JP2017178815A - ナフタレンテトラカルボジイミド誘導体及び電子写真感光体 - Google Patents

ナフタレンテトラカルボジイミド誘導体及び電子写真感光体 Download PDF

Info

Publication number
JP2017178815A
JP2017178815A JP2016065979A JP2016065979A JP2017178815A JP 2017178815 A JP2017178815 A JP 2017178815A JP 2016065979 A JP2016065979 A JP 2016065979A JP 2016065979 A JP2016065979 A JP 2016065979A JP 2017178815 A JP2017178815 A JP 2017178815A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
derivative
layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016065979A
Other languages
English (en)
Other versions
JP6481650B2 (ja
Inventor
岡田 英樹
Hideki Okada
英樹 岡田
章雄 菅井
Akio Sugai
章雄 菅井
健輔 小嶋
Kensuke Kojima
健輔 小嶋
智文 清水
Tomofumi Shimizu
智文 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Document Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Document Solutions Inc filed Critical Kyocera Document Solutions Inc
Priority to JP2016065979A priority Critical patent/JP6481650B2/ja
Priority to CN201710171537.8A priority patent/CN107235979B/zh
Publication of JP2017178815A publication Critical patent/JP2017178815A/ja
Application granted granted Critical
Publication of JP6481650B2 publication Critical patent/JP6481650B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0646Heterocyclic compounds containing two or more hetero rings in the same ring system
    • G03G5/0651Heterocyclic compounds containing two or more hetero rings in the same ring system containing four relevant rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

【課題】導電性基体と感光層とを備える電子写真感光体において、白点現象の発生を抑制する新規ナフタレンテトラカルボジイミド誘導体の提供。【解決手段】下式(1)で示されるナフタレンテトラカルボジイミド誘導体。[R1及びR2は各々独立に、C1〜6のアルキル基とフェニルカルボニル基との何れかを有してもよいC6〜14のアリール基、C7〜20のアラルキル基、C1〜8のアルキル基又はC3〜10のシクロアルキル基;R1及びR2のうち少なくとも一方が1以上のハロゲン原子を有する]【選択図】図1

Description

本発明は、ナフタレンテトラカルボジイミド誘導体及び電子写真感光体に関する。
電子写真感光体は、電子写真方式の画像形成装置に用いられる。電子写真感光体としては、例えば、積層型電子写真感光体又は単層型電子写真感光体が用いられる。電子写真感光体は、感光層を備える。積層型電子写真感光体は、感光層として、電荷発生の機能を有する電荷発生層と、電荷輸送の機能を有する電荷輸送層とを備える。単層型電子写真感光体は、感光層として、電荷発生の機能と電荷輸送の機能とを有する単層型感光層を備える。
電子写真方式の画像形成装置で画像を形成すると、白点現象と呼ばれる画像不良が発生する場合があった。白点現象とは、例えば、トナー像が記録媒体上に転写されて形成される領域(画像領域)に、微小の画像欠陥(より具体的には、直径が0.5mm以上2.5mm以下の円状の画像欠陥)が生じる現象である。
特許文献1に記載の電子写真感光体が備える感光層は、例えば、下記化学式(E−1)で表される化合物を含有する。
Figure 2017178815
特開2005−154444号公報
しかし、特許文献1に記載の電子写真感光体では、白点現象の発生を十分に抑制することができなかった。
本発明は、上記課題に鑑みてなされたものであり、その目的は、電子写真感光体の白点現象の発生を抑制するナフタレンテトラカルボジイミド誘導体を提供することである。また、本発明の別の目的は、白点現象の発生を抑制する電子写真感光体を提供することである。
本発明のナフタレンテトラカルボジイミド誘導体は、一般式(1)で表される。
Figure 2017178815
前記一般式(1)中、R1及びR2は、各々独立に、炭素原子数1以上6以下のアルキル基とフェニルカルボニル基との何れかを有してもよい炭素原子数6以上14以下のアリール基、炭素原子数7以上20以下のアラルキル基、炭素原子数1以上8以下のアルキル基、及び炭素原子数3以上10以下のシクロアルキル基からなる群より選択される基を表す。前記基は、1以上のハロゲン原子で置換されてもよい。R1及びR2のうち少なくとも一方が1以上のハロゲン原子を有する。
本発明の電子写真感光体は、導電性基体と、感光層とを備える。前記感光層は、電荷発生剤と、正孔輸送剤と、バインダー樹脂と、上述のナフタレンテトラカルボジイミド誘導体とを含有する。
本発明のナフタレンテトラカルボジイミド誘導体は、電子写真感光体の白点の発生を抑制することができる。また、本発明の電子写真感光体によれば、白点現象の発生を抑制することができる。
(a)、(b)及び(c)は、それぞれ、本発明の第二実施形態に係る電子写真感光体の一例を示す概略断面図である。 (a)、(b)及び(c)は、それぞれ、本発明の第二実施形態に係る電子写真感光体の別の例を示す概略断面図である。 本発明の第一実施形態に係るナフタレンテトラカルボジイミド誘導体(1−1)の1H−NMRスペクトルである。 摩擦帯電量の測定装置の概要を示す図である。
以下、本発明の実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されない。本発明は、本発明の目的の範囲内で、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨は限定されない。
以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。また、化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。
以下、ハロゲン原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上6以下のアルキル基、炭素原子数1以上3以下のアルキル基、炭素原子数6以上14以下のアリール基、炭素原子数7以上20以下のアラルキル基、炭素原子数7以上9以下のアラルキル基、及び炭素原子数3以上10以下のシクロアルキル基は、何ら規定していなければ、それぞれ次の意味である。
ハロゲン原子としては、例えば、フッ素原子、塩素原子、又は臭素原子が挙げられる。
炭素原子数1以上8以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−へプチル基、又はn−オクチル基が挙げられる。
炭素原子数1以上6以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上6以下のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、又はヘキシル基が挙げられる。
炭素原子数1以上3以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上3以下のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、又はイソプロピル基が挙げられる。
炭素原子数6以上14以下のアリール基は、例えば、炭素原子数6以上14以下の非置換の芳香族単環炭化水素基、炭素原子数6以上14以下の非置換の芳香族縮合二環炭化水素基又は炭素原子数6以上14以下の非置換の芳香族縮合三環炭化水素基である。炭素原子数6以上14以下のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、又はフェナントリル基が挙げられる。
炭素原子数7以上20以下のアラルキル基は、非置換である。炭素原子数7以上20以下のアラルキル基は、炭素原子数6以上14以下のアリール基と、炭素原子数1以上6以下のアルキル基とが結合した基である。炭素原子数7以上20以下のアラルキル基における炭素原子数1以上6以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数7以上20以下のアラルキル基としては、例えば、フェニルメチル基(ベンジル基)、2−フェニルエチル基(フェネチル基)、1−フェニルエチル基、3−フェニルプロピル基、又は4−フェニルブチル基が挙げられる。
炭素原子数7以上9以下のアラルキル基は、非置換である。炭素原子数7以上9以下のアラルキル基は、フェニル基と、炭素原子数1以上3以下のアルキル基とが結合した基である。炭素原子数7以上9以下のアラルキル基としては、例えば、フェニルメチル基、2−フェニルエチル基、1−フェニルエチル基、又は3−フェニルエチル基が挙げられる。
炭素原子数3以上10以下のシクロアルキル基は、非置換である。炭素原子数3以上10以下のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基、シクロノニル基、又はシクロデシル基が挙げられる。
<第一実施形態:ナフタレンテトラカルボジイミド誘導体>
[1.ナフタレンテトラカルボジイミド誘導体]
本発明の第一実施形態はナフタレンテトラカルボジイミド誘導体に関する。第一実施形態に係るナフタレンテトラカルボジイミド誘導体は、一般式(1)で表される。以下、一般式(1)で表されるナフタレンテトラカルボジイミド誘導体をナフタレンテトラカルボジイミド誘導体(1)と記載することがある。
Figure 2017178815
一般式(1)中、R1及びR2は、各々独立に、炭素原子数1以上6以下のアルキル基とフェニルカルボニル基との何れかを有してもよい炭素原子数6以上14以下のアリール基、炭素原子数7以上20以下のアラルキル基、炭素原子数1以上8以下のアルキル基、及び炭素原子数3以上10以下のシクロアルキル基からなる群より選択される基を表す。基は、1以上のハロゲン原子で置換されてもよい。R1及びR2のうち少なくとも一方が1以上のハロゲン原子を有する。
第一実施形態に係るナフタレンテトラカルボジイミド誘導体(1)は、感光体の白点現象を抑制することができる。その理由は以下のように推測される。
ここで、便宜上、白点現象について説明する。電子写真方式の画像形成装置は、像担持体(感光体)と、帯電部と、露光部と、現像部と、転写部とを備える。画像形成装置が直接転写方式を採用する場合、転写部は、現像部により現像されたトナー像を記録媒体(例えば、記録紙)に転写する。より詳細には、転写部は、感光体の表面に現像されたトナー像を記録媒体に転写する。その結果、記録媒体上にトナー像が形成される。
トナー像の転写において、記録媒体は感光体の表面で摺擦され、記録媒体が帯電(いわゆる摩擦帯電)することがある。かかる場合、記録媒体が感光体の帯電極性に対して同極性に帯電し帯電性が低下する傾向、又は逆極性に帯電(いわゆる逆帯電)する傾向がある。記録媒体がこのように帯電すると、記録媒体が有する微小な成分(例えば、紙粉)が感光体の表面に移動し付着することがある。そして、微小な成分が感光体の表面の画像領域に付着すると、記録媒体上に形成された画像に欠陥(白点)が生じることがある。このような画像欠陥が生じる現象を白点現象という。白点現象の発生の評価方法は、実施例にて詳細に後述する。
第一実施形態に係るナフタレンテトラカルボジイミド誘導体(1)は、ハロゲン原子を有する。このため、感光体の感光層がナフタレンテトラカルボジイミド誘導体(1)を含有すると、転写部において記録媒体が感光体の表面と摺擦しても、記録媒体は感光体の帯電極性に対して同極性で帯電性が低下しにくい傾向、及び逆帯電しにくい傾向にある。よって、感光体の表面に微小な成分が付着しにくくなり、白点現象の発生が抑制されると考えられる。
引き続き、第一実施形態に係るナフタレンテトラカルボジイミド誘導体(1)を説明する。一般式(1)中、R1及びR2の表す炭素原子数6以上14以下のアリール基は、フェニル基が好ましい。炭素原子数6以上14以下のアリール基は、置換基を有してもよい。このような置換基としては、例えば、ハロゲン原子、炭素原子数1以上6以下のアルキル基、又はフェニルカルボニル基が挙げられ、塩素原子、メチル基、エチル基、又はフェニルカルボニル基が好ましい。置換基の数は、1以上3以下の整数であることが好ましい。炭素原子数6以上14以下のアリール基がフェニル基である場合、フェニル基における置換基の置換位置は、例えば、フェニル基が窒素原子と結合する位置に対して、オルト位(o位)、メタ位(m位)、パラ位(p位)、又はこれらの少なくとも2つが挙げられる。置換基を有するフェニル基としては、例えば、4−クロロ−2−フェニルカルボニルフェニル基、2,6−ジクロロフェニル基、2,4,6−トリクロロフェニル基、又は2−エチル−6−メチルフェニル基が挙げられる。
一般式(1)中、R1及びR2の表す炭素原子数7以上20以下のアラルキル基は、炭素原子数7以上9以下のアラルキル基が好ましく、1−フェニルエチル基がより好ましい。炭素原子数7以上20以下のアラルキル基は、置換基を有してもよい。このような置換基としては、例えば、炭素原子数1以上6以下のアルキル基、又はハロゲン原子が挙げられる。ハロゲン原子を有する炭素原子数7以上20以下のアラルキル基としては、例えば、1−(2,4−ジクロロフェニル)エチル基が挙げられる。
一般式(1)中、R1とR2とが互いに同一であっても異なってもよい。R1とR2とは互いに同一である場合、R1及びR2は、1以上のハロゲン原子を有する炭素原子数7以上9以下のアラルキル基、又はフェニルカルボニル基及びハロゲン原子を各々1つ有する炭素原子数6以上14以下のアリール基を表すことが好ましい。
一般式(1)中、R1とR2とが互いに異なる場合、R1及びR2のうちの一方が、炭素原子数1以上3以下のアルキル基を少なくとも1つ有する炭素原子数6以上14以下のアリール基を表し、R1及びR2のうちの他方が、1以上のハロゲン原子を有する炭素原子数7以上9以下のアラルキル基、又はフェニルカルボニル基を有してもよく1以上のハロゲン原子を有する炭素原子数6以上14以下のアリール基を表すことが好ましい。
一般式(1)中、R1及びR2の表す基は、1以上のハロゲン原子で置換されてもよく、R1及びR2のうち少なくとも一方が1以上のハロゲン原子を有する。R1の表す基の有するハロゲン原子の数と、R2の表す基の有するハロゲン原子の数との総数は、1以上の整数であり、3又は4であることが好ましい。
ナフタレンテトラカルボジイミド誘導体(1)の具体例としては、化学式(1−1)〜(1−6)で表されるナフタレンテトラカルボジイミド誘導体(以下、ナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)と記載することがある)が挙げられる。
Figure 2017178815
Figure 2017178815
Figure 2017178815
Figure 2017178815
Figure 2017178815
Figure 2017178815
[2.ナフタレンテトラカルボジイミド誘導体(1)の製造方法]
[2−1.R1とR2とが互いに異なる場合]
一般式(1)中、R1とR2とが互いに異なる場合、ナフタレンテトラカルボジイミド誘導体(1)は、例えば、反応式(R−1)で表す反応式、反応式(R−2)で表す反応式、及び反応式(R−3)で表す反応式(以下、それぞれ反応(R−1)、反応(R−2)及び反応(R−3)と記載することがある)に従って又はこれに準ずる方法によって製造される。ナフタレンテトラカルボジイミド誘導体(1)の製造方法は、例えば、反応(R−1)と、反応(R−2)と、反応(R−3)とを含む。
反応(R−1)において、R1は一般式(1)中のR1と同義である。R3は、アルキル基を表し、炭素原子数1以上3以下のアルキル基を表すことが好ましい。
Figure 2017178815
反応(R−1)では、1モル当量の一般式(A)で表される化合物(以下、化合物(A)と記載することがある)と1モル当量の一般式(B)で表される化合物(第一級アミン化合物)(以下、化合物(B)と記載することがある)とを塩基の存在下で反応させて、1モル当量の一般式(C)で表される化合物(以下、化合物(C)と記載することがある)を得る。化合物(C)は中間生成物である。反応(R−1)では、1モルの化合物(A)に対して、1モル以上2.5モル以下の化合物(B)を添加することが好ましい。1モルの化合物(A)に対して1モル以上の化合物(B)を添加すると、化合物(C)の収率を向上させ易い。一方、1モルの化合物(A)に対して2.5モル以下の化合物(B)を添加すると、反応(R−1)後に未反応の化合物(B)が残留し難く、化合物(C)の精製が容易となる。反応(R−1)の反応温度は80℃以上150℃以下であることが好ましい。反応(R−1)の反応時間は1時間以上8時間以下であることが好ましい。反応(R−1)は、溶媒中で行うことができる。溶媒としては、例えば、ジオキサンが挙げられる。塩基は、化合物(C)の収率を向上させる観点から、求核性が低いことが好ましい。このような塩基としては、例えば、N,N−ジイソプロピルエチルアミン(ヒューニッヒ塩基)が挙げられる。
反応(R−2)において、R1は一般式(1)中のR1と同義である。反応(R−2)において、R3は反応(R−1)におけるR3と同義である。
Figure 2017178815
反応(R−2)では、1モル当量の化合物(C)を酸の存在下で反応して、1モル当量の一般式(D)で表される化合物(以下、化合物(D)と記載することがある)を得る。化合物(D)は中間生成物である。反応(R−2)では、化合物(C)のエステルが酸存在下で加水分解し、ジカルボン酸となった後、ジカルボン酸が閉環し、無水カルボン酸となる。その結果、化合物(D)が生成する。反応(R−2)の反応時間は、5時間以上30時間以下であることが好ましい。反応(R−2)の反応温度は、70℃以上150℃以下であることが好ましい。酸としては、例えば、トリフルオロ酢酸が好ましい。酸は、溶媒として機能してもよい。
反応(R−3)において、R1及びR2は、それぞれ一般式(1)中のR1及びR2と同義である。
Figure 2017178815
反応(R−3)では、1モル当量の化合物(D)と、1モル当量の一般式(E)で表される化合物(第一級アミン化合物)(以下、化合物(E)と記載することがある)とを塩基の存在下で反応させて、1モル当量のナフタレンテトラカルボジイミド誘導体(1)を得る。反応(R−3)では、1モルの化合物(D)に対して、1モル以上2.5モル以下の化合物(E)を添加することが好ましい。1モルの化合物(D)に対して1モル以上の化合物(E)を添加すると、ナフタレンテトラカルボジイミド誘導体(1)の収率を向上させ易い。一方、1モルの化合物(D)に対して2.5モル以下の化合物(E)を添加すると、反応(R−3)後に未反応の化合物(E)が残留し難く、ナフタレンテトラカルボジイミド誘導体(1)の精製が容易となる。反応(R−3)の反応温度は80℃以上150℃以下であることが好ましい。反応(R−3)の反応時間は1時間以上8時間以下であることが好ましい。反応(R−3)は、溶媒中で行うことができる。溶媒としては、例えば、ジオキサンが挙げられる。塩基は、ナフタレンテトラカルボジイミド誘導体(1)の収率を向上させる観点から、求核性が低いことが好ましい。このような塩基としては、例えば、N,N−ジイソプロピルエチルアミン(ヒューニッヒ塩基)が挙げられる。
なお、ナフタレンテトラカルボジイミド誘導体(1)の製造方法は、反応(R−1)〜(R−3)におけるR1を有する第一級アミン及びR2を有する第一級アミンによるイミド化の順番を変更してもよい。ナフタレンテトラカルボジイミド誘導体(1)は、例えば、反応式(R’−1)で表す反応式、反応式(R’−2)で表す反応式、及び反応式(R’−3)で表す反応式(以下、それぞれ反応(R’−1)、反応(R’−2)及び反応(R’−3)と記載することがある)に従って又はこれに準ずる方法によっても製造される。
Figure 2017178815
詳しくは、反応(R’−1)は、化合物(B)を化合物(E)に変更した以外は、反応(R−1)と同様の反応である。反応(R’−2)は、化合物(C)を一般式(C’)で表される化合物(以下、化合物(C’)と記載することがある)に変更した以外は、反応(R−2)と同様の反応である。反応(R’−3)は、化合物(D)を一般式(D’)で表される化合物(以下、化合物(D’)と記載することがある)に変更し、化合物(E)を化合物(B)に変更した以外は、反応(R−3)と同様の反応である。ナフタレンテトラカルボジイミド誘導体(1)の製造方法は、例えば、反応(R−4)を含む。
[2−2.R1とR2とが同一である場合]
一般式(1)中、R1とR2とが互いに同一である場合、ナフタレンテトラカルボジイミド誘導体(1)は、例えば、反応式(R−4)で表す反応式(以下、反応(R−4)と記載することがある)に従って又はこれに準ずる方法によって製造される。なお、便宜上、反応式(R−4)では、一般式(1)中のR2をR1に置き換えて示している。
Figure 2017178815
反応(R−4)では、1モル当量の化学式(F)で表される化合物(以下、化合物(F)と記載することがある)と、1モル当量の一般式(G)で表される化合物(第一級アミン化合物)(以下、化合物(G)と記載することがある)とを塩基の存在下で反応させて、1モル当量のナフタレンテトラカルボジイミド誘導体(1)を得る。反応(R−4)では、1モルの化合物(F)に対して、2モル以上5モル以下の化合物(G)を添加することが好ましい。1モルの化合物(F)に対して2モル以上の化合物(G)を添加すると、ナフタレンテトラカルボジイミド誘導体(1)の収率を向上させ易い。一方、1モルの化合物(F)に対して5モル以下の化合物(G)を添加すると、反応(R−4)後に未反応の化合物(G)が残留し難く、ナフタレンテトラカルボジイミド誘導体(1)の精製が容易となる。反応(R−4)の反応温度は80℃以上150℃以下であることが好ましい。反応(R−4)の反応時間は1時間以上8時間以下であることが好ましい。反応(R−4)は、溶媒中で行うことができる。溶媒としては、例えば、ピコリン(メチルピリジン)が挙げられる。塩基は、ナフタレンテトラカルボジイミド誘導体(1)の収率を向上させる観点から、求核性が低いことが好ましい。このような塩基としては、例えば、N,N−ジイソプロピルエチルアミン(ヒューニッヒ塩基)が挙げられる。
ナフタレンテトラカルボジイミド誘導体(1)の製造方法は、必要に応じて適宜な工程を含んでもよい。このような工程としては、例えば、精製工程が挙げられる。精製方法としては、例えば、公知の方法(より具体的には、ろ過、クロマトグラフィー、又は晶折等)が挙げられる。
<第二実施形態:電子写真感光体>
本発明の第二実施形態は、電子写真感光体(以下、感光体と記載することがある)に関する。感光体は、導電性基体と、感光層とを備える。感光体としては、例えば、積層型電子写真感光体(以下、積層型感光体と記載することがある)、又は単層型電子写真感光体(以下、単層型感光体と記載することがある)が挙げられる。
[1.積層型感光体]
積層型感光体では、感光層は、電荷発生層と、電荷輸送層とを備える。以下、図1を参照して、積層型感光体の構造について説明する。図1は、第二実施形態に係る感光体1の一例である積層型感光体の構造を示す。
図1では、感光体1は、積層型感光体を示す。図1(a)に示すように、感光体1としての積層型感光体は、例えば、導電性基体2と感光層3とを備える。感光層3は、電荷発生層3aと電荷輸送層3bとを備える。積層型感光体の耐摩耗性を向上させるためには、図1(a)に示すように、導電性基体2上に電荷発生層3aが設けられ、電荷発生層3a上に電荷輸送層3bが設けられることが好ましい。図1(b)に示すように、感光体1としての積層型感光体では、導電性基体2上に電荷輸送層3bが設けられ、電荷輸送層3b上に電荷発生層3aが設けられてもよい。
図1(c)に示すように、積層型感光体は、導電性基体2と感光層3と中間層(下引き層)4とを備えていてもよい。中間層4は、導電性基体2と感光層3との間に備えられる。また、感光層3上には、保護層5(図2参照)が設けられていてもよい。
電荷発生層3a及び電荷輸送層3bの厚さは、それぞれの層としての機能を十分に発現できる限り、特に限定されない。電荷発生層3aの厚さは、0.01μm以上5μm以下であることが好ましく、0.1μm以上3μm以下であることがより好ましい。電荷輸送層3bの厚さは、2μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。
[2.単層型感光体]
以下、図2を参照して、単層型感光体の構造について説明する。図2は、第二実施形態に係る感光体1の別の例である単層型感光体の構造を示す。
図2では、感光体1は単層型感光体を示す。図2(a)に示すように、感光体1としての単層型感光体は、例えば、導電性基体2と感光層3とを備える。単層型感光体は、感光層3として単層型感光層3cを備える。単層型感光層3cは、一層の感光層3である。
図2(b)に示すように、感光体1としての単層型感光体は、導電性基体2と、単層型感光層3cと、中間層(下引き層)4とを備えてもよい。中間層4は、導電性基体2と単層型感光層3cとの間に設けられる。また、図2(c)に示すように、単層型感光層3c上に保護層5が設けられてもよい。
単層型感光層3cの厚さは、単層型感光層としての機能を十分に発現できる限り、特に限定されない。単層型感光層3cの厚さは、5μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましい。
以上、図1及び図2を参照して、感光体1の構造について説明した。
第二実施形態に係る感光体は、感光層を備える。感光層は、電荷発生剤と、正孔輸送剤と、バインダー樹脂と、ナフタレンテトラカルボジイミド誘導体(1)とを含有する。積層型感光体では、電荷発生層は、例えば、電荷発生剤と、電荷発生剤用バインダー樹脂(以下、ベース樹脂と記載することがある)とを含有する。電荷輸送層は、例えば、電子アクセプター化合物としてナフタレンテトラカルボジイミド誘導体(1)と、正孔輸送剤と、バインダー樹脂とを含有する。単層型感光体では、単層型感光層は、例えば、電荷発生剤と、電子輸送剤としてナフタレンテトラカルボジイミド誘導体(1)と、正孔輸送剤と、バインダー樹脂とを含有する。電荷発生層、電荷輸送層、及び単層型感光層は、添加剤を更に含有してもよい。以下、感光体の要素として導電性基体、電子輸送剤、電子アクセプター化合物、正孔輸送剤、電荷発生剤、バインダー樹脂、ベース樹脂、添加剤、及び中間層を説明する。また、感光体の製造方法も説明する。
[3.導電性基体]
導電性基体は、感光体の導電性基体として用いることができる限り、特に限定されない。導電性基体は、少なくとも表面部が導電性を有する材料で形成されていればよい。導電性基体の一例としては、導電性を有する材料で形成される導電性基体が挙げられる。導電性基体の別の例としては、導電性を有する材料で被覆される導電性基体が挙げられる。導電性を有する材料としては、例えば、アルミニウム、鉄、銅、錫、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、又はインジウムが挙げられる。これらの導電性を有する材料を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上の組合せとしては、例えば、合金(より具体的には、アルミニウム合金、ステンレス鋼、又は真鍮等)が挙げられる。これらの導電性を有する材料の中でも、感光層から導電性基体への電荷の移動が良好であることから、アルミニウム又はアルミニウム合金が好ましい。
導電性基体の形状は、画像形成装置の構造に合わせて適宜選択される。導電性基体の形状としては、例えば、シート状又はドラム状が挙げられる。また、導電性基体の厚さは、導電性基体の形状に応じて適宜選択される。
[4.電子輸送剤、電子アクセプター化合物]
既に上述したように、積層型感光体では、電荷輸送層は、電子アクセプター化合物としてナフタレンテトラカルボジイミド誘導体(1)を含有する。単層型感光体では、単層型感光層は、電子輸送剤としてナフタレンテトラカルボジイミド誘導体(1)を含有する。感光層がナフタレンテトラカルボジイミド誘導体(1)を含有することにより、第二実施形態に係る感光体は白点現象の発生を抑制することができる。
感光体が積層型感光体である場合、ナフタレンテトラカルボジイミド誘導体(1)の含有量は、電荷輸送層に含有されるバインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、20質量部以上100質量部以下であることがより好ましい。
感光体が単層型感光体である場合、ナフタレンテトラカルボジイミド誘導体(1)の含有量は、単層型感光層に含有されるバインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましく、10質量部以上75質量部以下であることが特に好ましい。
電荷輸送層は、ナフタレンテトラカルボジイミド誘導体(1)に加えて、更に別の電子アクセプター化合物を含有してもよい。単層型感光層は、ナフタレンテトラカルボジイミド誘導体(1)に加えて、更に別の電子輸送剤を含有してもよい。別の電子アクセプター化合物及び電子輸送剤としては、例えば、キノン系化合物、ジイミド系化合物(ナフタレンテトラカルボジイミド誘導体(1)以外のジイミド系化合物)、ヒドラゾン系化合物、マロノニトリル系化合物、チオピラン系化合物、トリニトロチオキサントン系化合物、3,4,5,7−テトラニトロ−9−フルオレノン系化合物、ジニトロアントラセン系化合物、ジニトロアクリジン系化合物、テトラシアノエチレン、2,4,8−トリニトロチオキサントン、ジニトロベンゼン、ジニトロアクリジン、無水コハク酸、無水マレイン酸、又はジブロモ無水マレイン酸が挙げられる。キノン系化合物としては、例えば、ジフェノキノン系化合物、アゾキノン系化合物、アントラキノン系化合物、ナフトキノン系化合物、ニトロアントラキノン系化合物、又はジニトロアントラキノン系化合物が挙げられる。これらの電子輸送剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
[5.正孔輸送剤]
感光体が積層型感光体である場合、電荷輸送層は、正孔輸送剤を含有してもよい。感光体が単層型感光体である場合、単層型感光層は、正孔輸送剤を含有してもよい。正孔輸送剤としては、例えば、含窒素環式化合物又は縮合多環式化合物を使用することができる。含窒素環式化合物及び縮合多環式化合物としては、例えば、ジアミン誘導体(より具体的には、N,N,N’,N’−テトラフェニルフェニレンジアミン誘導体、N,N,N’,N’−テトラフェニルナフチレンジアミン誘導体、又はN,N,N’,N’−テトラフェニルフェナントリレンジアミン誘導体等)、オキサジアゾール系化合物(より具体的には、2,5−ジ(4−メチルアミノフェニル)−1,3,4−オキサジアゾール等)、スチリル化合物(より具体的には、9−(4−ジエチルアミノスチリル)アントラセン等)、カルバゾール化合物(より具体的には、ポリビニルカルバゾール等)、有機ポリシラン化合物、ピラゾリン系化合物(より具体的には、1−フェニル−3−(p−ジメチルアミノフェニル)ピラゾリン等)、ヒドラゾン系化合物、インドール系化合物、オキサゾール系化合物、イソオキサゾール系化合物、チアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピラゾール系化合物、又はトリアゾール系化合物が挙げられる。これらの正孔輸送剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらの正孔輸送剤のうち、一般式(2)で表される化合物(ベンジジン誘導体)が好ましい。
Figure 2017178815
一般式(2)中、R21、R22、R23、R24、R25、及びR26は、各々独立に、炭素原子数1以上6以下のアルキル基又は炭素原子数1以上6以下のアルコキシ基を表す。r、s、v、及びwは、各々独立に、0以上5以下の整数を表す。t及びuは、各々独立に、0以上4以下の整数を表す。
一般式(2)中、R21〜R26は、各々独立に、炭素原子数1以上6以下のアルキル基を表すことが好ましく、炭素原子数1以上3以下のアルキル基を表すことがより好ましく、メチル基を表すことが更に好ましい。r、s、v、及びwは、各々独立に、0又は1を表すことが好ましい。t及びuは、0又は1を表すことが好ましく、1を表すことがより好ましい。
一般式(2)で表されるベンジジン誘導体は、化学式(H−1)で表される化合物(以下、化合物(H−1)と記載することがある)が好ましい。
Figure 2017178815
感光体が積層型感光体である場合、正孔輸送剤の含有量は、電荷輸送層に含有されるバインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、20質量部以上100質量部以下であることがより好ましい。
感光体が単層型感光体である場合、正孔輸送剤の含有量は、単層型感光層に含有されるバインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましく、10質量部以上75質量部以下であることが特に好ましい。
[6.電荷発生剤]
感光体が積層型感光体である場合、電荷発生層は、電荷発生剤を含有してもよい。感光体が単層型感光体である場合、単層型感光層は、電荷発生剤を含有してもよい。
電荷発生剤は、感光体用の電荷発生剤である限り、特に限定されない。電荷発生剤としては、例えば、フタロシアニン系顔料、ペリレン系顔料、ビスアゾ顔料、トリスアゾ顔料、ジチオケトピロロピロール顔料、無金属ナフタロシアニン顔料、金属ナフタロシアニン顔料、スクアライン顔料、インジゴ顔料、アズレニウム顔料、シアニン顔料、無機光導電材料(より具体的には、セレン、セレン−テルル、セレン−ヒ素、硫化カドミウム、又はアモルファスシリコン等)の粉末、ピリリウム顔料、アンサンスロン系顔料、トリフェニルメタン系顔料、スレン系顔料、トルイジン系顔料、ピラゾリン系顔料、又はキナクリドン系顔料が挙げられる。電荷発生剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
フタロシアニン系顔料としては、例えば、化学式(C−1)で表される無金属フタロシアニン(以下、化合物(C−1)と記載することがある)又は金属フタロシアニンが挙げられる。金属フタロシアニンとしては、例えば、化学式(C−2)で表されるチタニルフタロシアニン(以下、化合物(C−2)と記載することがある)、ヒドロキシガリウムフタロシアニン又はクロロガリウムフタロシアニンが挙げられる。フタロシアニン系顔料は、結晶であってもよく、非結晶であってもよい。フタロシアニン系顔料の結晶形状(例えば、X型、α型、β型、Y型、V型、又はII型)については特に限定されず、種々の結晶形状を有するフタロシアニン系顔料が使用される。
Figure 2017178815
Figure 2017178815
無金属フタロシアニンの結晶としては、例えば、無金属フタロシアニンのX型結晶(以下、X型無金属フタロシアニンと記載することがある)が挙げられる。チタニルフタロシアニンの結晶としては、例えば、チタニルフタロシアニンのα型、β型、又はY型結晶(以下、それぞれα型チタニルフタロシアニン、β型チタニルフタロシアニン、及びY型チタニルフタロシアニンと記載することがある)が挙げられる。ヒドロキシガリウムフタロシアニンの結晶としては、ヒドロキシガリウムフタロシアニンのV型結晶が挙げられる。クロロガリウムフタロシアニンの結晶としては、クロロガリウムフタロシアニンのII型結晶が挙げられる。
例えば、デジタル光学式の画像形成装置(例えば、半導体レーザーのような光源を使用した、レーザービームプリンター又はファクシミリ)には、700nm以上の波長領域に感度を有する感光体を用いることが好ましい。700nm以上の波長領域で高い量子収率を有することから、電荷発生剤としては、フタロシアニン系顔料が好ましく、無金属フタロシアニン又はチタニルフタロシアニンがより好ましい。感光層がナフタレンテトラカルボジイミド誘導体(1)を含有する場合に感光体の電気特性を特に向上させるためには、電荷発生剤としては、X型無金属フタロシアニン又はY型チタニルフタロシアニンが更に好ましく、Y型チタニルフタロシアニンが特に好ましい。感光層がナフタレンテトラカルボジイミド誘導体(1)を含有する場合に白点現象を抑制するためには、電荷発生剤はX型無金属フタロシアニン又はY型チタニルフタロシアニンを含むことが好ましく、X型無金属フタロシアニンを含むことがより好ましい。
Y型チタニルフタロシアニンは、CuKα特性X線回折スペクトルにおいて、例えば、ブラッグ角(2θ±0.2°)の27.2°に主ピークを有する。CuKα特性X線回折スペクトルにおける主ピークとは、ブラッグ角(2θ±0.2°)が3°以上40°以下である範囲において、1番目又は2番目に大きな強度を有するピークである。
(CuKα特性X線回折スペクトルの測定方法)
CuKα特性X線回折スペクトルの測定方法の一例について説明する。試料(チタニルフタロシアニン)をX線回折装置(例えば、株式会社リガク製「RINT(登録商標)1100」)のサンプルホルダーに充填して、X線管球Cu、管電圧40kV、管電流30mA、かつCuKα特性X線の波長1.542Åの条件で、X線回折スペクトルを測定する。測定範囲(2θ)は、例えば3°以上40°以下(スタート角3°、ストップ角40°)であり、走査速度は、例えば10°/分である。
短波長レーザー光源を用いた画像形成装置に適用される感光体には、電荷発生剤として、アンサンスロン系顔料が好適に用いられる。短波長レーザー光の波長は、例えば、350nm以上550nm以下である。
感光体が積層型感光体である場合、電荷発生剤の含有量は、電荷発生層に含有されるベース樹脂100質量部に対して、5質量部以上1000質量部以下であることが好ましく、30質量部以上500質量部以下であることがより好ましい。
感光体が単層型感光体である場合、電荷発生剤の含有量は、単層型感光層に含有されるバインダー樹脂100質量部に対して、0.1質量部以上50質量部以下であることが好ましく、0.5質量部以上30質量部以下であることがより好ましく、0.5質量部以上4.5質量部以下であることが特に好ましい。
[7.バインダー樹脂]
バインダー樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリアリレート樹脂、スチレン−ブタジエン樹脂、スチレン−アクリロニトリル樹脂、スチレン−マレイン酸樹脂、アクリル酸系樹脂、スチレン−アクリル酸樹脂、ポリエチレン樹脂、エチレン−酢酸ビニル樹脂、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー樹脂、塩化ビニル−酢酸ビニル樹脂、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂又はポリエーテル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂又はメラミン樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシ−アクリル酸系樹脂(より具体的には、エポキシ化合物のアクリル酸誘導体付加物等)又はウレタン−アクリル酸系樹脂(ウレタン化合物のアクリル酸誘導体付加物)が挙げられる。これらのバインダー樹脂は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
これらの樹脂の中では、加工性、機械的特性、光学的特性及び耐摩耗性のバランスに優れた単層型感光層及び電荷輸送層が得られることから、ポリカーボネート樹脂が好ましい。ポリカーボネート樹脂の例としては、下記化学式(Resin−1)で表されるビスフェノールZ型ポリカーボネート樹脂(以下、Z型ポリカーボネート樹脂(Resin−1)と記載することがある)、ビスフェノールZC型ポリカーボネート樹脂、ビスフェノールC型ポリカーボネート樹脂又はビスフェノールA型ポリカーボネート樹脂が挙げられる。ナフタレンテトラカルボジイミド誘導体(1)との相溶性が良好であり、ナフタレンテトラカルボジイミド誘導体(1)の感光層中での分散性が向上する観点から、Z型ポリカーボネート樹脂(Resin−1)が好ましい。
Figure 2017178815
バインダー樹脂の粘度平均分子量は、40,000以上であることが好ましく、40,000以上52,500以下であることがより好ましい。バインダー樹脂の粘度平均分子量が40,000以上であると、感光体の耐摩耗性を向上させ易い。バインダー樹脂の粘度平均分子量が52,500以下であると、感光層の形成時にバインダー樹脂が溶剤に溶解し易くなり、電荷輸送層用塗布液又は単層型感光層用塗布液の粘度が高くなり過ぎない。その結果、電荷輸送層又は単層型感光層を形成し易くなる。
[8.ベース樹脂]
感光体が積層型感光体である場合、電荷発生層は、ベース樹脂を含有する。ベース樹脂は、感光体に適用できるベース樹脂である限り、特に制限されない。ベース樹脂としては、熱可塑性樹脂、熱硬化性樹脂又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、スチレン−ブタジエン樹脂、スチレン−アクリロニトリル樹脂、スチレン−マレイン酸樹脂、スチレン−アクリル酸樹脂、アクリル酸系樹脂、ポリエチレン樹脂、エチレン−酢酸ビニル樹脂、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー、塩化ビニル−酢酸ビニル樹脂、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂又はポリエステル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、又はその他架橋性の熱硬化性樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシ−アクリル酸系樹脂(より具体的には、エポキシ化合物のアクリル酸誘導体付加物等)又はウレタン−アクリル酸系樹脂(より具体的には、ウレタン化合物のアクリル酸誘導体付加物等)が挙げられる。ベース樹脂は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
電荷発生層に含有されるベース樹脂は、電荷輸送層に含有されるバインダー樹脂とは異なることが好ましい。電荷輸送層用塗布液の溶剤に電荷発生層を溶解させないためである。積層型感光体の製造では、導電性基体上に電荷発生層を形成し、電荷発生層上に電荷輸送層を形成することが一般的である。電荷輸送層を形成する際に、電荷発生層上に電荷輸送層用塗布液を塗布するからである。
[9.添加剤]
感光体の感光層(電荷発生層、電荷輸送層、又は単層型感光層)は、必要に応じて、各種の添加剤を含有してもよい。添加剤としては、例えば、劣化防止剤(より具体的には、酸化防止剤、ラジカル捕捉剤、消光剤、又は紫外線吸収剤等)、軟化剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、ドナー、界面活性剤、可塑剤、増感剤、又はレベリング剤が挙げられる。
[10.中間層]
中間層(下引き層)は、例えば、無機粒子及び中間層に用いられる樹脂(中間層用樹脂)を含有する。中間層が存在することにより、リーク発生を抑制し得る程度の絶縁状態を維持しつつ、感光体を露光した時に発生する電流の流れを円滑にして、抵抗の上昇が抑えられると考えられる。
無機粒子としては、例えば、金属(より具体的には、アルミニウム、鉄、又は銅等)の粒子、金属酸化物(より具体的には、酸化チタン、アルミナ、酸化ジルコニウム、酸化スズ、又は酸化亜鉛等)の粒子又は非金属酸化物(より具体的には、シリカ等)の粒子が挙げられる。これらの無機粒子は、1種を単独で用いてもよいし、2種以上を併用してもよい。
中間層用樹脂としては、中間層を形成する樹脂として用いることができる限り、特に限定されない。中間層は、各種の添加剤を含有してもよい。添加剤は、感光層の添加剤と同様である。
[11.感光体の製造方法]
感光体が積層型感光体である場合、積層型感光体は、例えば、以下のように製造される。まず、電荷発生層用塗布液及び電荷輸送層用塗布液を調製する。電荷発生層用塗布液を導電性基体上に塗布し、乾燥することによって、電荷発生層を形成する。続いて、電荷輸送層用塗布液を電荷発生層上に塗布し、乾燥することによって、電荷輸送層を形成する。これにより、積層型感光体が製造される。
電荷発生剤及び必要に応じて添加される成分(例えば、ベース樹脂及び各種の添加剤)を、溶剤に溶解又は分散させることにより、電荷発生層用塗布液は調製される。電子アクセプター化合物及び必要に応じて添加される成分(例えば、バインダー樹脂、正孔輸送剤、及び各種添加剤)を、溶剤に溶解又は分散させることにより、電荷輸送層用塗布液は調製される。
次に、感光体が単層型感光体である場合、単層型感光体は、例えば、以下のように製造される。単層型感光体は、単層型感光層用塗布液を導電性基体上に塗布し、乾燥することによって製造される。単層型感光層用塗布液は、電子輸送剤及び必要に応じて添加される成分(例えば、電荷発生剤、正孔輸送剤、バインダー樹脂、及び各種添加剤)を、溶剤に溶解又は分散させることにより製造される。
電荷発生層用塗布液、電荷輸送層用塗布液又は単層型感光層用塗布液(以下、塗布液と記載することがある)に含有される溶剤は、塗布液に含まれる各成分を溶解又は分散できる限り、特に限定されない。溶剤としては、例えば、アルコール類(より具体的には、メタノール、エタノール、イソプロパノール、又はブタノール等)、脂肪族炭化水素(より具体的には、n−ヘキサン、オクタン、又はシクロヘキサン等)、芳香族炭化水素(より具体的には、ベンゼン、トルエン、又はキシレン等)、ハロゲン化炭化水素(より具体的には、ジクロロメタン、ジクロロエタン、四塩化炭素、又はクロロベンゼン等)、エーテル類(より具体的には、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、又はプロピレングリコールモノメチルエーテル等)、ケトン類(より具体的には、アセトン、メチルエチルケトン、又はシクロヘキサノン等)、エステル類(より具体的には、酢酸エチル又は酢酸メチル等)、ジメチルホルムアルデヒド、ジメチルホルムアミド、又はジメチルスルホキシドが挙げられる。これらの溶剤は、1種単独で又は2種以上を組み合わせて用いられる。感光体の製造時の作業性を向上させるためには、溶剤として非ハロゲン溶剤(ハロゲン化炭化水素以外の溶剤)を用いることが好ましい。
塗布液は、各成分を混合し、溶剤に分散することにより調製される。混合又は分散には、例えば、ビーズミル、ロールミル、ボールミル、アトライター、ペイントシェーカー、又は超音波分散機を用いることができる。
塗布液は、各成分の分散性を向上させるために、例えば、界面活性剤を含有してもよい。
塗布液を塗布する方法としては、塗布液を導電性基体上に均一に塗布できる方法である限り、特に限定されない。塗布方法としては、例えば、ディップコート法、スプレーコート法、スピンコート法、又はバーコート法が挙げられる。
塗布液を乾燥する方法としては、塗布液中の溶剤を蒸発させ得る限り、特に限定されない。例えば、高温乾燥機又は減圧乾燥機を用いて、熱処理(熱風乾燥)する方法が挙げられる。熱処理条件は、例えば、40℃以上150℃以下の温度、かつ3分間以上120分間以下の時間である。
なお、感光体の製造方法は、必要に応じて、中間層を形成する工程及び保護層を形成する工程の一方又は両方を更に含んでもよい。中間層を形成する工程及び保護層を形成する工程では、公知の方法が適宜選択される。
以上、第二実施形態に係る感光体について説明した。第二実施形態の感光体によれば、感光体の電気特性を向上させることができる。
以下、実施例を用いて本発明を更に具体的に説明する。しかし、本発明は実施例の範囲に何ら限定されない。
<1.感光体の材料>
単層型感光体の単層型感光層を形成するための材料として、以下の電子輸送剤、正孔輸送剤、電荷発生剤、及びバインダー樹脂を準備した。
[1−1.電子輸送剤]
電子輸送剤として、ナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)を準備した。ナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)は、それぞれ以下の方法で製造した。
[1−1−1.ナフタレンテトラカルボジイミド誘導体(1−1)の製造]
反応式(r−4)で表される反応(以下、反応(r−4)と記載することがある)に従ってナフタレンテトラカルボジイミド誘導体(1−1)を製造した。
Figure 2017178815
反応(r−4)では、化合物(F)(ナフタレン−1,4,5,8−テトラカルボン酸二無水物)2.68g(10ミリモル)と、化学式(1G)で表される化合物4.64g(20ミリモル)と、ピコリン50mLとをフラスコに投入し、ピコリン溶液を調製した。フラスコ内容物の温度を100℃に昇温し、100℃に維持して4時間フラスコ内容物を攪拌した。反応後、イオン交換水をフラスコに投入し、クロロホルムで抽出した。有機層の溶媒(ピコリン)を除去し、残渣を得た。得られた残渣を展開溶媒としてクロロホルムを用いて、シリカゲルカラムクロマトグラフィーにより精製した。これにより、ナフタレンテトラカルボジイミド誘導体(1−1)を得た。ナフタレンテトラカルボジイミド誘導体(1−1)の収量は4.16gであり、反応(r−4)における化合物(F)からのナフタレンテトラカルボジイミド誘導体(1−1)の収率は60モル%であった。
[1−1−2.ナフタレンテトラカルボジイミド誘導体(1−5)の製造]
以下の点を変更した以外は、ナフタレンテトラカルボジイミド誘導体(1−1)の製造と同様の方法で、ナフタレンテトラカルボジイミド誘導体(1−5)を製造した。なお、ナフタレンテトラカルボジイミド誘導体(1−5)の製造において使用される各原料は、ナフタレンテトラカルボジイミド誘導体(1−1)の製造において対応する原料のモル数と同じモル数で添加した。
ナフタレンテトラカルボジイミド誘導体(1−5)の製造では、反応(r−4)で使用した化合物(1G)を化合物(5G)に変更した。その結果、ナフタレンテトラカルボジイミド誘導体(1−1)の代わりに、ナフタレンテトラカルボジイミド誘導体(1−5)を得た。表1に反応(r−4)における化合物(F)、化合物(G)、及びナフタレンテトラカルボジイミド誘導体(1)を示す。表1中、Fは化合物(F)を示す。1Gは化合物(1G)を示し、5Gは化合物(5G)を示す。
Figure 2017178815
表1にナフタレンテトラカルボジイミド誘導体(1)の収量及び収率を示す。なお、化合物(5G)は、化学式(5G)で表される。
Figure 2017178815
[1−1−3.ナフタレンテトラカルボジイミド誘導体(1−2)の製造]
反応式(r’−1)、(r’−2)及び(r’−3)で表される反応(以下、それぞれ反応(r'−1)、反応(r’−2)、及び反応(r'−3)と記載することがある)に従ってナフタレンテトラカルボジイミド誘導体(1−2)を製造した。
Figure 2017178815
反応(r’−1)では、化合物(1A)3.42g(10ミリモル)と、化合物(2E)1.35g(10ミリモル)と、N,N−ジイソプロピルエチルアミン1.3g(10ミリモル)と、ジオキサン50mLとをフラスコに投入し、ジオキサン溶液を調製した。フラスコ内容物の温度を100℃に昇温し、100℃に維持して2時間フラスコ内容物を攪拌した。反応後、ジオキサンを除去し、残渣を得た。展開溶媒として酢酸エチル/ヘキサン(体積比V/V=1/2)を用いて、シリカゲルカラムクロマトグラフィーにより得られた残渣を精製した。これにより、化学式(2C’)で表される中間生成物(以下、化合物(2C’)と記載することがある)を得た。
Figure 2017178815
反応(r’−2)では、化合物(2C’)と、トリフルオロ酢酸15mLとをフラスコに投入し、トリフルオロ酢酸溶液を調製した。化合物(2C’)は、反応(r’−1)で得られた全量を反応(r’−2)で使用した。フラスコ内容物の温度を80℃に昇温し、80℃に維持して24時間フラスコ内容物を攪拌した。反応後、トリフルオロ酢酸を除去し、残渣を得た。展開溶媒として酢酸エチル/ヘキサン(体積比V/V=1/4)を用いて、シリカゲルカラムクロマトグラフィーにより得られた残渣を精製した。これにより、化学式(2D’)で表される中間生成物(以下、化合物(2D')と記載することがある)を得た。
Figure 2017178815
反応(r’−3)では、化合物(2D’)と、化学式(2B)で表される化合物2.32g(10ミリモル)と、ジイソプロピルエチルアミン1.3g(10ミリモル)と、ジオキサン50mLとをフラスコに投入し、ジオキサン溶液を調製した。フラスコ内容物の温度を100℃に昇温し、100℃に維持して2時間フラスコ内容物を攪拌した。反応後、ジオキサンを除去し、残渣を得た。展開溶媒として酢酸エチルを用いて、シリカゲルカラムクロマトグラフィーにより得られた残渣を精製した。これにより、ナフタレンテトラカルボジイミド誘導体(1−2)を得た。ナフタレンテトラカルボジイミド誘導体(1−2)の収量は2.69gであり、反応(r’−1)〜(r’−3)における化合物(1A)からのナフタレンテトラカルボジイミド誘導体(1−2)の収率は45モル%であった。
[1−1−4.ナフタレンテトラカルボジイミド誘導体(1−3)〜(1−4)、及び(1−6)の製造]
以下の点を変更した以外は、ナフタレンテトラカルボジイミド誘導体(1−2)の製造と同様の方法で、ナフタレンテトラカルボジイミド誘導体(1−3)〜(1−4)、及び(1−6)をそれぞれ製造した。なお、ナフタレンテトラカルボジイミド誘導体(1−3)〜(1−4)、及び(1−6)の合成において使用される各原料は、ナフタレンテトラカルボジイミド誘導体(1−2)の製造において対応する原料のモル数と同じモル数で添加した。
ナフタレンテトラカルボジイミド誘導体(1−3)〜(1−4)及び(1−6)の製造では、反応(r'−3)で使用した化合物(2B)をそれぞれ化合物(3B)、(4B)、及び(5B)に変更した。それらの結果、ナフタレンテトラカルボジイミド誘導体(1−2)の代わりに、それぞれナフタレンテトラカルボジイミド誘導体(1−3)、(1−4)、及び(1−6)を得た。表2に反応(r’−1)〜(r’−3)における化合物(A)、化合物(D)、化合物(B)、及びナフタレンテトラカルボジイミド誘導体(1)を示す。
Figure 2017178815
表2にナフタレンテトラカルボジイミド誘導体(1)の収量及び収率を示す。なお、化合物(3B)、(4B)、及び(6B)は、それぞれ下記化学式(3B)、(4B)、及び(6B)で表される。
Figure 2017178815
Figure 2017178815
Figure 2017178815
次に、プロトン核磁気共鳴分光計(日本分光株式会社製、300MHz)を用いて、製造したナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)の1H−NMRスペクトルを測定した。溶媒としてCDCl3を用いた。内部標準試料としてテトラメチルシラン(TMS)を用いた。これらのうちナフタレンテトラカルボジイミド誘導体(1−1)を代表例として挙げる。図3は、ナフタレンテトラカルボジイミド誘導体(1−1)の1H−NMRスペクトルを示す。図3中、縦軸は信号強度(単位:任意単位)を示し、横軸は化学シフト(単位:ppm)を示す。以下に、ナフタレンテトラカルボジイミド誘導体(1−1)の化学シフト値を示す。
ナフタレンテトラカルボジイミド誘導体(1−1):1H−NMR(300MHz,CDCl3) δ=8.70(d, 4H), 7.62−7.75(m, 8H), 7.36−7.55(m, 8H).
1H−NMRスペクトル及び化学シフト値により、ナフタレンテトラカルボジイミド誘導体(1−1)が得られていることを確認した。他のナフタレンテトラカルボジイミド誘導体(1−2)〜(1−6)も同様にして、1H−NMRスペクトル及び化学シフト値により、それぞれナフタレンテトラカルボジイミド誘導体(1−2)〜(1−6)が得られていることを確認した。
[1−1−5.化合物(E−1)〜(E−3)の準備]
電子輸送剤として、化学式(E−1)〜(E−3)で表される化合物(以下、それぞれ化合物(E−1)〜(E−3)と記載することがある)を準備した。
Figure 2017178815
Figure 2017178815
Figure 2017178815
[1−2.正孔輸送剤]
正孔輸送剤として、第二実施形態で説明した化合物(H−1)を準備した。
[1−3.電荷発生剤]
電荷発生剤として、第二実施形態で説明した化合物(C−1)及び(C−2)を準備した。化合物(C−1)は、化学式(C−1)で表される無金属フタロシアニン(X型無金属フタロシアニン)であった。また、化合物(C−1)の結晶構造はX型であった。
化合物(C−2)は、化学式(C−2)で表されるチタニルフタロシアニン(Y型チタニルフタロシアニン)であった。また、化合物(C−2)の結晶構造はY型であった。
[1−4.バインダー樹脂]
バインダー樹脂としてZ型ポリカーボネート樹脂(Resin−1)(帝人株式会社製「パンライト(登録商標)TS−2050」、粘度平均分子量50,000)を準備した。
<2.単層型感光体の製造>
感光層を形成するための材料を用いて、単層型感光体(A−1)〜(A−12)及び単層型感光体(B−1)〜(B−6)を製造した。
[2−1.単層型感光体(A−1)の製造]
容器内に、電荷発生剤としての化合物(C−1)2質量部、正孔輸送剤としての化合物(H−1)50質量部、電子輸送剤としてのナフタレンテトラカルボジイミド誘導体(1−1)30質量部、バインダー樹脂としてのZ型ポリカーボネート樹脂(Resin−1)100質量部及び溶剤としてのテトラヒドロフラン600質量部を投入した。容器の内容物を、ボールミルを用いて12時間混合して、溶剤に材料を分散させた。これにより、単層型感光層用塗布液を得た。単層型感光層用塗布液を、導電性基体としてのアルミニウム製のドラム状支持体上に、ディップコート法を用いて塗布した。塗布した単層型感光層用塗布液を、120℃で80分間熱風乾燥させた。これにより、導電性基体上に、単層型感光層(膜厚30μm)を形成した。その結果、単層型感光体(A−1)が得られた。
[2−2.単層型感光体(A−2)〜(A−12)及び単層型感光体(B−1)〜(B−6)の製造]
以下の点を変更した以外は、単層型感光体(A−1)の製造と同様の方法で、単層型感光体(A−2)〜(A−12)及び単層型感光体(B−1)〜(B−6)をそれぞれ製造した。単層型感光体(A−1)の製造に用いた電荷発生剤としての化合物(C−1)を、表3に示す種類の電荷発生剤に変更した。単層型感光体(A−1)の製造に用いた電子輸送剤としてのナフタレンテトラカルボジイミド誘導体(1−1)を、表3に示す種類の電子輸送剤に変更した。なお、表3に感光体(A−1)〜(A−12)及び感光体(B−1)〜(B−6)の構成を示す。表3中、CGM、HTM、及びETMは、それぞれ電荷発生剤、正孔輸送剤、及び電子輸送剤を示す。表3中、CGM欄のx−H2Pc及びY−TiOPcは、それぞれX型無金属フタロシアニン及びY型チタニルフタロシアニンを示す。HTM欄のH−1は化合物(H−1)を示す。ETM欄の1−1〜1−6、及びE−1〜E−3は、それぞれナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)及び化合物(E−1)〜(E−3)を示す。
<3.感光体の評価>
[3−1.単層型感光体の電気特性(感度特性)の評価]
製造した単層型感光体(A−1)〜(A−12)及び単層型感光体(B−1)〜(B−6)のそれぞれに対して、電気特性(感度特性)を評価した。電気特性の評価は、温度23℃及び湿度50%RH(相対湿度)の環境下で行った。
ドラム感度試験機(ジェンテック株式会社製)を用いて、単層型感光体の表面を正極性に帯電させた。帯電条件を、単層層型感光体の回転数31rpmに設定した。帯電直後の単層型感光体の表面電位を+600Vに設定した。次いで、バンドパスフィルターを用いて、ハロゲンランプの白色光から単色光(波長780nm、半値幅20nm、光エネルギー1.5μJ/cm2)を取り出した。取り出された単色光を、単層型感光体の表面に照射した。照射が終了してから0.5秒経過した時の単層型感光体の表面電位を測定した。測定された表面電位を、感度電位(VL、単位V)とした。測定された単層型感光体の感度電位(VL)を、表3に示す。なお、感度電位(VL)の絶対値が小さいほど、単層型感光体の感度特性が優れていることを示す。
[3−2.単層型感光体の電気特性(摩擦帯電性)の評価]
感光層と炭酸カルシウムとを摩擦させたときの炭酸カルシウムの帯電量(摩擦帯電量)を測定した。炭酸カルシウムは、紙粉の主成分である。以下、図4を参照して、感光層3と炭酸カルシウムとを摩擦させたときの炭酸カルシウムの摩擦帯電量を測定する方法を説明する。図4は、摩擦帯電量の測定装置の概要を示す。炭酸カルシウムの摩擦帯電量は、下記の第一ステップ、第二ステップ、第三ステップ、及び第四ステップを行うことにより測定した。炭酸カルシウムの摩擦帯電量の測定には、治具10を使用した。
図4に示すように、治具10は、第一台12と、回転シャフト14と、回転駆動部16(例えば、モーター)と、第二台18とを備えている。回転駆動部16は、回転シャフト14を回転する。回転シャフト14は、回転シャフト14の回転軸Sを中心に回転する。第一台12は、回転シャフト14と一体になって、回転軸Sを中心に回転する。第二台18は、回転することなく固定されている。
(第一ステップ)
第一ステップでは、感光層3を2個準備した。以下、感光層3の一方を第一感光層30と、感光層3の他方を第二感光層32と記載する。上述の単層型感光体(A−1)〜(A−12)及び単層型感光体(B−1)〜(B−6)の何れかの作製する際に調製した感光層用塗布液を、アルミパイプ(直径:78mm)に巻きつけたオーバーヘッドプロジェクタシート(以下、OHPシートと記載することがある)に塗布した。塗布した塗布液を、120℃で80分間乾燥した。これにより、膜厚30μmの感光層3が形成された摩擦帯電性評価用のシートを作製した。その結果、第一感光層30(膜厚L1:30μm)と第一OHPシート20とを備える第一シート、及び第二感光層32(膜厚L2:30μm)と第二OHPシート22とを備える第二シートとを得た。第一OHPシート20及び第二OHPシート22の大きさは、それぞれ、縦5cm及び横5cmであった。
(第二ステップ)
第二ステップでは、炭酸カルシウム0.007gを第一感光層30上に乗せた。そして、炭酸カルシウムの層24上に第二感光層32を載せた。具体的な手順は以下の通りであった。
まず、両面テープを用いて第一OHPシート20と第一台12とを接着させ、第一シートを第一台12に固定した。両面テープを用いて第二OHPシート22と第二台18とを接着させ、第二シートを第二台18に固定した。第一シートが備える第一感光層30上に、0.007gの炭酸カルシウムを載せ、膜厚が均一になるようにして、炭酸カルシウムの層24を形成した。炭酸カルシウムの量は、第三ステップにおいて回転時間60秒間で第一感光層30及び第二感光層32との間で炭酸カルシウムが十分にかつ万遍なく摩擦され、炭酸カルシムが十分に万遍なく帯電できる量である。炭酸カルシウムの層24は、第三ステップにおける回転駆動部16の駆動により、第一感光層30と第二感光層32との間から溺れ落ちないように回転軸Sを中心に第一感光層30の内側に形成されている。そして、第一感光層30と第二感光層32とが炭酸カルシウムの層24を介して対向するように、第二感光層32と炭酸カルシウムの層24とを接触させて炭酸カルシウムの層24上に第二感光層32を載せた。これにより、下から順に、第一台12、第一OHPシート20、第一感光層30、炭酸カルシウムの層24、第二感光層32、第二OHPシート22、及び第二台18が配置された。第一台12、第一OHPシート20、第一感光層30、炭酸カルシウムの層24、第二感光層32、第二OHPシート22、及び第二台18の各中心が、回転軸Sを通るように配置された。
(第三ステップ)
第三ステップでは、温度23℃及び湿度50%RHの環境下で、第二感光層32を固定したまま、回転速度60rpmで60秒間第一感光層30を回転させた。具体的には、回転シャフト14、第一台12、第一OHPシート20及び第一感光層30を、回転速度60rpmで60秒間、回転軸Sを中心に回転するように、回転駆動部16を駆動した。これにより、炭酸カルシウムが第一感光層30との間及び第二感光層32との間で摩擦され、炭酸カルシウムが帯電した。
(第四ステップ)
第四ステップでは、第三ステップで帯電させた炭酸カルシウムを治具10から取出し、帯電量測定装置(吸引式小型帯電量測定装置、トレック社製「MODEL 212HS」)を用いて吸引した。吸引された炭酸カルシウムの総電気量Q(単位μC)と質量M(単位g)とを、帯電量測定装置を用いて測定した。式「摩擦帯電量=Q/M」から、炭酸カルシウムの摩擦帯電量(単位μC/g)を算出した。
測定された炭酸カルシウムの摩擦帯電量を表3に示す。なお、炭酸カルシウムの摩擦帯電量が大きい正の値であるほど、炭酸カルシウムは第一感光層30及び第二感光層32に対して正帯電し易いことを示す。また、炭酸カルシウムの摩擦帯電量が大きい正の値であるほど、炭酸カルシウムに対して第一感光層30及び第二感光層32は負帯電し易いことを示す。
[3−3.画像特性の評価(白点個数の測定)]
単層型感光体(A−1)〜(A−12)及び単層型感光体(B−1)〜(B−6)のそれぞれに対して、画像特性を評価した。画像特性の評価は、温度32.5℃及び湿度80%RHの環境下で行った。評価機として、画像形成装置(京セラドキュメントソリューションズ株式会社製「モノクロプリンターFS−1300D」)を用いた。この画像形成装置は、非接触現像方式、直接転写方式及びブレードクリーニング方式を採用する。この画像形成装置では、帯電部としてスコロトロン帯電器が備えられている。記録媒体として、京セラドキュメントソリューションズ株式会社販売「京セラドキュメントソリューションズブランド紙VM−A4」(A4サイズ)を使用した。評価機による評価には、一成分現像剤(試作品)を使用した。
評価機を用いて、単層型感光体の回転速度168mm/秒の条件で、20,000枚の記録媒体に画像I(印字率1%の画像)を連続して印刷した。続いて、1枚の記録媒体に画像II(黒ソリッド画像、縦297mm×横210mm A4サイズ)を印刷した。画像IIが形成された記録媒体を肉眼で観察し、形成画像における画像不良の有無を観察した。画像不良として、黒ソリッド画像内に現れる白点の数を数えた。感光体に紙粉が付着すると、黒ソリッド画像内に白点が現れる傾向がある。黒ソリッド画像内に現れる白点の数を表3に示す。白点の数が少ないほど、紙粉の付着に起因した画像不良の発生(白点現象の発生)が抑制されていることを示す。
Figure 2017178815
表3に示すように、感光体(A−1)〜(A−12)では、感光層は電荷発生剤と、正孔輸送剤と、電子輸送剤としてナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)の何れか1種とを含有していた。ナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)は、一般式(1)で表されるナフタレンテトラカルボジイミド誘導体であった。感光体(A−1)〜(A−12)では、白点の個数が13個以上24個以下だった。
表3に示すように、感光体(B−1)〜(B−6)では、感光層は、電荷発生剤と、正孔輸送剤と、電子輸送剤として化合物(E−1)〜(E−3)の何れか1種とを含有していた。化合物(E−1)〜(E−3)は、ナフタレンテトラカルボジイミド誘導体(1)ではなかった。感光体(B−1)〜(B−6)では、白点の個数が38個以上70個以下だった。
ナフタレンテトラカルボジイミド誘導体(1−1)〜(1−6)は、化合物(E−1)〜(E−3)に比べ、感光体の白点現象の発生を抑制できることが明らかである。感光体(A−1)〜(A−12)は、感光体(B−1)〜(B−6)に比べ、白点現象の発生を抑制することができることが明らかである。
本発明に係るナフタレンテトラカルボジイミド誘導体は、感光体に利用することができる。本発明に係る感光体は、画像形成装置に利用することができる。
1 電子写真感光体
3 感光層
3a 電荷発生層
3b 電荷輸送層
3c 単層型感光層

Claims (8)

  1. 一般式(1)で表されるナフタレンテトラカルボジイミド誘導体。
    Figure 2017178815
    前記一般式(1)中、
    1及びR2は、各々独立に、炭素原子数1以上6以下のアルキル基とフェニルカルボニル基との何れかを有してもよい炭素原子数6以上14以下のアリール基、炭素原子数7以上20以下のアラルキル基、炭素原子数1以上8以下のアルキル基、及び炭素原子数3以上10以下のシクロアルキル基からなる群より選択される基を表し、
    前記基は、1以上のハロゲン原子で置換されてもよく、
    1及びR2のうち少なくとも一方が1以上のハロゲン原子を有する。
  2. 前記一般式(1)中、
    1及びR2は、互いに同一であり、
    1及びR2は、1以上のハロゲン原子を有する炭素原子数7以上9以下のアラルキル基、又はフェニルカルボニル基及びハロゲン原子を各々1つ有する炭素原子数6以上14以下のアリール基を表す、請求項1に記載のナフタレンテトラカルボジイミド誘導体。
  3. 前記一般式(1)中、
    1及びR2は、互いに異なり、
    1及びR2のうちの一方が、炭素原子数1以上3以下のアルキル基を少なくとも1つ有する炭素原子数6以上14以下のアリール基を表し、
    1及びR2のうちの他方が、1以上のハロゲン原子を有する炭素原子数7以上9以下のアラルキル基、又はフェニルカルボニル基を有してもよく1以上のハロゲン原子を有する炭素原子数6以上14以下のアリール基を表す、請求項1に記載のナフタレンテトラカルボジイミド誘導体。
  4. 前記一般式(1)中、
    1の表す前記基の有するハロゲン原子の数と、R2の表す前記基の有するハロゲン原子の数との総数が3又は4である、請求項1〜3の何れか一項に記載のナフタレンテトラカルボジイミド誘導体。
  5. 導電性基体と、感光層とを備える電子写真感光体であって、
    前記感光層は、電荷発生剤と、正孔輸送剤と、バインダー樹脂と、請求項1〜4の何れか一項に記載のナフタレンテトラカルボジイミド誘導体とを含有する、電子写真感光体。
  6. 前記電荷発生剤は、X型無金属フタロシアニン又はY型チタニルフタロシアニンを含む、請求項5に記載の電子写真感光体。
  7. 前記正孔輸送剤は、一般式(2)で表される化合物を含む、請求項5又は6に記載の電子写真感光体。
    Figure 2017178815
    前記一般式(2)中、
    21、R22、R23、R24、R25、及びR26は、各々独立に、炭素原子数1以上6以下のアルキル基又は炭素原子数1以上6以下のアルコキシ基を表し、
    r、s、v、及びwは、各々独立に、0以上5以下の整数を表し、
    t及びuは、各々独立に、0以上4以下の整数を表す。
  8. 前記感光層は、単層型感光層である、請求項5〜7の何れか一項に記載の電子写真感光体。
JP2016065979A 2016-03-29 2016-03-29 電子写真感光体 Expired - Fee Related JP6481650B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016065979A JP6481650B2 (ja) 2016-03-29 2016-03-29 電子写真感光体
CN201710171537.8A CN107235979B (zh) 2016-03-29 2017-03-21 萘四碳二酰亚胺衍生物及电子照相感光体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065979A JP6481650B2 (ja) 2016-03-29 2016-03-29 電子写真感光体

Publications (2)

Publication Number Publication Date
JP2017178815A true JP2017178815A (ja) 2017-10-05
JP6481650B2 JP6481650B2 (ja) 2019-03-13

Family

ID=59984008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065979A Expired - Fee Related JP6481650B2 (ja) 2016-03-29 2016-03-29 電子写真感光体

Country Status (2)

Country Link
JP (1) JP6481650B2 (ja)
CN (1) CN107235979B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181653A (ja) * 2016-03-29 2017-10-05 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2017227756A (ja) * 2016-06-22 2017-12-28 京セラドキュメントソリューションズ株式会社 電子写真感光体、画像形成装置、及びプロセスカートリッジ
JP2018004695A (ja) * 2016-06-27 2018-01-11 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468583A (en) * 1994-12-28 1995-11-21 Eastman Kodak Company Cyclic bis-dicarboximide electron transport compounds for electrophotography
JP2000113504A (ja) * 1998-10-05 2000-04-21 Mitsui Chemicals Inc 光記録媒体
WO2002040479A1 (fr) * 2000-11-14 2002-05-23 Shionogi & Co., Ltd. Agents de traitement des infections a helicobacter
JP2003327587A (ja) * 2002-05-10 2003-11-19 Canon Inc 新規なナフタレンテトラカルボン酸ジイミド化合物とその重合体、および、該ナフタレンテトラカルボン酸ジイミド化合物の製造方法
EP1879076A2 (en) * 2006-07-11 2008-01-16 Samsung Electronics Co., Ltd. Organic photoreceptor for short wavelengths and electrophotographic imaging forming apparatus employing the organic photoreceptor
JP2008184386A (ja) * 2007-01-26 2008-08-14 Canon Inc 新規なイミド化合物、電子写真感光体、プロセスカートリッジ及び電子写真装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344670C (zh) * 2005-09-09 2007-10-24 中国科学院长春应用化学研究所 磺化聚苯型质子传输膜材料及其合成方法
JP2007193210A (ja) * 2006-01-20 2007-08-02 Canon Inc 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ及び電子写真装置
WO2012037090A2 (en) * 2010-09-13 2012-03-22 Cornell University Covalent organic framework films, and methods of making and uses of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468583A (en) * 1994-12-28 1995-11-21 Eastman Kodak Company Cyclic bis-dicarboximide electron transport compounds for electrophotography
JP2000113504A (ja) * 1998-10-05 2000-04-21 Mitsui Chemicals Inc 光記録媒体
WO2002040479A1 (fr) * 2000-11-14 2002-05-23 Shionogi & Co., Ltd. Agents de traitement des infections a helicobacter
JP2003327587A (ja) * 2002-05-10 2003-11-19 Canon Inc 新規なナフタレンテトラカルボン酸ジイミド化合物とその重合体、および、該ナフタレンテトラカルボン酸ジイミド化合物の製造方法
EP1879076A2 (en) * 2006-07-11 2008-01-16 Samsung Electronics Co., Ltd. Organic photoreceptor for short wavelengths and electrophotographic imaging forming apparatus employing the organic photoreceptor
JP2008184386A (ja) * 2007-01-26 2008-08-14 Canon Inc 新規なイミド化合物、電子写真感光体、プロセスカートリッジ及び電子写真装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"CoMFA and CoMSIA 3D QSAR models for a series of cyclic imides with analgesic activity,", MEDICINAL CHEMISTRY, vol. 5, JPN6018040657, 2009, pages 66 - 73, ISSN: 0003900062 *
"Star-shaped polyfluorene: Design, synthesis, characterization and application towards solar cells.", EUROPEAN POLYMER JOURNAL, vol. 52, JPN6018040660, 2014, pages 181 - 192, ISSN: 0003900065 *
"State-Selective Electron Transfer in an Unsymmetric Acceptor-Zn(II)porphyrin-Acceptor Triad: Toward", JOURNAL OF PHYSICAL CHEMISTRY A, vol. 114, JPN6018040659, 2010, pages 1709 - 1721, ISSN: 0003900064 *
"Synthesis, Electronic Structure, and Electron Transfer Dynamics of (Aryl)ethynyl-Bridged Donor-Accep", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 125, JPN6018040658, 2003, pages 8769 - 8778, ISSN: 0003900063 *
REGISTRY(STN), JPN7018003540, 25 April 2001 (2001-04-25), pages 19 - 7, ISSN: 0003900066 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181653A (ja) * 2016-03-29 2017-10-05 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2017227756A (ja) * 2016-06-22 2017-12-28 京セラドキュメントソリューションズ株式会社 電子写真感光体、画像形成装置、及びプロセスカートリッジ
JP2018004695A (ja) * 2016-06-27 2018-01-11 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Also Published As

Publication number Publication date
JP6481650B2 (ja) 2019-03-13
CN107235979A (zh) 2017-10-10
CN107235979B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
JP6569609B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
CN108693722B (zh) 电子照相感光体、处理盒和图像形成装置
JP6519513B2 (ja) マロノニトリル誘導体及び電子写真感光体
JP6515880B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6604429B2 (ja) キノン誘導体及び電子写真感光体
JP5622673B2 (ja) 電子写真感光体及び画像形成装置
JP6481650B2 (ja) 電子写真感光体
JP5126440B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2018017765A (ja) 正帯電積層型電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6504126B2 (ja) 電子写真感光体
JP4779850B2 (ja) 電子写真感光体および画像形成装置
JP6515878B2 (ja) 電子写真感光体、画像形成装置、及びプロセスカートリッジ
JP6741145B2 (ja) 電子写真感光体及び画像形成装置
JP6540874B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6635021B2 (ja) 正帯電積層型電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6638612B2 (ja) 電子写真感光体、画像形成装置、及びプロセスカートリッジ
JP2017197438A (ja) ナフトキノン誘導体及び電子写真感光体
JP6421780B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6569808B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP6601557B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
CN107942626B (zh) 电子照相感光体、处理盒及图像形成装置
JP6528735B2 (ja) 電子写真感光体、画像形成装置、及びプロセスカートリッジ
JP2017210434A (ja) ナフトキノン誘導体及び電子写真感光体
JP2013011820A (ja) 電子写真感光体及び画像形成装置
JPWO2018123425A1 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6481650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees