、
    314位のアミノ酸がAlaまたはLeuのいずれか、
    316位のアミノ酸がLys、
    317位のアミノ酸がPro、
    318位のアミノ酸がAsn、またはThrのいずれか、
    332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
    339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
    341位のアミノ酸がPro、
    343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
    375位のアミノ酸がArg、
    376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
    377位のアミノ酸がLys、
    378位のアミノ酸がAsp、Asn、またはValのいずれか、
    380位のアミノ酸がAla、Asn、Ser、またはThrのいずれか
    382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
    385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
    386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
    387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
    389位のアミノ酸がAsn、Pro、またはSerのいずれか、
    423位のアミノ酸がAsn、
    427位のアミノ酸がAsn、
    428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
    430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
    431位のアミノ酸がHis、またはAsnのいずれか、
    433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
    434位のアミノ酸がAla、Gly、His、Phe、Ser、Trp、またはTyrのいずれか、
    436位のアミノ酸がArg、Asn、His、Ile、Leu、Lys、Met、またはThrのいずれか、
    438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
    440位のアミノ酸がLys、もしくは、
    442位のアミノ酸がLys、308位のアミノ酸がIle、Pro、またはThrのいずれか、
    の群から選択される少なくとも一つ以上のアミノ酸である、請求項14に記載の抗原結合分子。
  16. 前記Fc領域のpH中性域の条件下でのFcRnに対する結合活性が、配列番号:9、10、11、または12のいずれかで表されるFc領域のFcRnに対する結合活性より増強されているFc領域である、請求項1から11のいずれかに記載の抗原結合分子。
  17. 前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位または436位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である請求項16に記載の抗原結合分子。
  18. 前記Fc領域が、配列番号:9、10、11、または12のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
    237位のアミノ酸がMet、
    248位のアミノ酸がIle、
    250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
    252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
    254位のアミノ酸がThr、
    255位のアミノ酸がGlu、
    256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
    257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
    258位のアミノ酸がHis、
    265位のアミノ酸がAla、
    286位のアミノ酸がAlaまたはGluのいずれか、
    289位のアミノ酸がHis、
    297位のアミノ酸がAla、
    303位のアミノ酸がAla、
    305位のアミノ酸がAla、
    307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
    308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
    309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
    311位のアミノ酸がAla、His、またはIleのいずれか、
    312位のアミノ酸がAlaまたはHisのいずれか、
    314位のアミノ酸がLysまたはArgのいずれか、
    315位のアミノ酸がAla、AspまたはHisのいずれか、
    317位のアミノ酸がAla、
    332位のアミノ酸がVal、
    334位のアミノ酸がLeu、
    360位のアミノ酸がHis、
    376位のアミノ酸がAla、
    380位のアミノ酸がAla、
    382位のアミノ酸がAla、
    384位のアミノ酸がAla、
    385位のアミノ酸がAspまたはHisのいずれか、
    386位のアミノ酸がPro、
    387位のアミノ酸がGlu、
    389位のアミノ酸がAlaまたはSerのいずれか、
    424位のアミノ酸がAla、
    428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
    433位のアミノ酸がLys、
    434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
    436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
    の群から選択される少なくとも一つ以上のアミノ酸である、請求項17に記載の抗原結合分子。
  19. 前記Fc領域が、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFc領域を含む請求項1から15のいずれかに記載の抗原結合分子。
  20. 前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位または440位の群から選択される少なくとも一つ以上のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む請求項19に記載の抗原結合分子。
  21. 前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
    221位のアミノ酸がLysまたはTyrのいずれか、
    222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
    223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
    224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
    225位のアミノ酸がGlu、LysまたはTrpのいずれか、
    227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
    228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
    230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
    231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
    232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
    233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
    241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
    243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
    244位のアミノ酸がHis、
    245位のアミノ酸がAla、
    246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
    247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
    249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
    250位のアミノ酸がGluまたはGlnのいずれか、
    251位のアミノ酸がPhe、
    254位のアミノ酸がPhe、MetまたはTyrのいずれか、
    255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
    256位のアミノ酸がAla、MetまたはProのいずれか、
    258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
    260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
    262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
    263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
    264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
    265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
    267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
    269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
    271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    273位のアミノ酸がPheまたはIleのいずれか、
    274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    275位のアミノ酸がLeuまたはTrpのいずれか、
    276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
    279位のアミノ酸がAla、
    280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
    281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
    282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
    283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
    284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
    285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
    286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
    288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
    290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
    291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
    292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
    293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
    297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
    300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
    301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
    302位のアミノ酸がIle、
    303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
    304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
    305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
    311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
    313位のアミノ酸がPhe、
    315位のアミノ酸がLeu、
    317位のアミノ酸がGluまたはGln、
    318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
    320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
    322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
    323位のアミノ酸がIle、
    324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
    325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
    327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
    328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
    334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
    335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
    336位のアミノ酸がGlu、LysまたはTyrのいずれか、
    337位のアミノ酸がGlu、HisまたはAsnのいずれか、
    339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
    376位のアミノ酸がAlaまたはValのいずれか、
    377位のアミノ酸がGlyまたはLysのいずれか、
    378位のアミノ酸がAsp、
    379位のアミノ酸がAsn、
    380位のアミノ酸がAla、AsnまたはSerのいずれか、
    382位のアミノ酸がAlaまたはIleのいずれか、
    385位のアミノ酸がGlu、
    392位のアミノ酸がThr、
    396位のアミノ酸がLeu、
    421位のアミノ酸がLys、
    427位のアミノ酸がAsn、
    428位のアミノ酸がPheまたはLeuのいずれか、
    429位のアミノ酸がMet、
    434位のアミノ酸がTrp、
    436位のアミノ酸がIle、もしくは
    440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
    の群から選択される少なくとも一つ以上のアミノ酸を含む請求項20に記載の抗原結合分子。
  22. 前記Fc領域が、活性型Fcγレセプターに対する結合活性よりも抑制型Fcγレセプターに対する結合活性が高いFc領域である、請求項1から18のいずれかに記載の抗原結合分子。
  23. 前記抑制型FcγレセプターがヒトFcγRIIbである、請求項22に記載の抗原結合分子。
  24. 前記活性型FcγレセプターがヒトFcγRIa、ヒトFcγRIIa(R)、ヒトFcγRIIa(H)、ヒトFcγRIIIa(V)またはヒトFcγRIIIa(F)である、請求項22または23に記載の抗原結合分子。
  25. 前記Fc領域のEUナンバリングで表される238位または328位のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む、請求項22から24のいずれかに記載の抗原結合分子。
  26. 前記Fc領域のEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluである、請求項25に記載の抗原結合分子。
  27. 前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
    233位のアミノ酸がAsp、
    234位のアミノ酸がTrp、またはTyrのいずれか、
    237位のアミノ酸がAla、Asp、Glu、Leu、Met、Phe、TrpまたはTyrのいずれか、
    239位のアミノ酸がAsp、
    267位のアミノ酸がAla、GlnまたはValのいずれか、
    268位のアミノ酸がAsn、Asp、またはGluのいずれか、
    271位のアミノ酸がGly、
    326位のアミノ酸がAla、Asn、Asp、Gln、Glu、Leu、Met、SerまたはThrのいずれか、
    330位のアミノ酸がArg、Lys、またはMetのいずれか、
    323位のアミノ酸がIle、Leu、またはMetのいずれか、もしくは
    296位のアミノ酸がAsp、
    の群から選択される少なくとも一つ以上のアミノ酸である、請求項25または26に記載の抗原結合分子。
  28. 請求項1から27のいずれかに記載の抗原結合分子を有効成分として含む医薬組成物。
  29. 血漿中において、会合化した抗原を消失させるための、請求項1から27のいずれかに記載の抗原結合分子の使用。
  30. 前記会合化した抗原が、会合化していない抗原よりも優先して消失される、請求項29に記載の抗原結合分子の使用。
  31. 以下の工程(a)を含む、会合化した抗原に結合し、当該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子のスクリーニング方法;
    (a) 細胞内イオン濃度条件下における抗原結合分子の会合化した抗原に対する抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低い抗原結合分子を選択する工程。
  32. 更に、以下の工程を含む、請求項31に記載のスクリーニング方法;
    (i) 細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性よりも高くなる抗原結合分子を選択する工程、
    及び/又は、
    (ii) 細胞外イオン濃度条件下における会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高くなる抗原結合分子を選択する工程。
  33. 以下の工程(a)〜(c)を含む、会合化した抗原と結合し、当該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子の製造方法;
    (a) 細胞内イオン濃度条件下における抗原結合分子の会合化した抗原に対する抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低い抗原結合分子を選択する工程、
    (b) 前記工程(a)で選択された抗原結合分子をコードする遺伝子を含むベクターを含む宿主細胞を培養する工程、及び、
    (c) 前記工程(b)で得られた培養液から抗原結合分子を単離する工程。
  34. 以下の工程(a)〜(c)を含む、会合化した抗原と結合し、当該会合化した抗原を血漿中から消失させる機能を有する抗原結合分子の製造方法;
    (a) 細胞内イオン濃度条件下における抗原結合分子の会合化した抗原に対する抗原結合活性が、細胞外イオン濃度条件下における抗原結合活性より低い抗原結合分子を選択する工程、
    (b) (i) 細胞外イオン濃度条件下における抗原結合分子の会合化した抗原に対する結合活性が、会合化していない抗原に対する結合活性よりも高くなる抗原結合分子を選択する工程、及び/又は、(ii) 細胞外イオン濃度条件下における会合化した抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性が、会合化していない抗原と抗原結合分子の複合体のFcRnあるいはFcγレセプターに対する結合活性より高くなる抗原結合分子を選択する工程、
    (c) 前記工程(a)及び(b)で選択された抗原結合分子をコードする遺伝子を含むベクターを含む宿主細胞を培養する工程、および
    (d) 前記工程(c)で得られた培養液から抗原結合分子を単離する工程。
JP2018087413A 2012-05-30 2018-04-27 会合化した抗原を消失させる抗原結合分子 Active JP7016769B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012123782 2012-05-30
JP2012123782 2012-05-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014518714A Division JPWO2013180201A1 (ja) 2012-05-30 2013-05-30 会合化した抗原を消失させる抗原結合分子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020192994A Division JP2021042225A (ja) 2012-05-30 2020-11-20 会合化した抗原を消失させる抗原結合分子

Publications (3)

Publication Number Publication Date
JP2018172384A true JP2018172384A (ja) 2018-11-08
JP2018172384A5 JP2018172384A5 (ja) 2019-02-07
JP7016769B2 JP7016769B2 (ja) 2022-02-07

Family

ID=49673388

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2014518714A Withdrawn JPWO2013180201A1 (ja) 2012-05-30 2013-05-30 会合化した抗原を消失させる抗原結合分子
JP2018087413A Active JP7016769B2 (ja) 2012-05-30 2018-04-27 会合化した抗原を消失させる抗原結合分子
JP2020192994A Pending JP2021042225A (ja) 2012-05-30 2020-11-20 会合化した抗原を消失させる抗原結合分子
JP2022120135A Pending JP2022141941A (ja) 2012-05-30 2022-07-28 会合化した抗原を消失させる抗原結合分子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014518714A Withdrawn JPWO2013180201A1 (ja) 2012-05-30 2013-05-30 会合化した抗原を消失させる抗原結合分子

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020192994A Pending JP2021042225A (ja) 2012-05-30 2020-11-20 会合化した抗原を消失させる抗原結合分子
JP2022120135A Pending JP2022141941A (ja) 2012-05-30 2022-07-28 会合化した抗原を消失させる抗原結合分子

Country Status (6)

Country Link
US (2) US20150353630A1 (ja)
EP (2) EP2857419B1 (ja)
JP (4) JPWO2013180201A1 (ja)
DK (1) DK2857419T3 (ja)
ES (1) ES2856272T3 (ja)
WO (1) WO2013180201A1 (ja)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001409A1 (en) 2006-03-31 2022-05-25 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
CN101874042B9 (zh) 2007-09-26 2019-01-01 中外制药株式会社 利用cdr的氨基酸取代来改变抗体等电点的方法
MX342551B (es) 2007-09-26 2016-10-04 Chugai Pharmaceutical Co Ltd Region constante de anticuerpo modificada.
NZ602884A (en) 2008-04-11 2014-08-29 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
EP3029066B1 (en) 2010-07-29 2019-02-20 Xencor, Inc. Antibodies with modified isoelectric points
KR102385507B1 (ko) 2010-11-30 2022-04-12 추가이 세이야쿠 가부시키가이샤 복수 분자의 항원에 반복해서 결합하는 항원 결합 분자
US20140093496A1 (en) 2011-02-25 2014-04-03 Chugai Seiyaku Kabushiki Kaisha Fc-gamma-RIIb-SPECIFIC Fc ANTIBODY
RU2641256C2 (ru) 2011-06-30 2018-01-16 Чугаи Сейяку Кабусики Кайся Гетеродимеризованный полипептид
CA2850322C (en) 2011-09-30 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
TW201817745A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
WO2013047748A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
KR20140100532A (ko) 2011-11-30 2014-08-14 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
DK2857420T3 (da) 2012-05-30 2020-11-23 Chugai Pharmaceutical Co Ltd Målvævsspecifikt antigenbindende molekyle
RU2729831C2 (ru) 2012-08-24 2020-08-12 Чугаи Сейяку Кабусики Кайся ВАРИАНТЫ FcγRIIB-СПЕЦИФИЧЕСКОЙ Fc-ОБЛАСТИ
JP6774164B2 (ja) 2012-08-24 2020-10-21 中外製薬株式会社 マウスFcγRII特異的Fc抗体
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
CA3211863A1 (en) 2013-01-14 2014-07-17 Xencor, Inc. Novel heterodimeric proteins
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
AU2014207549B2 (en) 2013-01-15 2018-12-06 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
US10544187B2 (en) 2013-03-15 2020-01-28 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
EP3783017A1 (en) 2013-04-02 2021-02-24 Chugai Seiyaku Kabushiki Kaisha Fc region variant
GB201403775D0 (en) * 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
AU2015237184B2 (en) 2014-03-28 2020-11-26 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
WO2016014984A1 (en) * 2014-07-24 2016-01-28 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
CU24597B1 (es) 2014-11-26 2022-05-11 Xencor Inc Anticuerpos biespecíficos heterodiméricos que se unen a cd3 y cd20
TN2017000222A1 (en) 2014-11-26 2018-10-19 Xencor Inc Heterodimeric antibodies that bind cd3 and cd38
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
AU2015365167B2 (en) 2014-12-19 2021-07-29 Chugai Seiyaku Kabushiki Kaisha Anti-C5 antibodies and methods of use
SG11201700841QA (en) 2014-12-19 2017-03-30 Chugai Pharmaceutical Co Ltd Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
US9879080B2 (en) 2015-01-28 2018-01-30 Prothena Biosciences Limited Anti-transthyretin antibodies
US10464999B2 (en) 2015-01-28 2019-11-05 Prothena Biosciences Limited Anti-transthyretin antibodies
US10633433B2 (en) 2015-01-28 2020-04-28 Prothena Biosciences Limited Anti-transthyretin antibodies
CN114773469A (zh) 2015-02-05 2022-07-22 中外制药株式会社 包含离子浓度依赖性的抗原结合结构域的抗体,fc区变体,il-8-结合抗体及其应用
JP6130983B2 (ja) 2015-02-27 2017-05-17 中外製薬株式会社 Il−6関連疾患治療用組成物
US10227411B2 (en) 2015-03-05 2019-03-12 Xencor, Inc. Modulation of T cells with bispecific antibodies and FC fusions
CA3007030A1 (en) 2015-12-07 2017-06-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and psma
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
WO2017218707A2 (en) 2016-06-14 2017-12-21 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
KR20190020341A (ko) 2016-06-28 2019-02-28 젠코어 인코포레이티드 소마토스타틴 수용체 2에 결합하는 이종이량체 항체
MX2019001458A (es) 2016-08-02 2019-07-04 Visterra Inc Polipeptidos modificados y usos de los mismos.
SG11201801024XA (en) 2016-08-05 2018-05-30 Chugai Pharmaceutical Co Ltd Therapeutic or preventive compositions for il-8-related diseases
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
JP7142630B2 (ja) 2016-10-14 2022-09-27 ゼンコア インコーポレイテッド IL15/IL15Rαヘテロ二量体FC-融合タンパク質
WO2018083248A1 (en) 2016-11-03 2018-05-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
WO2018139623A1 (en) 2017-01-30 2018-08-02 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
EP3589320A4 (en) 2017-02-28 2020-12-23 Seagen Inc. CYSTEIN-MUTED ANTIBODIES FOR CONJUGATION
JP7185884B2 (ja) 2017-05-02 2022-12-08 国立研究開発法人国立精神・神経医療研究センター Il-6及び好中球の関連する疾患の治療効果の予測及び判定方法
EP3634486A4 (en) * 2017-06-05 2021-03-31 Janssen Biotech, Inc. GENETICALLY PRODUCED MULTISPECIFIC ANTIBODIES AND OTHER MULTIMERIC PROTEINS WITH ASYMMETRIC MUTATIONS OF THE CH2-CH3 REGION
US11084863B2 (en) 2017-06-30 2021-08-10 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains
KR20200035972A (ko) 2017-08-11 2020-04-06 리서치 디벨럽먼트 파운데이션 증강된 혈청 반감기를 위한 조작된 항체 fc 변이체
MX2020003041A (es) 2017-10-06 2020-10-05 Prothena Biosciences Ltd Anticuerpos anti-transtiretina.
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
US11312770B2 (en) 2017-11-08 2022-04-26 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-PD-1 sequences
SG11202004187UA (en) 2017-11-29 2020-06-29 Prothena Biosciences Ltd Lyophilized formulation of a monoclonal antibody against transthyretin
GB201720970D0 (en) 2017-12-15 2018-01-31 Ucb Biopharma Sprl Antibodies
GB201720975D0 (en) 2017-12-15 2018-01-31 Ucb Biopharma Sprl Anti-alpha synuclein antibodies
WO2019125732A1 (en) 2017-12-19 2019-06-27 Xencor, Inc. Engineered il-2 fc fusion proteins
CN112119090B (zh) 2018-03-15 2023-01-13 中外制药株式会社 对寨卡病毒具有交叉反应性的抗登革热病毒抗体及使用方法
EP3773911A2 (en) 2018-04-04 2021-02-17 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
CA3097741A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains
JP2021521784A (ja) 2018-04-18 2021-08-30 ゼンコア インコーポレイテッド IL−15/IL−15RaFc融合タンパク質とPD−1抗原結合ドメインを含むPD−1標的化ヘテロダイマー融合タンパク質およびそれらの使用
EA202190451A1 (ru) 2018-08-10 2021-07-13 Чугаи Сейяку Кабусики Кайся Анти-cd137 антигенсвязывающие молекулы и их применение
CN113195523A (zh) 2018-10-03 2021-07-30 Xencor股份有限公司 IL-12异源二聚体Fc融合蛋白
WO2020180726A1 (en) 2019-03-01 2020-09-10 Xencor, Inc. Heterodimeric antibodies that bind enpp3 and cd3
AU2020273072A1 (en) 2019-04-10 2021-12-09 Chugai Seiyaku Kabushiki Kaisha Method for purifying Fc region-modified antibody
KR20220113791A (ko) 2019-12-18 2022-08-16 에프. 호프만-라 로슈 아게 이중특이적 항-ccl2 항체
AU2019479791A1 (en) 2019-12-27 2022-07-14 Chugai Seiyaku Kabushiki Kaisha Anti-CTLA-4 antibody and use thereof
TW202144395A (zh) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 用於癌症之治療的抗cd137抗原結合分子
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
US11919958B2 (en) 2020-08-19 2024-03-05 Xencor, Inc. Anti-CD28 compositions
WO2022044248A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
WO2022192403A1 (en) 2021-03-09 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cldn6
KR20230154311A (ko) 2021-03-10 2023-11-07 젠코어 인코포레이티드 Cd3 및 gpc3에 결합하는 이종이량체 항체
CA3221735A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
EP4361273A1 (en) 2021-06-25 2024-05-01 Chugai Seiyaku Kabushiki Kaisha Anti-ctla-4 antibody
EP4361176A1 (en) 2021-06-25 2024-05-01 Chugai Seiyaku Kabushiki Kaisha Use of anti-ctla-4 antibody

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016644A1 (ja) * 2004-08-11 2006-02-16 Mitsubishi Chemical Corporation 抗体及びその利用
WO2007114319A1 (ja) * 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 抗体の血中動態を制御する方法
WO2009008529A1 (ja) * 2007-07-06 2009-01-15 Tokyo Metropolitan Organization For Medical Research Tdp-43凝集物に特異的に結合する抗体
WO2009125825A1 (ja) * 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2011108714A1 (ja) * 2010-03-04 2011-09-09 中外製薬株式会社 抗体定常領域改変体
WO2011122011A2 (en) * 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
JPH0636741B2 (ja) * 1989-11-08 1994-05-18 帝人株式会社 ヒト・プロテインcの分離方法
ATE185601T1 (de) 1990-07-10 1999-10-15 Cambridge Antibody Tech Verfahren zur herstellung von spezifischen bindungspaargliedern
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
ATE158021T1 (de) 1990-08-29 1997-09-15 Genpharm Int Produktion und nützung nicht-menschliche transgentiere zur produktion heterologe antikörper
DE69229477T2 (de) 1991-09-23 1999-12-09 Cambridge Antibody Tech Methoden zur Herstellung humanisierter Antikörper
US5885793A (en) 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
CA2124967C (en) 1991-12-17 2008-04-08 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
EP0656941B1 (en) 1992-03-24 2005-06-01 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
ES2301158T3 (es) 1992-07-24 2008-06-16 Amgen Fremont Inc. Produccion de anticuerpos xenogenicos.
US5648267A (en) 1992-11-13 1997-07-15 Idec Pharmaceuticals Corporation Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same
AU6819494A (en) 1993-04-26 1994-11-21 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
FR2707189B1 (fr) 1993-07-09 1995-10-13 Gradient Ass Procédé de traitement de résidus de combustion et installation de mise en Óoeuvre dudit procédé.
CA2177367A1 (en) 1993-12-03 1995-06-08 Andrew David Griffiths Recombinant binding proteins and peptides
KR100261941B1 (ko) 1994-07-13 2000-07-15 나가야마 오사무 사람의 인터루킨-8에 대한 재구성 사람항체
CA2761116A1 (en) 1995-04-27 1996-10-31 Amgen Fremont Inc. Human antibodies derived from immunized xenomice
CA2219486A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
JP4046354B2 (ja) 1996-03-18 2008-02-13 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 増大した半減期を有する免疫グロブリン様ドメイン
US7183387B1 (en) * 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
CA2421447C (en) 2000-09-08 2012-05-08 Universitat Zurich Collections of repeat proteins comprising repeat modules
CA2418835A1 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
EP2341060B1 (en) 2000-12-12 2019-02-20 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
US20030157561A1 (en) 2001-11-19 2003-08-21 Kolkman Joost A. Combinatorial libraries of monomer domains
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
BRPI0314814C1 (pt) 2002-09-27 2021-07-27 Xencor Inc anticorpo compreendendo uma variante de fc
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
BRPI0506771A (pt) 2004-01-12 2007-05-22 Applied Molecular Evolution anticorpo, e, composição farmacêutica
US20050260711A1 (en) 2004-03-30 2005-11-24 Deepshikha Datta Modulating pH-sensitive binding using non-natural amino acids
WO2006088478A2 (en) * 2004-06-18 2006-08-24 Novartis Vaccines And Diagnostics Inc. Methods and reagents for diagnosing hantavirus infection
EP2213683B1 (en) 2004-08-04 2013-06-05 Mentrik Biotech, LLC Variant Fc regions
CA2577329A1 (en) 2004-08-16 2006-03-02 Medimmune, Inc. Eph receptor fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
AU2005285347A1 (en) 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
US7632497B2 (en) 2004-11-10 2009-12-15 Macrogenics, Inc. Engineering Fc Antibody regions to confer effector function
DK2325207T3 (en) * 2004-11-12 2017-06-06 Xencor Inc Fc variants with altered binding to FcRn
CA2602663A1 (en) 2005-03-31 2006-10-05 Xencor, Inc. Fc variants with optimized properties
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
DK1919503T3 (en) 2005-08-10 2014-12-15 Macrogenics Inc Identification and preparation of antibodies with variant fc regions and methods of use thereof
CA2624189A1 (en) 2005-10-03 2007-04-12 Xencor, Inc. Fc variants with optimized fc receptor binding properties
JP2009545322A (ja) 2006-08-02 2009-12-24 ザ ユーエービー リサーチ ファウンデーション 規定された抗原特異性の可溶性モノクロナール可変性リンパ球受容体に関連する方法および組成物
CA2674140C (en) 2007-01-05 2018-05-15 University Of Zurich Method of providing disease-specific binding molecules and targets
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
DK2176298T3 (en) 2007-05-30 2018-02-12 Xencor Inc Methods and compositions for inhibiting CD32B-expressing cells
EP4098661A1 (en) 2007-12-26 2022-12-07 Xencor, Inc. Fc variants with altered binding to fcrn
CN110317272A (zh) 2008-10-14 2019-10-11 霍夫曼-拉罗奇有限公司 免疫球蛋白变体及其用途
WO2010058860A1 (ja) * 2008-11-18 2010-05-27 株式会社シノテスト 試料中のc反応性蛋白質の測定方法及び測定試薬
KR102385507B1 (ko) * 2010-11-30 2022-04-12 추가이 세이야쿠 가부시키가이샤 복수 분자의 항원에 반복해서 결합하는 항원 결합 분자
US20140335089A1 (en) * 2011-09-30 2014-11-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting elimination of antigens
TW201817745A (zh) * 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
KR20140100532A (ko) * 2011-11-30 2014-08-14 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
SG10201805584YA (en) * 2012-02-24 2018-08-30 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULE FOR PROMOTING DISAPPEARANCE OF ANTIGEN VIA FcγRIIB

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016644A1 (ja) * 2004-08-11 2006-02-16 Mitsubishi Chemical Corporation 抗体及びその利用
WO2007114319A1 (ja) * 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 抗体の血中動態を制御する方法
WO2009008529A1 (ja) * 2007-07-06 2009-01-15 Tokyo Metropolitan Organization For Medical Research Tdp-43凝集物に特異的に結合する抗体
WO2009125825A1 (ja) * 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2011108714A1 (ja) * 2010-03-04 2011-09-09 中外製薬株式会社 抗体定常領域改変体
WO2011122011A2 (en) * 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHULKE, NORBERT, ET AL.: "The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 100, no. 22, JPN6013031864, 2003, pages 12590 - 12595, XP002323660, ISSN: 0004478569, DOI: 10.1073/pnas.1735443100 *
日薬理誌, vol. 127, JPN6019006753, 2006, pages 362 - 367, ISSN: 0004478568 *

Also Published As

Publication number Publication date
JP7016769B2 (ja) 2022-02-07
JPWO2013180201A1 (ja) 2016-01-21
EP3892638A1 (en) 2021-10-13
US20150353630A1 (en) 2015-12-10
EP2857419A4 (en) 2016-01-06
EP2857419A1 (en) 2015-04-08
EP2857419B1 (en) 2021-01-13
JP2021042225A (ja) 2021-03-18
WO2013180201A1 (ja) 2013-12-05
US20210122812A1 (en) 2021-04-29
ES2856272T3 (es) 2021-09-27
DK2857419T3 (da) 2021-03-29
JP2022141941A (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
JP7016769B2 (ja) 会合化した抗原を消失させる抗原結合分子
JP7149306B2 (ja) 複数の生理活性を有する抗原の消失を促進する抗原結合分子
JP7288466B2 (ja) 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
JP6826620B2 (ja) 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
AU2012233313C1 (en) Method for altering plasma retention and immunogenicity of antigen-binding molecule
JP6266164B2 (ja) Il−8に結合する抗体およびその使用
JP6124800B2 (ja) 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬
JP2021181480A (ja) 標的組織特異的抗原結合分子
JP2018510842A (ja) イオン濃度依存的抗原結合ドメインを含む抗体、Fc領域改変体、IL−8に結合する抗体、およびその使用
WO2013125667A1 (ja) FcγRIIBを介して抗原の消失を促進する抗原結合分子
JP6280300B2 (ja) 脳疾患治療剤
JP2023106564A (ja) 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
RU2799423C1 (ru) Способ изменения удержания в плазме и иммуногенности антигенсвязывающей молекулы

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201120

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210203

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210402

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210407

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210805

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20211201

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211213

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220113

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126

R150 Certificate of patent or registration of utility model

Ref document number: 7016769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150