JP2016211504A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2016211504A
JP2016211504A JP2015098151A JP2015098151A JP2016211504A JP 2016211504 A JP2016211504 A JP 2016211504A JP 2015098151 A JP2015098151 A JP 2015098151A JP 2015098151 A JP2015098151 A JP 2015098151A JP 2016211504 A JP2016211504 A JP 2016211504A
Authority
JP
Japan
Prior art keywords
torque
combustion engine
internal combustion
parameter
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015098151A
Other languages
English (en)
Other versions
JP6543509B2 (ja
Inventor
赤崎 修介
Naosuke Akasaki
修介 赤崎
泰輔 井上
Taisuke Inoue
泰輔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015098151A priority Critical patent/JP6543509B2/ja
Priority to US15/084,485 priority patent/US9856798B2/en
Publication of JP2016211504A publication Critical patent/JP2016211504A/ja
Application granted granted Critical
Publication of JP6543509B2 publication Critical patent/JP6543509B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1403Sliding mode control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/247Pressure sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】内燃機関のトルクを制御する場合において、制御精度及び制御性をいずれも向上させることができ、高い商品性を確保することができる内燃機関の制御装置を提供する。【解決手段】内燃機関3の制御装置1は、ECU2を備える。ECU2は、筒内圧Pcylに基づいて、出力軸トルクTRQactを算出し、目標トルクTRQtgtを算出し、、入力トルクTRQinと出力軸トルクTRQactと4つの外乱推定値e1〜e4との関係を定義した制御対象モデル[式(10)〜(12)]に基づくスライディングモード制御アルゴリズム[式(1)〜(9)]を用いて、出力軸トルクTRQactが目標トルクTRQtgtになるように、入力トルクTRQinを算出し、この入力トルクTRQinを用いて、出力軸トルクTRQactを制御する。【選択図】図3

Description

本発明は、内燃機関のトルクを制御する内燃機関の制御装置に関する。
従来、内燃機関の制御装置として、特許文献1に記載されたものが知られている。この制御装置は、点火時期を制御するものであり、その図5に示す例では、以下に述べる制御アルゴリズムによって、点火時期が制御される。まず、要求トルクを、スロットル弁の開度に基づいて算出した推定トルクで除算することにより、トルク効率を算出し、これを空気量の効率KLに変換するとともに、この効率KLに応じて、マップを検索することにより、50%燃焼点の遅れ量のフィードフォワード制御項が算出される。
また、筒内圧センサの検出信号に基づき、内燃機関が実際に発生しているトルク(以下「発生トルク」という)を算出し、要求トルクと発生トルクとの偏差が値0に収束するように、PID制御アルゴリズムにより、フィードバック制御項が算出される。そして、フィードフォワード制御項にフィードバック制御項を加算することにより、50%燃焼点の遅れ量を算出し、これとエンジン回転数NEに応じて、マップを検索することにより、点火時期を算出し、内燃機関の実際の点火時期がこの算出値になるように制御される。
特許第4930634号公報
上記従来の内燃機関の制御装置によれば、フィードバック制御項とフィードフォワード制御項との和を用いて、点火時期を制御している関係上、発生トルクが要求トルクになるまでに時間を要してしまい、その制御性が低いという問題がある。また、点火時期は、内燃機関の発生トルクを決定するパラメータの1つにしか過ぎない関係上、内燃機関のトルクを制御するという観点からは制御精度が低いという問題もある。
本発明は、上記課題を解決するためになされたもので、内燃機関のトルクを制御する場合において、制御精度及び制御性をいずれも向上させることができ、高い商品性を確保することができる内燃機関の制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に係る内燃機関3の制御装置1は、内燃機関3の気筒3a内の圧力である筒内圧Pcylを検出する筒内圧検出手段(筒内圧センサ20)と、検出された筒内圧Pcylに基づいて、内燃機関3の出力軸(クランクシャフト3c)のトルクである出力軸トルクTRQactを算出する出力軸トルク算出手段(ECU2)と、内燃機関3の出力軸トルクTRQactの目標となる目標トルクTRQtgtを算出する目標トルク算出手段(ECU2、目標トルク算出部30)と、入力トルクを表す入力トルクパラメータ(入力トルクTRQin)を入力とし出力軸トルクTRQactを出力とする制御対象40をモデリングした制御対象モデル[式(10)〜(12)]に基づく所定のフィードバック制御アルゴリズム[式(1)〜(9)]を用いて、検出された出力軸トルクTRQactが算出された目標トルクTRQtgtになるように、入力トルクパラメータ(入力トルクTRQin)を算出する入力トルクパラメータ算出手段(ECU2、スライディングモードコントローラ31)と、算出された入力トルクパラメータ(入力トルクTRQin)を用いて、内燃機関3の出力軸トルクTRQactを制御する制御手段(ECU2)と、を備えることを特徴とする。
この内燃機関の制御装置によれば、内燃機関の気筒内の圧力である筒内圧が検出され、検出された筒内圧に基づいて、内燃機関の出力軸のトルクである出力軸トルクが算出されるとともに、出力軸トルクの目標となる目標トルクが算出される。そして、入力トルクを表す入力トルクパラメータを入力とし出力軸トルクを出力とする制御対象をモデリングした制御対象モデルに基づく所定のフィードバック制御アルゴリズムを用いて、検出された出力軸トルクが算出された目標トルクになるように、入力トルクパラメータが算出され、そのように算出された入力トルクパラメータを用いて、内燃機関の出力軸トルクが制御される。以上のように、フィードバック制御項のみを用いて算出した入力トルクパラメータを用いて、出力軸トルクが制御されるので、フィードバック制御項とフィードフォワード制御項との和を用いる特許文献1の制御装置と比べて、出力軸トルクの制御精度を向上させることができる。さらに、入力トルクパラメータを用いて出力軸トルクが制御されるので、内燃機関の発生トルクを決定するパラメータの1つにしか過ぎない点火時期を制御する特許文献1の制御装置と比べて、出力軸トルクの制御精度をさらに向上させることができる。その結果、高い商品性を確保することができる。
請求項2に係る発明は、請求項1に記載の内燃機関3の制御装置1において、制御対象40は、入力トルクパラメータ(入力トルクTRQin)と、内燃機関3の回転数NEと、n(nは1以上の整数)個の外乱推定値e1〜e4と、内燃機関3の吸入空気量を表す吸入空気量パラメータ(目標開度THcmd)との関係を線形化した複数の応答曲面モデル[式(22),(23)]を含む制御系であり、制御手段は、入力トルクパラメータ(入力トルクTRQin)及び目標トルクTRQtgtの一方に応じて、複数の応答曲面モデル[式(22),(23)]の1つを選択し、選択した応答曲面モデルを用いて吸入空気量パラメータ(目標開度THcmd)を算出するとともに、算出された吸入空気量パラメータ(目標開度THcmd)を用いて、内燃機関3の出力軸トルクTRQactを制御することを特徴とする。
この内燃機関の制御装置によれば、制御対象が、入力トルクパラメータと、内燃機関の回転数と、n(nは1以上の整数)個の外乱推定値と、内燃機関の吸入空気量を表す吸入空気量パラメータとの関係を線形化した複数の応答曲面モデルを含む制御系であり、入力トルクパラメータ及び目標トルクの一方に応じて、複数の応答曲面モデルの1つが選択されるので、入力トルクパラメータ又は目標トルクに対して最適な応答曲面モデルを選択することができる。さらに、そのように選択された応答曲面モデルを用いて、吸入空気量パラメータが算出されるので、この吸入空気量パラメータを、n個の外乱推定値に対応するn種類の外乱の影響を補償しながら、入力トルクパラメータ又は目標トルクに応じて精度よく算出することができる。これに加えて、そのように算出された吸入空気量パラメータを用いて、内燃機関の出力軸トルクが制御されるので、出力軸トルクの制御精度を向上させることができる。
請求項3に係る発明は、請求項1に記載の内燃機関3の制御装置1において、制御対象モデルは、入力トルクパラメータ(入力トルクTRQin)と出力軸トルクTRQactとm(mは3以上の整数)個の外乱推定値e1〜e4との関係を定義したモデル[式(10)〜(12)]であり、所定のフィードバック制御アルゴリズムは、m個の外乱推定値e1〜e4を含むように構成された等価制御入力Ueqを含むスライディングモード制御アルゴリズム[式(1)〜(9)]であることを特徴とする。
この内燃機関の制御装置によれば、制御対象モデルが、入力トルクパラメータと出力軸トルクとm(mは3以上の整数)個の外乱推定値との関係を定義したモデルであり、所定のフィードバック制御アルゴリズムは、m個の外乱推定値を含むように構成された等価制御入力を含むスライディングモード制御アルゴリズムであるので、そのようにm個の外乱推定値を含む等価制御入力を用いて算出した入力トルクパラメータによって、m個の外乱推定値に対応するm種類の外乱の影響を補償しながら、出力軸トルクを目標トルクに精度よく収束させることができ、制御精度をさらに向上させることができる。
請求項4に係る発明は、請求項3に記載の内燃機関3の制御装置1において、制御対象モデルのモデルパラメータa1,b1及びm個の外乱推定値e1〜e4をオンボードで同定するオンボード同定手段(ECU2、オンボード同定器32)をさらに備え、入力トルクパラメータ算出手段は、所定のフィードバック制御アルゴリズムに加えて、オンボードで同定されたモデルパラメータa1,b1及びm個の外乱推定値e1〜e4を用いて、入力トルクパラメータ(入力トルクTRQin)を算出することを特徴とする。
この内燃機関の制御装置によれば、制御対象モデルのモデルパラメータ及びm個の外乱推定値がオンボードで同定され、所定のフィードバック制御アルゴリズムに加えて、オンボードで同定されたモデルパラメータ及びm個の外乱推定値を用いて、入力トルクパラメータが算出されるので、m個の外乱推定値に対応するm種類の外乱の影響を補償できることに加えて、内燃機関の個体差や経時変化などに起因して、制御対象モデルが実際の制御対象の状態から乖離し、モデル化誤差が増大したときでも、それを補償しながら、入力トルクパラメータを算出することができる。それにより、制御のロバスト性を向上させることができ、商品性をさらに向上させることができる。
請求項5に係る発明は、請求項1ないし4のいずれかに記載の内燃機関3の制御装置1において、内燃機関3は、気筒3a内に燃料を直接噴射する燃料噴射弁7を備えており、筒内圧検出手段(筒内圧センサ20)は、燃料噴射弁7の先端部に設けられたリング状の検出部20aを備えていることを特徴とする。
筒内圧センサなどの筒内圧検出手段の場合、その検出部が座金状に形成され、点火プラグや燃料噴射弁などの機器を内燃機関のシリンダヘッドに取り付ける際、機器とシリンダヘッドとの間に配置されるものが一般的である。そのような筒内圧検出手段の場合、シリンダヘッドの振動の影響を受けやすいことで、筒内圧の検出精度が低下してしまうことになる。これに対して、この内燃機関の制御装置によれば、筒内圧検出手段が、燃料噴射弁の先端部に設けられたリング状の検出部を備えているので、シリンダヘッドの振動の影響を抑制しながら、筒内圧を検出することができる。その結果、筒内圧の検出精度が向上するのに伴って、内燃機関の出力軸トルクの制御精度をさらに向上させることができる。
本発明の一実施形態に係る制御装置及びこれを適用した内燃機関の構成を模式的に示す図である。 燃料噴射弁及び筒内圧センサの外観を示す図である。 制御装置の機能的な構成を示すブロック図である。 目標トルクの算出に用いるマップの一例を示す図である。 本発明の制御対象を説明するためのブロック図である。
以下、図面を参照しながら、本発明の一実施形態に係る内燃機関の制御装置について説明する。図1に示すように、この制御装置1は、ECU2を備えており、このECU2は、後述するように、内燃機関(以下「エンジン」という)3の運転状態に応じて、出力軸トルクTRQactの制御処理などの各種の制御処理を実行する。
エンジン3は、複数組の気筒3a及びピストン3b(1組のみ図示)を有する直列多気筒ガソリンエンジンであり、図示しない車両に動力源として搭載されている。また、エンジン3は、気筒3aごとに設けられた吸気弁4、排気弁5、点火プラグ6及び燃料噴射弁7(いずれも1つのみ図示)と、などを備えている。
このエンジン3には、図示しないが、可変吸気動弁機構が設けられており、この可変吸気動弁機構によって、吸気弁4のバルブタイミングが自在に変更されるように構成されている。
また、点火プラグ6は、エンジン3のシリンダヘッドに取り付けられており、ECU2に電気的に接続されているとともに、ECU2によって、点火プラグ6の放電タイミングが制御される。すなわち、混合気の点火時期が制御される。
さらに、燃料噴射弁7は、各気筒3a内に燃料を直接噴射するようにシリンダヘッドに取り付けられている。燃料噴射弁7は、ECU2に電気的に接続されており、ECU2によって、燃料噴射弁7による燃料の噴射量及び噴射時期が制御される。
また、図2に示すように、燃料噴射弁7の先端部には、筒内圧センサ20(筒内圧検出手段)が一体に設けられており、この筒内圧センサ20の検出部20aは、リング状に形成されている。筒内圧センサ20は、燃料噴射弁7がシリンダヘッドに取り付けられている状態で、気筒3a内の圧力(以下「筒内圧」という)Pcylを検出して、それを表す検出信号をECU2に出力する。その場合、筒内圧センサ20が燃料噴射弁7の先端部に設けられていることで、座金タイプの筒内圧センサと比べて、シリンダヘッドの振動の影響を抑制しながら、筒内圧Pcylを精度よく検出することができる。
ECU2は、この筒内圧センサ20の検出手段に基づき、筒内圧Pcylを算出し、この筒内圧Pcylに基づき、公知の算出手法によって、出力軸トルクTRQactを算出する。例えば、筒内圧Pcylに基づき、特開2007−291924号の手法で図示平均有効圧Pmiを算出し、この図示平均有効圧Pmiとエンジン3の排気量から、出力軸トルクTRQactを算出する。この場合、出力軸トルクTRQactは、エンジン3のクランクシャフト3c(出力軸)から出力されるトルクに相当する。
一方、吸気通路8の途中には、スロットル弁機構10が設けられており、このスロットル弁機構10は、スロットル弁10a及びこれを開閉駆動するTHアクチュエータ10bなどを備えている。スロットル弁10aは、吸気通路8の途中に回動自在に設けられており、当該回動に伴う開度の変化によりスロットル弁10aを通過する空気の流量を変化させる。
THアクチュエータ10bは、ECU2に接続されたモータにギヤ機構(いずれも図示せず)を組み合わせたものであり、ECU2によって制御されることにより、スロットル弁10aの開度を変化させる。
さらに、ECU2には、クランク角センサ21、アクセル開度センサ22、スロットル弁開度センサ23、LAFセンサ24及び車速センサ25が電気的に接続されている。このクランク角センサ21は、クランクシャフト3cの回転に伴い、パルス信号であるCRK信号をECU2に出力する。このCRK信号は、所定のクランク角(例えば1゜)ごとに1パルスが出力され、ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。
また、アクセル開度センサ22は、車両の図示しないアクセルペダルの踏み込み量(以下「アクセル開度」という)APを検出して、それを表す検出信号をECU2に出力し、スロットル弁開度センサ24は、スロットル弁10aの開度(以下「スロットル弁開度」という)THを検出して、それを表す検出信号を、ECU2に出力する。
さらに、LAFセンサ24は、理論空燃比よりもリッチなリッチ領域から極リーン領域までの広範囲な空燃比の領域において、排気通路9内を流れる排ガス中の酸素濃度をリニアに検出し、それを表す検出信号をECU2に出力する。ECU2は、このLAFセンサ24の検出信号の値に基づき、排ガス中の酸素濃度や空燃比などを算出する。
また、車速センサ25は、車両の図示しない車軸に取り付けられており、車両の走行速度(以下「車速」という)VPを検出して、それを表す検出信号をECU2に出力する。
一方、ECU2は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などからなるマイクロコンピュータで構成されており、以上の各種のセンサ20〜25の検出信号などに基づいて、以下に述べるように、出力軸トルクTRQactを制御する。なお、本実施形態では、ECU2が、出力軸トルク算出手段、目標トルク算出手段、入力トルクパラメータ算出手段、制御手段及びオンボード同定手段に相当する。
次に、図3を参照しながら、本実施形態の制御装置1の機能的な構成について説明する。同図に示すように、この制御装置1は、制御対象40を制御するものであって、目標トルク算出部30、スライディングモードコントローラ31及びオンボード同定器32を備えており、これらの要素30〜32は、具体的にはECU2によって構成されている。また、制御対象40の内容については後述する。
目標トルク算出部30(目標トルク算出手段)は、前述した出力軸トルクTRQactの目標となる目標トルクTRQtgtを算出するものであり、この目標トルクTRQtgtは、具体的には、アクセル開度AP及び車速VPに応じて、図4に示すマップを検索することにより算出される。
また、スライディングモードコントローラ31(入力トルクパラメータ算出手段)では、以下に述べるスライディングモード制御アルゴリズムによって、入力トルクTRQin(入力トルクパラメータ)が算出される。なお、以上の算出式における記号(k)付きの各離散データは、所定周期ΔT(例えば10msec)に同期して算出(又はサンプリング)されたデータであることを示しており、記号k(kは正の整数)は各離散データの算出(又はサンプリング)サイクルの順番を表している。例えば、記号kは今回の算出タイミングで算出された今回値であることを、記号k−1は前回の算出タイミングで算出された前回値であることをそれぞれ示している。この点は、以下の離散データにおいても同様である。また、以下の説明では、各離散データにおける記号(k)を適宜省略する。
まず、下式(1)により、追従誤差errを算出する。
Figure 2016211504
次に、下式(2)により、切換関数σを算出する。この式(2)のSは、切換関数設定パラメータであり、−1<S<0が成立する値に設定されている。
Figure 2016211504
次いで、下式(3)により、等価制御入力Ueqを算出する。
Figure 2016211504
この式(3)において、a1,b1は、後述する式(10)に示す制御対象モデルのモデルパラメータであり、Cは、後述する式(11)に示すように定義される外乱ゲイン行列である。さらに、Eは、後述する式(12)に示すように定義される外乱推定値ベクトルであり、n1,n2は、制御対象モデルにおける出力軸トルクTRQact及び入力トルクTRQinのむだ時間に相当する。
さらに、下式(4)〜(6)により、非線形入力Unlを算出する。これらの式(4),(6)のKnlは、所定の非線形ゲインである。
Figure 2016211504
Figure 2016211504
Figure 2016211504
次に、下式(7)により、到達則入力Urchを算出する。この式(7)のKrchは、所定の到達則ゲインである。
Figure 2016211504
次いで、下式(8)により、適応則入力Uadpを算出する。この式(8)のKadpは、所定の適応則ゲインである。
Figure 2016211504
そして、最終的に、下式(9)により、入力トルクTRQinが算出される。
Figure 2016211504
以上の式(1)〜(9)に示す制御アルゴリズムは以下のように導出される。すなわち、本実施形態の制御対象40を、入力トルクTRQinを入力とし、出力軸トルクTRQactを出力とし、第1〜第4外乱推定値e1〜e4が外乱として加えられる制御系と見なして定義するとともに、離散時間系モデルとしてモデル化すると、下式(10)〜(12)の制御対象モデルが得られる。なお、この制御対象モデルの場合、そのモデルパラメータをオンボード同定器32で同定する関係上、モデルパラメータも離散データ化されている。
Figure 2016211504
Figure 2016211504
Figure 2016211504
上式(11)の外乱ゲイン行列Cの要素C1〜C4は、第1〜第4外乱ゲインであり、要素C5は、制御対象モデルの定常偏差を補償するための拡張パラメータゲインである。これらの要素C1〜C5は、オンボード同定器32で後述するように算出(同定)される。また、上式(12)の第1〜第4外乱推定値e1〜e4は、具体的には、排ガスの酸素濃度の変動量及び吸気弁4のバルブタイミングの変動量などであり、ECU2によって算出される。さらに、上式(12)のn3〜n6は、第1〜第4外乱推定値e1〜e4のむだ時間を表している。以上の式(10)〜(12)に示す制御対象モデルに対して、出力軸トルクTRQactが目標トルクTRQtgtに収束するように、スライディングモード制御アルゴリズムを適用すると、前述した式(1)〜(9)が導出される。
このスライディングモードコントローラ31の場合、以上の制御アルゴリズムによって、入力トルクTRQinが算出されるので、この入力トルクTRQinは、出力軸トルクTRQactを目標トルクTRQtgtに追従させる値として算出される。これに加えて、等価制御入力Ueqの算出式(3)には、外乱ゲイン行列と外乱推定値ベクトルの積C・Eが含まれているので、入力トルクTRQinは、4種類の外乱の影響及び制御対象モデルの定常偏差を補償できる値として算出されることになる。
次に、前述したオンボード同定器32(オンボード同定手段)について説明する。このオンボード同定器32では、以下の式(13)〜(21)に示すオンボード同定アルゴリズムによって、パラメータベクトルθが算出される。このオンボード同定アルゴリズムは、前述した式(10)〜(12)の制御対象モデルに対して、逐次型最小2乗法の同定アルゴリズムとδ修正法アルゴリズムを適用したものである。
まず、パラメータベクトルθは、下式(13)のように定義されるベクトルであり、下式(14)によって算出される。
Figure 2016211504
Figure 2016211504
この式(14)におけるdθは、下式(15)のように定義される修正項ベクトルである。
Figure 2016211504
この修正項ベクトルdθの要素において、da1,db1は修正項であり、dCは、5つの修正項dC1〜dC5を要素とする1行5列の行列である。
また、式(14)におけるθbaseは、下式(16)のように定義される基準パラメータベクトルである。
Figure 2016211504
この基準パラメータベクトルθbaseの要素において、a1base,b1baseは、モデルパラメータ基準値であり、エンジン回転数NEに応じて、図示しないマップを検索することにより、算出される。また、Cbaseは、5つの基準外乱推定値C1base〜C5baseを要素とする1行5列の行列であり、これらの要素C1base〜C5baseも、エンジン回転数NEに応じて、図示しないマップを検索することにより、算出される。なお、以上の基準パラメータベクトルθbaseの要素を、エンジン回転数NEと無関係に一定値に設定してもよい。
また、上述した修正項ベクトルdθは、下式(17)によって算出される。
Figure 2016211504
この式(17)において、λは、下式(18)のように定義される忘却係数行列である。
Figure 2016211504
この忘却係数行列λの要素において、λa1,λb1は忘却係数であり、値0より大きくかつ値1未満の値に設定される。また、要素λCは、5つの忘却係数λC1〜λC5を要素とする1行5列の行列であり、これらの5つの忘却係数λC1〜λC5も、値0より大きくかつ値1未満の値に設定される。
また、上式(17)のKは、下式(19)〜(21)によって算出されるゲイン行列である。
Figure 2016211504
Figure 2016211504
Figure 2016211504
上式(19)のPは、式(20)のように定義されるゲイン重み行列であり、この式(20)のPa1,Pb1は、所定のゲイン重みである。また、式(20)のPCは、5つの所定のゲイン重みPC1〜PC5を要素とする1行5列のゲイン重み行列である。また、式(19)のzは、式(21)のように定義されるベクトルである。
次に、図5を参照しながら、本実施形態の制御対象40について説明する。この制御対象40は、前述したように、入力トルクTRQinを入力とし、出力軸トルクTRQactを出力とする制御系として定義され、具体的には、図5に示すように、目標開度算出部41、THコントローラ42及びエンジン3などを含むように構成されている。なお、2つの要素41,42はいずれも、ECU2により構成されている。
この目標開度算出部41では、以下に述べるように、スロットル弁開度THの目標となる目標開度THcmd(吸入空気量パラメータ)が、応答曲面モデルを用いて算出される。具体的には、入力トルクTRQinが所定の判定値TRQref以上のとき、すなわちエンジン3の中高負荷運転時には、下式(22)に示す応答曲面モデルにより、目標開度THcmdが算出される。
Figure 2016211504
上式(22)において、Offset_Hは、所定のオフセット値(一定値)であり、G1〜G27は、所定ゲイン(一定値)である。
一方、TRQin<TRQrefが成立しているとき、すなわちエンジン3の低負荷運転時には、下式(23)に示す応答曲面モデルにより、目標開度THcmdが算出される。
Figure 2016211504
上式(22)において、Offset_Lは、所定のオフセット値(一定値)であり、G41〜G67は、所定ゲイン(一定値)である。
この目標開度算出部41の場合、以上の手法によって目標開度THcmdが算出されるので、この目標開度THcmdは、4種類の外乱の影響及び制御対象モデルの定常偏差を補償しながら、出力軸トルクTRQactを目標トルクTRQtgtに追従させるような値として算出される。
さらに、THコントローラ42では、スロットル弁開度THが目標開度THcmdになるように、所定のフィードバック制御アルゴリズム(例えば、スライディングモード制御アルゴリズム)により、TH制御入力Uthが算出され、このTH制御入力Uthに対応する制御入力信号がTHアクチュエータ9bに供給される。その結果、出力軸トルクTRQactが目標トルクTRQtgtに追従するように制御される。
以上のように、本実施形態の制御装置1によれば、筒内圧センサ20の検出信号に基づいて筒内圧Pcylを算出し、これに基づいて、出力軸トルクTRQactが算出されるとともに、アクセル開度AP及び車速VPに応じて、目標トルクTRQtgtが算出される。そして、出力軸トルクTRQactが目標トルクTRQtgtになるように、式(1)〜(9)に示すスライディングモード制御アルゴリズムを用いて、入力トルクTRQinが算出され、この入力トルクTRQinを用いて、出力軸トルクTRQactが目標トルクTRQtgtになるように制御されるので、内燃機関3の発生トルクを決定するパラメータの1つにしか過ぎない点火時期を制御する特許文献1の制御装置と比べて、出力軸トルクTRQactの制御精度を向上させることができる。その結果、高い商品性を確保することができる。
また、式(1)〜(9)のスライディングモード制御アルゴリズムは、式(10)〜(12)に示す、出力軸トルクTRQactと入力トルクTRQinと4つの外乱推定値e1〜e4と拡張パラメータゲインC5との関係を定義した制御対象モデルに基づいて導出されるので、その等価制御入力Ueqが4つの外乱推定値e1〜e4及び拡張パラメータゲインC5を含むように定義されることになる。その結果、4つの外乱推定値e1〜e4に対応する4種類の外乱の影響と、制御対象モデルにおける定常偏差を補償しながら、出力軸トルクTRQactを目標トルクTRQtgtに精度よく収束させることができ、制御精度をさらに向上させることができる。
これに加えて、オンボード同定器32によって、4つの外乱推定値e1〜e4と、4つの外乱ゲインC1〜C4と、拡張パラメータゲインC5とがオンボードで同定され、そのようにオンボード同定された値を用いて入力トルクTRQinが算出されるので、4つの外乱推定値e1〜e4に対応する4種類の外乱の影響と、制御対象モデルにおける定常偏差とを補償できることに加えて、エンジン3の個体差や経時変化などに起因して、制御対象モデルが実際の制御対象の状態から乖離し、モデル化誤差が増大したときでも、それを補償しながら、入力トルクTRQinを算出することができる。それにより、制御のロバスト性を向上させることができ、商品性をさらに向上させることができる。
さらに、制御対象40が入力トルクTRQinを入力とし出力軸トルクTRQactを出力とする制御系として定義され、目標開度算出部41、THコントローラ42及びエンジン3などで構成されている。この目標開度算出部41では、入力トルクTRQinと所定の判定値TRQrefとの大小関係に基づき、式(22),(23)に示す応答曲面モデルの一方が選択されるので、入力トルクTRQinに対して最適な応答曲面モデルを選択することができる。また、式(22),(23)の応答曲面モデルは、入力トルクTRQinと、エンジン回転数NEと、と、4つの外乱推定値e1〜e4と、目標開度THcmdとの関係を線形化したものであるので、そのように選択した応答曲面モデルを用いることによって、4つの外乱推定値e1〜e4に対応する4種類の外乱の影響を補償しながら、目標開度THcmdを精度よく算出することができる。その結果、出力軸トルクTRQactの制御精度をより一層、向上させることができる。
以上に加えて、本実施形態の筒内圧センサ20が、燃料噴射弁7の先端部に設けられたリング状の検出部20aを備えているので、一般的な筒内圧センサのように、その検出部が座金状に形成され、点火プラグや燃料噴射弁などの機器とシリンダヘッドとの間に配置される場合と比べて、シリンダヘッドの振動の影響を抑制しながら、筒内圧Pcylを精度よく検出することができる。その結果、筒内圧Pcylの検出精度が向上するのに伴って、出力軸トルクTRQactの制御精度をさらに向上させることができる。
なお、実施形態は、筒内圧検出手段として、筒内圧センサ20を用いた例であるが、本発明の筒内圧検出手段は、これに限らず、筒内圧を検出するものであればよい。例えば、筒内圧検出手段として、点火プラグなどをシリンダヘッドに取り付けるときに、両者の間に挟み込まれる座金タイプの筒内圧センサを用いてもよい。
また、実施形態は、制御対象モデルとして、式(10)〜(12)に示すモデルを用いた例であるが、本発明の制御対象モデルはこれに限らず、入力トルクパラメータを入力とし出力軸トルクを出力とする制御対象をモデリングしたものであればよい。例えば、制御対象モデルとして、式(10)において、右辺の第3項C(k)・E(k)を省略したモデルを用いてもよい。また、制御対象モデルとして、式(10)において、右辺の第3項C(k)・E(k)を1つの外乱推定値e1(k)、2個の外乱推定値e1(k),e2(k)、3個の外乱推定値e1(k)〜e3(k)、又は5個以上の外乱推定値に置き換えたモデルを用いてもよい。
さらに、実施形態は、応答曲面モデルとして、式(22),(23)を用いた例であるが、本発明の応答曲面モデルはこれらに限らず、入力トルクパラメータと、内燃機関の回転数と、n(nは1以上の整数)個の外乱推定値と、内燃機関の吸入空気量を表す吸入空気量パラメータとの関係を線形化したものであればよい。
例えば、応答曲面モデルとして、式(22),(23)において、外乱推定値e2(k)〜e4(k)が含まれる項を削除したモデル、外乱推定値e3(k),e4(k)が含まれる項を削除したモデル、又は、外乱推定値e4(k)が含まれる項を削除したモデルを用いてもよい。その場合には、制御対象モデルとして、式(10)において、右辺の第3項C(k)・E(k)を1つの外乱推定値e1(k)、2個の外乱推定値e1(k),e2(k)、又は3個の外乱推定値e1(k)〜e3(k)に置き換えたモデルを用いればよい。
また、実施形態は、複数の応答曲面モデルとして、式(22),(23)に示す2つの応答曲面モデルを用いた例であるが、これらの応答曲面モデルに代えて、3つ以上の応答曲面モデルを用いてもよい。
さらに、実施形態は、入力トルクTRQinに応じて、2つの応答曲面モデルの一方を選択した例であるが、これに代えて、目標トルクTRQtgtに応じて、2つの応答曲面モデルの一方を選択するように構成してもよい。
一方、実施形態は、入力トルクパラメータとして、入力トルクTRQinを用いた例であるが、本発明の入力トルクパラメータはこれに限らず、入力トルクを表す値であればよい。例えば、入力トルクパラメータとして、吸入空気量を用いてもよく、内燃機関がディーゼルエンジンの場合には、入力トルクパラメータとして、燃料噴射量を用いてもよい。
また、実施形態は、所定のフィードバック制御アルゴリズムとして、スライディングモード制御アルゴリズムを用いた例であるが、本発明の所定のフィードバック制御アルゴリズムはこれに限らず、出力軸トルクが目標トルクになるように、入力トルクパラメータを算出するものであればよい。例えば、所定のフィードバック制御アルゴリズムとして、バックステッピング制御アルゴリズムや、PID制御アルゴリズムなどを用いてもよい。
さらに、実施形態は、吸入空気量パラメータとして、目標開度THcmdを用いた例であるが、本発明の吸入空気量パラメータはこれに限らず、内燃機関の吸入空気量を表すものであればよい。例えば、スロットル弁開度THを吸入空気量パラメータとして用いてもよく、可変吸気動弁機構のみによって内燃機関の吸入空気量を制御している場合には、可変吸気動弁機構の動作量を吸入空気量パラメータとして用いてもよい。
また、実施形態は、本発明の制御装置を車両用の内燃機関に適用した例であるが、本発明の制御装置は、これに限らず、船舶用の内燃機関や、他の産業機器用の内燃機関にも適用可能である。
さらに、実施形態は、内燃機関として、ガソリンエンジンを用いた例であるが、これに代えて、軽油、LPG又は混合燃料(例えば、ガソリンとアルコールの混合燃料)などを燃料とする内燃機関を用いてもよい。
1 制御装置
2 ECU(出力軸トルク算出手段、目標トルク算出手段、入力トルクパラメータ算 出手段、制御手段、オンボード同定手段)
3 内燃機関
3a 気筒
3c クランクシャフト(出力軸)
7 燃料噴射弁
20 筒内圧センサ(筒内圧検出手段)
20a 検出部
30 目標トルク算出部(目標トルク算出手段)
31 スライディングモードコントローラ(入力トルクパラメータ算出手段)
32 オンボード同定器(オンボード同定手段)
40 制御対象
Pcyl 筒内圧
TRQact 出力軸トルク
TRQtgt 目標トルク
TRQin 入力トルク(入力トルクパラメータ)
e1〜e4 第1〜第4外乱推定値
NE 内燃機関の回転数
THcmd 目標開度(吸入空気量パラメータ)
a1 モデルパラメータ
b1 モデルパラメータ

Claims (5)

  1. 内燃機関の気筒内の圧力である筒内圧を検出する筒内圧検出手段と、
    当該検出された筒内圧に基づいて、前記内燃機関の出力軸のトルクである出力軸トルクを算出する出力軸トルク算出手段と、
    前記内燃機関の前記出力軸トルクの目標となる目標トルクを算出する目標トルク算出手段と、
    入力トルクを表す入力トルクパラメータを入力とし前記出力軸トルクを出力とする制御対象をモデリングした制御対象モデルに基づく所定のフィードバック制御アルゴリズムを用いて、前記検出された出力軸トルクが前記算出された目標トルクになるように、前記入力トルクパラメータを算出する入力トルクパラメータ算出手段と、
    当該算出された入力トルクパラメータを用いて、前記内燃機関の前記出力軸トルクを制御する制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記制御対象は、前記入力トルクパラメータと、前記内燃機関の回転数と、n(nは1以上の整数)個の外乱推定値と、前記内燃機関の吸入空気量を表す吸入空気量パラメータとの関係を線形化した複数の応答曲面モデルを含む制御系であり、
    前記制御手段は、前記入力トルクパラメータ及び前記目標トルクの一方に応じて、前記複数の応答曲面モデルの1つを選択し、当該選択した応答曲面モデルを用いて前記吸入空気量パラメータを算出するとともに、当該算出された吸入空気量パラメータを用いて、前記内燃機関の前記出力軸トルクを制御することを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記制御対象モデルは、前記入力トルクパラメータと前記出力軸トルクとm(mは3以上の整数)個の外乱推定値との関係を定義したモデルであり、
    前記所定のフィードバック制御アルゴリズムは、前記m個の外乱推定値を含むように構成された等価制御入力を含むスライディングモード制御アルゴリズムであることを特徴とする請求項1に記載の内燃機関の制御装置。
  4. 前記制御対象モデルのモデルパラメータ及び前記m個の外乱推定値をオンボードで同定するオンボード同定手段をさらに備え、
    前記入力トルクパラメータ算出手段は、前記所定のフィードバック制御アルゴリズムに加えて、前記オンボードで同定されたモデルパラメータ及び前記m個の外乱推定値を用いて、前記入力トルクパラメータを算出することを特徴とする請求項3に記載の内燃機関の制御装置。
  5. 前記内燃機関は、前記気筒内に燃料を直接噴射する燃料噴射弁を備えており、
    前記筒内圧検出手段は、当該燃料噴射弁の先端部に設けられたリング状の検出部を備えていることを特徴とする請求項1ないし4のいずれかに記載の内燃機関の制御装置。
JP2015098151A 2015-05-13 2015-05-13 内燃機関の制御装置 Expired - Fee Related JP6543509B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015098151A JP6543509B2 (ja) 2015-05-13 2015-05-13 内燃機関の制御装置
US15/084,485 US9856798B2 (en) 2015-05-13 2016-03-30 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098151A JP6543509B2 (ja) 2015-05-13 2015-05-13 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2016211504A true JP2016211504A (ja) 2016-12-15
JP6543509B2 JP6543509B2 (ja) 2019-07-10

Family

ID=57276722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098151A Expired - Fee Related JP6543509B2 (ja) 2015-05-13 2015-05-13 内燃機関の制御装置

Country Status (2)

Country Link
US (1) US9856798B2 (ja)
JP (1) JP6543509B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176314A1 (ja) * 2023-02-20 2024-08-29 本田技研工業株式会社 内燃機関の制御装置、車両、及び内燃機関の制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158838A1 (ja) * 2016-03-18 2017-09-21 富士通株式会社 エンジントルク推定装置、エンジン制御システム及びエンジントルク推定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237237A (ja) * 1990-02-14 1991-10-23 Nissan Motor Co Ltd 内燃機関の出力制御装置
JPH04232363A (ja) * 1990-12-28 1992-08-20 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JPH0953483A (ja) * 1995-06-09 1997-02-25 Unisia Jecs Corp シリンダ内圧検出装置
JPH1182119A (ja) * 1997-09-12 1999-03-26 Toyota Motor Corp 内燃機関の出力制御装置
JP2001280187A (ja) * 2001-03-12 2001-10-10 Hitachi Ltd 内燃エンジンの出力トルク制御装置
JP2002138889A (ja) * 2000-11-02 2002-05-17 Toyota Motor Corp 車両用制御装置および記録媒体
JP2009156099A (ja) * 2007-12-25 2009-07-16 Honda Motor Co Ltd 制御装置
JP2014118824A (ja) * 2012-12-13 2014-06-30 Keihin Corp 筒内圧センサ付き燃料噴射弁
WO2015065593A1 (en) * 2013-11-01 2015-05-07 Cummins Inc. Engine control systems and methods for achieving a torque value
JP2016098754A (ja) * 2014-11-25 2016-05-30 本田技研工業株式会社 内燃機関の燃焼状態パラメータ算出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3881433T2 (de) * 1987-04-20 1994-01-20 Mitsubishi Motors Corp Vorrichtung zur Regelung der Antriebsreibung für einen Kraftfahrzeugmotor.
US5078109A (en) * 1989-01-31 1992-01-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine output controlling method
WO1990008889A1 (en) * 1989-01-31 1990-08-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Output controller of internal combustion engine
EP0687809B1 (en) * 1994-06-17 2001-08-29 Hitachi, Ltd. An output torque control apparatus and method for an internal combustion engine
JP3514077B2 (ja) * 1997-06-24 2004-03-31 日産自動車株式会社 エンジンのスロットル制御装置
US6434466B1 (en) * 1999-05-06 2002-08-13 Ford Global Technologies, Inc. System and method for determining engine torque for controlling a powertrain
JP4465665B2 (ja) * 2005-11-29 2010-05-19 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP4486923B2 (ja) * 2005-12-19 2010-06-23 本田技研工業株式会社 制御装置
JP4639166B2 (ja) * 2006-05-18 2011-02-23 本田技研工業株式会社 制御装置
JP4503631B2 (ja) * 2007-05-18 2010-07-14 本田技研工業株式会社 内燃機関の制御装置
JP2010053823A (ja) * 2008-08-29 2010-03-11 Denso Corp 内燃機関の空気量制御装置
US8688357B2 (en) 2009-01-15 2014-04-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5556779B2 (ja) * 2011-09-28 2014-07-23 株式会社デンソー 車両制御装置
US9382865B2 (en) * 2014-03-26 2016-07-05 GM Global Technology Operations LLC Diagnostic systems and methods using model predictive control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237237A (ja) * 1990-02-14 1991-10-23 Nissan Motor Co Ltd 内燃機関の出力制御装置
JPH04232363A (ja) * 1990-12-28 1992-08-20 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JPH0953483A (ja) * 1995-06-09 1997-02-25 Unisia Jecs Corp シリンダ内圧検出装置
JPH1182119A (ja) * 1997-09-12 1999-03-26 Toyota Motor Corp 内燃機関の出力制御装置
JP2002138889A (ja) * 2000-11-02 2002-05-17 Toyota Motor Corp 車両用制御装置および記録媒体
JP2001280187A (ja) * 2001-03-12 2001-10-10 Hitachi Ltd 内燃エンジンの出力トルク制御装置
JP2009156099A (ja) * 2007-12-25 2009-07-16 Honda Motor Co Ltd 制御装置
JP2014118824A (ja) * 2012-12-13 2014-06-30 Keihin Corp 筒内圧センサ付き燃料噴射弁
WO2015065593A1 (en) * 2013-11-01 2015-05-07 Cummins Inc. Engine control systems and methods for achieving a torque value
JP2016098754A (ja) * 2014-11-25 2016-05-30 本田技研工業株式会社 内燃機関の燃焼状態パラメータ算出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176314A1 (ja) * 2023-02-20 2024-08-29 本田技研工業株式会社 内燃機関の制御装置、車両、及び内燃機関の制御方法

Also Published As

Publication number Publication date
US9856798B2 (en) 2018-01-02
JP6543509B2 (ja) 2019-07-10
US20160333802A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
US7654252B2 (en) Air-fuel ratio control system and method for internal combustion engine
EP1643101B1 (en) Intake air amount control device of internal combustion engine and control device
JP4144272B2 (ja) 内燃機関の燃料噴射量制御装置
JP4251228B2 (ja) 内燃機関の制御装置
JP4184058B2 (ja) 制御装置
JP4673787B2 (ja) 内燃機関の空燃比制御装置
JP3998136B2 (ja) 内燃機関の空燃比制御装置
JP3980424B2 (ja) 内燃機関の空燃比制御装置
JP2007247476A (ja) 内燃機関の制御装置
JP4364777B2 (ja) 内燃機関の空燃比制御装置
JP5379753B2 (ja) 内燃機関の空燃比制御装置
JP6543509B2 (ja) 内燃機関の制御装置
EP1645740B1 (en) Intake airvolume controller of internal combustion engine
JP5543852B2 (ja) 内燃機関の空燃比制御装置
JP5770585B2 (ja) 内燃機関の空燃比制御装置
JP4211700B2 (ja) 内燃機関の燃料噴射制御装置
JP4368928B2 (ja) 内燃機関の制御装置
JP3683355B2 (ja) 内燃機関の気筒別空燃比推定装置
US20130061581A1 (en) Air-fuel ratio control system for internal combustion engine
JP4770589B2 (ja) 内燃機関の空燃比制御装置
JP4941023B2 (ja) 内燃機関の制御装置
JP2008280892A (ja) 内燃機関の制御装置
JP2009228498A (ja) 内燃機関の空燃比制御装置
JP2012097657A (ja) プラントの制御装置
JP2009228472A (ja) 内燃機関の点火時期制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6543509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees