JP2018103100A - ハニカム吸着材ならびにその製造方法およびキャニスタ - Google Patents

ハニカム吸着材ならびにその製造方法およびキャニスタ Download PDF

Info

Publication number
JP2018103100A
JP2018103100A JP2016251646A JP2016251646A JP2018103100A JP 2018103100 A JP2018103100 A JP 2018103100A JP 2016251646 A JP2016251646 A JP 2016251646A JP 2016251646 A JP2016251646 A JP 2016251646A JP 2018103100 A JP2018103100 A JP 2018103100A
Authority
JP
Japan
Prior art keywords
adsorbent
honeycomb adsorbent
honeycomb
canister
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016251646A
Other languages
English (en)
Other versions
JP6863732B2 (ja
Inventor
貴志 蓮見
Takashi Hasumi
貴志 蓮見
順平 大道
Junpei Omichi
順平 大道
山碕 弘二
Koji Yamazaki
弘二 山碕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Filter Systems Japan Corp
Original Assignee
Mahle Filter Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Filter Systems Japan Corp filed Critical Mahle Filter Systems Japan Corp
Priority to JP2016251646A priority Critical patent/JP6863732B2/ja
Priority to US15/427,614 priority patent/US10150097B2/en
Priority to CN202210774679.4A priority patent/CN115090263B/zh
Priority to CN201710291776.7A priority patent/CN108236920B/zh
Priority to EP17198942.9A priority patent/EP3338886B1/en
Priority to EP22170449.7A priority patent/EP4056265A1/en
Publication of JP2018103100A publication Critical patent/JP2018103100A/ja
Priority to US16/939,722 priority patent/USRE49587E1/en
Priority to JP2021059168A priority patent/JP7322086B2/ja
Application granted granted Critical
Publication of JP6863732B2 publication Critical patent/JP6863732B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4516Gas separation or purification devices adapted for specific applications for fuel vapour recovery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

【課題】キャニスタのドレンポートに最も近い位置に配設される吸着材として、ブリードエミッション低減と、通気抵抗低減と、BWCの確保と、を同時に満たすハニカム吸着材11を提供する。
【解決手段】円柱形のハニカム吸着材11は、軸方向に沿った複数のセル通路12を有し、セル通路12のピッチPは、1.5mm〜1.8mm、壁13の厚さTは、0.45mm〜0.60mmの範囲内にある。これにより、6.5g/dL以上のBWCを有する。焼成時に消失する繊維状のメルタブルコアを配合することで、ハニカム吸着材全体の重量に対し、0.15mL/g〜0.35mL/gの容積を占めるマクロポアを有し、活性炭に対し150〜250パーセントの重量割合を有する金属酸化物粒子を含む。
【選択図】図2

Description

この発明は、例えば自動車用内燃機関の燃料蒸気の処理などに用いられる吸着材として、活性炭粉末をハニカム状に成形したハニカム吸着材およびその製造方法に関し、さらにはこのハニカム吸着材を備えたキャニスタに関する。
例えば自動車用内燃機関においては、車両の燃料タンクから蒸発した燃料蒸気の外部への放出を防止するために、燃料蒸気の吸着および脱離が可能なキャニスタが設けられており、車両停止後等に発生する燃料蒸気を一時的に吸着し、かつ、その後の運転中に、吸着していた燃料成分を空気の流れにより脱離させて内燃機関で燃焼処理するようにしている。
キャニスタは、ケーシングにより構成される流路の一端にチャージポートとパージポートとを備え、他端にドレンポートを備えて構成されており、パージ時にはドレンポートから大気が流入する。ここで近年の排気規制の下では、車両の停止中に時間経過に伴ってドレンポートから漏れ出す微少な燃料成分の漏れ、いわゆるブリードエミッションを低減することが求められている。ブリードエミッションの試験として、例えば、DBL(Diurnal Breathing Loss)試験などが規定されている。
ドレンポートからのブリードエミッションを抑制するためには、キャニスタ内におけるドレンポート側の吸着残存量を減らすことが有効である。
特許文献1には、ドレンポート側の吸着残存量の低減のために、キャニスタのドレンポート側の吸着材チャンバ内に、吸着能力(例えばBWC(butane working capacity))の低い活性炭を配置することが開示されている。そして、活性炭をハニカム状に押出成形してなるハニカム吸着材を用いることが開示されている。
また特許文献2には、キャニスタのドレンポート側の吸着材チャンバの通路断面積を小さくし、ここにマクロポーラスの大粒活性炭を配置することが開示されている。
特許文献3は、メインキャニスタのドレンポートに接続されるサブキャニスタとして、ハニカム吸着材を用いた構成を開示しており、特に、ハニカム吸着材の隔壁の厚さを0.35mm以下と薄くすることによって、セルの開口面積割合を高くし、圧力損失を抑制することが記載されている。
米国特許第6540815号明細書 特開2009−19572号公報 特開2005−306710号公報
キャニスタのドレンポート側の吸着材チャンバに配設されるハニカム吸着材として、ブリードエミッション低減のために吸着残存量を少なくするには、特許文献3のようにハニカムの隔壁の厚さを薄くして脱離効率を高めることが有効な手段である。隔壁の厚さを薄くしてセルの開口面積割合を高くすれば、同時に通気抵抗が低くなる。
しかしながら、このように脱離効率を高めるために隔壁の厚さを薄くすると、同時にBWCが低くなる。従って、チャージポート側の吸着材チャンバから拡散してくる燃料成分の量が多い場合に、この燃料成分の漏れを防止するためには、大型のハニカム吸着材が必要となってしまう。
すなわち、ドレンポート側に位置するハニカム吸着材としては、ブリードエミッション低減と、BWCの確保と、通気抵抗の低減、の3つが重要であるが、これらを同時に満たすことは困難であった。
この発明に係るハニカム吸着材は、活性炭の粉末をバインダとともに円柱形状に成形しかつ焼成したハニカム吸着材であって、キャニスタの複数の吸着材チャンバの中で、ドレンポートに最も近い吸着材チャンバに装填して使用される。
このハニカム吸着材は、
軸方向に沿った複数のセル通路と、
焼成時に消失する繊維状のメルタブルコアを加えることで形成され、ハニカム吸着材全体の重量に対し、0.15mL/g〜0.35mL/gの容積を占めるマクロポアと、
活性炭に対し150〜250パーセントの重量割合を有する金属酸化物粒子と、
を含み、
互いに隣接するセル通路の間のピッチは、1.5mm〜1.8mmの範囲内にあり、セル通路を仕切る壁の厚さは、0.45mm〜0.60mmの範囲内にあり、
6.5g/dL以上のBWCを有する。
活性炭粉末は、本来的に、微細なマイクロポアおよびメソポア(微視的細孔)を有する。マクロポア(巨視的細孔)は、活性炭粉末をバインダとともに成形する際に繊維状のメルタブルコアを加えることで、より大きな細孔として形成される。マイクロポアは直径が2nm未満の細孔、メソポアは直径が2nm以上50nm未満の細孔、マクロポアは直径が50nm以上1000nm未満の細孔、とそれぞれ定義される。本発明のマクロポアは、メルタブルコアの形状に対応して細長い細孔となる。このマクロポアの存在は、脱離効率の向上に寄与する。
金属酸化物粒子は、吸着材全体の比重を高くし、大きな比熱により熱容量を増大する。これにより、吸着材の吸着時および脱離時の温度変換が緩慢となり、吸着効率、脱離効率が高められる。なお、他の金属粒子等に比較して金属酸化物粒子は、ハニカム吸着材の製造過程での変化がなく、また活性炭の吸脱着を阻害することがない。しかも、バインダとしてハニカム吸着材の形状保持を担う粘土との親和性が高く、ハニカム吸着材の強度を低下させない、という点で有利である。
従って、マクロポアおよび金属酸化物粒子の存在により、セル通路間の壁が比較的厚くても、DBL試験等においてドレンポートに最も近い位置にあるハニカム吸着材での燃料成分の残存量が少なくなり、ブリードエミッションが十分に低減する。本発明におけるセル通路間の壁の厚さは、既存の一般的なハニカム吸着材における壁厚に比較して大きなものであり、セル通路のピッチは逆に小さい。これにより、通気抵抗を過度に高めることなく、ブリードエミッションが低減する。
また、6.5g/dL以上のBWCを有することにより、チャージポート側の吸着材チャンバから拡散してくる燃料成分の漏れ出しをより確実に阻止することができる。
一つの望ましい例では、ハニカム吸着材の外形寸法とセル通路の寸法とから定まる占有率が、少なくとも50パーセントである。占有率は、ハニカム吸着材の外形寸法に基づく見かけの外形容積からセル通路の容積を減算し、見かけの外形容積により除した割合として定義される。つまり、セル通路以外の吸着材材料が存在する部分の割合を示す。
上記セル通路の断面形状は、望ましくは、六角形、四角形、三角形、円形、のいずれかであり、さらに望ましくは、六角形である。
上記金属酸化物としては、酸化鉄(Fe2O3)や酸化マグネシウム(MgO)などを用いることができ、比重や比熱の点から、酸化鉄が望ましい。
本発明のハニカム吸着材を備えたキャニスタにあっては、例えばチャージポート側に位置する他の吸着材チャンバの中に、少なくとも一つの追加の吸着材をさらに含むことができる。
次に、本発明のハニカム吸着材の製造方法は、
活性炭粉末に、該活性炭に対し150〜250パーセントの重量割合を有する金属酸化物粒子と、焼成時に消失する比重1.1g/cm3〜1.3g/cm3の繊維からなり、活性炭に対する重量割合が40〜100パーセントの範囲内にあるメルタブルコアと、バインダと、を加えて成形材料を準備し、
上記成形材料を、複数のセル通路をハニカム状に有する円柱形状の中間成形体に押出成形し、
上記中間成形体を焼成し、
互いに隣接するセル通路の間のピッチが、1.5mm〜1.8mmの範囲内にあり、セル通路を仕切る壁の厚さが、0.45mm〜0.60mmの範囲内にあり、
6.5g/dL以上のBWCを有するハニカム吸着材を得るようにしたものである。
メルタブルコアとなる繊維は、ポリアミド樹脂繊維またはポリエステル樹脂繊維を用いることが望ましい。
メルタブルコアとなる繊維は、例えば、繊維径が10μm、繊維長が1mm以下好ましくは0.5mmである。
この発明によれば、キャニスタのドレンポート側の吸着材チャンバに好適なハニカム吸着材として、ブリードエミッション低減と、BWCの確保と、通気抵抗の低減と、を同時に満たすことができるハニカム吸着材を提供することができる。
キャニスタの一例を概略的に示す図。 ハニカム吸着材の一実施例を示す斜視図。 セル通路の構成を示す平面図。 セル通路のピッチPおよび壁厚Tと、BWCの値との相関をまとめたバブルチャート。 セル通路のピッチPおよび壁厚Tと、通気抵抗との相関をまとめたバブルチャート。 セル通路のピッチPおよび壁厚Tと、ブリードエミッション量との相関をまとめたバブルチャート。 ナイロン繊維の配合量とブリードエミッション量との相関を示したグラフ。 金属酸化物の配合量とブリードエミッション量との相関を示したグラフ。 マクロポア量とブリードエミッション量との相関を示したグラフ。
図1は、本発明に係るハニカム吸着材11が用いられるキャニスタ1の一例を示している。このキャニスタ1は、合成樹脂製のケーシング2によってUターン形状に流路が形成されているものであって、流れ方向の一端に、燃料蒸気の流入部となるチャージポート3と、燃料蒸気の流出部となるパージポート4と、が設けられており、流れ方向の他端に、大気開放口となるドレンポート5が設けられている。上記チャージポート3は例えば図示しない自動車の燃料タンクに接続され、上記パージポート4は例えば内燃機関の吸気系に接続される。上記ドレンポート5は、大気に直接に開放されている構成のほか、何らかの弁機構を備えていてもよい。
上記ケーシング2内は、流れ方向に沿って複数の吸着材チャンバに区画されている。例えば、第1チャンバ6、第2チャンバ7および第3チャンバ8が直列に設けられており、第1チャンバ6および第2チャンバ7には、それぞれ粒状の成形活性炭ないし破砕活性炭からなる粒状吸着材9が充填されている。第1チャンバ6の粒状吸着材9と第2チャンバ7の粒状吸着材9は、互いに同一のものであってもよく、互いに異なるものであってもよい。一つの例では、第1チャンバ6の粒状吸着材9は、活性炭そのもののマイクロポアおよびメソポア(微視的細孔)は有しているが、メルタブルコアによるマクロポア(巨視的細孔)は積極的には設けられておらず、他方、第2チャンバ7の粒状吸着材9は、メルタブルコアによりマクロポアを形成したものとなっている。
本発明のハニカム吸着材11は、円柱形状に成形されており、ドレンポート5に最も近い第3チャンバ8に装填されている。上記第1チャンバ6、第2チャンバ7および第3チャンバ8の間は、例えば通気性を有する多孔板やフィルタによって互いに区画されている。なお、第3チャンバ8が複数並列に構成されて各々にハニカム吸着材11を備えた構成も可能である。
図2は、円柱形状をなすハニカム吸着材11の一実施例を示している。ハニカム吸着材11は、円柱形状の軸方向に沿った複数のセル通路12を有している。これらのセル通路12は、ハニカム吸着材11の端面11aにそれぞれ開口しており、つまりハニカム吸着材11を軸方向に貫通している。この例では、各々のセル通路12は、図3に示すように、正六角形の断面形状を有し、隣接するセル通路12の間に、各々のセル通路12を仕切る一定厚さの壁13が設けられている。図3に示すように、正六角形の中心点の間の距離によって、隣接するセル通路12の間のピッチPが定義され、また各々の壁面に直交する方向の寸法として壁13の厚さTが定義される。
以下に、ハニカム吸着材11を、その製造方法とともに説明する。
まず粉末状の活性炭、好ましくは粒子径が100μm以下の活性炭300gに対し、マクロポアを形成するメルタブルコアとして、繊維径10μm、繊維長1mm以下の合成樹脂短繊維(好ましくはポリアミド樹脂繊維またはポリエステル樹脂繊維)120g〜300gを、乾燥した状態で混合する。
短繊維と粉末状活性炭とを乾燥した状態で混合することにより、それぞれの分散性が向上する。
続いて、バインダとして、やはり粉末状のベントナイト、木節粘土、シリカゾル、アルミナゾルなど、を120g〜200g、成形時の保形剤としてメチルセルロースを適量、金属酸化物(好ましくは酸化鉄、酸化マグネシウムなど)の粉末(粒子径が10μm程度のもの)を450g〜750g、加え、更に混合する。
混合した粉体に、適宜に水などを加えて、押出成形用の成形材料とする。この成形材料を、押出成形により直径20〜40mm程度の円内に前述した正六角形のセル通路12を備えた断面形状に押し出し、50mm〜200mm程度の任意の長さで裁断して、円柱形状の中間成形体を得る。
そして、この中間成形体を、ベルト式電気炉などを用いて脱酸素雰囲気下の650〜1000℃にて焼成し、ハニカム吸着材11とする。押出成形時の断面形状(換言すれば金型形状)は、焼成後の状態において、互いに隣接するセル通路の間のピッチPが、1.5mm〜1.8mmの範囲内にあり、セル通路を仕切る壁の厚さTが、0.45mm〜0.60mmの範囲内にあるように、設定される。
このように構成された本発明のハニカム吸着材11は、ブリードエミッション低減を意図してキャニスタの最もドレンポートに近い位置に配置される既存のハニカム吸着材に比較して、壁厚Tが大きなものであり、ピッチPは比較的に小さい。そして、ハニカム状をなすハニカム吸着材11の中で吸着材材料が占める割合である占有率は、比較的に高くなり、例えば、50%以上となる。これにより、ブリードエミッション低減と、十分なBWCの確保と、低い通気抵抗と、の三者を同時に満足することができる。
次に、ハニカム吸着材11のより具体的ないくつかの実施例を説明する。
成形材料の配合は、粉末状の活性炭(粒子径が100μm以下のもの)100重量部、ナイロン繊維(繊維径10μm、繊維長0.5mm)40重量部、バインダ(ベントナイト)67重量部、酸化鉄粉末250重量部、である。この成形材料を図2に示したような円柱形状のハニカム状に押出成形し、かつ焼成した。なお、メルタブルコアとなるナイロン繊維(ポリアミド樹脂繊維)の比重は、1.1g/cm3である。
焼成後の状態におけるハニカム吸着材11は、直径30mm、長さ75mm、の円柱形状であり、セル通路12のピッチPは1.7mm、壁13の厚さTは0.55mm、である。焼成後の状態における金属酸化物(酸化鉄)の重量比は、60wt%であった。メルタブルコアであるナイロン繊維が焼成時に消失したことにより形成されたマクロポアの量(ハニカム吸着材11の単位重量あたりのマクロポアが占める容積)は、0.18mL/gであった。なお、マクロポアの容積は、例えば「ISO 15901−1」で規定される水銀圧入法によって測定できる。
また、ハニカム状をなすハニカム吸着材11の中で吸着材材料が占める割合である占有率は、ハニカム吸着材11の外形寸法およびセル通路12の寸法、個数から幾何学的に定まるものであり、この実施例1では、54%であった。
このようにして得られたハニカム吸着材11について、BWCと、単体での通気抵抗とを測定した。
BWCの測定は、ASTM D5228に準拠して行い、その結果は、7.3g/dLであった。
通気抵抗は、ガスを通流させたときの前後差圧として測定した通気抵抗を、ハニカム吸着材11の長さで除して、単位長さあたりの通気抵抗[Pa/cm]とした。さらに、試験時の流量をハニカム吸着材11の断面積で除して線流速[cm/s]を求め、100cm/s時の単位長さあたりの通気抵抗を求めた。その結果は、8.2Pa/cmであった。本発明における通気抵抗の達成目標は、キャニスタ1としてのチャージ時およびパージ時のガスの流れを確保するために、10Pa/cmである。
さらに、実施例1のハニカム吸着材11を図1に示したような構成の試験用キャニスタ1に組み込んで、DBL試験に類似した試験を行い、ドレンポート5から漏れ出たブリードエミッションの量を測定した。その結果は、14mgであった。試験用のキャニスタ1は、図1に示す第1チャンバ6に、直径2mm程度の造粒活性炭を1.9L充填し、第2チャンバ7に、これとは異なる特性の造粒活性炭を0.1L充填した構成であり、第3チャンバ8にハニカム吸着材11が配置される。
試験方法としては、キャニスタ1内にチャージポート3から蒸発したガソリン成分を所定量流入させた後に、所定の空気量および流速のパージ空気でもってパージを行う。この吸脱着サイクルを数回行い、吸脱着量を安定化させる。次に、ブタンをチャージポート3からキャニスタ1に流入させて、吸着材に吸着させた後に、吸着材の温度が一定になるまで放置する。その後パージを行い、半日放置する。次に、車両のガソリンタンクにキャニスタ1を接続し、外気温変化を模擬するように温度を変化させてブリードエミッションを測定する。ブリードエミッション量は、ドレンポート5から排出される気体中の炭化水素濃度を検出し、それを重量に換算して導き出したものである。
本発明におけるブリードエミッション量の達成目標は、北米の新しい規制で定められたキャニスタ単体での規制値に準拠して、20mgである。
このように実施例1のハニカム吸着材11においては、ブリードエミッションを目標である20mg以下に低減することができると同時に、通気抵抗を目標である10Pa/cm以下とすることができる。また同時に、BWCは、7.3g/dLと比較的高い値を確保することができ、しかも占有率が54%と比較的高い値となるので、ハニカム吸着材11の外形寸法を基準とした見かけの単位容積当たりの吸着能力が高く得られ、小型のハニカム吸着材11でもってドレンポート5からの漏れ出しを効果的に抑制することができる。
実施例2は、実施例1に比較して、メルタブルコアとなるナイロン繊維の配合比、酸化鉄の配合比、セル通路12のピッチPおよび壁厚Tを変更したものであり、他は実施例1と同様である。
成形材料の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維43重量部、バインダ67重量部、酸化鉄粉末233重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.8mm、壁13の厚さTは0.60mm、である。焼成後の状態における酸化鉄の重量比は、58wt%であった。マクロポア量は、0.15mL/g、占有率は、56%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、7.8g/dL、通気抵抗は、7.5Pa/cm、ブリードエミッション量は、15mgであった。
実施例3は、実施例1に比較して、メルタブルコアとなるナイロン繊維の配合比をほぼ2倍とするとともに、酸化鉄の配合比を変更したものであり、他は実施例1と同様である。
成形材料の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維85重量部、バインダ67重量部、酸化鉄粉末233重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.7mm、壁13の厚さTは0.55mm、である。焼成後の状態における酸化鉄の重量比は、58wt%であった。マクロポア量は、0.35mL/g、占有率は、54%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、6.6g/dL、通気抵抗は、8.0Pa/cm、ブリードエミッション量は、15mgであった。
実施例4は、実施例1に比較して、酸化鉄の配合比を少なくするとともに、バインダの配合比、セル通路12のピッチPおよび壁厚Tを変更したものであり、他は実施例1と同様である。
成形材料の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維40重量部、バインダ40重量部、酸化鉄粉末150重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.5mm、壁13の厚さTは0.45mm、である。焼成後の状態における酸化鉄の重量比は、50wt%であった。マクロポア量は、0.20mL/g、占有率は、50%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、7.6g/dL、通気抵抗は、8.3Pa/cm、ブリードエミッション量は、13mgであった。
実施例5は、実施例1に比較して、メルタブルコアとなる繊維としてポリエステル樹脂繊維を用いたものであり、酸化鉄の配合比が変更されているほかは、実施例1と同様である。
成形材料の配合は、粉末状の活性炭100重量部に対し、ポリエステル樹脂繊維45重量部、バインダ67重量部、酸化鉄粉末233重量部、である。なお、メルタブルコアとなるポリエステル樹脂繊維の比重は、1.3g/cm3である。
焼成後の状態におけるセル通路12のピッチPは1.7mm、壁13の厚さTは0.55mm、である。焼成後の状態における酸化鉄の重量比は、58wt%であった。マクロポア量は、0.21mL/g、占有率は、54%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、7.1g/dL、通気抵抗は、8.2Pa/cm、ブリードエミッション量は、14mgであった。
さらに、いくつかの比較例となるハニカム吸着材11を同様に製造し、かつ試験を行った。
[比較例6]
比較例6の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維86重量部、バインダ134重量部、酸化鉄粉末466重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.6mm、壁13の厚さTは0.52mm、である。焼成後の状態における酸化鉄の重量比は、67wt%であった。マクロポア量は、0.28mL/g、占有率は、54%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、5.2g/dL、通気抵抗は、8.4Pa/cm、ブリードエミッション量は、47mgであった。従って、BWCおよびブリードエミッション量が目標を達成できない結果となった。
[比較例7]
比較例7の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維22重量部、バインダ75重量部、である。金属酸化物は配合していない。
焼成後の状態におけるセル通路12のピッチPは1.5mm、壁13の厚さTは0.70mm、である。マクロポア量は、0.41mL/g、占有率は、72%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、8.2g/dL、通気抵抗は、35.5Pa/cm、ブリードエミッション量は、30mgであった。従って、通気抵抗およびブリードエミッション量が目標を達成できない結果となった。
[比較例8]
比較例8の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維22重量部、バインダ35重量部、酸化鉄粉末40重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.5mm、壁13の厚さTは0.70mm、である。焼成後の状態における酸化鉄の重量比は、23wt%であった。マクロポア量は、0.40mL/g、占有率は、72%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、7.8g/dL、通気抵抗は、35.5Pa/cm、ブリードエミッション量は、25mgであった。従って、通気抵抗およびブリードエミッション量が目標を達成できない結果となった。
[比較例9]
比較例9の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維40重量部、バインダ63重量部、酸化鉄粉末423重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.5mm、壁13の厚さTは0.70mm、である。焼成後の状態における酸化鉄の重量比は、72wt%であった。マクロポア量は、0.10mL/g、占有率は、72%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、6.5g/dL、通気抵抗は、35.5Pa/cm、ブリードエミッション量は、20mgであった。従って、通気抵抗が目標を達成できない結果となった。
[比較例10]
比較例10の配合は、粉末状の活性炭100重量部に対し、バインダ120重量部、酸化鉄粉末240重量部、である。メルタブルコアとなるナイロン繊維は配合していない。
焼成後の状態におけるセル通路12のピッチPは1.5mm、壁13の厚さTは0.70mm、である。焼成後の状態における酸化鉄の重量比は、52wt%であった。マクロポア量は、0.08mL/g、占有率は、72%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、7.8g/dL、通気抵抗は、35.5Pa/cm、ブリードエミッション量は、40mgであった。従って、通気抵抗およびブリードエミッション量が目標を達成できない結果となった。
[比較例11]
比較例11の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維170重量部、バインダ67重量部、酸化鉄粉末233重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.7mm、壁13の厚さTは0.55mm、である。焼成後の状態における酸化鉄の重量比は、58wt%であった。マクロポア量は、0.58mL/g、占有率は、54%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、6.3g/dL、通気抵抗は、8.6Pa/cm、ブリードエミッション量は、45mgであった。従って、BWCおよびブリードエミッション量が目標を達成できない結果となった。
[比較例12]
比較例12の配合は、粉末状の活性炭100重量部に対し、ナイロン繊維43重量部、バインダ67重量部、酸化鉄粉末233重量部、である。
焼成後の状態におけるセル通路12のピッチPは1.8mm、壁13の厚さTは0.44mm、である。焼成後の状態における酸化鉄の重量比は、58wt%であった。マクロポア量は、0.18mL/g、占有率は、43%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、5.3g/dL、通気抵抗は、5.4Pa/cm、ブリードエミッション量は、16mgであった。従って、BWCが目標を達成できない結果となった。
[比較例13]
比較例13の配合は、粉末状の活性炭100重量部に対し、バインダ400重量部、である。ナイロン繊維および酸化物は配合していない。
焼成後の状態におけるセル通路12のピッチPは1.6mm、壁13の厚さTは0.27mm、である。マクロポア量は、0.05mL/g、占有率は、31%であった。
このようにして得られたハニカム吸着材11について、実施例1と同様の試験を行ったところ、BWCは、4.7g/dL、通気抵抗は、5.3Pa/cm、ブリードエミッション量は、14mgであった。従って、BWCが目標を達成できない結果となった。
以下の表1は、上述した実施例1〜5および比較例6〜13をまとめた示したものである。
Figure 2018103100
次に、図4は、上述した実施例1〜5および比較例6〜13に関して、セル通路12のピッチPおよび壁厚Tと、BWCの値との相関をまとめたいわゆるバブルチャートである。ここでは、円の大きさがBWCの大きさを表している。また、各円に付した数字が、実施例1〜5および比較例6〜13の番号に対応している。図4においては、円が大きいほど、BWCの上で優れていることとなる。
同様に、図5は、実施例1〜5および比較例6〜13に関して、セル通路12のピッチPおよび壁厚Tと、通気抵抗との相関をまとめたバブルチャートである。ここでは、円の大きさが通気抵抗を表しており、円が小さいほど通気抵抗の点で優れている。
同様に、図6は、実施例1〜5および比較例6〜13に関して、セル通路12のピッチPおよび壁厚Tと、ブリードエミッション量との相関をまとめたバブルチャートである。ここでは、円の大きさがブリードエミッション量を表しており、円が小さいほどブリードエミッションの点で優れている。
図5に示すように、通気抵抗に関しては、壁厚Tが小さいほど、またピッチPが大きいほど、通気抵抗が小さくなる。なお、壁厚Tが小さいほど、またピッチPが大きいほど、占有率は低くなる。
そして、ブリードエミッションに関しては、壁厚Tを薄くすると、吸着残存量が少なくなるため、ブリードエミッション低減の上で有利となる。
しかしながら、図4に示すように、BWCに関しては、一般に、壁厚Tを大きくするほど、またピッチPを小さくするほど、BWCが高い傾向となる。従って、ピッチPに比較して壁厚Tを小さくした比較例12,13では、十分なBWCを確保することができない。なお、図中の一点鎖線は、BWCが目標とする6.5g/dL以上となるであろう壁厚Tの領域を示している。他方、ピッチPに比較して壁厚Tを大きくした比較例7,8,9,10などでは、BWCを確保できる反面、通気抵抗が増加するのは勿論のこと、ブリードエミッション量が増加してしまう。
図7は、実施例1〜4および比較例10,11に関して、メルタブルコアであるナイロン繊維の配合量(活性炭100gに対するナイロン繊維の重量)とブリードエミッション量との相関を示したグラフである。この図は、メルタブルコアが活性炭に対し極端に多くても極端に少なくてもブリードエミッションの悪化を来し、適当な範囲に存在すれば、ブリードエミッションが低減する、ことを表している。
また、図8は、実施例1〜4および比較例7,9に関して、金属酸化物(酸化鉄)の配合量(活性炭100gに対する金属酸化物の重量)とブリードエミッション量との相関を示したグラフである。この図は、金属酸化物の量が極端に多くても極端に少なくてもブリードエミッションの悪化を来し、適当な範囲に存在すれば、ブリードエミッションが低減する、ことを表している。
さらに、図9は、実施例1〜5および比較例6〜13に関して、マクロポア量とブリードエミッション量との相関を示したグラフである。この図9によれば、ブリードエミッションを低減するためには、ある適当な範囲内でマクロポア量が必要なこと、ならびに、ブリードエミッションの多少はマクロポア量のみでは定まらないことが明らかである。
従って、マクロポアおよび金属酸化物の量をある範囲に調製した上で、セル通路12のピッチPと壁厚Tとの相関を適切に設定することにより、ブリードエミッション低減と、十分なBWCの確保と、低い通気抵抗と、の三者を同時に満足することができる。
1…キャニスタ
5…ドレンポート
11…ハニカム吸着材

Claims (10)

  1. 活性炭の粉末をバインダとともに円柱形状に成形しかつ焼成したハニカム吸着材であって、キャニスタの複数の吸着材チャンバの中で、ドレンポートに最も近い吸着材チャンバに装填して使用されるハニカム吸着材において、
    軸方向に沿った複数のセル通路と、
    焼成時に消失する繊維状のメルタブルコアを加えることで形成され、ハニカム吸着材全体の重量に対し、0.15mL/g〜0.35mL/gの容積を占めるマクロポアと、
    活性炭に対し150〜250パーセントの重量割合を有する金属酸化物粒子と、
    を含み、
    互いに隣接するセル通路の間のピッチは、1.5mm〜1.8mmの範囲内にあり、セル通路を仕切る壁の厚さは、0.45mm〜0.60mmの範囲内にあり、
    6.5g/dL以上のBWCを有する、ハニカム吸着材。
  2. 上記ハニカム吸着材の外形寸法とセル通路の寸法とから定まる占有率が、少なくとも50パーセントである、請求項1に記載のハニカム吸着材。
  3. 上記セル通路の断面形状は、六角形、四角形、三角形、円形、のいずれかである、請求項1に記載のハニカム吸着材。
  4. 上記セル通路の断面形状は、六角形である、請求項3に記載のハニカム吸着材。
  5. 上記金属酸化物は酸化鉄である、請求項1に記載のハニカム吸着材。
  6. 請求項1に記載のハニカム吸着材を備えたキャニスタ。
  7. 少なくとも一つの追加の吸着材をさらに含む、請求項6に記載のキャニスタ。
  8. 活性炭粉末に、該活性炭に対し150〜250パーセントの重量割合を有する金属酸化物粒子と、焼成時に消失する比重1.1g/cm3〜1.3g/cm3の繊維からなり、活性炭に対する重量割合が40〜100パーセントの範囲内にあるメルタブルコアと、バインダと、を加えて成形材料を準備し、
    上記成形材料を、複数のセル通路をハニカム状に有する円柱形状の中間成形体に押出成形し、
    上記中間成形体を焼成し、
    互いに隣接するセル通路の間のピッチが、1.5mm〜1.8mmの範囲内にあり、セル通路を仕切る壁の厚さが、0.45mm〜0.60mmの範囲内にあり、
    6.5g/dL以上のBWCを有するハニカム吸着材を得るようにした、
    キャニスタ用ハニカム吸着材の製造方法。
  9. メルタブルコアとなる繊維は、ポリアミド樹脂繊維またはポリエステル樹脂繊維である、請求項8に記載のキャニスタ用ハニカム吸着材の製造方法。
  10. メルタブルコアとなる繊維は、繊維径が10μm、繊維長が0.5mmである、請求項8に記載のキャニスタ用ハニカム吸着材の製造方法。
JP2016251646A 2016-12-26 2016-12-26 ハニカム吸着材ならびにその製造方法およびキャニスタ Active JP6863732B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016251646A JP6863732B2 (ja) 2016-12-26 2016-12-26 ハニカム吸着材ならびにその製造方法およびキャニスタ
US15/427,614 US10150097B2 (en) 2016-12-26 2017-02-08 Honeycomb adsorbent, method of manufacturing the honeycomb adsorbent and canister
CN201710291776.7A CN108236920B (zh) 2016-12-26 2017-04-28 蜂窝状吸附材料及其制造方法和筒罐
CN202210774679.4A CN115090263B (zh) 2016-12-26 2017-04-28 蜂窝状吸附材料及其制造方法和筒罐
EP17198942.9A EP3338886B1 (en) 2016-12-26 2017-10-27 Honeycomb adsorbent, method of manufacturing the honeycomb adsorbent and canister
EP22170449.7A EP4056265A1 (en) 2016-12-26 2017-10-27 Honeycomb adsorbent, method of manufacturing the honeycomb adsorbent and canister
US16/939,722 USRE49587E1 (en) 2016-12-26 2020-07-27 Honeycomb adsorbent, method of manufacturing the honeycomb adsorbent and canister
JP2021059168A JP7322086B2 (ja) 2016-12-26 2021-03-31 ハニカム吸着材ならびにその製造方法およびキャニスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251646A JP6863732B2 (ja) 2016-12-26 2016-12-26 ハニカム吸着材ならびにその製造方法およびキャニスタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021059168A Division JP7322086B2 (ja) 2016-12-26 2021-03-31 ハニカム吸着材ならびにその製造方法およびキャニスタ

Publications (2)

Publication Number Publication Date
JP2018103100A true JP2018103100A (ja) 2018-07-05
JP6863732B2 JP6863732B2 (ja) 2021-04-21

Family

ID=60331403

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016251646A Active JP6863732B2 (ja) 2016-12-26 2016-12-26 ハニカム吸着材ならびにその製造方法およびキャニスタ
JP2021059168A Active JP7322086B2 (ja) 2016-12-26 2021-03-31 ハニカム吸着材ならびにその製造方法およびキャニスタ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021059168A Active JP7322086B2 (ja) 2016-12-26 2021-03-31 ハニカム吸着材ならびにその製造方法およびキャニスタ

Country Status (4)

Country Link
US (2) US10150097B2 (ja)
EP (2) EP4056265A1 (ja)
JP (2) JP6863732B2 (ja)
CN (2) CN108236920B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208600A1 (ja) * 2018-04-24 2019-10-31 大阪ガスケミカル株式会社 吸着材、キャニスタ及び吸着材の製造方法
WO2020067007A1 (ja) * 2018-09-28 2020-04-02 大阪ガスケミカル株式会社 吸着材、キャニスタ及び吸着材の製造方法
JP2021112740A (ja) * 2016-12-26 2021-08-05 株式会社マーレ フィルターシステムズ ハニカム吸着材ならびにその製造方法およびキャニスタ
JP2021159846A (ja) * 2020-03-31 2021-10-11 株式会社フジタ 吸着材の製造方法
JP2021171691A (ja) * 2020-04-23 2021-11-01 株式会社フジタ 吸着材
JP2023519340A (ja) * 2020-03-27 2023-05-10 インジェヴィティ・サウス・カロライナ・エルエルシー 低エミッション吸着体およびキャニスターシステム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422480B2 (en) * 2014-11-11 2019-09-24 Basf Se Storage vessel comprising a one-piece shaped body of a porous solid
JP2018084195A (ja) * 2016-11-24 2018-05-31 愛三工業株式会社 吸着材およびそれを用いたキャニスタ

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151255A (en) * 1980-04-25 1981-11-24 Nippon Soken Inc Preventing device for evaporation of fuel
JPH04317405A (ja) * 1990-12-24 1992-11-09 Corning Inc 活性炭構造物およびその製造方法
JPH05146678A (ja) * 1991-11-29 1993-06-15 Sumitomo Metal Mining Co Ltd 活性炭ハニカム構造体とその製造方法
JP2002544111A (ja) * 1999-05-14 2002-12-24 アプライド セラミックス,インコーポレーテッド 活性炭を含んだ吸着性モノリスと、このモノリスを製造するための方法、及び流体流から化学物質を吸着するための方法
JP2007117863A (ja) * 2005-10-27 2007-05-17 Kyocera Corp ハニカム構造体およびこれを用いたキャニスター
JP2009144684A (ja) * 2007-12-18 2009-07-02 Aisan Ind Co Ltd 蒸発燃料処理装置
JP2011132903A (ja) * 2009-12-25 2011-07-07 Mahle Filter Systems Japan Corp キャニスタ用吸着材
JP2013011243A (ja) * 2011-06-30 2013-01-17 Mahle Filter Systems Japan Corp キャニスタ用吸着材およびキャニスタ
JP2013177889A (ja) * 2012-02-10 2013-09-09 Kuraray Chemical Co Ltd 蒸散燃料エミッションの低減方法、キャニスタ並びにその吸着剤
JP2013231380A (ja) * 2012-04-27 2013-11-14 Aisan Industry Co Ltd 蒸発燃料処理装置
JP2015124644A (ja) * 2013-12-26 2015-07-06 株式会社マーレ フィルターシステムズ キャニスタ
JP2016500784A (ja) * 2012-10-10 2016-01-14 ミードウエストベコ・コーポレーション 蒸発性燃料蒸気の排出制御システム
JP2016109090A (ja) * 2014-12-10 2016-06-20 株式会社マーレ フィルターシステムズ キャニスタ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386947A (en) * 1980-04-25 1983-06-07 Nippon Soken, Inc. Apparatus for adsorbing fuel vapor
CA2187490A1 (en) * 1995-11-17 1997-05-18 Kishor Purushottam Gadkaree Method of making activated carbon bodies having improved adsorption properties
US6171373B1 (en) * 1996-04-23 2001-01-09 Applied Ceramics, Inc. Adsorptive monolith including activated carbon, method for making said monolith, and method for adsorbing chemical agents from fluid streams
US5914294A (en) * 1996-04-23 1999-06-22 Applied Ceramics, Inc. Adsorptive monolith including activated carbon and method for making said monlith
JP2001322872A (ja) * 1999-10-21 2001-11-20 Tennex Corp 成型活性炭及びその製造方法
US6540815B1 (en) 2001-11-21 2003-04-01 Meadwestvaco Corporation Method for reducing emissions from evaporative emissions control systems
US7906078B2 (en) * 2002-06-18 2011-03-15 Osaka Gas Co., Ltd. Adsorbent of latent-heat storage type for canister and process for producing the same
JP2005035812A (ja) * 2003-07-16 2005-02-10 Cataler Corp 活性炭とキャニスタ
JP4610273B2 (ja) 2004-03-22 2011-01-12 京セラ株式会社 ハニカム構造体とその製造方法およびハニカム構造体を用いたキャニスター
US7416581B2 (en) * 2004-09-03 2008-08-26 Point Source Solutions, Inc. Air-permeable filtration media, methods of manufacture and methods of use
US7967899B2 (en) * 2006-01-06 2011-06-28 Cataler Corporation Activated carbon and canister using the same
JP5030691B2 (ja) 2007-07-12 2012-09-19 株式会社マーレ フィルターシステムズ キャニスタ
CN102333848A (zh) * 2009-02-23 2012-01-25 塔夫茨大学 转换生物质为气体燃料碳氢化合物的方法
US9410245B2 (en) * 2010-12-28 2016-08-09 Kirin Beer Kabushiki Kaisha Gas-barrier plastic molded product and manufacturing process therefor
JP5952807B2 (ja) * 2011-03-30 2016-07-13 Jxエネルギー株式会社 リチウムイオン二次電池の負極用炭素材料の原料炭組成物の製造方法
CN103588204B (zh) * 2013-11-21 2015-06-24 宁夏华辉活性炭股份有限公司 一种煤质车载油气回收专用活性炭的制备方法
FR3029803B1 (fr) * 2014-12-11 2019-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Melange adsorbant a capacite thermique amelioree
CN105148843B (zh) * 2015-09-28 2018-03-02 清华大学深圳研究生院 一种活性炭颗粒及其制备方法及碳罐
CN106000093B (zh) * 2016-07-22 2019-05-17 清华大学 一种净化空气的原位再生装置及含有该装置的净化器
JP6863732B2 (ja) * 2016-12-26 2021-04-21 株式会社マーレ フィルターシステムズ ハニカム吸着材ならびにその製造方法およびキャニスタ
US11154838B2 (en) * 2017-09-29 2021-10-26 Ingevity South Carolina, Llc Low emissions, high working capacity adsorbent and canister system
CN113167197A (zh) * 2018-09-28 2021-07-23 大阪燃气化学株式会社 吸附材料、滤罐及吸附材料的制造方法
WO2020214445A1 (en) * 2019-04-19 2020-10-22 Basf Corporation Adsorbent material for reducing hydrocarbon bleed emission in an evaporative emission control system
US11889653B2 (en) * 2020-05-01 2024-01-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Cabinet and power converter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151255A (en) * 1980-04-25 1981-11-24 Nippon Soken Inc Preventing device for evaporation of fuel
JPH04317405A (ja) * 1990-12-24 1992-11-09 Corning Inc 活性炭構造物およびその製造方法
JPH05146678A (ja) * 1991-11-29 1993-06-15 Sumitomo Metal Mining Co Ltd 活性炭ハニカム構造体とその製造方法
JP2002544111A (ja) * 1999-05-14 2002-12-24 アプライド セラミックス,インコーポレーテッド 活性炭を含んだ吸着性モノリスと、このモノリスを製造するための方法、及び流体流から化学物質を吸着するための方法
JP2007117863A (ja) * 2005-10-27 2007-05-17 Kyocera Corp ハニカム構造体およびこれを用いたキャニスター
JP2009144684A (ja) * 2007-12-18 2009-07-02 Aisan Ind Co Ltd 蒸発燃料処理装置
JP2011132903A (ja) * 2009-12-25 2011-07-07 Mahle Filter Systems Japan Corp キャニスタ用吸着材
JP2013011243A (ja) * 2011-06-30 2013-01-17 Mahle Filter Systems Japan Corp キャニスタ用吸着材およびキャニスタ
JP2013177889A (ja) * 2012-02-10 2013-09-09 Kuraray Chemical Co Ltd 蒸散燃料エミッションの低減方法、キャニスタ並びにその吸着剤
JP2013231380A (ja) * 2012-04-27 2013-11-14 Aisan Industry Co Ltd 蒸発燃料処理装置
JP2016500784A (ja) * 2012-10-10 2016-01-14 ミードウエストベコ・コーポレーション 蒸発性燃料蒸気の排出制御システム
JP2015124644A (ja) * 2013-12-26 2015-07-06 株式会社マーレ フィルターシステムズ キャニスタ
JP2016109090A (ja) * 2014-12-10 2016-06-20 株式会社マーレ フィルターシステムズ キャニスタ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112740A (ja) * 2016-12-26 2021-08-05 株式会社マーレ フィルターシステムズ ハニカム吸着材ならびにその製造方法およびキャニスタ
JP7322086B2 (ja) 2016-12-26 2023-08-07 マーレジャパン株式会社 ハニカム吸着材ならびにその製造方法およびキャニスタ
WO2019208600A1 (ja) * 2018-04-24 2019-10-31 大阪ガスケミカル株式会社 吸着材、キャニスタ及び吸着材の製造方法
JPWO2019208600A1 (ja) * 2018-04-24 2021-05-13 大阪ガスケミカル株式会社 吸着材、キャニスタ及び吸着材の製造方法
US11896949B2 (en) 2018-04-24 2024-02-13 Mahle International Gmbh Adsorbent, canister and method for producing adsorbent
JP7469223B2 (ja) 2018-04-24 2024-04-16 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 吸着材、キャニスタ及び吸着材の製造方法
WO2020067007A1 (ja) * 2018-09-28 2020-04-02 大阪ガスケミカル株式会社 吸着材、キャニスタ及び吸着材の製造方法
JPWO2020067007A1 (ja) * 2018-09-28 2021-09-24 大阪ガスケミカル株式会社 吸着材、キャニスタ及び吸着材の製造方法
JP2023519340A (ja) * 2020-03-27 2023-05-10 インジェヴィティ・サウス・カロライナ・エルエルシー 低エミッション吸着体およびキャニスターシステム
JP2021159846A (ja) * 2020-03-31 2021-10-11 株式会社フジタ 吸着材の製造方法
JP7489812B2 (ja) 2020-03-31 2024-05-24 株式会社フジタ 吸着材の製造方法
JP2021171691A (ja) * 2020-04-23 2021-11-01 株式会社フジタ 吸着材

Also Published As

Publication number Publication date
CN115090263B (zh) 2023-09-15
JP2021112740A (ja) 2021-08-05
CN108236920B (zh) 2022-07-19
USRE49587E1 (en) 2023-07-25
CN108236920A (zh) 2018-07-03
EP3338886A1 (en) 2018-06-27
US20180178194A1 (en) 2018-06-28
US10150097B2 (en) 2018-12-11
EP3338886B1 (en) 2022-06-29
EP4056265A1 (en) 2022-09-14
CN115090263A (zh) 2022-09-23
JP6863732B2 (ja) 2021-04-21
JP7322086B2 (ja) 2023-08-07

Similar Documents

Publication Publication Date Title
JP7322086B2 (ja) ハニカム吸着材ならびにその製造方法およびキャニスタ
US9322368B2 (en) Canister
US9174195B2 (en) Adsorbent for canister, and canister
US9005350B2 (en) Trap canisters
US20130186375A1 (en) Trap canister capturing fuel vapor
CN104279090A (zh) 蒸发燃料处理装置
US11896949B2 (en) Adsorbent, canister and method for producing adsorbent
JPWO2004110928A1 (ja) 活性炭シート成型体及び燃料蒸気の蒸散防止装置用エレメント
JP2007117863A (ja) ハニカム構造体およびこれを用いたキャニスター
US20220040627A1 (en) Adsorbent, canister, and method for producing adsorbent
JP6762689B2 (ja) 蒸発燃料処理装置
JP6628992B2 (ja) 蒸発燃料処理装置
US20200011276A1 (en) Fuel Vapor Processing Apparatus
JP2011132903A (ja) キャニスタ用吸着材
JP2015124645A (ja) キャニスタ
JP2017189770A (ja) 自動車両用のフィルタ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6863732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250