JP2016210239A - 船舶用ステアリングシステム - Google Patents

船舶用ステアリングシステム Download PDF

Info

Publication number
JP2016210239A
JP2016210239A JP2015093294A JP2015093294A JP2016210239A JP 2016210239 A JP2016210239 A JP 2016210239A JP 2015093294 A JP2015093294 A JP 2015093294A JP 2015093294 A JP2015093294 A JP 2015093294A JP 2016210239 A JP2016210239 A JP 2016210239A
Authority
JP
Japan
Prior art keywords
steering wheel
electric actuator
steering
control unit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015093294A
Other languages
English (en)
Inventor
真 水谷
Makoto Mizutani
真 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2015093294A priority Critical patent/JP2016210239A/ja
Priority to US15/143,163 priority patent/US10518857B2/en
Publication of JP2016210239A publication Critical patent/JP2016210239A/ja
Priority to US16/683,392 priority patent/US10752327B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • B63H20/12Means enabling steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/52Parts for steering not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H2025/022Steering wheels; Posts for steering wheels

Abstract

【課題】船内スペースを大幅に減少させることなく、自動操舵機能を容易に追加できる船舶用ステアリングシステムを提供すること。【解決手段】船舶用ステアリングシステムは、ステアリングホイール32を回転させる動力を発生する電動モータ42と、電動モータ42の回転をステアリングホイール32に伝達する伝達機構43と、ステアリングホイール32の回転に基づかない入力信号に応じて電動モータ42に電力を供給する給電スイッチ52および制御ユニット55とを備える。【選択図】図3

Description

本発明は、船舶を操舵する船舶用ステアリングシステムに関する。
特許文献1には、良好な操舵フィーリングを得るための船外機の操舵装置が開示されている。操舵装置は、ステアリングホイールの回転にフリクションを与えると共に、ステアリングホイールの回転角を規制する油圧ダンパーを備える。
特許文献2には、操舵フィーリングを切り替えることができる船外機の操舵装置が開示されている。操舵装置は、船外機を回動させる油圧式の操舵機構と、船外機を回動させる電動式の操舵機構と、操船者の操作に応じて油圧式および電動式の切り替えを行う切替機構とを備える。
特許文献3には、操船者のホイール操作を電動アクチュエータで補助する船外機の操舵装置が開示されている。操舵機構は、操船者によるステアリングホイールの操作に応じて動力を発生する電動アシスト機構を備える。
特許文献4には、無線通信網を介して船に接続された携帯電話などの遠隔端末から船を遠隔操作するシステムが開示されている。
特開2006―199064号公報 特開2007―216911号公報 特開2011―105222号公報 国際公開第2009/26663号
船外機用の油圧式の操舵機構は、ステアリングホイールの回転を油圧に変換するヘルムポンプと、ヘルムポンプから伝達された油圧により船外機を回動させる油圧シリンダと、ヘルムポンプの油圧を油圧シリンダに伝達する油圧配管とを含む。
このような油圧式の操舵機構を備える船舶に、オートパイロットと呼ばれる後付の自動操舵装置を設置する場合がある。一般的な自動操舵装置は、操舵機構の油圧配管に介装される油圧ポンプと、油圧ポンプを駆動する電動モータと、電動モータを制御する制御装置とを含む。制御装置が電動モータ等を制御することにより、船舶が自動で操縦される。
しかしながら、後付けの自動操舵装置が大きいため、これを船舶に追加すると、乗船者が利用可能な船内スペースが狭まる。特に、小型の船舶では自動操舵装置を配置するスペースを確保できないこともある。
一方、機械式の操舵機構に代えて、電動式の操舵機構を用いることが提案されている。電動式の操舵機構は、ステアリングホイールの回転角を信号に変換し、舵を駆動する電動アクチュエータをこの信号に応じて駆動する。そのため、電動アクチュエータを駆動する駆動信号を出力する装置を追加すれば、船舶を自動で操縦することができる。例えば、特許文献4には、遠隔端末から自動制御システムに指令を送ることにより、船舶を自動で操縦するオートパイロットシステムが開示されている。
機械式の操舵機構を電動式の操舵機構に変更することは、特許文献1などの多くの文献で提案されている。しかしながら、既存の操舵機構(機械式の操舵機構)を変更する場合、デバイスを変更したり、制御システム等を導入したりする必要がある。また、特許文献2では、機械式の操舵機構と電動式の操舵機構とこれらの切替を行う切替機構とを備える操舵装置が提案されている。しかし、この操舵装置では、両方の操舵機構を設ける必要があるため、構造が複雑化すると共に、電動式の操舵機構を追加しなければならない。
なお、操船者のホイール操作を電動アクチュエータで補助する技術は、特許文献3などの多くの文献で提案されている。しかしながら、特許文献3に記載の技術は、自動操舵に関するものではない。
以上の通り、機械式の操舵機構に自動操舵機能を追加することは容易ではなかった。さらに、電動式の操舵機構においても、自動操舵機能の追加を予定していない場合は、新たにインターフェイスを設けたり、制御システムを変更したりする必要がある。よって、電動式の操舵機構に自動操舵機能を追加することも容易ではなかった。
そこで、本発明の目的の一つは、船内スペースを大幅に減少させることなく、自動操舵機能を容易に追加できる船舶用ステアリングシステムを提供することである。
本発明の一実施形態は、ステアリングホイールを回転させる動力を発生する電動アクチュエータと、前記電動アクチュエータの出力部と共に回転する駆動部材と、前記ステアリングホイールと共に回転する従動部材とを含み、前記電動アクチュエータの出力部の回転を前記ステアリングホイールに伝達する伝達機構と、前記ステアリングホイールの回転に基づかない入力信号に応じて前記電動アクチュエータに電力を供給する給電制御部とを備える、船舶用ステアリングシステムを提供する。「ステアリングホイールの回転に基づかない入力信号」は、操船者によるステアリングホイールの操作がなくても発生する信号を意味する。
この構成によれば、ステアリングホイールの回転に基づかない入力信号が生成されると、給電制御部が電動アクチュエータに電力を供給する。これにより、電動アクチュエータが回転し、この回転が駆動部材と従動部材とを含む伝達機構によってステアリングホイールに伝達される。そのため、操船者がステアリングホイールに触れていなくても、ステアリングホイールが回転する。
操舵機構が機械式である場合、ステアリングホイールが回転すると、舵が駆動される。操舵機構が電動式である場合、ステアリングホイールが回転すると、この回転が検知され、舵を回動させる電動アクチュエータが駆動される。したがって、操舵機構が機械式および電動式のいずれである場合でも、船舶が自動で操舵される。
このように、本システムでは、電動アクチュエータや伝達機構などをステアリングホイールの周辺に設けることで、自動操舵機能を追加できる。そのため、既存の操舵機構を大幅に変更しなくてもよい。さらに、ステアリングホイールを回転させるシンプルな構成であるので、船内スペースの減少を抑えることができる。
前記実施形態において、前記船舶は、前記ステアリングホイールを回転可能に支持するコンソール台を含んでいてもよい。前記電動アクチュエータは、前記コンソール台に支持されていてもよい。
この構成によれば、電動アクチュエータが、ステアリングホイールの近くに配置されている。つまり、電動アクチュエータおよびステアリングホイールは、同じコンソール台に支持されている。そのため、ステアリングホイールの周辺以外のスペースが、自動操舵機能の追加によって狭まることを抑えることができる。
前記実施形態において、前記電動アクチュエータは、前記コンソール台と前記ステアリングホイールとの間に配置されていてもよい。
この構成によれば、ステアリングホイールとコンソール台とが、空間を介して対向しており、電動アクチュエータがこの空間に配置されている。つまり、電動アクチュエータは、ステアリングホイールに近い位置でコンソール台の外に配置されている。さらに、電動アクチュエータがコンソール台の外に配置されているので、伝達機構もコンソール台の外に配置される。そのため、電動アクチュエータおよび伝達機構を配置する空間をコンソール台の内部に確保しなくてもよい。
前記実施形態において、前記船舶用ステアリングシステムは、前記電動アクチュエータおよび伝達機構の両方を覆うカバーをさらに含んでいてもよい。
この構成によれば、電動アクチュエータおよび伝達機構が、ステアリングホイールとコンソール台との間に配置されており、カバーが、電動アクチュエータおよび伝達機構を覆っている。そのため、電動アクチュエータおよび伝達機構を海水や雨水などから保護できる。
前記実施形態において、前記従動部材は、前記ステアリングホイールの回転軸線上に位置していてもよい。前記駆動部材は、前記従動部材のまわりに位置していてもよい。「前記駆動部材は、前記従動部材のまわりに位置する」とは、駆動部材および従動部材がステアリングホイールの回転軸線に直交する方向に並んでいることを意味する。この場合、駆動部材および従動部材が互いに接していてもよいし、中間部材が駆動部材および従動部材の間に配置されていてもよい。
この構成によれば、従動部材がステアリングホイールの回転軸線の近くに位置している。さらに、駆動部材が従動部材の近くに位置している。そのため、伝達機構を小型化できる。これにより、自動操舵機能の追加による船内スペースの減少を抑えることができる。
前記実施形態において、前記伝達機構は、前記電動アクチュエータと前記ステアリングホイールとの間で前記電動アクチュエータの回転を1回だけ減速させてもよい。
この構成によれば、電動アクチュエータの回転は、電動アクチュエータとステアリングホイールとの間で1回だけ減速される。電動アクチュエータの回転を複数回減速する場合、複数の減速ギヤが必要となる。そのため、伝達機構が大型化する。その一方で、電動アクチュエータの回転を減速させない場合、定格トルクの大きな電動アクチュエータ、すなわち、大型の電動アクチュエータが必要となる。そのため、この構成によれば、電動アクチュエータおよび伝達機構の大型化を抑制できる。
前記実施形態において、前記伝達機構は、前記電動アクチュエータを前記ステアリングホイールに常時連結していてもよい。「常時連結」は、電動アクチュエータおよびステアリングホイールの一方が回転すると、電動アクチュエータおよびステアリングホイールの他方が、いつでも、それに応じて回転するような連結を意味する。
電動アクチュエータとステアリングホイールとを繋ぐ動力の伝達経路を電磁クラッチで切断および接続する場合、電磁クラッチを切り替える必要がある。これに対して、電動アクチュエータがステアリングホイールに常時連結されている場合、このような切替制御が不要である。したがって、ステアリングシステムを簡素化できる。
前記実施形態において、前記伝達機構は、前記電動アクチュエータと前記ステアリングホイールとを繋ぐ動力の伝達経路上で前記電動アクチュエータの動力を前記ステアリングホイールに向けて伝達し、操船者が前記ステアリングホイールにトルクを加えると前記伝達経路を切断するクラッチをさらに含んでいてもよい。
この構成によれば、正転方向および逆転方向のトルクが、クラッチを介して電動アクチュエータからステアリングホイールに伝達される。その一方で、操船者が正転方向および逆転方向のトルクをステアリングホイールに加えると、クラッチが伝達経路を切断する。そのため、操船者がステアリングホイールを操作したときに、電動アクチュエータの慣性抵抗や電気的制動力が、ステアリングホイールを介して操船者に伝達されない。これにより、操舵フィーリングの悪化を防止できる。
前記実施形態において、前記電動アクチュエータから前記ステアリングホイールに伝達される最大トルクは、8Nm(ニュートンメートル)以下であってもよい。
この構成によれば、電動アクチュエータの定格トルクと伝達機構の減速比とは、電動アクチュエータからステアリングホイールに伝達される最大トルクが8Nm以下になるように設定されている。この最大トルクは、操船者がステアリングホイールに触れていないときにステアリングホイールを回転させるために必要な最低トルク以上であり、操船者がステアリングホイールに触れているときにステアリングホイールを回転させるために必要な最低トルク未満である。
このように、最大トルクが小さいので、電動アクチュエータによるステアリングホイールの駆動と、操船者によるステアリングホイールの操作とが同時期に実行されると、操船者のホイール操作が優先される。したがって、操船者のホイール操作を船舶の操舵に確実に反映できる。さらに、最大トルクが小さいので、小型のモータを電動アクチュエータとして使用することができる。そのため、電動アクチュエータの占有体積を小さくでき、電動アクチュエータの消費電力を低減できる。
前記実施形態において、前記給電制御部は、前記船舶の速度が所定値以下のときだけ、前記電動アクチュエータに電力を供給してもよい。たとえば、前記給電制御部は、前記船舶を推進させる動力を発生するエンジンの回転速度が1000rpm以下のときだけ、前記電動アクチュエータに電力を供給してもよい。
操舵機構が機械式であり、船舶が高速の場合、舵に加わる水圧が高いので、大きなトルクをステアリングホイールに加えないと、ステアリングホイールが動かない。そのため、定格トルクの大きなモータを電動アクチュエータとして使用する必要がある。これは、電動アクチュエータが大型化し、消費電力が増加することを意味する。
これに対して、船舶が低速のときだけ、電動アクチュエータがステアリングホイールを回転させる場合、定格トルクの大きなモータを電動アクチュエータとして使用しなくてもよい。そのため、電動アクチュエータの占有体積を小さくでき、電動アクチュエータの消費電力を低減できる。
前記実施形態において、前記給電制御部の制御ユニットは、前記電動アクチュエータへの電力供給を制御するアクチュエータ駆動部と、操船者が前記ステアリングホイールを操作していることを含む操作条件が成立するか否かを判定する操作判定部と、前記電動アクチュエータが駆動されているときに前記操作条件が成立すると、前記アクチュエータ駆動部に前記電動アクチュエータの駆動を停止させる駆動停止部とを含んでいてもよい。
この構成によれば、電動アクチュエータが駆動されているときに、操船者がステアリングホイールを操作しているか否か、つまり、操船者がステアリングホイールを一定の位置で保持しているか否かや、ステアリングホイールを回転させているか否かが判定される。操船者がステアリングホイールを操作していると判定された場合、電動アクチュエータの駆動が停止され、電動アクチュエータからステアリングホイールへのトルクの伝達が停止される。そのため、電動アクチュエータが操船者のホイール操作を妨げることを防止できる。
前記実施形態において、前記給電制御部の制御ユニットは、前記入力信号に応じて前記電動アクチュエータの回転角を計算する修正角度計算部と、前記電動アクチュエータが前記修正角度計算部によって計算された回転角で回転するように前記電動アクチュエータへの電力供給を制御するアクチュエータ駆動部とを含んでいてもよい。
前記実施形態において、前記制御ユニットは、操船者によって操作される携帯端末に無線通信網を介して接続されており、前記携帯端末から送られた前記入力信号を受信する通信ユニットをさらに含んでいてもよい。
この構成によれば、操船者によって携帯端末に入力された指令が、無線通信網を介して通信ユニットに受信され、通信ユニットが受信した指令に基づいて、制御ユニットが電動アクチュエータへの電力供給を制御する。携帯端末がステアリングシステムに物理的に接続されていないので、操船者は、船内のいずれの場所からでも制御ユニットに指示を与えることができる。つまり、操船者は、自動操舵装置を遠隔操作できる。さらに、自動操舵機能に必要な被操作部およびディスプレイを省略できるので、コンソール台を簡素化できる。
前記実施形態において、前記携帯端末は、操船者が前記船舶の目的地を指定するときに操作される被操作部を含んでいてもよい。前記給電制御部は、前記電動アクチュエータへの電力供給を制御することにより、前記携帯端末で指定された目的地に前記船舶が向かうように前記船舶の針路を制御してもよい。すなわち、オートパイロット機能がステアリングシステムに設けられていてもよい。この場合、前記携帯端末は、GPS衛星が発する信号に基づいて前記携帯端末の現在地を計算するGPSユニットをさらに含んでいることが好ましい。船舶の現在地に相当する携帯端末の現在地をより正確に把握できるからである。
前記実施形態において、前記船舶用ステアリングシステムは、風向きに対する船首の方向の傾き角度を検出し、前記入力信号を生成する風向検出装置をさらに含んでいてもよい。
この構成によれば、風向検出装置は、風向きに対する船首の方向の傾き角度を示す入力信号を生成する。給電制御部は、風向検出装置によって生成された入力信号に応じて電動アクチュエータに電力を供給する。これにより、船首が自動で風上に向けられる。したがって、操船者がステアリングホイールを操作しなくても、船首を自動で風上に向けることができる。
前記実施形態において、前記船舶用ステアリングシステムは、前記電動アクチュエータをバッテリーに接続する給電回路と、風向きに対する船首の方向の傾き角度を検出する風向検出装置とをさらに含んでいてもよい。前記給電制御部は、前記給電回路から前記電動アクチュエータへの電力供給を制御する給電スイッチと、前記給電回路から前記電動アクチュエータに電力を供給させる前記入力信号を前記給電スイッチに伝達する駆動回路と、前記風向検出装置によって検出された風向きに対する船首の方向の傾き角度に応じて、前記入力信号を生成するオン状態と、前記駆動回路を開くオフ状態と、に切り替わる駆動スイッチとを含んでいてもよい。
この構成によれば、風向きに対する船首の方向の傾き角度が所定値になると、駆動スイッチがオン状態になり、ステアリングホイールの回転に基づかない入力信号が駆動回路から給電スイッチに伝達される。これにより、バッテリーの電力が、給電回路から電動アクチュエータに供給され、電動アクチュエータが駆動される。そのため、船首が自動で風上に向けられる。したがって、操船者がステアリングホイールを操作しなくても、船首を自動で風上に向けることができる。
前記実施形態において、船舶用ステアリングシステムは、操船者の操作に応じて前記給電回路および駆動回路の一方を開閉するオンオフスイッチをさらに含んでいてもよい。
この構成によれば、オンオフスイッチが操船者によってオン/オフされる。オンオフスイッチが駆動回路に設けられている場合、オンオフスイッチがオフのとき、駆動回路が開いているので、入力信号が生成されない。オンオフスイッチが給電回路に設けられている場合、オンオフスイッチがオフのとき、給電回路が開いているので、給電回路から電動アクチュエータへの電力の供給が遮断される。そのため、操船者は、オンオフスイッチを操作することにより、自動操舵機能を有効化および無効化できる。
前記実施形態において、船舶用ステアリングシステムは、磁場の方向に対する船首の方向の傾き角度を検出し、前記入力信号を生成する方位検出装置をさらに含んでいてもよい。
この構成によれば、方位検出装置は、磁場の方向に対する船首の方向の傾き角度を示す入力信号を生成する。給電制御部は、方位検出装置によって生成された入力信号に応じて電動アクチュエータに電力を供給する。これにより、予め設定された方位に船首が自動で向けられる。したがって、操船者がステアリングホイールを操作しなくても、船首が特定の方位に向けられた状態を維持することができる。
本発明の第1実施形態に係る船舶の模式図である。 前記船舶に備えられた船外機の左側面を示す模式図である。 前記船舶に備えられた自動操舵装置を示す模式図である。 自動操舵装置および携帯端末の電気的構成を説明するためのブロック図である。 自動操舵装置および携帯端末の機能的な構成を説明するためのブロック図である。 自動操舵(オートパイロット)について説明するためのフローチャートである。 モータ駆動制御について説明するためのフローチャートである。 船舶が低速であることを含む低速条件の成立要件の一例を示す表である。 操船者がステアリングホイールを操作していることを含む操作条件の成立要件の一例を示す表である。 本発明の第2実施形態に係る自動操舵装置を示す模式図である。 自動操舵装置の電気的構成を説明するためのブロック図である。 自動操舵が実行される角度範囲について説明するための模式図である。 船舶が自動で操舵されるときの動作を説明するための模式図である。 本発明の第3実施形態に係る自動操舵装置を示す模式図である。 本発明の第4実施形態に係る自動操舵装置を示す模式図である。 船首の方向の傾き角度とこれを検出する検出装置の出力電圧との関係を示すグラフである。 本発明の第5実施形態に係る自動操舵装置を示す模式図である。
以下では、本発明の実施形態を、添付図面を参照して詳細に説明する。
図1は、本発明の第1実施形態に係る船舶1の模式図である。図2は、船舶1に備えられた船外機11の左側面を示す模式図である。
図1に示すように、船舶1は、水面に浮かぶ艇体2と、艇体2を推進させる推力を発生する船舶推進機6とを含む。艇体2は、水面に浮かぶ船体3と、船体3の上方に配置されたデッキ4とを含む。
図2に示すように、船舶推進機6は、艇体2の後部(船尾)に取り付け可能なクランプブラケット7と、左右方向に延びるチルティングシャフト8まわりに回転可能にクランプブラケット7に支持されたスイベルブラケット9とを含む。船舶推進機6は、さらに、上下方向に延びる中心線まわりに回転可能にスイベルブラケット9に支持されたステアリングシャフト10と、ステアリングシャフト10と共にステアリングシャフト10まわりに左右方向に回転する船外機11とを含む。
船外機11は、プロペラ18を回転させる動力を発生する原動機の一例であるエンジン13と、エンジン13の動力をプロペラ18に伝達する動力伝達装置とを含む。エンジン13は、上下方向に延びる回転軸線まわりに回転可能なクランクシャフト14を含む。クランクシャフト14の回転は、動力伝達機構のドライブシャフト15、前後進切替機構16、およびプロペラシャフト17を介してプロペラ18に伝達される。プロペラシャフト17に取り付けられたプロペラ18の回転方向は、前後進切替機構16によって切り替えられる。
前後進切替機構16は、上下方向に延びるドライブシャフト15の回転に応じて互いに反対の方向に回転する前ギヤ16aおよび後ギヤ16cと、前後方向に延びるプロペラシャフト17と共にプロペラシャフト17まわりに回転するドッグクラッチ16bとを含む。プロペラシャフト17に対してプロペラシャフト17の軸方向に移動可能なドッグクラッチ16bは、前ギヤ16aに噛み合う前進位置、後ギヤ16cに噛み合う後進位置、および、前ギヤ16aおよび後ギヤ16cの両方に噛み合わない中立位置のいずれかに選択的に配置される。
船外機11は、ドッグクラッチ16bをいずれかのシフト位置に移動させる動力を発生するシフトアクチュエータ22と、エンジン13の出力を調整するスロットルバルブの開度を変更するスロットルアクチュエータ23とを含む。シフトアクチュエータ22およびスロットルアクチュエータ23は、いずれも、船舶推進機6の船外機ECU(Electronic Control Unit:電子制御ユニット)24によって制御される電動アクチュエータである。船舶推進機6に備えられた電気機器は、船外機ECU24に接続されている。
図1に示すように、船舶1は、船舶1を操舵するために操船者によって回転されるステアリングホイール32と、エンジン13の出力調整と船舶1の前進および後進の切替とを行うために操船者によって前後方向に傾けられるリモートコントロールユニット(以下では、リモコンユニット26という。)とを含む。
ステアリングホイール32およびリモコンユニット26は、操船者の前方に配置されるコンソール台5に支持されている。ステアリングホイール32は、コンソール台5に対して回転可能である。コンソール台5は、ステアリングホイール32の回転軸線Ahに交わる平面上に配置されたコンソール面5aを含む。コンソール台5は、操船者が移動するデッキ4から上方に突出している。エンジン13を始動させる始動スイッチなどのスイッチや、エンジン13の回転速度を表示するタコメーターなどの計器は、操船者の見える位置でコンソール台5に設置されている。
リモコンユニット26は、船舶推進機6の出力を調整するスロットル部材と船舶1の前進および後進を切り替えるシフト部材とを兼ねるリモコンレバー27と、リモコンレバー27が前後方向に傾倒できるようにリモコンレバー27の根元部を支持するリモコンボックス28とを含む。リモコンユニット26は、リモコンレバー27に代えて、互いに独立したスロットル部材およびシフト部材を備えていてもよい。
図2に示すように、リモコンレバー27は、最も前方に傾いたF全開位置Fmaxと最も後方に傾いたR全開位置Rmaxとの間で前後方向に傾倒可能である。F全開位置FmaxからF切替位置Finまでの領域は、船舶推進機6が前進方向の推力を発生する「F領域」である。R全開位置RmaxからR切替位置Rinまでの領域は、船舶推進機6が後進方向の推力を発生する「R領域」である。F切替位置FinとR切替位置Rinとの間の領域は、船舶推進機6が推力を発生しない「N領域」である。中立位置Nは、たとえば、F切替位置FinとR切替位置Rinとの中間の位置である。
リモコンレバー27がF切替位置Finまで前方に傾けられると、船舶推進機6は、前進方向の推力を発生するように切り替えられる。リモコンレバー27がR切替位置Rinまで後方に傾けられると、船舶推進機6は、後進方向の推力を発生するように切り替えられる。リモコンレバー27がF切替位置Finからさらに前方に傾けられると、船舶推進機6の出力は、リモコンレバー27の傾き角度に応じて高められる。後進の場合も同様である。
リモコンユニット26は、リモコンレバー27の位置を検出するレバー位置検出装置29と、船外機11をシフトさせるシフト変更信号と船外機11の出力を変更させる出力変更信号とをレバー位置検出装置29の検出値に応じて出力するリモコンECU30とを含む。リモコンECU30は、配線によって船外機ECU24に接続されている。船外機ECU24は、リモコンECU30から送信された信号に応じてシフトアクチュエータ22およびスロットルアクチュエータ23を駆動する。したがって、操船者がリモコンレバー27を操作すると、それに応じて船舶推進機6が操作される。
図1に示すように、船舶1のステアリングシステムは、操船者の操作に応じて船舶1を操舵する手動操舵装置31を含む。手動操舵装置31は、船舶1を操舵するために操船者によって回転されるステアリングホイール32と、舵(rudder)に相当する船外機11をステアリングホイール32の回転に応じて駆動する操舵機構33とを含む。
操舵機構33は、ステアリングホイール32の回転を油圧に変換するヘルムポンプ34(油圧ポンプ)と、ヘルムポンプ34から伝達された油圧により舵を回動させる油圧シリンダ36と、ヘルムポンプ34の油圧を油圧シリンダ36に伝達する油圧配管35とを含む。油圧シリンダ36のロッド36bの両端部は、それぞれ、チルティングシャフト8の両端部に連結されている。油圧シリンダ36のシリンダチューブ36aは、ステアリングシャフト10と共にステアリングシャフト10まわりに回動する船外機11のステアリングアーム12に連結されている。
ヘルムポンプ34は、ステアリングホイール32の回転軸線Ahに沿って延びるポンプ軸34aと、ポンプ軸34aを回転可能に支持するポンプハウジング34bとを含む。ヘルムポンプ34は、コンソール台5に支持されている。ステアリングホイール32の中心部は、取り外し可能にポンプ軸34aに連結されている。ポンプ軸34aは、ステアリングホイール32と同じ方向に回転する。ステアリングホイール32は、ステアリングホイール32の回転軸線Ahに沿って延びる他の部材を介して、ポンプ軸34aに連結されていてもよい。
操船者がステアリングホイール32を回転させると、ヘルムポンプ34で油圧が発生し、ヘルムポンプ34の油圧が油圧配管35によって油圧シリンダ36に伝達される。これにより、油圧シリンダ36のシリンダチューブ36aが、艇体2に対して左右方向に移動する。シリンダチューブ36aの直線運動は、ステアリングアーム12によってステアリングシャフト10の回転に変換される。これにより、船外機11がステアリングシャフト10まわりに左右方向に回動し、船舶1が操舵される。
図3は、船舶1に備えられた自動操舵装置41を示す模式図である。
船舶1のステアリングシステムは、船舶1を自動で操舵する自動操舵装置41を含む。自動操舵装置41は、ステアリングホイール32を回転させる動力を発生する電動モータ42と、電動モータ42の動力をステアリングホイール32に伝達する伝達機構43と、電動モータ42および伝達機構43を覆う防水カバー47とを含む。
電動モータ42は、ステータおよびロータを収容する円筒状のモータハウジング42bと、モータハウジング42bによって回転可能に支持されたモータ軸42aとを含む。電動モータ42は、防水カバー47などの他の部材を介してコンソール台5に支持されていてもよいし、コンソール台5に直接支持されていてもよい。
電動モータ42は、ステアリングホイール32とコンソール面5aとの間に配置されている。電動モータ42の回転軸線は、ステアリングホイール32の回転軸線Ahと平行である。電動モータ42の出力部に相当するモータ軸42aは、モータハウジング42bから上方に突出している。モータハウジング42bは、ステアリングホイール32の回転軸線Ahのまわりに位置している。
伝達機構43は、電動モータ42のモータ軸42aと共に回転する駆動ギヤ44と、ステアリングホイール32と共に回転する従動ギヤ46とを含む。伝達機構43は、駆動ギヤ44の回転を従動ギヤ46に伝達する1つ以上の中間ギヤ45をさらに備えていてもよい。図3は、1つの中間ギヤ45が駆動ギヤ44と従動ギヤ46との間に配置されている例を示している。駆動ギヤ44、中間ギヤ45、および従動ギヤ46は、それぞれ、駆動部材、中間部材、および従動部材の一例である。
駆動ギヤ44は、モータ軸42aと同軸であり、従動ギヤ46は、ポンプ軸34aと同軸である。駆動ギヤ44は、モータ軸42aに連結されており、従動ギヤ46は、ポンプ軸34aに連結されている。中間ギヤ45は、駆動ギヤ44および従動ギヤ46の両方に噛み合っている。中間ギヤ45は、回転可能に防水カバー47に支持されている。
従動ギヤ46の中心線は、ステアリングホイール32の回転軸線Ah上に位置している。駆動ギヤ44は、従動ギヤ46のまわりに位置している。ステアリングシャフトに相当するポンプ軸34aは、従動ギヤ46の中心部を貫通する貫通穴46aに挿入されている。従動ギヤ46は、リングナットN1によって取り外し可能にポンプ軸34aに連結されている。従動ギヤ46は、ポンプ軸34aに対してその軸方向に固定されている。
防水カバー47は、ステアリングホイール32とコンソール面5aとの間に配置されている。防水カバー47は、コンソール台5に取り外し可能に連結されている。ポンプ軸34aは、防水カバー47から上方に突出している。防水カバー47は、ポンプ軸34aが挿入された貫通穴47aを形成する上壁47bと、上壁47bの外周部からコンソール面5aに向かって延びる周壁47cとを含む。周壁47cは、ヘルムポンプ34、電動モータ42、および伝達機構43を取り囲んでいる。駆動ギヤ44、中間ギヤ45、および従動ギヤ46は、上壁47bの下方に位置している。
駆動ギヤ44は、モータ軸42aと同じ方向に同じ速度で同じ回転角で回転する。駆動ギヤ44の回転は、中間ギヤ45によって従動ギヤ46に伝達される。従動ギヤ46が回転すると、ポンプ軸34aが従動ギヤ46と同じ方向に同じ速度で同じ回転角で回転する。これにより、ステアリングホイール32が時計回りまたは反時計回りに回転する。また、ポンプ軸34aの回転により油圧がヘルムポンプ34で発生し、船外機11が左右方向に回動される。したがって、操船者がステアリングホイール32を回転させなくても、船舶1が自動で操舵される。
従動ギヤ46の外径は、駆動ギヤ44の外径よりも大きく、ステアリングホイール32の外径よりも小さい。従動ギヤ46の歯数は、駆動ギヤ44の歯数よりも少ない。中間ギヤ45の歯数は、駆動ギヤ44の歯数と等しい。したがって、電動モータ42の回転は、駆動ギヤ44および中間ギヤ45の噛み合い部で減速されず、従動ギヤ46および中間ギヤ45の噛み合い部で減速される。そのため、電動モータ42の回転は、1回だけ減速された後、ポンプ軸34aに伝達される。
電動モータ42からステアリングホイール32に伝達される最大トルクは、たとえば8Nm以下である。つまり、電動モータ42の定格トルクと伝達機構43の減速比とは、最大トルクが8Nm以下になるように設定されている。この最大トルクは、操船者がステアリングホイール32に触れていないときにステアリングホイール32を回転させるために必要な最低トルク以上であり、操船者がステアリングホイール32に触れているときにステアリングホイール32を回転させるために必要な最低トルク未満である。
このように、最大トルクが小さいので、操船者がステアリングホイール32に触れているときに電動モータ42が駆動されても、ステアリングホイール32は、電動モータ42がステアリングホイール32を回転させようとする方向に回転しない。したがって、電動モータ42によるステアリングホイール32の駆動と、操船者によるステアリングホイール32の操作とが同時期に実行されると、操船者のホイール操作が優先される。つまり、操船者がステアリングホイール32を一定の角度で保持している場合はそれが継続される。操船者がステアリングホイール32を回転させようとしている場合は、操船者が意図する方向にステアリングホイール32が回転する。
図4は、自動操舵装置41および携帯端末59の電気的構成を説明するためのブロック図である。
自動操舵装置41は、船内に配置されたバッテリーB1の電力を電動モータ42に供給する給電回路51と、給電回路51から電動モータ42に電力が供給されるオン状態と給電回路51から電動モータ42への電力供給が停止されるオフ状態とに切り替わる給電スイッチ52とを含む。
給電スイッチ52は、給電回路51上に配置された正転スイッチ53および逆転スイッチ54を含む。正転スイッチ53および逆転スイッチ54は、いずれも、電磁リレーである。正転スイッチ53および逆転スイッチ54は、電磁リレーに加えてまたは代えて、トランジスタなどのスイッチング素子を備えていてもよい。
正転スイッチ53および逆転スイッチ54は、いずれも常時オフである。駆動信号(正転信号)が正転スイッチ53に送信されると、正転スイッチ53がオンになり、電力が給電回路51から正転スイッチ53を介して電動モータ42に供給される。これにより、電動モータ42が正転方向に回転する。同様に、駆動信号(逆転信号)が逆転スイッチ54に送信されると、逆転スイッチ54がオンになり、電力が給電回路51から逆転スイッチ54を介して電動モータ42に供給される。これにより、電動モータ42が逆転方向に回転する。
給電スイッチ52のオン状態は、正転スイッチ53および逆転スイッチ54の一方がオンの状態を意味する。給電スイッチ52のオフ状態は、正転スイッチ53および逆転スイッチ54の両方がオフの状態を意味する。給電スイッチ52のオン状態は、電動モータ42が正転方向に回転する正転状態と、電動モータ42が逆転方向に回転する逆転状態とを含む。
自動操舵装置41は、給電スイッチ52の状態を切り替えることにより、給電回路51から電動モータ42への電力供給を制御する電子制御ユニット55を含む。制御ユニット55は、給電スイッチ52をオフ状態からオン状態(正転状態または逆転状態)に切り替える駆動信号を給電スイッチ52に送る。制御ユニット55は、駆動信号を発信することにより、電動モータ42を正転方向または逆転方向に任意の回転角で回転させる。
制御ユニット55は、CPU(central processing unit)などの演算装置56と、プログラムを含む各種のデータが記憶された記憶装置57と、無線LAN(local area network)を通じてデータを送受信する通信ユニット58とを含む。制御ユニット55は、記憶装置57に記憶されたプログラムを演算装置56が実行することによって、後述するモータ駆動部55fなどの複数の機能処理ユニットとしての機能を実現する。
制御ユニット55の通信ユニット58は、操船者によって船上で操作される携帯端末59に無線LANを介して接続される。携帯端末59は、スマートフォンであってもよいし、タブレットなどのポータブルコンピュータであってもよい。携帯端末59から送信されたデータは、通信ユニット58に受信される。制御ユニット55によって生成されたデータは、通信ユニット58から送信され、携帯端末59に受信される。
携帯端末59は、CPUなどの演算装置60と、プログラムと地図データとを含む各種のデータが記憶された記憶装置61と、ユーザーによって操作されると共に各種の図形および文字を表示するディスプレイ62とを含む。ディスプレイ62は、被操作部の一例であるタッチパネルを備えるタッチパネルディスプレイである。携帯端末59は、さらに、無線LANを通じてデータを送受信する通信ユニット63と、GPS(global positioning system)衛星が発する信号を受け取り、その信号に基づいて携帯端末59の現在地を計算するGPSユニット64とを含む。携帯端末59は、記憶装置61に記憶されたプログラムを演算装置60が実行することによって、後述する現在地計算部59aなどの複数の機能処理ユニットとしての機能を実現する。
携帯端末59には、操船者によって指定された目的地に船舶1が向かうように船舶1の針路を制御するオートパイロットアプリケーションプログラムがインストールされている。携帯端末59は、地図画面などの目的地を設定するための目的地設定画面をディスプレイ62に表示させる。地図データは、メモリーカードなどの外部メモリーに保存されていてもよいし、インターネットを通じて携帯端末59に受信されてもよい。船舶1の目的地は、タッチパネルを含むディスプレイ62を操船者が操作することにより設定される。
図5は、自動操舵装置41および携帯端末59の機能的な構成を説明するためのブロック図である。
携帯端末59は、GPS衛星が発する信号に基づいて携帯端末59の現在地を計算する現在地計算部59aと、操船者によって指定された位置を目的地に設定する目的地設定部59bと、現在地計算部59aによって計算された現在地から目的地設定部59bによって設定された目的地に至る計画航路を作成する計画航路作成部59cとを含む。携帯端末59は、さらに、現在地や地図を含む各種の図形および文字をディスプレイ62に表示させる表示制御部59dを含む。
携帯端末59は、現在地と目的地と計画航路とを含む位置情報を制御ユニット55に送信する位置情報送信部59eを含む。位置情報は、入力信号の一例である。制御ユニット55は、携帯端末59から送られる位置情報に基づいて船舶1が目的地に到着したか否かを判定する到着判定部55aと、船舶1が目的地に到達したことを知らせる到着情報を携帯端末59に送る到着情報送信部55bとを含む。制御ユニット55は、さらに、携帯端末59から送られる位置情報に基づいて舵角の修正が必要か否かを判定する舵角修正判定部55cを含む。
制御ユニット55は、舵角の修正が必要な場合に舵角の修正量を計算する修正舵角計算部55dと、修正舵角計算部55dによって計算された修正量で舵が回動するときの電動モータ42の回転角を計算する修正角度計算部55eとを含む。制御ユニット55は、さらに、電動モータ42が修正角度計算部55eによって計算された回転角で回転するように電動モータ42への電力供給を制御するモータ駆動部55fを含む。モータ駆動部55fは、アクチュエータ駆動部の一例である。
また、制御ユニット55は、船舶1が低速であることを含む低速条件が成立するか否かを判定する低速判定部55gと、操船者がステアリングホイール32を操作していることを含む操作条件が成立するか否かを判定する操作判定部55hと、電動モータ42が駆動されているときに操作条件が成立するとモータ駆動部55fに電動モータ42の駆動を停止させる駆動停止部55iとを含む。後述するように、モータ駆動部55fは、低速条件が成立する場合にのみ電動モータ42を駆動する。
図6は、自動操舵(オートパイロット)について説明するためのフローチャートである。
操船者がオートパイロットアプリケーションプログラムを起動させる起動操作を携帯端末59に行うと、携帯端末59は、船舶1の現在地(出発地)に相当する携帯端末59の現在地を含む地図をディスプレイ62に表示させ、船舶1の現在地を地図上に示す(ステップS1)。その後、操船者が船舶1の目的地を指定する目的地指定操作を携帯端末59に行うと、携帯端末59は、指定された位置を目的地に設定し、オートパイロットモードを開始する(ステップS2)。このとき、1つ以上の経由地が、操船者によって指定されてもよい。目的地および経由地は、操船者が地図上の位置に触れることにより指定されてもよいし、操船者が経度および緯度を入力することにより指定されてもよい。
オートパイロットモードが開始された後、携帯端末59は、現在地から目的地までの計画航路を作成し地図上に表示する(ステップS3)。その後、携帯端末59は、船舶1の現在地と船舶1の目的地と計画航路とを含む位置情報を制御ユニット55に送信する(ステップS4)。位置情報は、制御ユニット55に受信され蓄積される。位置情報の送信は、オートパイロットモードが終了するまで一定の時間間隔で繰り返される。携帯端末59は、船舶1の最新の現在地と最新の現在地から目的地までの計画航路との表示を一定の時間間隔で更新する。
制御ユニット55は、位置情報に基づいて、船舶1の現在地が目的地に一致しているか否か、つまり、船舶1が目的地に到達した否かを判定する(ステップS5)。船舶1の現在地が目的地に一致している場合(ステップS5でYesの場合)、制御ユニット55は、船舶1が目的地に到達したことを知らせる到着情報を携帯端末59に向けて送信する(ステップS6)。携帯端末59は、到着情報を受信した後、オートパイロットモードを終了する(ステップS7)。
船舶1の現在地が目的地に一致していない場合(ステップS5でNoの場合)、制御ユニット55は、位置情報に基づいて、舵角の修正が必要か否かを判定する(ステップS8)。つまり、制御ユニット55は、船舶1が計画航路上に位置しているか否かを判定する。船舶1が計画航路に沿って目的地に向かっている場合(ステップS8でNoの場合)、制御ユニット55は、一定時間後に、船舶1の最新の現在地が目的地に一致しているか否かを判定する(ステップS5に戻る)。
船舶1が計画航路から離れており計画航路に沿って目的地に向かっていない場合(ステップS8でYesの場合)、制御ユニット55は、船舶1が目的地に向かいながら計画航路に戻る舵の移動量(修正舵角)および移動方向を計算する(ステップS9)。このとき、制御ユニット55は、船舶1の現在地に基づいて計画航路を修正し、船舶1が修正後の計画航路に沿って目的地に向かう舵の移動量(修正舵角)および移動方向を計算してもよい。制御ユニット55は、この計算結果に対応する電動モータ42の回転角(修正回転角)および回転方向を求める(ステップS10)。
電動モータ42の回転角(修正回転角)および回転方向が求められた後、制御ユニット55は、船舶1が低速であるなどの所定の条件が成立する場合に、電動モータ42を所定の回転方向に修正回転角で回転させるモータ駆動制御を実行する(ステップS11)。その後、制御ユニット55は、船舶1の最新の現在地が目的地に一致しているか否かを判定する(ステップS5に戻る)。
図7は、モータ駆動制御について説明するためのフローチャートである。
制御ユニット55は、船舶1が低速であることを含む低速条件が成立するか否かを判定する(ステップS21)。低速条件が成立しない場合(ステップS21でNoの場合)、制御ユニット55は、電動モータ42を駆動せずに、モータ駆動制御を終了する。低速条件が成立する場合(ステップS21でYesの場合)、制御ユニット55は、図6のステップS10で求められた回転方向に電動モータ42が回転するように、電動モータ42への電力供給を開始する(ステップS22)。
具体的には、制御ユニット55は、給電スイッチ52をオフ状態からオン状態(正転状態または逆転状態)に切り替える駆動信号を給電スイッチ52に送る。これにより、給電スイッチ52がオン状態に切り替わり、給電回路51から電動モータ42に電力が供給される。そのため、電動モータ42が正転方向または逆転方向に回転し、電動モータ42の回転が伝達機構43によってステアリングホイール32に伝達される。船舶1の舵は、ステアリングホイール32の回転に応じて、右方向または左方向に回動される。これにより、船舶1が右方向または左方向に操舵される。
制御ユニット55は、電動モータ42への電力供給が開始された後、操船者がステアリングホイール32を操作していることを含む操作条件が成立するか否かを判定する(ステップS23)。操作条件が成立する場合(ステップS23でYesの場合)、制御ユニット55は、駆動信号の送信を停止し、電動モータ42への電力供給を終了する(ステップS24)。つまり、制御ユニット55は、操船者によるステアリングホイール32の操作を優先し、電動モータ42によるステアリングホイール32の駆動を中止する。
操作条件が成立しない場合(ステップS23でNoの場合)、制御ユニット55は、電動モータ42が修正回転角だけ回転したか否かを判定する(ステップS25)。制御ユニット55は、電動モータ42の回転角を検出するモータ回転角検出装置65(図3参照)の検出値に基づいて、電動モータ42が修正回転角だけ回転したか否かを判定してもよい。あるいは、制御ユニット55は、給電スイッチ52をオフ状態からオン状態に切り替える駆動信号を送信した時間の合計に基づいて、電動モータ42が修正回転角だけ回転したか否かを判定してもよい。
電動モータ42が修正回転角だけ回転していない場合(ステップS25でNoの場合)、制御ユニット55は、操作条件が成立するか否かを監視しながら、電動モータ42への電力供給を継続する(ステップS23に戻る)。電動モータ42が修正回転角だけ回転した場合(ステップS25でYesの場合)、制御ユニット55は、駆動信号の送信を停止し、電動モータ42への電力供給を終了する(ステップS26)。これにより、モータ駆動制御が終了する。
図8は、船舶1が低速であることを含む低速条件の成立要件の一例を示す表である。
図8において、「OK」は、リモコンレバー27の角度等が所定の範囲内であることを意味し、「NG」は、リモコンレバー27の角度等が所定の範囲外であることを意味する。
一段目のリモコンレバー27の項目に関しては、リモコンレバー27の角度が、たとえば−30度を超え+30度未満の範囲内である場合、制御ユニット55は、OKと判定し、リモコンレバー27の角度が前記範囲外である場合、制御ユニット55はNGと判定する。
二段目のエンジン13の回転速度の項目に関しては、エンジン13の回転速度が、たとえば1000rpm未満である場合、制御ユニット55は、OKと判定し、エンジン13の回転速度がこの値以上である場合、制御ユニット55はNGと判定する。
三段目の船舶1の速度の項目に関しては、船舶1の速度が、たとえば10km/h未満である場合、制御ユニット55は、OKと判定し、船舶1の速度がこの値以上である場合、制御ユニット55はNGと判定する。
制御ユニット55は、全ての項目がOKである場合、低速条件が成立すると判定し、少なくとも一つの項目がNGである場合、低速条件が成立しないと判定する。
制御ユニット55は、CAN(Control Area Network)などの船内ネットワークを介して、リモコンECU30および船外機ECU24に接続されている。リモコンレバー27の角度やエンジン13の回転速度などの各種の情報は、船内ネットワークを介して制御ユニット55に送信される。船外機ECU24は、エンジン13(クランクシャフト14)の回転速度を検出するエンジン速度検出装置66(図2参照)を含む。船舶1の速度は、船舶1に設けられた航走速度検出装置67(図1参照)の検出値に基づいて計算されてもよいし、GPS信号に基づいて計算されてもよい。
図9は、操船者がステアリングホイール32を操作していることを含む操作条件の成立要件の一例を示す表である。
図9において、ステアリングホイール32の駆動方向が右であるとは、ステアリングホイール32を右方向に回転させる駆動指令を制御ユニット55が給電スイッチ52に与えていることを意味する。駆動方向が左である場合についても同様である。
図9中の旋回速度は、船舶1の進行方向が単位時間で何度変化したかを意味する。たとえば、船舶1の進行方向が北方向から北東方向に5秒で変化した場合、船舶1の旋回速度は、+45度/5秒である。船舶1の旋回速度が増加するとは、船舶1が右方向に回動することを意味し、船舶1の旋回速度が減少するとは、船舶1が左方向に回動することを意味する。旋回速度は、GPS信号に基づいて計算されてもよいし、船舶1に備えられた方位検出装置91(図15参照)の検出値に基づいて計算されてもよい。
電動モータ42がステアリングホイール32を右方向に回転させるトルクを発生している場合、操船者がステアリングホイール32を操作していなければ、船舶1の旋回速度は増加する。その一方で、この場合に、操船者がステアリングホイール32を左方向に回転させると、船舶1の旋回速度は減少する。また、この場合に、操船者がステアリングホイール32を一定の角度に保持していると、船舶1の旋回速度は変化しない。
したがって、電動モータ42がステアリングホイール32を右方向に回転させるトルクを発生しているときに、船舶1の旋回速度が増加している場合、制御ユニット55は、操船者がステアリングホイール32を操作していないと判定する。その一方で、船舶1の旋回速度が減少している又は変化しない場合、制御ユニット55は、操船者がステアリングホイール32を操作していると判定する。
電動モータ42がステアリングホイール32を左方向に回転させるトルクを発生している場合は、操船者がステアリングホイール32を操作していなければ、船舶1の旋回速度は減少する。この場合、船舶1の旋回速度が減少していれば、制御ユニット55は、操船者がステアリングホイール32を操作していないと判定する。その一方で、船舶1の旋回速度が増加していれば又は変化していなければ、制御ユニット55は、操船者がステアリングホイール32を操作していると判定する。
以上のように第1実施形態では、ステアリングホイール32の回転に基づかない入力信号が生成されると、給電制御部の一例である給電スイッチ52および制御ユニット55が電動モータ42に電力を供給する。これにより、電動モータ42が回転し、この回転が駆動ギヤ44と従動ギヤ46とを含む伝達機構43によってステアリングホイール32に伝達される。そのため、操船者がステアリングホイール32に触れていなくても、ステアリングホイール32が回転する。
操舵機構33が機械式である場合、ステアリングホイール32が回転すると、舵が駆動される。操舵機構33が電動式である場合、ステアリングホイール32が回転すると、この回転が検知され、舵を回動させるステアリングモータが駆動される。したがって、操舵機構33が機械式および電動式のいずれである場合でも、船舶1が自動で操舵される。
このように、本システムでは、電動モータ42や伝達機構43などをステアリングホイール32の周辺に設けることで、自動操舵機能を追加できる。そのため、既存の操舵機構を大幅に変更しなくてもよい。さらに、ステアリングホイール32を回転させるシンプルな構成であるので、船内スペースの減少を抑えることができる。
また本実施形態では、電動モータ42が、ステアリングホイール32の近くに配置されている。つまり、電動モータ42およびステアリングホイール32は、同じコンソール台5に支持されている。そのため、ステアリングホイール32の周辺以外のスペースが、自動操舵機能の追加によって狭まることを抑えることができる。
また本実施形態では、ステアリングホイール32とコンソール台5とが、空間を介して対向しており、電動モータ42がこの空間に配置されている。つまり、電動モータ42は、ステアリングホイール32に近い位置でコンソール台5の外に配置されている。さらに、電動モータ42がコンソール台5の外に配置されているので、伝達機構43もコンソール台5の外に配置される。そのため、電動モータ42および伝達機構43を配置する空間をコンソール台5の内部に確保しなくてもよい。
また本実施形態では、電動モータ42および伝達機構43が、ステアリングホイール32とコンソール台5との間に配置されており、防水カバー47が、電動モータ42および伝達機構43を覆っている。そのため、電動モータ42および伝達機構43を海水や雨水などから保護できる。
また本実施形態では、従動ギヤ46がステアリングホイール32の回転軸線Ahの近くに位置している。さらに、駆動ギヤ44が従動ギヤ46の近くに位置している。そのため、伝達機構43を小型化できる。これにより、自動操舵機能の追加による船内スペースの減少を抑えることができる。
また本実施形態では、電動モータ42の回転は、電動モータ42とステアリングホイール32との間で1回だけ減速される。電動モータ42の回転を複数回減速する場合、複数の減速ギヤが必要となる。そのため、伝達機構43が大型化する。その一方で、電動モータ42の回転を減速させない場合、定格トルクの大きなモータ、すなわち、大型のモータが必要となる。そのため、本実施形態では、電動モータ42および伝達機構43の大型化を抑制できる。
また本実施形態では、電動モータ42がステアリングホイール32に常時連結されている。電動モータ42とステアリングホイール32とを繋ぐ動力の伝達経路を電磁クラッチで切断および接続する場合、電磁クラッチを切り替える必要がある。これに対して、電動モータ42がステアリングホイール32に常時連結されている場合、このような切替制御が不要である。したがって、ステアリングシステムを簡素化できる。
また本実施形態では、電動モータ42からステアリングホイール32に伝達される最大トルクが小さいので、電動モータ42よりも操船者のホイール操作が優先される。したがって、操船者のホイール操作を船舶1の操舵に確実に反映できる。さらに、最大トルクが小さいので、小型のモータを電動モータ42として使用することができる。そのため、電動モータ42の占有体積を小さくでき、電動モータ42の消費電力を低減できる。
また本実施形態では、船舶1が低速のときだけ、電動モータ42がステアリングホイール32を回転させる。船舶1が高速の場合、舵に加わる水圧が高いので、大きなトルクをステアリングホイール32に加えないと、ステアリングホイール32が動かない。そのため、定格トルクの大きなモータを電動モータ42として使用する必要がある。これは、電動モータ42が大型化し、消費電力が増加することを意味する。これに対して、低速だけに限定する場合、定格トルクの大きなモータを電動モータ42として使用しなくてもよい。そのため、電動モータ42の占有体積を小さくでき、電動モータ42の消費電力を低減できる。
また本実施形態では、電動モータ42が駆動されているときに、操船者がステアリングホイール32を操作しているか否かが判定される。操船者がステアリングホイール32を操作していると判定された場合、電動モータ42の駆動が停止され、電動モータ42からステアリングホイール32へのトルクの伝達が停止される。そのため、操舵フィーリングの悪化を抑えることができる。
また本実施形態では、操船者によって携帯端末59に入力された指令が、無線LANを介して制御ユニット55の通信ユニット58に受信され、通信ユニット58が受信した指令に基づいて制御ユニット55が電動モータ42への電力供給を制御する。携帯端末59がステアリングシステムに物理的に接続されていないので、操船者は、船内のいずれの場所からでも制御ユニット55に指示を与えることができる。つまり、操船者は、自動操舵装置41を遠隔操作できる。さらに、自動操舵機能に必要な被操作部および表示部を省略できるので、コンソール台5を簡素化できる。
第2実施形態
次に、本発明の第2実施形態について説明する。以下の図10〜図13において、前述の図1〜図12に示された各部と同等の構成部分については、図1等と同一の参照符号を付してその説明を省略する。
図10は、本発明の第2実施形態に係る自動操舵装置41を示す模式図である。図11は、自動操舵装置41の電気的構成を説明するためのブロック図である。図12は、自動操舵が実行される角度範囲について説明するための模式図である。
第2実施形態と第1実施形態との主要な相違点は、携帯端末59に代えて、風向きに対する船首の方向Db(船尾中央から船首に向かう方向)の傾き角度を検出する風向検出装置71が、自動操舵装置41に設けられていることである。自動操舵装置41は、さらに、制御ユニット55に代えて、給電スイッチ52に駆動信号を送る駆動回路78と、風向きに対する船首の方向Dbの傾き角度に応じてオン状態とオフ状態とに切り替わる駆動スイッチ81とを備える。駆動回路78から給電スイッチ52に送られる駆動信号は、入力信号の一例である。給電スイッチ52、駆動回路78、および駆動スイッチ81は、給電制御部の一例である。
図10に示すように、風向検出装置71は、艇体2に保持されるベースボックス72と、ベースボックス72から上方に延びる回転可能な回転軸73と、回転軸73と共にベースボックス72に対して回転軸73まわりに回転する本体74と、鉛直な姿勢で本体74に保持された風向板75とを含む。風向検出装置71は、本体74の先端に回転可能に支持された風車76をさらに備える風速・風向検出装置であってもよい。本体74が風向きに対して傾くと、風向板75が風に押され、風向板75と共に本体74が回転軸73まわりに回転する。これにより、本体74の先端が風上に向けられる。
図11に示すように、駆動スイッチ81は、電動モータ42を正転方向に回転させる駆動信号を発生させる常時開の正転駆動スイッチ82と、電動モータ42を逆転方向に回転させる駆動信号を発生させる常時開の逆転駆動スイッチ83とを含む。駆動回路78は、バッテリーB1の正極と正転駆動スイッチ82および逆転駆動スイッチ83とを接続する正回路79と、給電スイッチ52と正転駆動スイッチ82および逆転駆動スイッチ83とを接続する負回路80とを含む。正回路79は、バッテリーB1の正極に接続された主回路79aと、主回路79aから分岐する2つの分岐回路79bとを含む。
正転駆動スイッチ82が閉じられると、電動モータ42を正転方向に回転させる駆動信号が正転スイッチ53に送られ、給電洗スイッチ52の正転スイッチ53がオンに切り替わる。同様に、逆転駆動スイッチ83が閉じられると、電動モータ42を逆転方向に回転させる駆動信号が逆転スイッチ54に送られ、給電洗スイッチ52の逆転スイッチ54がオンに切り替わる。
駆動スイッチ81の閉状態は、正転駆動スイッチ82および逆転駆動スイッチ83の一方が閉じられている状態を意味する。駆動スイッチ81の開状態は、正転駆動スイッチ82および逆転駆動スイッチ83の両方が開いている状態を意味する。駆動スイッチ81の閉状態は、正転駆動スイッチ82が閉じられている正転駆動状態と、逆転駆動スイッチ83が閉じられている逆転駆動状態とを含む。
正転駆動スイッチ82および逆転駆動スイッチ83は、風向検出装置71のベースボックス72に収容されている。正転駆動スイッチ82および逆転駆動スイッチ83は、いずれも、ベースボックス72に保持されたスイッチケース84と、スイッチケース84から突出する移動可能なボタン85と、スイッチケース84内に配置された固定接点86と、ボタン85の移動に応じて固定接点86に接触する常時開の可動接点87とを含む。スイッチケース84は、ベースボックス72に対して回転不能である。ボタン85は、スイッチケース84に対して上下方向に移動可能である。
駆動スイッチ81は、風向検出装置71(回転軸73)の回転角に応じて正転駆動スイッチ82および逆転駆動スイッチ83の一方を閉じる回転部88を含む。回転部88は、ベースボックス72に収容されている。回転部88は、回転軸73から水平に突出している。回転部88は、風上に向けられる風向検出装置71の指示方向Di(図12参照)に延びている。回転部88は、ベースボックス72に対して回転可能である。回転部88は、スイッチケース84よりも上方に配置されている。回転部88は、開位置に位置するボタン85の先端部と同じ高さに配置されている。回転部88は、水平面内で回転する。2つのボタン85は、回転部88が通過する範囲内に配置されている。
駆動スイッチ81の回転部88は、風向検出装置71の指示方向Diが後述する自動操舵範囲にあるときにだけ、2つのボタン85の一方に接触する。回転部88がボタン85に接触すると、ボタン85および可動接点87が閉位置に移動する。これにより、可動接点87が固定接点86に接触し、駆動回路78が閉じられる。そのため、駆動回路78から給電スイッチ52への駆動信号の送信が開始される。その後、回転部88がボタン85から離れると、ボタン85および可動接点87が開位置に戻り、可動接点87が固定接点86から離れる。これにより、駆動回路78が開かれ、駆動回路78から給電スイッチ52への駆動信号の送信が停止される。
図12に示すように、風向検出装置71は、風向検出装置71の基準方向Drが船首の方向Dbに一致するように艇体2に設置されている。風上に向けられる風向検出装置71の指示方向Diは、回転軸73まわりに回転する。指示方向Diの回転角が、右自動操舵範囲RRまたは左自動操舵範囲RLに入ると、正転駆動スイッチ82または逆転駆動スイッチ83が閉じられる。2つのボタン85は、それぞれ、右自動操舵範囲RRおよび左自動操舵範囲RLに配置されている。
右自動操舵範囲RRおよび左自動操舵範囲RLは、基準方向Drに関して対称である。基準方向Drでの風向検出装置71の回転角を0度、基準方向Drから時計回りの方向を正、基準方向Drから反時計回りの方向を負、とそれぞれ定義する。右自動操舵範囲RRは、たとえば、回転角が+15〜+30度の範囲であり、左自動操舵範囲RLは、回転角が−15〜−30度の範囲である。
図11に示すように、自動操舵装置41は、操船者の操作に応じて駆動回路78を開閉するオンオフスイッチ89を含む。オンオフスイッチ89は、駆動回路78の主回路79aに配置されている。オンオフスイッチ89は、給電回路51に配置されていてもよい。オンオフスイッチ89は、たとえば、コンソール台5に設置されている(図10参照)。
オンオフスイッチ89は、操船者によって操作される手動スイッチである。オンオフスイッチ89がオンのとき、正転駆動スイッチ82および逆転駆動スイッチ83のいずれかが閉じられると、駆動信号が駆動回路78から給電スイッチ52に送信される。その一方で、オンオフスイッチ89がオフのとき、正転駆動スイッチ82および逆転駆動スイッチ83のいずれが閉じられたとしても、オンオフスイッチ89の位置で駆動回路78が切断されているので、駆動信号が生成されない。したがって、操船者は、オンオフスイッチ89を操作することにより、自動操舵モードの実行および実行停止を切り替えることができる。
図13は、船舶1が自動で操舵されるときの動作を説明するための模式図である。
図13(a)は、船首が風上に向けられた状態を示している。この状態では、風向検出装置71の指示方向Diが船首の方向Dbに概ね一致しており、船首の方向Dbに対する指示方向Diの傾き角度は、概ね0度である。
図13(b)に示すように、風や海流等の影響により船舶1が時計回りまたは反時計回りに回転と、指示方向Diが風上に向くように風向検出装置71が回転する。そのため、船首の方向Dbに対する指示方向Diの傾き角度が変化する。
指示方向Diの傾き角度の絶対値が所定の値に達すると、つまり、指示方向Diの回転角が前述の右自動操舵範囲RRまたは左自動操舵範囲RLに入ると、正転駆動スイッチ82または逆転駆動スイッチ83が閉じられる。これにより、駆動信号が駆動回路78から給電スイッチ52に送信され、給電スイッチ52が閉じられる。その結果、電動モータ42が駆動される。
図13(b)に示すように、電動モータ42が駆動されると、船舶1の舵に相当する船外機11が回動される。この状態で船舶1が推進される。そのため、図13(d)に示すように、船首が風上に向くように船舶1が旋回する。これにより、船首の方向Dbに対する指示方向Diの傾き角度が減少し、電動モータ42の駆動が停止される。
以上のように第2実施形態では、風向きに対する船首の方向Dbの傾き角度が所定値になると、駆動スイッチ81がオンになり、ステアリングホイール32の回転に基づかない入力信号(駆動信号)が駆動回路78から給電スイッチ52に伝達される。これにより、バッテリーB1の電力が、給電回路51から電動モータ42に供給され、電動モータ42が駆動される。そのため、船首が自動で風上に向けられる。したがって、操船者がステアリングホイール32を操作しなくても、船首を自動で風上に向けることができる。
また本実施形態では、オンオフスイッチ89が操船者によってオン/オフされる。オンオフスイッチ89が駆動回路78に設けられている場合、オンオフスイッチ89がオフのとき、駆動回路78が開いているので、入力信号が生成されない。オンオフスイッチ89が給電回路51に設けられている場合、オンオフスイッチ89がオフのとき、給電回路51が開いているので、給電回路51から電動モータ42への電力の供給が遮断される。そのため、操船者は、オンオフスイッチ89を操作することにより、自動操舵機能を有効化および無効化できる。
第3実施形態
次に、本発明の第3実施形態について説明する。以下の図14において、前述の図1〜図13に示された各部と同等の構成部分については、図1等と同一の参照符号を付してその説明を省略する。
図14は、本発明の第3実施形態に係る自動操舵装置41を示す模式図である。
第3実施形態と第2実施形態との主要な相違点は、駆動回路78および駆動スイッチ81に代えて、風向検出装置71の回転角(指示方向Diの回転角)を検出する風向回転角検出装置90と、風向回転角検出装置90の検出値に基づいて風向きに対する船首の方向Dbの傾き角度を求める制御ユニット55と、が自動操舵装置41に備えられていることである。風向検出装置71の風向回転角検出装置90から制御ユニット55に送信される角度信号は、入力信号の一例である。
風向回転角検出装置90は、ベースボックス72内に収容されている。風向回転角検出装置90は、たとえば、ポテンショメータ、ロータリーエンコーダー、および磁気センサのいずれかを含む。風向回転角検出装置90は、基準方向Drから指示方向Diまでの時計回りの角度(図12参照)に正比例する検出値を出力する。
図16は、風向回転角検出装置90の検出値(出力電圧)が0〜5Vの範囲で変化する例を示している。指示方向Diが基準方向Drに一致しているときの出力電圧は0Vであり、指示方向Diが時計回りに360度回転したときの出力電圧は5Vである。
基準方向Drでの指示方向Diの回転角を0度、基準方向Drから時計回りの方向を正、基準方向Drから反時計回りの方向を負、とそれぞれ定義する。風向回転角検出装置90の出力電圧が0.5〜1.0Vの範囲は、指示方向Diの回転角が+15〜+30度の右自動操舵範囲RRである。風向回転角検出装置90の出力電圧が4.0〜4.5Vの範囲は、指示方向Diの回転角が−15〜−30度の左自動操舵範囲RLである。
制御ユニット55は、風向回転角検出装置90および給電スイッチ52に接続されている。制御ユニット55は、風向回転角検出装置90の検出値(出力電圧)の大きさに基づいて風向きに対する船首の方向Dbの傾き角度を求める。第2実施形態と同様に、制御ユニット55は、指示方向Diの回転角が右自動操舵範囲RRまたは左自動操舵範囲RLに入ると、給電スイッチ52に駆動信号を送り、給電回路51から電動モータ42に電力を供給させる。これにより、電動モータ42が回転し、船首の方向Dbが指示方向Diに近づくように舵が駆動される。
自動操舵装置41は、さらに、自動操舵モードの実行および実行停止を切り替えるために操船者に操作されるオンオフスイッチ89を含む。オンオフスイッチ89は、コンソール台5に設置されている。オンオフスイッチ89は、制御ユニット55に接続されている。制御ユニット55は、操船者によるオンオフスイッチ89の操作に応じて、自動操舵モードをオンオフする。
自動操舵モードがオンのとき、制御ユニット55は、前述のように、風向きに対する船首の方向Dbの傾き角度に応じて駆動信号を給電スイッチ52に送る。これに対して、自動操舵モードがオフのとき、制御ユニット55は、駆動信号を給電スイッチ52に送らない。したがって、操船者は、オンオフスイッチ89を操作することにより、自動操舵モードの実行および実行停止を切り替えることができる。
以上のように第3実施形態では、風向検出装置71は、風向きに対する船首の方向Dbの傾き角度を示す入力信号(角度信号)を生成する。制御ユニット55は、風向検出装置71によって生成された入力信号に応じて電動モータ42に電力を供給する。これにより、船首が自動で風上に向けられる。したがって、操船者がステアリングホイール32を操作しなくても、船首を自動で風上に向けることができる。
第4実施形態
次に、本発明の第4実施形態について説明する。以下の図15において、前述の図1〜図14に示された各部と同等の構成部分については、図1等と同一の参照符号を付してその説明を省略する。
図15は、本発明の第4実施形態に係る自動操舵装置41を示す模式図である。
第4実施形態と第3実施形態との主要な相違点は、風向検出装置71および風向回転角検出装置90に代えて、操船者によって設定される水平な設定方向Dsに対する船首の方向Dbの傾き角度を検出する方位検出装置91が、自動操舵装置41に備えられていることである。方位検出装置91から制御ユニット55に送信される角度信号は、入力信号の一例である。方位検出装置91の具体例は、ジャイロスコープを備えるジャイロコンパスと、GPS信号を受信する複数のGPS受信機を備えるGPSコンパスと、ホール素子などの複数の磁気センサを備える電子コンパスである。
方位検出装置91は、方位検出装置91の基準方向Drが船首の方向Dbに一致するように艇体2に保持されている。方位検出装置91は、コンソール台5に設置されていてもよい。方位検出装置91は、基準方向Drから設定方向Dsまでの時計回りの角度に正比例する検出値を出力する。設定方向Dsは、任意の水平方向(たとえば、北方向)であり、操船者によって設定される。船首の方向Dbが変わると、基準方向Drおよび設定方向Dsが鉛直線まわりに相対的に回転し、基準方向Drに対する設定方向Dsの傾き角度が変化する。
方位検出装置91の検出値(出力電圧)は、たとえば、0〜5Vの範囲で変化する(図16参照)。基準方向Drでの設定方向Dsの回転角を0度、基準方向Drから時計回りの方向を正、基準方向Drから反時計回りの方向を負、とそれぞれ定義する。方位検出装置91の出力電圧が0.5〜1.0Vの範囲は、設定方向Dsの回転角が+15〜+30度の右自動操舵範囲RRである。風向回転角検出装置90の出力電圧が4.0〜4.5Vの範囲は、設定方向Dsの回転角が−15〜−30度の左自動操舵範囲RLである。
制御ユニット55は、方位検出装置91および給電スイッチ52に接続されている。制御ユニット55は、方位検出装置91の検出値(出力電圧)の大きさに基づいて設定方向Dsに対する船首の方向Dbの傾き角度を求める。第2実施形態と同様に、制御ユニット55は、設定方向Dsの回転角が右自動操舵範囲RRまたは左自動操舵範囲RLに入ると、給電スイッチ52に駆動信号を送り、給電回路51から電動モータ42に電力を供給させる。これにより、電動モータ42が回転し、船首の方向Dbが設定方向Dsに近づくように舵が駆動される。
以上のように第4実施形態では、方位検出装置91は、磁場の方向に対する船首の方向Dbの傾き角度を示す入力信号(角度信号)を生成する。制御ユニット55は、方位検出装置91によって生成された入力信号に応じて電動モータ42に電力を供給する。これにより、予め設定された方位に船首が自動で向けられる。したがって、操船者がステアリングホイール32を操作しなくても、船首が特定の方位に向けられた状態を維持することができる。
第5実施形態
次に、本発明の第5実施形態について説明する。以下の図17において、前述の図1〜図16に示された各部と同等の構成部分については、図1等と同一の参照符号を付してその説明を省略する。
図17は、本発明の第5実施形態に係る自動操舵装置41を示す模式図である。
第5実施形態と第1実施形態との主要な相違点は、伝達機構43が、ステアリングホイール32が操作されると電動モータ42とステアリングホイール32とを繋ぐ動力の伝達経路を切断する逆入力遮断クラッチ92(reverse input shutoff clutch)をさらに備えている。
逆入力遮断クラッチ92は、正転方向および逆転方向のトルクを電動モータ42側からステアリングホイール32側に伝達する。その一方で、逆入力遮断クラッチ92は、ステアリングホイール32側から逆入力遮断クラッチ92にトルクが入力されると、逆入力遮断クラッチ92(後述の出力部材95)を空転させることにより、伝達経路を切断する。逆入力遮断クラッチ92は、たとえば、特開2003−56603号公報に開示されている。この公報の全開示はここに引用により組み込まれるものとする。
電動モータ42のモータ軸42aは、逆入力遮断クラッチ92を介して駆動ギヤ44に連結されている。逆入力遮断クラッチ92は、モータ軸42aと共に回転する入力部材93と、駆動ギヤ44と共に回転する出力部材95と、入力部材93と出力部材95との間に介在する複数の円柱ローラ94とを含む。入力部材93の内周面93aは、複数の円柱ローラ94を介して、出力部材95の円筒状の外周面95aを取り囲んでいる。入力部材93の内周面93aは、ロック面93bとロック解除面93cとが周方向に並んだ構造を有している。ロック面93bから出力部材95の外周面95aまでの径方向の距離は、円柱ローラ94の直径よりも小さく、ロック解除面93cから出力部材95の外周面95aまでの径方向の距離は、円柱ローラ94の直径よりも大きい。
電動モータ42が回転し始めると、入力部材93が出力部材95に対して回転し、円柱ローラ94がロック面93bと出力部材95の外周面95aとの間の隙間に挟まる。これにより、出力部材95が入力部材93にロックされ、トルクが複数の円柱ローラ94を介して入力部材93から出力部材95に伝達される。これにより、電動モータ42のトルクが、逆入力遮断クラッチ92を介して駆動ギヤ44に伝達される。
その一方で、操船者がステアリングホイール32を回転させると、ステアリングホイール32の回転が出力部材95に伝達され、出力部材95が入力部材93に対して回転する。出力部材95の外周面95aが円筒状なので、このとき、円柱ローラ94はロック面93bと出力部材95の外周面95aとの間の隙間に挟まらずに、ロック解除面93cと出力部材95の外周面95aとの間に留まる。そのため、出力部材95が空転し、出力部材95から入力部材93へのトルクの伝達が遮断される。
以上のように第5実施形態では、正転方向および逆転方向のトルクが、逆入力遮断クラッチ92を介して電動モータ42からステアリングホイール32に伝達される。その一方で、操船者が正転方向および逆転方向のトルクをステアリングホイール32に加えると、逆入力遮断クラッチ92が伝達経路を切断する。そのため、操船者がステアリングホイール32を操作したときに、電動モータ42の慣性抵抗や電気的制動力が、ステアリングホイール32を介して操船者に伝達されない。これにより、操舵フィーリングの悪化を防止できる。
他の実施形態
本発明は、前述の実施形態の内容に限定されるものではなく、本発明の範囲内において種々の変更が可能である。
たとえば、前記実施形態では、船外機11の数が1機である場合について説明した。しかし、船外機11の数は、2または3機であってもよい。また、船舶推進機6は、船外機11に代えて、船内機または船内外機を備えていてもよいし、ジェット推進機を備えていてもよい。
前記実施形態では、操舵機構33が油圧式である場合について説明した。しかし、操舵機構33は、ヘルムポンプ34および油圧シリンダ36を備えていなくてもよい。
たとえば、操舵機構33は、ステアリングホイール32の動作を舵に伝達するプッシュプルケーブを備えるケーブル式であってもよい。もしくは、操舵機構33は、ステアリングホイール32の動作を検出するホイール操作検出装置68(図1参照)と、舵を回動させる動力を発生するステアリングモータと、ホイール操作検出装置68の検出値に基づいてステアリングモータを制御するステアリングECUとを備える、電動式であってもよい。
前記実施形態では、ドッグクラッチ16bをシフトさせるシフト機構が、シフトアクチュエータ22を備える電動式であり、スロットルバルブの開度を変更するスロットル機構が、スロットルアクチュエータ23を備える電動式である場合について説明した。しかし、シフト機構は、シフトアクチュエータ22を備えていない機械式(油圧式またはケーブル式)であってもよい。同様に、スロットル機構は、スロットルアクチュエータ23を備えていない機械式であってもよい。
前記実施形態では、電動モータ42が、コンソール台5とステアリングホイール32との間に配置されており、コンソール台5に支持されている場合について説明した。しかし、電動モータ42は、コンソール台5とステアリングホイール32との間以外の位置に配置されていてもよい。たとえば、電動モータ42および伝達機構43は、コンソール台5の中に配置されていてもよい。電動モータ42は、デッキ4や船体3などの他の部材に支持されていてもよい。
前記実施形態では、伝達機構43は、電動モータ42とステアリングホイール32との間で電動モータ42の回転を1回だけ減速させる場合について説明した。しかし、伝達機構43は、電動モータ42の回転を複数回減速してもよい。もしくは、電動モータ42は、ステアリングホイール32の回転軸線Ahと同軸のモータであってもよい。この場合、ステアリングホイール32は、電動モータ42と同じ方向に同じ速度で同じ角度で回転駆動される。
前記実施形態では、駆動ギヤ44の回転軸線と従動ギヤ46の回転軸線とが互いに平行である場合について説明した。しかし、駆動ギヤ44の回転軸線と従動ギヤ46の回転軸線とは、互いに平行でなくてもよい。従動ギヤ46が、ステアリングホイール32と同軸のウォームホイールであり、駆動ギヤ44が、ウォームホイールに噛み合うウォームであってもよい。
前記実施形態では、従動ギヤ46が、ステアリングシャフトに相当するポンプ軸34aに連結されている場合について説明した。しかし、ステアリングホイール32の回転軸線Ah上に位置する部材であれば、従動ギヤ46は、ポンプ軸34a以外の部材に連結されていてもよい。また、従動ギヤ46は、ステアリングホイール32に連結されていてもよい。
前記実施形態では、制御ユニット55が、舵角の修正が必要か否かを判定し、必要であれば舵角の修正量を計算する場合について説明した。しかし、携帯端末59が、舵角の修正量の計算まで(図6のステップS9まで)を行い、舵角の修正量を制御ユニット55に送信してもよい。
前記実施形態では、制御ユニット55は、低速条件が成立するときだけ、電動モータ42に電力を供給する場合について説明した。しかし、舵角の修正が必要な場合、制御ユニット55は、船舶1の速度にかかわらず、電動モータ42に電力を供給してもよい。
前記実施形態では、制御ユニット55は、船舶1の挙動と電動モータ42がステアリングホイール32を回転させる方向とに基づいて、操船者がステアリングホイール32を操作しているか否かを判定する場合について説明した。しかし、船舶1がステアリングホイール32の動作を検出するホイール操作検出装置68(図1参照)を備える場合、制御ユニット55は、電動モータ42がステアリングホイール32を回転させる方向とステアリングホイール32の移動方向および速度とに基づいて、操船者がステアリングホイール32を操作しているか否かを判定してもよい。
前述の全ての構成の2つ以上が組み合わされてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
5 :コンソール台
5a :コンソール面
11 :船外機
13 :エンジン
32 :ステアリングホイール
33 :操舵機構
34 :ヘルムポンプ
36 :油圧シリンダ
41 :自動操舵装置
42 :電動モータ
42a :モータ軸
43 :伝達機構
44 :駆動ギヤ
45 :中間ギヤ
46 :従動ギヤ
47 :防水カバー
51 :給電回路
52 :給電スイッチ
53 :正転スイッチ
54 :逆転スイッチ
55 :制御ユニット
55e :修正角度計算部
55f :モータ駆動部
55g :低速判定部
55h :操作判定部
55i :駆動停止部
59 :携帯端末
62 :ディスプレイ
63 :通信ユニット
64 :GPSユニット
71 :風向検出装置
78 :駆動回路
81 :駆動スイッチ
82 :正転駆動スイッチ
83 :逆転駆動スイッチ
89 :オンオフスイッチ
90 :風向回転角検出装置
91 :方位検出装置
92 :逆入力遮断クラッチ
Ah :ステアリングホイールの回転軸線
B1 :バッテリー
Db :船首の方向

Claims (20)

  1. ステアリングホイールを回転させる動力を発生する電動アクチュエータと、
    前記電動アクチュエータの出力部と共に回転する駆動部材と、前記ステアリングホイールと共に回転する従動部材とを含み、前記電動アクチュエータの出力部の回転を前記ステアリングホイールに伝達する伝達機構と、
    前記ステアリングホイールの回転に基づかない入力信号に応じて前記電動アクチュエータに電力を供給する給電制御部とを備える、船舶用ステアリングシステム。
  2. 前記船舶は、前記ステアリングホイールを回転可能に支持するコンソール台を含み、
    前記電動アクチュエータは、前記コンソール台に支持される、請求項1に記載の船舶用ステアリングシステム。
  3. 前記電動アクチュエータは、前記コンソール台と前記ステアリングホイールとの間に配置される、請求項2に記載の船舶用ステアリングシステム。
  4. 前記電動アクチュエータおよび伝達機構の両方を覆うカバーをさらに含む、請求項3に記載の船舶用ステアリングシステム。
  5. 前記従動部材は、前記ステアリングホイールの回転軸線上に位置しており、
    前記駆動部材は、前記従動部材のまわりに位置する、請求項1〜4のいずれか一項に記載の船舶用ステアリングシステム。
  6. 前記伝達機構は、前記電動アクチュエータと前記ステアリングホイールとの間で前記電動アクチュエータの回転を1回だけ減速させる、請求項1〜5のいずれか一項に記載の船舶用ステアリングシステム。
  7. 前記伝達機構は、前記電動アクチュエータを前記ステアリングホイールに常時連結する、請求項1〜6のいずれか一項に記載の船舶用ステアリングシステム。
  8. 前記伝達機構は、前記電動アクチュエータと前記ステアリングホイールとを繋ぐ動力の伝達経路上で前記電動アクチュエータの動力を前記ステアリングホイールに向けて伝達し、操船者が前記ステアリングホイールにトルクを加えると前記伝達経路を切断するクラッチをさらに含む、請求項1〜6のいずれか一項に記載の船舶用ステアリングシステム。
  9. 前記電動アクチュエータから前記ステアリングホイールに伝達される最大トルクは、8Nm以下である、請求項1〜8のいずれか一項に記載の船舶用ステアリングシステム。
  10. 前記給電制御部は、前記船舶の速度が所定値以下のときだけ、前記電動アクチュエータに電力を供給する、請求項1〜9のいずれか一項に記載の船舶用ステアリングシステム。
  11. 前記給電制御部は、前記船舶を推進させる動力を発生するエンジンの回転速度が1000rpm以下のときだけ、前記電動アクチュエータに電力を供給する、請求項10に記載の船舶用ステアリングシステム。
  12. 前記給電制御部は、制御ユニットを含み、
    前記制御ユニットは、前記電動アクチュエータへの電力供給を制御するモータ駆動部と、操船者が前記ステアリングホイールを操作していることを含む操作条件が成立するか否かを判定する操作判定部と、前記電動アクチュエータが駆動されているときに前記操作条件が成立すると、前記モータ駆動部に前記電動アクチュエータの駆動を停止させる駆動停止部とを含む、請求項1〜11のいずれか一項に記載の船舶用ステアリングシステム。
  13. 前記給電制御部は、制御ユニットを含み、
    前記制御ユニットは、前記入力信号に応じて前記電動アクチュエータの回転角を計算する修正角度計算部と、前記電動アクチュエータが前記修正角度計算部によって計算された回転角で回転するように前記電動アクチュエータへの電力供給を制御するモータ駆動部とを含む、請求項1〜12のいずれか一項に記載の船舶用ステアリングシステム。
  14. 前記制御ユニットは、操船者によって操作される携帯端末に無線通信網を介して接続されており、前記携帯端末から送られた前記入力信号を受信する通信ユニットをさらに含む、請求項13に記載の船舶用ステアリングシステム。
  15. 前記携帯端末は、操船者が前記船舶の目的地を指定するときに操作される被操作部を含み、
    前記給電制御部は、前記電動アクチュエータへの電力供給を制御することにより、前記携帯端末で指定された目的地に前記船舶が向かうように前記船舶の針路を制御する、請求項14に記載の船舶用ステアリングシステム。
  16. 前記携帯端末は、GPS衛星が発する信号に基づいて前記携帯端末の現在地を計算するGPSユニットをさらに含む、請求項15に記載の船舶用ステアリングシステム。
  17. 風向きに対する船首の方向の傾き角度を検出し、前記入力信号を生成する風向検出装置をさらに含む、請求項1〜13のいずれか一項に記載の船舶用ステアリングシステム。
  18. 前記船舶用ステアリングシステムは、前記電動アクチュエータをバッテリーに接続する給電回路と、風向きに対する船首の方向の傾き角度を検出する風向検出装置とをさらに含み、
    前記給電制御部は、前記給電回路から前記電動アクチュエータへの電力供給を制御する給電スイッチと、前記給電回路から前記電動アクチュエータに電力を供給させる前記入力信号を前記給電スイッチに伝達する駆動回路と、前記風向検出装置によって検出された風向きに対する船首の方向の傾き角度に応じて、前記入力信号を生成するオン状態と、前記駆動回路を開くオフ状態と、に切り替わる駆動スイッチとを含む、請求項1〜10のいずれか一項に記載の船舶用ステアリングシステム。
  19. 操船者の操作に応じて前記給電回路および駆動回路の一方を開閉するオンオフスイッチをさらに含む、請求項18に記載の船舶用ステアリングシステム。
  20. 磁場の方向に対する船首の方向の傾き角度を検出し、前記入力信号を生成する方位検出装置をさらに含む、請求項1〜13のいずれか一項に記載の船舶用ステアリングシステム。
JP2015093294A 2015-04-30 2015-04-30 船舶用ステアリングシステム Pending JP2016210239A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015093294A JP2016210239A (ja) 2015-04-30 2015-04-30 船舶用ステアリングシステム
US15/143,163 US10518857B2 (en) 2015-04-30 2016-04-29 Steering system for vessel
US16/683,392 US10752327B2 (en) 2015-04-30 2019-11-14 Steering system for vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015093294A JP2016210239A (ja) 2015-04-30 2015-04-30 船舶用ステアリングシステム

Publications (1)

Publication Number Publication Date
JP2016210239A true JP2016210239A (ja) 2016-12-15

Family

ID=57203954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093294A Pending JP2016210239A (ja) 2015-04-30 2015-04-30 船舶用ステアリングシステム

Country Status (2)

Country Link
US (2) US10518857B2 (ja)
JP (1) JP2016210239A (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210239A (ja) * 2015-04-30 2016-12-15 ヤマハ発動機株式会社 船舶用ステアリングシステム
US10457370B1 (en) * 2016-11-18 2019-10-29 Brunswick Corporation Marine steering system and method of providing steering feedback
CN106628093B (zh) * 2017-01-06 2018-06-08 浙江嘉蓝海洋电子有限公司 手动、自动双模式方向盘
US10683073B2 (en) * 2017-08-25 2020-06-16 Marine Canada Acquisition Inc. Electric actuator for a marine steering system
US10661872B1 (en) * 2017-12-19 2020-05-26 Yamaha Hatsudoki Kabushiki Kaisha System for and method of controlling watercraft
CN109606603A (zh) * 2018-12-12 2019-04-12 谢业海 一种船舶电动方向盘设计方法
CN109606601A (zh) * 2018-12-12 2019-04-12 谢业海 一种船舶电动油门和档位设计方法
JP2020097328A (ja) * 2018-12-18 2020-06-25 スズキ株式会社 船外機のステアリング装置
JP2021030834A (ja) * 2019-08-22 2021-03-01 ヤマハ発動機株式会社 操船システムおよび船舶
CN111522272B (zh) * 2020-04-29 2024-03-15 宁波扇贝科技有限公司 一种基于随动同步的高速艇多地远程操控方法及系统
ES2933909B2 (es) * 2022-08-03 2023-05-18 Searebbel S L Sistema de direccion para una embarcacion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109617B2 (ja) * 1992-02-10 2000-11-20 株式会社ショーワ 船外機用パワーステアリング装置の油圧発生装置
US20030150366A1 (en) * 2002-02-13 2003-08-14 Kaufmann Timothy W. Watercraft steer-by-wire system
JP2004142537A (ja) * 2002-10-23 2004-05-20 Yamaha Marine Co Ltd 船舶の操舵制御装置
JP4331628B2 (ja) * 2004-01-29 2009-09-16 ヤマハ発動機株式会社 船舶推進装置の操舵装置および船舶
ITSV20040023A1 (it) * 2004-05-17 2004-08-17 Ultraflex Spa Impianto e metodo per comando direzionale di natanti, come imbarcazioni o simili
JP4546840B2 (ja) 2005-01-18 2010-09-22 本田技研工業株式会社 船外機の操舵装置
JP4895637B2 (ja) * 2006-02-20 2012-03-14 本田技研工業株式会社 船外機の操舵装置
BRPI0705685A2 (pt) 2007-08-28 2009-05-05 Silva Leonardo Senna Da sistema de monitoração e controle remoto de embarcações
JP2011105222A (ja) * 2009-11-19 2011-06-02 Honda Motor Co Ltd 船外機の操舵装置
US8281728B2 (en) * 2010-08-19 2012-10-09 Nhk Mec Corporation Steering apparatus for outboard motor
JP2016210239A (ja) * 2015-04-30 2016-12-15 ヤマハ発動機株式会社 船舶用ステアリングシステム
US20170029084A1 (en) * 2015-07-28 2017-02-02 Steering Solutions Ip Holding Corporation Column based electric assist marine power steering
US10252787B2 (en) * 2015-07-28 2019-04-09 Steering Solutions Ip Holding Corporation Electric power steering assist and control of a marine vessel

Also Published As

Publication number Publication date
US20200079484A1 (en) 2020-03-12
US10518857B2 (en) 2019-12-31
US10752327B2 (en) 2020-08-25
US20160318592A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
US10752327B2 (en) Steering system for vessel
EP3170735B1 (en) Boat maneuvering control method for boat and boat maneuvering control system for boat
US20210139123A1 (en) Ship Propulsion System and Ship
JP2017178242A (ja) 操船システム及び船舶
US11535348B2 (en) Sailing assisting system for vessel
JP2005212603A (ja) 船舶推進装置の操舵方法
SE521051C2 (sv) Fjärrmanövreringssystem för ett fordon.
JP2017088111A (ja) 船舶の操船制御方法および船舶の操船制御システム
JP6466600B1 (ja) 推進器の制御装置
JP2020032871A (ja) 電動推進装置及び電動推進船
US20170351259A1 (en) Ship handling device
US10953973B2 (en) Ship handling device and ship including the same
US9709996B2 (en) Boat maneuvering system
JP2019018812A (ja) 一軸二舵船の操舵制御装置
WO2019069382A1 (ja) 操船支援装置
US11573087B1 (en) Boat maneuvering control method for boat and boat maneuvering control system for boat
WO2017135304A1 (ja) ジョイスティックコントロール装置
JP2022085660A (ja) 船舶を制御するためのシステム及び方法
JP5572460B2 (ja) 船体用制御装置及び船体用制御プログラム並びに船体用制御プログラムを組み込んだ自動操舵装置
US20240132193A1 (en) Watercraft propulsion system, and watercraft
US20220291688A1 (en) Watercraft auto-docking system and watercraft auto-docking method
US11453470B2 (en) Marine vessel electric propulsion system, and marine vessel including the same
US20240132189A1 (en) Watercraft propulsion system, and watercraft
JP5599245B2 (ja) 船体用制御装置及び船体用制御プログラム並びに船体用制御プログラムを組み込んだ自動操舵装置
JP2022099788A (ja) 船舶を制御するためのシステム及び方法