JP2016207769A - スリップリング、支持機構及びプラズマ処理装置 - Google Patents

スリップリング、支持機構及びプラズマ処理装置 Download PDF

Info

Publication number
JP2016207769A
JP2016207769A JP2015085881A JP2015085881A JP2016207769A JP 2016207769 A JP2016207769 A JP 2016207769A JP 2015085881 A JP2015085881 A JP 2015085881A JP 2015085881 A JP2015085881 A JP 2015085881A JP 2016207769 A JP2016207769 A JP 2016207769A
Authority
JP
Japan
Prior art keywords
slip ring
coil spring
rotor
stator
support mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015085881A
Other languages
English (en)
Other versions
JP6449091B2 (ja
Inventor
松本 和也
Kazuya Matsumoto
和也 松本
高志 山本
Takashi Yamamoto
高志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2015085881A priority Critical patent/JP6449091B2/ja
Priority to US15/558,126 priority patent/US10665434B2/en
Priority to KR1020177026316A priority patent/KR102383360B1/ko
Priority to CN201680014297.4A priority patent/CN107408529B/zh
Priority to PCT/JP2016/061338 priority patent/WO2016170989A1/ja
Priority to TW105111966A priority patent/TWI685013B/zh
Publication of JP2016207769A publication Critical patent/JP2016207769A/ja
Application granted granted Critical
Publication of JP6449091B2 publication Critical patent/JP6449091B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/18Contacts for co-operation with commutator or slip-ring, e.g. contact brush
    • H01R39/28Roller contacts; Ball contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/38Brush holders
    • H01R39/381Brush holders characterised by the application of pressure to brush
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】接触式のスリップリングにおいて接触抵抗を低減させる。
【解決手段】
一実施形態のスリップリングは、回転軸線周りで回転可能な導電性の回転子と、回転子と同軸に設けられた導電性の固定子と、回転子と固定子との間に配置される導電性の球体であり、回転子と固定子との間の電気的パスを形成する、該球体と、回転子及び固定子のうち一方と球体との間において設けられ、回転軸線に対して周方向に延在する導電性のコイルバネであり、回転子及び固定子のうち一方と球体とに接触する、該コイルバネと、を備える。
【選択図】図1

Description

本発明は、スリップリング、支持機構及びプラズマ処理装置に関する。
電子デバイスの製造では、被処理体のエッチングにプラズマ処理装置が広く用いられている。例えば、磁気ランダムアクセスメモリ(Magnetic Random Access Memory:MRAM)に含まれる磁性層のエッチングにもプラズマ処理装置が使用されている。プラズマ処理装置は、一般的に、その内部においてプラズマ処理が行われる処理容器を備える。処理容器内には、ステージが設けられている。
ステージは、一般的に、静電チャック、及び、下部電極を備えている。静電チャックは、誘電体によって囲まれた電極膜を有し、当該電極膜に電圧が印加されることにより静電力を発生する。この静電力によって、静電チャックは、被処理体を吸着して保持する。また、下部電極には、被処理体にイオンを引き込むための高周波バイアスが供給される。
このようなステージの一種として、被処理体に対するプラズマ処理の均一性を向上させるために回転可能に構成された回転ステージがある。回転ステージでは、静電チャックの電極膜に電圧を印加するために、また、下部電極に高周波バイアスを供給するために、スリップリングが用いられる。このような、回転ステージを備えるプラズマ処理装置は、例えば、特開平01−117317号公報に記載されている。
また、スリップリングには、非接触式のスリップリングと接触式のスリップリングとがある。非接触式のスリップリングでは、特開平10−143791号公報に記載されているように、電気伝導性を有する媒体が固定子と回転子との間に充填されている。このような媒体には、例えば水銀が用いられる。また、接触式のスリップリングでは、固定子と回転子の間に、これら固定子と回転子とを電気的に接続するブラシが設けられている。ブラシを用いたスリップリングについては、例えば、特開2009−225578号公報及び特開平11−214108号公報に記載されている。
特開平01−117317号公報 特開平10−143791号公報 特開2009−225578号公報 特開平11−214108号公報
非接触式のスリップリングでは、媒体として用いられる水銀が人体に有毒であり、また、水銀を密封するためのシール構造が必要なので、スリップリングが大型化する。さらに、長期間の使用によってシール構造が破損して水銀の漏洩が生じることにより、外部環境に深刻な影響を及ぼす恐れもある。
接触式のスリップリングでは、非接触式のスリップリングの上述した問題は避けられるものの、ブラシの点接触によって回転子と固定子とが電気的に接続されるので、接触抵抗が大きくなる。かかる背景から、接触式のスリップリングにおいて接触抵抗を低減させることが要請されている。
一態様においては、スリップリングが提供される。このスリップリングは、回転子、固定子、球体、及びコイルバネを備えている。回転子は導電性を有し、回転軸線周りで回転可能である。固定子は、導電性を有し、回転子と同軸に設けられている。球体は、導電性を有し、回転子と固定子との間に配置されている。球体は、回転子と固定子との間の電気的パスを形成する。コイルバネは、導電性を有し、回転子及び固定子のうち一方と球体との間において設けられており、回転軸線に対して周方向に延在している。コイルバネは、回転子及び固定子のうち一方と球体とに接触している。
上記スリップリングでは、導電性のコイルバネが、回転子及び固定子のうち一方と球体との間に設けられており、当該コイルバネが、回転子及び固定子のうち一方及び球体に多数の点で接触する。したがって、回転子及び固定子のうち一方と球体との間の接触抵抗が低減され、スリップリングの接触抵抗が低減される。
一実施形態のスリップリングは、導電性の別のコイルバネを更に備えていてもよい。この実施形態では、別のコイルバネは、回転子及び固定子のうち他方と球体との間に設けられ、回転軸線に対して周方向に延在し、回転子及び固定子のうち他方と球体とに接触する。この実施形態では、コイルバネが、回転子及び固定子のうち他方及び球体に多数の点で接触する。したがって、回転子及び固定子のうち他方と球体との間の接触抵抗が低減する。したがって、スリップリングの接触抵抗が更に低減される。
一実施形態において、コイルバネ及び別のコイルバネは、回転軸線が延在する方向に配列されていてもよい。この実施形態によれば、コイルバネ及び別のコイルバネ、即ち二つのコイルバネの回転軸線からの距離が同様の距離となる。したがって、二つのコイルバネのうち一方と球体との間のスリップ量と、二つのコイルバネのうち他方と球体との間のススリップ量との差異が小さくなり、二つのコイルバネと球体の摺動に起因する摩耗が低減される。その結果として、スリップリングの寿命が長くなる。なお、別の一実施形態では、コイルバネ及び別のコイルバネは、回転軸線に対して放射方向に配列されていてもよい。
一実施形態では、コイルバネは、斜め巻きスプリングであってもよい。斜め巻きスプリングが球体に対して発生する反力は、一般的なコイルスプリングが発生する反力よりも小さい。したがって、コイルバネと球体との接触面積が大きくなり、接触抵抗が更に小さくなる。また、接触抵抗が安定する。
一実施形態では、コイルバネ及び別のコイルバネの双方は、斜め巻きスプリングであってもよい。コイルバネと球体との接触面積、及び別のコイルバネと球体との接触面積が大きくなり、接触抵抗が更に小さくなる。また、接触抵抗が安定する。
別の態様においては、プラズマ処理装置の処理容器内において被処理体を支持するための支持機構が提供される。この支持機構は、保持部、駆動装置、及び回転コネクタを備えている。保持部は、被処理体を保持するよう構成されており、第1軸線中心に回転可能であるように構成されている。駆動装置は、保持部を回転させるよう構成されている。回転コネクタは、複数のスリップリングを有している。複数のスリップリングは、上述した一態様及び種々の実施形態のうち何れかのスリップリングであり、第1軸線に回転軸線が一致するように設けられている。保持部は、下部電極、静電チャック、及び複数の導体を有している。静電チャックは、下部電極上に設けられている。複数の導体は、それらの中心軸線が第1軸線に一致するように同軸に設けられている。複数の導体は、静電チャックの電極膜に接続された第1導体、及び、下部電極に接続された第2導体を含んでいる。複数のスリップリングのうち第1のスリップリングは、第1導体に電気的に接続されており、複数のスリップリングのうち第2のスリップリングは第2導体に電気的に接続されている。
上記支持機構では、上述した一態様及び種々の実施形態のうち何れかのスリップリングを採用した回転コネクタを有しているので、静電チャックの電極膜、及び下部電極への電気的パスにおける接触抵抗が低減される。したがって、静電チャックの電極膜に大きな電圧を印加することが可能となり、また、下部電極に大きなバイアスを与えることが可能となる。
一実施形態の支持機構は、容器部、傾斜軸部、及び別の駆動装置を更に備え得る。容器部は、保持部と共に密閉された空間を画成するように構成されている。傾斜軸部は、第1軸線に直交する第2軸線に沿って延びる中空形状を有しており、容器部に結合されている。別の駆動装置は、傾斜軸部を第2軸線周りで回転させるように構成されている。複数の導体、保持部を回転させる駆動装置、及び回転コネクタは、容器部及び保持部によって画成される空間内に設けられている。この実施形態の支持機構は、保持部を傾斜させ、且つ回転させることが可能であり、このような保持部の静電チャックの電極膜及び下部電極に対しても、接触抵抗の少ない電気的パスを提供することが可能である。また、複数の導体、保持部、及び回転コネクタが、容器部及び保持部によって画成される空間内に設けられるので、当該支持機構がプラズマ処理装置に用いられる場合に、プラズマ処理のための空間とは分離された空間内で、複数の導体、保持部、及び回転コネクタを保護することができる。
更に別の態様においては、被処理体に対してプラズマ処理を行うためのプラズマ処理装置が提供される。このプラズマ処理装置は、処理容器、ガス供給系、プラズマ源、支持機構、排気系、直流電源、及びバイアス電力供給部を備えている。ガス供給系は、処理容器内にガスを供給するよう構成されている。プラズマ源は、処理容器内に供給されたガスを励起させるよう構成されている。支持機構は、上述した別の態様及び実施形態のうち何れかの支持機構であり、処理容器内において保持部により被処理体を保持する。排気系は、処理容器内の空間に対する排気のために設けられている。直流電源は、処理容器の外部に設けられており、静電チャックの電極膜に与えられる電圧を発生する。バイアス電力供給部は、処理容器の外部に設けられており、下部電極に与えられるバイアスを発生する。直流電源は、第1配線を介して第1のスリップリングに接続されており、バイアス電力供給部は、第2配線を介して第2のスリップリングに接続されている。
この態様に係るプラズマ処理装置では、第1のスリップリング及び第2のスリップリングにそれぞれ接続される第1配線及び第2配線を介して、静電チャック及び下部電極に電力が安定的に供給される。
一実施形態では、保持部及び容器部は、処理容器内に設けられており、傾斜軸部は、処理容器の内部から該処理容器の外部まで延びるように設けられており、第1配線は、傾斜軸部内を通って、直流電源と第1のスリップリングとを接続しており、第2配線は、傾斜軸部内を通って、バイアス電力供給部と第2のスリップリングとを接続していてもよい。この実施形態によれば、第1配線及び第2配線を、プラズマに晒すことなく、回転コネクタに接続することができる。また、このプラズマ処理装置によれば、被処理体を傾斜させた状態で回転させつつ、当該被処理体に対するプラズマ処理を行うことができる。
一実施形態では、保持部は、ヒータを更に有し、複数の導体は、ヒータに接続する第3導体及び第4導体を更に有し、複数のスリップリングは、第3導体に接続する第3のスリップリング及び第4導体に接続する第4のスリップリングを更に含み、プラズマ処理装置は、処理容器の外部に設けられヒータに電力を供給するヒータ電源を更に備え、ヒータ電源は、傾斜軸部内を通る第3配線及び第4配線を介して第3及び第4のスリップリングに電気的に接続されていてもよい。
一実施形態では、支持機構は、保持部に設けられた温度センサを更に含み、複数の導体は、温度センサに接続する第4導体を更に有し、複数のスリップリングは、第5導体に接続する第5のスリップリングを更に含み、該プラズマ処理装置は、制御部を更に有し、制御部は、傾斜軸部内を通る第5配線を介して第5のスリップリングに電気的に接続されていてもよい。
一実施形態では、バイアス電力供給部は、パルス変調された直流電圧を下部電極に供給してもよい。この実施形態によれば、比較的低いエネルギー、且つ、狭いエネルギー帯域のイオンを被処理体に引き込むことが可能である。これにより、被処理体において特定物質から構成された領域を選択的にエッチングすることが可能となる。また、一実施形態では、バイアス電力供給部は、パルス変調された直流電圧及び高周波バイアスを選択的に下部電極に供給してもよい。
以上説明したように、接触式のスリップリングにおいて接触抵抗を低減させることが可能となる。
一実施形態に係るプラズマ処理装置を概略的に示す図である。 一実施形態に係るプラズマ処理装置を概略的に示す図である。 パルス変調された直流電圧を示す図である。 一実施形態のプラズマ源を示す図である。 一実施形態のプラズマ源を示す図である。 一実施形態に係る支持機構を示す断面図である。 一実施形態に係る支持機構を示す断面図である。 一実施形態に係る保持部及び回転軸部の上側部分を拡大して示す断面図である。 一実施形態に係る回転軸部の下側部分及び回転コネクタを拡大して示す断面図である。 一実施形態に係るスリップリングを概略的に示す図である。 一実施形態に係るスリップリングの各部品を概略的に示す図である。 球体とコイルバネの接触の様子を示す模式図である。 一実施形態に係るコイルバネの一例である斜め巻きスプリングを示す概略図である。 一実施形態に係るコイルバネの形状とバネの反発との関係を示す断面図である。 一実施形態に係る斜め巻きスプリングのつぶし率と接触抵抗との関係を示す図である。 一実施形態に係るスリップリングにおいて接触抵抗が生じる箇所を示す図である。 接触抵抗のみを考慮したスリップリングの等価回路を示す図である。 一実施形態に係る回転コネクタでの高周波特性を説明するための図である。 一実施形態に係る回転コネクタの高周波に対する等価回路を示す図である。 別の実施形態に係る回転コネクタの断面図である。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
図1及び図2は、一実施形態に係るプラズマ処理装置を概略的に示す図であり、鉛直方向に延びる軸線PXを含む一平面において処理容器を破断して、当該プラズマ処理装置を示している。なお、図1においては、後述する支持機構が傾斜していない状態のプラズマ処理装置が示されており、図2においては、支持機構が傾斜している状態のプラズマ処理装置が示されている。
図1及び図2に示すプラズマ処理装置10は、処理容器12、ガス供給系14、プラズマ源16、支持機構18、排気系20、バイアス電力供給部22、直流電源27、ヒータ電源28、及び制御部Cntを備えている。処理容器12は、略円筒形状を有している。一実施形態では、処理容器12の中心軸線は、軸線PXと一致している。この処理容器12は、被処理体(以下、「ウエハW」ということがある)に対してプラズマ処理を行うための空間Sを提供している。
一実施形態では、処理容器12は、その高さ方向の中間部分12a、即ち支持機構18を収容する部分において略一定の幅を有している。また、処理容器12は、当該中間部分の下端から底部に向かうにつれて徐々に幅が狭くなるテーパー状をなしている。また、処理容器12の底部は、排気口12eを提供しており、当該排気口12eは軸線PXに対して軸対称に形成されている。
ガス供給系14は、処理容器12内にガスを供給するよう構成されている。ガス供給系14は、第1のガス供給部14a、及び第2のガス供給部14bを有している。第1のガス供給部14aは、第1の処理ガスを処理容器12内に供給するよう構成されている。第2のガス供給部14bは、第2の処理ガスを処理容器12内に供給するよう構成されている。なお、ガス供給系14の詳細については、後述する。
プラズマ源16は、処理容器12内に供給されたガスを励起させるよう構成されている。一実施形態では、プラズマ源16は、処理容器12の天部に設けられている。また、一実施形態では、プラズマ源16の中心軸線は、軸線PXと一致している。なお、プラズマ源16の一例に関する詳細については後述する。
支持機構18は、処理容器12内においてウエハWを保持するように構成されている。この支持機構18は、第1軸線AX1中心にウエハWを回転させるよう構成されている。また、支持機構18は、軸線PX及び第1軸線AX1に直交する第2軸線AX2中心に回転可能であるよう構成されている。支持機構18は、第2軸線AX2中心の回転により、軸線PXに対して傾斜することが可能である。支持機構18を傾斜させるために、プラズマ処理装置10は、駆動装置24を有している。駆動装置24は、処理容器12の外部に設けられており、第2軸線AX2中心の支持機構18の回転のための駆動力を発生する。なお、支持機構18が傾斜していない状態では、図1に示すように、第1軸線AX1は軸線PXに一致する。一方、支持機構18が傾斜している状態では、第1軸線AX1は軸線PXに対して傾斜する。この支持機構18の詳細については後述する。
排気系20は、処理容器12内の空間を減圧するよう構成されている。一実施形態では、排気系20は、自動圧力制御器20a、ターボ分子ポンプ20b、及び、ドライポンプ20cを有している。ターボ分子ポンプ20bは、自動圧力制御器20aの下流に設けられている。ドライポンプ20cは、バルブ20dを介して処理容器12内の空間に直結されている。また、ドライポンプ20cは、バルブ20eを介してターボ分子ポンプ20bの下流に設けられている。
自動圧力制御器20a及びターボ分子ポンプ20bを含む排気系は、処理容器12の底部に取り付けられている。また、自動圧力制御器20a及びターボ分子ポンプ20bを含む排気系は、支持機構18の直下に設けられている。したがって、このプラズマ処理装置10では、支持機構18の周囲から排気系20までの均一な排気の流れを形成することができる。これにより、効率の良い排気が達成され得る。また、処理容器12内で生成されるプラズマを均一に拡散させることが可能である。
一実施形態において、処理容器12内には、整流部材26が設けられていてもよい。整流部材26は、下端において閉じられた略筒形状を有している。この整流部材26は、支持機構18を側方及び下方から囲むように、処理容器12の内壁面に沿って延在している。一例において、整流部材26は、上部26a及び下部26bを有している。上部26aは、一定の幅を円筒形状を有しており、処理容器12の中間部分12aの内壁面に沿って延在している。また、下部26bは、上部26aの下方において当該上部26aに連続している。下部26bは、処理容器12の内壁面に沿って徐々に幅が狭くなるテーパー形状を有しており、その下端において平板状をなしている。この下部26bには、多数の開口(貫通孔)が形成されている。この整流部材26によれば、当該整流部材26の内側、即ちウエハWが収容される空間と、当該整流部材26の外側、即ち排気側の空間との間に圧力差を形成することができ、ウエハWが収容される空間におけるガスの滞留時間を調整することが可能となる。また、均等な排気が実現され得る。
バイアス電力供給部22は、処理容器12の外部に設けられ、ウエハWにイオンを引き込むためのバイアスを支持機構18に与えるように構成されている。一実施形態では、バイアス電力供給部22は、第1電源22a及び第2電源22bを有している。第1電源22aは、支持機構18に与えるバイアスとして、パルス変調された直流電圧(以下、「変調直流電圧」という)を発生する。図3は、パルス変調された直流電圧を示す図である。図3に示すように、変調直流電圧は、電圧値が高レベルをとる期間Tと低レベルをとる期間Tが交互に繰り返す電圧である。変調直流電圧は、例えば、0V〜1200Vの範囲内の電圧値に設定され得る。変調直流電圧の高レベルの電圧値は、当該電圧値の範囲内において設定される電圧値であり、変調直流電圧の高レベルの電圧値は、当該高レベルの電圧値よりも低い電圧値である。図3に示すように、期間Tと当該期間Tに連続する期間Tとの合計が1周期Tを構成する。また、変調直流電圧のパルス変調の周波数は、1/Tである。パルス変調の周波数は、任意に設定され得るが、イオンの加速を可能とするシースを形成することが可能な周波数であり、例えば、400kHzである。また、オン・デューティ比、即ち、1周期Tにおいて期間Tが占める比率は、10%〜90%の範囲内の比率である。
第2電源22bは、ウエハWにイオンを引き込むための高周波バイアスを支持機構18に供給するように構成されている。この高周波バイアスの周波数は、イオンをウエハWに引き込むのに適した任意の周波数であり、例えば、400kHzである。プラズマ処理装置10では、第1電源22aからの変調直流電圧と第2電源22bからの高周波バイアスを選択的に支持機構18に供給することができる。変調直流電圧が支持機構18に与えられると、比較的低いエネルギー、且つ、狭いエネルギー帯域のイオンがウエハWに引き込まれる。一方、高周波バイアスが支持機構18に与えられると、比較的高いエネルギー、且つ比較的広いエネルギー帯域のイオンがウエハWに引き込まれる。したがって、プラズマ処理装置10によれば、第1電源22aからの変調直流電圧と第2電源22bからの高周波バイアスを選択的に支持機構18に供給することにより、膜種に応じたエッチングを行うことが可能である。例えば、ウエハ中の特定物質をエッチングするときに変調直流電圧が支持機構18に供給され、また、エッチングレートを優先すべき膜をエッチングするときには、高周波バイアスを支持機構18に供給することができる。このような変調直流電圧と高周波バイアスの選択的な供給は、制御部Cntによって制御され得る。
制御部Cntは、例えば、プロセッサ、記憶部、入力装置、表示装置等を備えるコンピュータである。制御部Cntは、入力されたレシピに基づくプログラムに従って動作し、制御信号を送出する。プラズマ処理装置10の各部は、制御部Cntからの制御信号により制御される。
以下、ガス供給系14、プラズマ源16、支持機構18のそれぞれについて詳細に説明する。
[ガス供給系]
ガス供給系14は、上述したように第1のガス供給部14a、及び第2のガス供給部14bを有している。第1のガス供給部14aは、一以上のガス吐出孔14eを介して処理容器12内の第1の処理ガスを供給する。また、第2のガス供給部14bは、一以上のガス吐出孔14fを介して処理容器12内の第2の処理ガスを供給する。ガス吐出孔14eは、ガス吐出孔14fよりも、プラズマ源16に近い位置に設けられている。したがって、第1の処理ガスは第2の処理ガスよりもプラズマ源16に近い位置に供給される。なお、図1及び図2においては、ガス吐出孔14e及びガス吐出孔14fそれぞれの個数は、「1」であるが、複数のガス吐出孔14e、及び複数のガス吐出孔14fが設けられていてもよい。複数のガス吐出孔14eは、軸線PXに対して周方向に均等に配列されていてもよい。また、複数のガス吐出孔14fも、軸線PXに対して周方向に均等に配列されていてもよい。
一実施形態では、ガス吐出孔14eによってガスが吐出される領域とガス吐出孔14fによってガスが吐出される領域との間に、仕切板、所謂イオントラップが設けられていてもよい。これにより、第1の処理ガスのプラズマからウエハWに向かうイオンの量を調整することが可能となる。
第1のガス供給部14aは、一以上のガスソース、一以上の流量制御器、一以上のバルブを有し得る。したがって、第1のガス供給部14aの一以上のガスソースからの第1の処理ガスの流量は調整可能となっている。また、第2のガス供給部14bは、一以上のガスソース、一以上の流量制御器、一以上のバルブを有し得る。したがって、第2のガス供給部14bの一以上のガスソースからの第2の処理ガスの流量は調整可能となっている。第1のガス供給部14aからの第1の処理ガスの流量及び当該第1の処理ガスの供給のタイミング、並びに、第2のガス供給部14bからの第2の処理ガスの流量及び当該第2の処理ガスの供給のタイミングは、制御部Cntによって個別に調整される。
以下、第1の処理ガス及び第2の処理ガスについて、二つの例を説明する。
第1例において、第1の処理ガスは、希ガスであり得る。希ガスは、Heガス、Neガス、Arガス、Krガス、又はXeガスである。また、第1の処理ガスは、Heガス、Neガス、Arガス、Krガス、及びXeガスのうちから選択されるガスであり得る。また、第1例において、第2の処理ガスは、水素含有ガスであり得る。水素含有ガスとしては、CHガス、又はNHガスが例示される。かかる第1例においては、第1の処理ガス及び第2の処理ガスは、プラズマ源16によって励起され得る。この第1例では、制御部Cntによる制御により、プラズマ生成時の第1の処理ガス及び第2の処理ガスの供給量が個別に制御される。
第2例では、第1の処理ガスは、プラズマ源16によって発生させたプラズマによって解離しラジカルを生成する分解性のガスであり得る。第1の処理ガスに由来するラジカルは、還元反応、酸化反応、塩化反応又はフッ化反応を起こすラジカルであってもよい。第1の処理ガスは、水素元素、酸素元素、塩素元素又はフッ素元素を含有するガスであってもよい。具体的には、第1の処理ガスは、Ar、N、O、H、He、BCl、Cl、CF、NF、CH、又はSF等であってもよい。還元反応のラジカルを生成する第1の処理ガスとしては、H等が例示される。酸化反応のラジカルを生成する第1の処理ガスとしては、O等が例示される。塩化反応のラジカルを生成する第1の処理ガスとしては、BCl、Cl等が例示される。フッ化反応のラジカルを生成する第1の処理ガスとしては、CF、NF、SF等が例示される。
また、第2例では、第2の処理ガスは、プラズマに晒すことなくエッチング対象の物質と反応するガスであり得る。この第2処理ガスとしては、例えば、エッチング対象の物質との反応が支持機構18の温度に依存するガスを含んでもよい。具体的に、このような第2の処理ガスには、HF、Cl、HCl、HO、PF、F、ClF、COF、シクロペンタジエン又はAmidinato等が用いられる。また、第2処理ガスは、電子供与性ガスを含み得る。電子供与性ガスとは、一般的には、電気陰性度又はイオン化ポテンシャルが大きく異なる原子で構成されるガス、或いは、孤立電子対を持つ原子を含むガスをいう。電子供与性ガスは、他の化合物に電子を与えやすい性質を有する。例えば、電子供与性ガスは、金属化合物等と配位子として結合し蒸発する性質を有する。電子供与性ガスとしては、SF、PH、PF、PCl、PBr、PI、CF、AsH、SbH、SO、SO、HS、SeH、TeH、ClF、HO、H等、又は、カルボニル基を含有するガスが例示される。
かかる第2例では、第1の処理ガス及び第2の処理ガスは、交互に供給され得る。第1の処理ガスの供給時にはプラズマ源16によってプラズマが生成され、第2のガスの供給時にはプラズマ源16によるプラズマの生成が停止される。このような第1の処理ガス及び第2の処理ガスの供給は制御部Cntによって制御される。即ち、第2例においては、プラズマ生成時及びプラズマ消滅時のプラズマ状態に応じた第1の処理ガスの供給量及び第2の処理ガスの供給量は、制御部Cntによる第1のガス供給部14a及び第2のガス供給部14bの制御によって実現され得る。
[プラズマ源]
図4は、一実施形態のプラズマ源を示す図であり、図1のY方向から視たプラズマ源を示す図である。また、図5は、一実施形態のプラズマ源を示す図であり、鉛直方向から視たプラズマ源を示している。図1及び図4に示すように、処理容器12の天部には開口が設けられており、当該開口は、誘電体板194によって閉じられている。誘電体板194は、板状体であり、石英ガラス、又はセラミックから構成されている。プラズマ源16は、この誘電体板194上に設けられている。
より具体的には、図4及び図5に示すように、プラズマ源16は、高周波アンテナ140、及びシールド部材160を有している。高周波アンテナ140は、シールド部材160によって覆われている。一実施形態では、高周波アンテナ140は、内側アンテナ素子142A、及び外側アンテナ素子142Bを含んでいる。内側アンテナ素子142Aは、外側アンテナ素子142Bよりも軸線PXの近くに設けられている。換言すると、外側アンテナ素子142Bは、内側アンテナ素子142Aを囲むように、当該内側アンテナ素子142Aの外側に設けられている。内側アンテナ素子142A及び外側アンテナ素子142Bの各々は、例えば銅、アルミニウム、ステンレス等の導体から構成されており、軸線PXを中心に螺旋状に延在している。
内側アンテナ素子142A及び外側アンテナ素子142Bは共に、複数の挟持体144に挟持されて一体となっている。複数の挟持体144は、例えば、棒状の部材であり、軸線PXに対して放射状に配置されている。
シールド部材160は、内側シールド壁162A及び外側シールド壁162Bを有している。内側シールド壁162Aは、鉛直方向に延在する筒形状を有しており、内側アンテナ素子142Aと外側アンテナ素子142Bの間に設けられている。この内側シールド壁162Aは、内側アンテナ素子142Aを囲んでいる。また、外側シールド壁162Bは、鉛直方向に延在する筒形状を有しており、外側アンテナ素子142Bを囲むように設けられている。
内側アンテナ素子142A上には、内側シールド板164Aが設けられている。内側シールド板164Aは、円盤形状を有しており、内側シールド壁162Aの開口を塞ぐように設けられている。また、外側アンテナ素子142B上には、外側シールド板164Bが設けられている。外側シールド板164Bは、環状板であり、内側シールド壁162Aと外側シールド壁162Bとの間の開口を塞ぐように設けられている。
内側アンテナ素子142A、外側アンテナ素子142Bにはそれぞれ、高周波電源150A、高周波電源150Bが接続されている。高周波電源150A及び高周波電源150Bは、プラズマ生成用の高周波電源である。高周波電源150A及び高周波電源150Bは、内側アンテナ素子142A及び外側アンテナ素子142Bのそれぞれに、同じ周波数又は異なる周波数の高周波電力を供給する。例えば、内側アンテナ素子142Aに高周波電源150Aから所定の周波数(例えば40MHz)の高周波電力を所定のパワーで供給すると、処理容器12内に形成された誘導磁界によって、処理容器12内に導入された処理ガスが励起され、ウエハW上の中央部にドーナツ型のプラズマが生成される。また、外側アンテナ素子142Bに高周波電源150Bから所定の周波数(例えば60MHz)の高周波を所定のパワーで供給すると、処理容器12内に形成された誘導磁界によって、処理容器12内に導入された処理ガスが励起され、ウエハW上の周縁部に別のドーナツ型のプラズマが生成される。これらのプラズマによって、処理ガスからラジカルが生成される。
なお、高周波電源150A及び高周波電源150Bから出力される高周波電力の周波数は、上述した周波数に限られるものではない。例えば、高周波電源150A及び高周波電源150Bから出力される高周波電力の周波数は、13.56MHz、27MHz、40MHz、60MHzといった様々な周波数であってもよい。但し、高周波電源150A及び高周波電源150Bから出力される高周波に応じて内側アンテナ素子142A及び外側アンテナ素子142Bの電気的長さを調整する必要がある。
このプラズマ源16は、1mTorr(0.1333Pa)の圧力の環境下においても処理ガスのプラズマを着火することが可能である。低圧環境下では、プラズマ中のイオンの平均自由行程が大きくなる。したがって、希ガス原子のイオンのスパッタリングによるエッチングが可能となる。また、低圧環境下では、エッチングされた物質がウエハWに再付着することを抑制しつつ、当該物質を排気することが可能である。
[支持機構]
図6及び図7は、一実施形態に係る支持機構を示す断面図である。図6には、Y方向(図1参照)から視た支持機構の断面図が示されており、図7には、X方向(図1参照)から視た支持機構の断面図が示されている。図6及び図7に示すように、支持機構18は、駆動装置24、保持部30、容器部40、傾斜軸部50、回転コネクタ54、及び駆動装置78を有している。
保持部30は、ウエハWを保持し、第1軸線AX1中心に回転することによって、ウエハWを回転させる機構である。なお、上述したように、第1軸線AX1は、支持機構18が傾斜していない状態では、軸線PXと一致する。この保持部30は、静電チャック32、下部電極34、絶縁部材35、及び回転軸部36を有している。上記複数の導体は、それらの中心軸線が第1軸線AX1に一致するように同軸に設けられている。
静電チャック32は、その上面においてウエハWを保持するように構成され、下部電極34上に設けられている。静電チャック32は、第1軸線AX1をその中心軸線とする略円盤形状を有しており、後述するように、絶縁膜の内層として設けられた電極膜32aを有している。静電チャック32は、直流電源27から電極膜32aに電圧が印加されることにより、静電力を発生する。この直流電源27は、処理容器12の外部に設けられている。静電チャック32は、その上面に載置されたウエハWを静電力によって吸着する。
下部電極34は、第1軸線AX1をその中心軸線とする略円盤形状を有している。一実施形態では、下部電極34は、第1部分34a及び第2部分34bを有している。第1部分34aは、第1軸線AX1に沿って延在する下部電極34の中央側の部分であり、第2部分34bは、第1部分34aよりも第1軸線AX1から離れて、即ち、第1部分34aよりも外側で延在する部分である。第1部分34aの上面及び第2部分34bの上面は連続しており、第1部分34aの上面及び第2部分34bの上面によって下部電極34の略平坦な上面が構成されている。この下部電極34の上面には、静電チャック32が接している。また、第1部分34aは、第2部分34bよりも下方に突出して、円柱状をなしている。即ち、第1部分34aの下面は、第2部分34bの下面よりも下方において延在している。この下部電極34は、アルミニウムといった導体から構成されている。下部電極34は、上述したバイアス電力供給部22と電気的に接続される。即ち、下部電極34には、第1電源22aからの変調直流電圧、及び第2電源22bからの高周波バイアスが選択的に供給可能となっている。また、下部電極34には、冷媒流路34fが設けられている。この冷媒流路34fに冷媒が供給されることにより、ウエハWの温度が制御されるようになっている。この下部電極34は、絶縁部材35上に設けられている。
絶縁部材35は、石英、アルミナといった絶縁体から構成されており、中央において開口した略円盤形状を有している。一実施形態では、絶縁部材35は、第1部分35a及び第2部分35bを有している。第1部分35aは、絶縁部材35の中央側の部分であり、第2部分35bは、第1部分35aよりも第1軸線AX1から離れて、即ち、第1部分35aよりも外側で延在する部分である。第1部分35aの上面は、第2部分35bの上面よりも下方で延在しており、また、第1部分35aの下面も第2部分35bの下面よりも下方で延在している。絶縁部材35の第2部分35bの上面は、下部電極34の第2部分34bの下面に接している。一方、絶縁部材35の第1部分35aの上面は、下部電極34の下面から離間している。
回転軸部36は、下部電極34の下方において延在している。この回転軸部36の中心軸線は、第1軸線AX1と一致している。この回転軸部36に対して回転力が与えられることにより、保持部30が回転するようになっている。
このような種々の要素によって構成される保持部30は、容器部40と共に支持機構18の内部空間として空間を形成している。容器部40は、上側容器部42、及び外側容器部44を含んでいる。上側容器部42は、略円盤形状を有している。上側容器部42の中央には、回転軸部36が通る貫通孔が形成されている。この上側容器部42は、絶縁部材35の第2部分35bの下方において、当該第2部分35bに対して僅かな間隙を提供するように設けられている。また、上側容器部42の下面周縁には、外側容器部44の上端が結合している。外側容器部44は、下端において閉塞された略円筒形状を有している。
容器部40と回転軸部36との間には、磁性流体シール部52が設けられている。磁性流体シール部52は、内輪部52a及び外輪部52bを有している。内輪部52aは、回転軸部36と同軸に延在する略円筒形状を有しており、回転軸部36に対して固定されている。また、内輪部52aの上端部は、絶縁部材35の第1部分35aの下面に結合している。この内輪部52aは、回転軸部36と共に第1軸線AX1中心に回転するようになっている。外輪部52bは、略円筒形状を有しており、内輪部52aの外側において当該内輪部52aと同軸に設けられている。外輪部52bの上端部は、上側容器部42の中央側部分の下面に結合している。これら内輪部52aと外輪部52bとの間には、磁性流体52cが介在している。また、磁性流体52cの下方において、内輪部52aと外輪部52bとの間には、軸受53が設けられている。この磁性流体シール部52は、支持機構18の内部空間を気密に封止する封止構造を提供している。この磁性流体シール部52により、支持機構18の内部空間は、プラズマ処理装置10の空間Sから分離される。なお、プラズマ処理装置10では、支持機構18の内部空間は大気圧に維持される。この支持機構18の内部空間には、回転軸部36、回転コネクタ54、及び駆動装置78が設けられており、回転軸部36、回転コネクタ54、及び、駆動装置78は、空間Sにおいて生成されるプラズマから保護されている。
一実施形態では、磁性流体シール部52と回転軸部36との間に、第1部材37及び第2部材38が設けられている。第1部材37は、回転軸部36の外周面の一部分、即ち、後述する筒状部36Cの上側部分の外周面及び下部電極34の第1部分34aの外周面に沿って延在する略円筒形状を有している。また、第1部材37の上端は、下部電極34の第2部分34bの下面に沿って延在する環状板形状を有している。この第1部材37は、筒状部36Cの上側部分の外周面、並びに、下部電極34の第1部分34aの外周面及び第2部分34bの下面に接している。
第2部材38は、回転軸部36の外周面、即ち、第6筒状部36gの外周面、及び第1部材37の外周面に沿って延在する略円筒形状を有している。第2部材38の上端は、絶縁部材35の第1部分35aの上面に沿って延在する環状板形状を有している。第2部材38は、第6筒状部36gの外周面、第1部材37の外周面、絶縁部材35の第1部分35aの上面、及び、磁性流体シール部52の内輪部52aの内周面に接している。この第2部材38と絶縁部材35の第1部分35aの上面との間には、Oリングといった封止部材39aが介在している。また、第2部材38と磁性流体シール部52の内輪部52aの内周面との間には、Oリングといった封止部材39b及び39cが介在している。かかる構造により、回転軸部36と磁性流体シール部52の内輪部52aとの間が封止される。これにより、回転軸部36と磁性流体シール部52との間に間隙が存在していても、支持機構18の内部空間が、プラズマ処理装置10の空間Sから分離される。
外側容器部44には、第2軸線AX2に沿って開口が形成されている。外側容器部44に形成された開口には、傾斜軸部50の内側端部が嵌め込まれている。この傾斜軸部50は、略円筒形状を有しており、その中心軸線は第2軸線AX2と一致している。傾斜軸部50は、図1に示すように、処理容器12の外側まで延在している。傾斜軸部50の一方の外側端部には、上述した駆動装置24が結合されている。この駆動装置24は、傾斜軸部50の一方の外側端部を軸支している。この駆動装置24によって傾斜軸部50が回転されることにより、支持機構18が第2軸線AX2中心に回転し、その結果、支持機構18が軸線PXに対して傾斜するようになっている。例えば、支持機構18は、軸線PXに対して第1軸線AX1が0度〜60度以内の範囲の角度をなすように傾斜され得る。
一実施形態では、第2軸線AX2は、第1軸線AX1方向における支持機構18の中心位置を含んでいる。この実施形態では、傾斜軸部50は、支持機構18の当該中心を通る第2軸線AX2上で延在している。この実施形態では、支持機構18が傾斜している時に、当該支持機構18の上縁と処理容器12(又は整流部材26)との間の最短距離WU(図2参照)と、支持機構18の下縁と処理容器12(又は整流部材26)との間の最短距離WL(図2参照)のうち最小距離を大きくすることが可能である。即ち、支持機構18の外郭と処理容器12(又は整流部材26)との間の最小距離を最大化することができる。したがって、処理容器12の水平方向の幅を小さくすることが可能となる。
別の実施形態では、第2軸線AX2は、第1軸線AX1方向における支持機構18の中心と保持部30の上面との間の位置を含んでいる。即ち、この実施形態では、傾斜軸部50は、支持機構18の中心よりも保持部30側に偏った位置で延在している。この実施形態によれば、支持機構18の傾斜時に、プラズマ源16からウエハWの各位置までの距離差を低減することができる。したがって、エッチングの面内均一性が更に向上される。なお、支持機構18は60度以内の角度で傾斜可能であってもよい。
更に別の実施形態では、第2軸線AX2は、支持機構18の重心を含んでいる。この実施形態では、傾斜軸部50は、当該重心を含む第2軸線AX2上で延在している。この実施形態によれば、駆動装置24に要求されるトルクが小さくなり、当該駆動装置24の制御が容易となる。
図6及び図7に戻り、傾斜軸部50の内孔には、種々の電気系統用の配線、伝熱ガス用の配管、及び、冷媒用の配管が通されている。これらの配線及び配管は、回転軸部36に連結されている。
回転軸部36は、複数の導体を含む導体部36Aを有している。導体部36Aの複数の導体は、詳細には後述するが、第1軸線AX1をそれらの中心軸線として同軸に設けられている。導体部36Aの複数の導体は、静電チャック32内の複数の要素、及び下部電極34に対する電気的パスを形成する。これら、導体部36Aの複数の導体はそれぞれ、回転コネクタ54の複数のスリップリングに電気的に接続されている。また、回転軸部36は、導体部36Aの外側において当該導体部36Aと同軸に設けられた筒状部36B、及び、当該筒状部36Bの外側で当該筒状部36Bと同軸に設けられた筒状部36Cを有している。
筒状部36Bには、伝熱ガス供給用のガスラインが形成されている。このガスラインは、スイベルジョイントといった回転継手を介して配管66に接続されている。配管66は、支持機構18の内部空間から傾斜軸部50の内孔を通って、処理容器12の外部まで延びている。この配管66は、処理容器12の外部において、Heガスといった伝熱ガスのソース68(図1参照)に接続されている。静電チャック32とウエハWとの間には、この伝熱ガスが供給される。
筒状部36Cは、筒状部36Bの外側において当該筒状部36Bと同軸に設けられている。この筒状部36Cには、冷媒流路34fに冷媒を供給するための冷媒供給ライン、及び冷媒流路34fに供給された冷媒を回収する冷媒回収ラインが形成されている。冷媒供給ラインは、スイベルジョイントといった回転継手70を介して配管72に接続されている。また、冷媒回収ラインは回転継手70を介して配管74に接続されている。配管72及び配管74は、支持機構18の内部空間から傾斜軸部50の内孔を通って、処理容器12の外部まで延びている。そして、配管72及び配管74は、処理容器12の外部においてチラーユニット76(図1参照)に接続されている。
一実施形態では、回転コネクタ54に軸受55が設けられており、当該軸受55は回転コネクタ54を介して回転軸部36を支持している。上述した軸受53は回転軸部36の上側部分を支持しているのに対して、軸受55は回転軸部36の下側部分を支持している。このように二つの軸受53及び軸受55によって、回転軸部36がその上側部分及び下側部分の双方において支持されるので、回転軸部36を第1軸線AX1中心に安定して回転させることが可能である。
図7に示すように、支持機構18の内部空間には、回転モータといった駆動装置78が設けられている。駆動装置78は、回転軸部36を回転させるための駆動力を発生する。一実施形態では、駆動装置78は、回転軸部36の側方に設けられている。この駆動装置78は、回転軸部36に取り付けられたプーリ80に伝導ベルト82を介して連結されている。これにより、駆動装置78の回転駆動力が回転軸部36に伝達され、保持部30が第1軸線AX1中心に回転する。保持部30の回転数は、例えば、48rpm以下の範囲内にある。例えば、保持部30は、プロセス中に20rmpの回転数で回転される。なお、駆動装置78に電力を供給するための配線は、傾斜軸部50の内孔を通って処理容器12の外部まで引き出され、処理容器12の外部に設けられたモータ用電源に接続される。
このように、支持機構18は、大気圧に維持可能な内部空間に多様な機構を設けることが可能である。また、支持機構18は、その内部空間に収めた機構と処理容器12の外部に設けた電源、ガスソース、チラーユニット等の装置とを接続するための配線又は配管を処理容器12の外部まで引き出すことが可能であるように構成されている。
以下、回転軸部36及び回転コネクタ54の詳細について説明する。図8は、保持部30及び回転軸部36の上側部分を拡大して示す断面図であり、同図には、図6のY方向から視た断面図が示されている。図8に示すように、静電チャック32は、絶縁膜の内層として設けられた電極膜32aを有している。また、静電チャック32は、ウエハWを加熱するためのヒータ32bを内蔵している。ヒータ32bは、例えば、16Wの発熱に抑えられ得る。静電チャック32は、上述したように、下部電極34上に設けられている。下部電極34内には、ウエハWの温度を検知する温度センサ34cが設けられている。
回転軸部36の導体部36Aは、一実施形態では、複数の導体として、導体36a、導体36b、導体36c、導体36d、及び導体36eを含んでいる。これらの導体は、第1軸線AX1に対して同軸に設けられている。導体36aは、円柱形状を有しており、静電チャック32の電極膜32aに接続されている。導体36b及び導体36cは、円筒形状を有している。導体36b及び導体36cは、ヒータ32bに電流を供給するための導体であり、ヒータ32bの二つの端子にそれぞれ接続されている。導体36dは、円筒形状を有している。導体36dは、温度センサ34cの信号を伝達するための導体であり、温度センサ34cに接続されている。また、導体36eは、円筒形状を有している。導体36eは、バイアス電力供給部22からのバイアスを下部電極34に供給するための導体であり、下部電極34に接続されている。
図9は、一実施形態に係る回転軸部36の下側部分及び回転コネクタ54を拡大して示す断面図であり、同図には、図6のY方向から視た断面図が示されている。回転軸部36の導体部36Aの複数の導体は、それらの下端側において回転コネクタ54の複数のスリップリングにそれぞれ接続されている。回転コネクタ54の複数のスリップリングは、それらの回転軸線が第1軸線AX1に一致するように配列されている。一実施形態では、回転コネクタ54は、第1軸線AX1方向に積まれた五つのスリップリング、即ち、スリップリング56A、スリップリング56B、スリップリング56C、スリップリング56D、及びスリップリング56Eを有している。図9に示すように、導体36aはスリップリング56Aの回転子91A、導体36bはスリップリング56Bの回転子91B、導体36cはスリップリング56Cの回転子91C、導体36dはスリップリング56Dの回転子91D、導体36eはスリップリング56Eの回転子91Eに接続されている。導体36aは、Z方向に延在し、その下端で、例えばZ方向に垂直な方向に延びて回転子91Aに接続されている。導体36b、導体36c、導体36d、及び導体36eも同様に、Z方向に延在し、それらの下端で、例えばZ方向に垂直な方向に延びて、それぞれ回転子91B、回転子91C、回転子91D、及び回転子91Eに接続されている。なお、図9では、導体36a、導体36b、導体36c、導体36d、及び導体36eは、それぞれ対応する回転子91A、回転子91B、回転子91C、回転子91D、及び回転子91Eに2箇所で接続されているが、各導体は対応する回転子と一以上の箇所で接続されてもよい。
スリップリング56A〜56Eの固定子には、複数の配線57が接続されている。具体的には、複数の配線57は、配線57a、配線57b、配線57c、配線57d、及び配線57eを含んでおり、配線57aはスリップリング56Aの固定子92Aに、配線57bはスリップリング56Bの固定子92Bに、配線57cはスリップリング56Cの固定子92Cに、配線57dはスリップリング56Dの固定子92Dに、配線57eはスリップリング56Eの固定子92Eに接続されている。これら複数の配線57は、支持機構18の内部空間から傾斜軸部50の内孔を通って、処理容器12の外部まで延びている。配線57aは、処理容器12の外部において、直流電源27に接続されている。配線57b及び配線57cは、処理容器12の外部において、ヒータ電源28に接続されている。配線57dは、処理容器12の外部において、例えば制御部Cntに接続されている。配線57eは、処理容器12の外部において、バイアス電力供給部22、即ち、第1電源22a及び第2電源22bに接続されている。なお、第2電源22bと配線57eとの間には、インピーダンスマッチング用の整合器が設けられ得る。
図9に示すように、スリップリング56Aの回転子91Aの下面、スリップリング56Aの回転子91Aとスリップリング56Bの回転子91Bとの間、スリップリング56Bの回転子91Bとスリップリング56Cの回転子91Cとの間、スリップリング56Cの回転子91Cとスリップリング56Dの回転子91Dとの間、スリップリング56Dの回転子91Dとスリップリング56Eの回転子91Eとの間、及び、スリップリング56Eの回転子91Eの上面には、アイソレータ87が設けられている。アイソレータ87は、絶縁体から構成されており、回転軸線RX1に対して周方向に延在する環形状を有している。アイソレータ87は、例えば、ポリテトラフルオロエチレン製である。
また、スリップリング56Aの固定子92Aの下面、スリップリング56Aの固定子92Aとスリップリング56Bの固定子92Bとの間、スリップリング56Bの固定子92Bとスリップリング56Cの固定子92Cとの間、スリップリング56Cの固定子92Cとスリップリング56Dの固定子92Dとの間、スリップリング56Dの固定子92Dとスリップリング56Eの固定子92Eとの間、及び、スリップリング56Eの固定子92Eの上面には、アイソレータ88が設けられている。アイソレータ88は、絶縁体から構成されており、回転軸線RX1に対して周方向に延在する環形状を有している。アイソレータ88は、例えば、ポリテトラフルオロエチレン製である。
以下、図10及び図11を参照しつつ、回転コネクタ54の複数のスリップリングについて説明する。図10は、一実施形態に係るスリップリングを概略的に示す図である。図10の(a)部には、回転軸線方向に視たスリップリングの平面図が示されており、図10の(b)部には、図10の(a)部に示すXb−Xb線に沿ってとった断面図が示されている。また、図11は、一実施形態に係るスリップリングの各部品を概略的に示す図である。図11の(a)部には、回転軸線方向に視たスリップリングの回転子の平面図が示されており、図11の(b)部には、図11の(a)部に示すXIb−XIb線に沿ってとった断面図が示されている。図11の(c)部には、回転軸線方向に視たスリップリングの固定子の平面図が示されており、図11の(d)部には、図11の(d)部に示すXId−XId線に沿ってとった断面図が示されている。上述したスリップリング56A、スリップリング56B、スリップリング56C、スリップリング56D、及びスリップリング56Eは、図10及び図11に示すスリップリング56と同様の構造を有する。以下では、スリップリング56の構造を説明する。
図10及び図11に示すように、スリップリング56は、回転子91及び固定子92を有している。また、スリップリング56は、複数の球体93、複数のリテーナ94、コイルバネ95、及びコイルバネ96を更に有している。
回転子91は、回転軸線RX1中心に周方向に延在する略環状の部材である。回転子91は、回転軸線RX1周りで回転可能である。固定子92は、回転軸線RX1中心に周方向に延在する略環状の部材である。固定子92は、回転軸線RX1に対して回転子91の外側で、当該回転子91と同軸に設けられている。回転子91と固定子92は共に、導電性を有する材料から構成されている。回転子91と固定子92は、それらの間に、回転軸線RX1に対して周方向に延びる空間を提供している。
回転子91と固定子92とによって提供される上記空間には、複数の球体93及び複数のリテーナ94が収められている。具体的には、当該空間内において、複数の球体93及び複数のリテーナ94は、周方向に沿って交互に配列されている。複数の球体93は、導電性を有しており、回転子91と固定子92との間の電気的パスを形成する。例えば、複数の球体93は、回転子91と固定子92の双方に点接触し得る。複数のリテーナ94は、複数の球体93同士の接触を防止している。複数のリテーナ94の各々は、一実施形態では、絶縁性の材料から構成されている。例えば、複数のリテーナ94の各々は、ポリテトラフルオロエチレン製である。これらのリテーナ94がポリテトラフルオロエチレンによって構成されている場合には、表面潤滑の効果によって球体93とリテーナとの接触摩擦による当該球体93の摩耗が低減される。
図11に示すように、回転子91は、溝91aを提供している。この溝91aは、回転軸線RX1に対して周方向に延在しており、複数の球体93及び複数のリテーナ94が収められる上記空間に連続している。この溝91aにはコイルバネ95が収められている。コイルバネ95は、回転軸線RX1に対して周方向に延在している。このコイルバネ95は、導電性を有しており、複数の球体93と回転子91との間に設けられており、複数の球体93と回転子91とに接触している。なお、図10の(b)部に示すように、溝91aを画成する回転子91の面内で最も回転軸線RX1に近い部分は、当該回転軸線RX1に対して半径RS1を有している。また、コイルバネ95の円形の中心線の半径は、RS3であり、半径RS3は半径RS1よりも大きい。
また、図11に示すように、固定子92は、溝92aを提供している。この溝92aは、回転軸線RX1に対して周方向に延在しており、複数の球体93及び複数のリテーナ94が収められる上記空間に連続している。この溝92aにはコイルバネ96が収められている。コイルバネ96は、回転軸線RX1に対して周方向に延在している。このコイルバネ96は、導電性を有しており、複数の球体93と固定子92との間に設けられており、複数の球体93と固定子92とに接触している。なお、図10の(b)部に示すように、溝92aを画成する固定子92の面内で最も回転軸線RX1に近い部分は、当該回転軸線RX1に対して半径RS2を有している。また、コイルバネ96の円形の中心線の半径は、RS4であり、半径RS4は、半径RS3よりも大きく、半径RS2よりも小さい。
図10及び図11に示した実施形態のスリップリング56では、コイルバネ95は、コイルバネ96よりも回転軸線RX1から離れた位置で周方向に延在している。即ち、コイルバネ95及びコイルバネ96は、回転軸線RX1に対して放射方向に配列されている。以下、回転軸線RX1に対して放射方向におけるコイルバネ95及びコイルバネ96の配列を、ラジアル(radial)配列と呼ぶ。
回転子91と固定子92が互いに組み合わされた状態では、コイルバネ95は複数の球体93と回転子91との間で応圧されて変形するようになっている。これにより、コイルバネ95は、複数の球体93及び回転子91に多数の点で接触するようになっている。しまた、回転子91と固定子92が互いに組み合わされた状態では、コイルバネ96は複数の球体93と固定子92との間で応圧されて変形するようになっている。これにより、コイルバネ96は、複数の球体93及び固定子92に多数の点で接触するようになっている。
このスリップリング56では、回転子91と固定子92との間の電気的パスは、複数の球体93と回転子91との点接触、及び、複数の球体93と固定子との点接触によって提供されるパスのみならず、コイルバネ95と複数の球体93との多数の点接触、コイルバネ95と回転子91との多数の点接触、コイルバネ96と複数の球体93との多数の点接触、及び、コイルバネ96と固定子92との多数の点接触によって提供されるパスをも含む。したがって、このスリップリング56では、接触面積が大きく、接触抵抗が低減されている。
ここで、図12を参照する。図12は、球体とコイルバネの接触の様子を示す模式図である。図12は、図10の(a)部に示す領域AR1内において、図10の(b)部に示すXII−XII線に沿った断面を図示している。また、図12では、回転軸線RX1に対して周方向が、Y1方向として示されている。図12に示すように、固定子92に対して、例えば、回転子91がY1方向に移動すると、複数の球体93は自転によりY2方向に回転する。これにより、コイルバネ95複数の球体93との間、及び、コイルバネ96と複数の球体93との間で転がり接触が生じ得る。但し、複数の球体93に対する回転子91及び固定子92からの与圧が大きい状態で回転子91が回転されると、複数の球体93の自転力よりもコイルバネと球体93との摩擦力が上回り、複数の球体93は回転せずに、コイルバネ95と複数の球体93、及びコイルバネ96と複数の球体93との滑り摩擦が生じる。かかる滑り摩擦を防止するために、一実施形態では、複数の球体93に対する回転子91及び固定子92からの与圧は、複数の球体93とコイルバネ95との摩擦力、及び、複数の球体93とコイルバネ96との摩擦力に対して、複数の球体93の自転力が上回るように調整される。このように与圧が調整されると、複数の球体93とコイルバネ95との安定した接触抵抗、及び、複数の球体93とコイルバネ96との安定した接触抵抗が得られる。また、複数の球体93、コイルバネ95、及びコイルバネ96といった部品の摩擦による消耗も低減される。
一実施形態では、コイルバネ95及びコイルバネ96には、図13に示す斜め巻きスプリングSCSが用いられ得る。図13の(a)部には、斜め巻きスプリングの平面図が示されており、同図の(b)部には当該斜め巻きスプリングの側面図が示されている。図13に示す斜め巻きスプリングSCSは、円形の中心線CLの周りで巻き回されている。この斜め巻きスプリングSCSの線材は、その全長にわたって、中心線CLの接線方向T1に対して傾斜しつつ、当該中心線CLの周りで巻き回されている。この斜め巻きスプリングSCSが複数の球体93に対して発生する反力は、一般的なコイルバネが発生する反力よりも小さい。
図14は、コイルバネの形状とバネの反発との関係を示す断面図である。図14の(a)部には、線材が巻かれる方向が中心線に対して略直交している一般的なコイルバネGCSの断面図が示されており、当該断面図では、コイルバネGCSに球体93が接触している状態が表されている。また、図14の(b)部には、斜め巻きスプリングSCSの断面図が示されており、当該断面図では、斜め巻きスプリングSCSに球体93が接触している状態が表されている。
図14の(a)部に示されるように、一般的なコイルバネGCSに球体93から図示の荷重F1が加わると、荷重F1の方向に対して反対方向にバネ反力F2が発生する。したがって、コイルバネGCSと球体93との接触圧が大きくなる。また、このバネ反力F2の大きさは、コイルバネGCSのピッチ及び当該コイルバネGCSの線材の直径に依存する。一方、図14の(b)部に示されるように、斜め巻きスプリングSCSに、球体93から図示の荷重F1が加わると、荷重F1の方向に直交する方向にバネ反力F2が発生し、荷重F1の方向に対して反対方向のバネ反力は極めて小さいものとなる。また、斜め巻きスプリングSCSは荷重F1の方向に容易に変形する。
したがって、斜め巻きスプリングSCSがコイルバネ95及びコイルバネ96として用いられると、コイルバネ95、コイルバネ96、複数の球体93といった部品の摩耗が抑制される。また、複数の球体93とコイルバネ95との接触面積、複数の球体93とコイルバネ96との接触面積が大きくなり、接触抵抗が更に小さくなり、また、接触抵抗が安定する。また、斜め巻きスプリングSCSによれば、球体93からの荷重の方向に対して反対方向のバネ反力に影響なく、線材の直径を大きくすることができ、斜め巻きスプリングSCSにおける線材のピッチを小さくすることができる。
なお、球体93からの荷重に対する斜め巻きスプリングSCSのバネ反力の大きさは、斜め巻きスプリングSCSの線材の傾斜角度によって調整可能である。また、斜め巻きスプリングSCSと球体93との接触抵抗は、斜め巻きスプリングSCSのつぶし率によって調整可能である。以下、図15を参照して詳細に説明する。図15は、斜め巻きスプリングSCSのつぶし率と接触抵抗との関係を示す図である。図15の(a)部には、球体93が接触していない状態(即ち、自由状体)の斜め巻きスプリングSCSが示されており、図15の(b)部には、球体93が接触している状態の斜め巻きスプリングSCSが示されている。
図15の(a)部に示す状態では、斜め巻きスプリングSCSの線材は、当該線材が接触する面の接触位置における接線方向T3に対して傾斜角度θ1で傾斜している。この状態では、接線方向T3に直交する方向T2における斜め巻きスプリングSCSの幅はD1である。図15の(b)部に示す状態では、斜め巻きスプリングSCSに球体93からの荷重が加わり、球体93の接触箇所において、斜め巻きスプリングSCSの線材の接線方向T3に対する傾斜角度θ2は、傾斜角度θ1よりも小さくなる。このとき、球体93の接触箇所における斜め巻きスプリングSCSの方向T2における幅はD1よりも小さいD2となる。
斜め巻きスプリングSCSでは、傾斜角度θ1に対して傾斜角度θ2が小さくなるほど、バネ反力は大きくなる。したがって、斜め巻きスプリングSCSでは、傾斜角度θ1と傾斜角度θ2を調整することによって、バネ反力の大きさを調整することができる。また、幅D2を幅D1で除した値、即ち、つぶし率(D2/D1)によって、斜め巻きスプリングSCSと球体93との接触抵抗を変化させることができる。例えば、つぶし率(D2/D1)が小さいほど、斜め巻きスプリングSCSと球体93との接触面積が大きくなり、斜め巻きスプリングSCSと球体93との接触抵抗は小さくなる。なお、斜め巻きスプリングSCSのぶし率(D2/D1)は、線材同士が接触しないように、例えば、75%以上となる範囲内で調整される。
以下、スリップリング56の接触抵抗の合成抵抗値について説明する。図16は、一実施形態に係るスリップリングにおいて接触抵抗が生じる箇所を示す図である。図16に示すように、スリップリング56では、処理容器12の外部から延びる配線と固定子92との接触箇所P1、固定子92と球体93との接触箇所P2、球体93と回転子91との接触箇所P3、回転子91と導体部36Aの対応の導体から延びる配線との接触箇所P4、固定子92とコイルバネ96との接触箇所P5、球体93とコイルバネ96との接触箇所P6、球体93とコイルバネ95との接触箇所P7、及び、コイルバネ95と回転子91との接触箇所P8において、接触抵抗が生じる。以下、接触箇所P1、接触箇所P2、接触箇所P3、接触箇所P4、接触箇所P5、接触箇所P6、接触箇所P7、接触箇所P8それぞれでの接触抵抗値を、R1、R2、R3、R4、R5、R6、R7、R8とする。
これら接触抵抗のみを考慮したスリップリング56の等価回路を図17に示す。図17の(a)部には、接触抵抗のみを考慮したスリップリング56の等価回路が示されている。また、図17の(b)部は、コイルバネ95及びコイルバネ96が存在しない場合の、スリップリング56の等価回路が示されている。図17の(a)に示すように、接触抵抗のみを考慮したスリップリング56の等価回路では、接触箇所P1の接触抵抗と、接触箇所P4の接触抵抗との間に、二つの電気的パスが存在する。二つの電気的パスのうち第1のパスは、接触箇所P2の接触抵抗及び接触箇所P3の接触抵抗を含むパスである。即ち、第1のパスは、コイルバネ95及びコイルバネ96によってもたらされる接触抵抗を含んでおらず、固定子92と球体93の接触抵抗、及び、球体93と回転子91との接触抵抗の直列パスである。また、二つの電気的パスのうち第2のパスは、接触箇所P5、接触箇所P6、接触箇所P7、及び、接触箇所P8を含むパスである。即ち、第2のパスは、コイルバネ95及びコイルバネ96によってもたらされる接触抵抗を含む直列パスである。
コイルバネ95及びコイルバネ96を有さないスリップリングには、図17の(b)部に示されるように、第2のパスが存在せず、第1のパスのみが存在する。したがって、コイルバネ95及びコイルバネ96を有さないスリップリングの接触抵抗の合成抵抗値R01は、式(1)に示す通りとなる。
R01=R1+RA+R4 …(1)
ここで、RAは、R2+R3である。
接触箇所P2及び接触箇所P3での接触は点接触であり、RAは非常に大きい。また、球体93の個数がn個である場合には、合成抵抗値R01は、式(1a)で表されるが、接触箇所P2及び接触箇所P3での点接触の数は非常に少ないので、合成抵抗値R01を小さくすることはできない。故に、コイルバネ95及びコイルバネ96を有さないスリップリングの抵抗値は、大きなものとなる。
R01=R1+RA/n+R4 …(1a)
一方、図17の(a)部に示されるように、コイルバネ95及びコイルバネ96を有するスリップリング56では、接触箇所P1の接触抵抗と、接触箇所P4の接触抵抗との間で第1のパスと第2のパスが並列に接続している。このスリップリング56における第2のパスの合成抵抗値RBは、式(2)に示す通りとなる。
RB=R5+R6+R7+R8 …(2)
式(2)における接触抵抗値R5、接触抵抗値R6、接触抵抗値R7、接触抵抗値R8は、コイルバネによってもたらされる多数の接触点から得られる接触抵抗値であるので、非常に小さい値である。また、接触抵抗値R5、接触抵抗値R6、接触抵抗値R7、接触抵抗値R8は、安定している。さらに、複数の球体93を有しているスリップリング56の接触抵抗の合成抵抗値は、式(3)に示す通りとなる。
R03=R1+1/(1/(RA/n)+1/(RB/n))+R4 (3)
式(3)からわかるように、コイルバネ95及びコイルバネ96を有するスリップリング56の接触抵抗の合成抵抗値は、非常に小さいものとなる。なお、21個の球体93を有するスリップリング56の一例を作成したところ、式(3)の合成抵抗値R03として、2.6mΩという小さな合成抵抗値が得られることが確認された。
したがって、このスリップリング56と同様の構成のスリップリング56A〜56Eを有するプラズマ処理装置10では、静電チャック32の電極膜32aに対して、3000Vの直流電圧、又は、徐電のための−数千Vの直流電圧を印加することが可能となる。また、ヒータ電源28からヒータ28bに対して、例えば、200V、且つ、20A〜60Aの交流電力を供給することも可能となる。また、大きなバイアスを下部電極34に供給することが可能である。
また、温度センサ34cの信号は小さいレベルの電圧信号であるので抵抗の影響を受けやすく、一般的には、ブリッジ回路によって温度センサ34cからの信号が処理容器12内の外部に取り出される。しかしながら、プラズマ処理装置10では、ブリッジ回路を用いなくとも、小さい抵抗値を有する電気的パスを介して温度センサ34cからの信号を処理容器12の外部に取り出すことが可能となる。
以下、回転コネクタ54の高周波特性について説明する。図18は、一実施形態に係る回転コネクタでの高周波特性を説明するための図であり、同図の(a)部には、当該回転コネクタにおいてキャパシタンスが発生する箇所が示されており、同図の(b)部には、当該キャパシタンスのみを考慮した回路が示されている。
図18の(a)部に示すように、スリップリング56Eは、上述したように高周波バイアスを供給する電気的パスである。このスリップリング56E、当該スリップリング56E、アイソレータ87、及びアイソレータ88は、高周波に影響するキャパシタンスを発生する。具体的には、スリップリング56Eの固定子92E、スリップリング56Dの固定子92D、及び固定子92Eと固定子92Dの間に設けられたアイソレータ88を含む箇所P11は、キャパシタンスC1を有するコンデンサとなる。また、スリップリング56Eの回転子91E、スリップリング56Dの回転子91D、及び回転子91Eと回転子91Dの間に設けられたアイソレータ87を含む箇所P14は、キャパシタンスC4を有するコンデンサとなる。また、固定子92Eと回転子91Eを含む箇所P15は、キャパシタンスC5を有するコンデンサとなり、固定子92Eと回転子91Eを含む箇所P16は、キャパシタンスC6を有するコンデンサとなる。また、固定子92Dと回転子91Dを含む箇所P17はキャパシタンスC5を有するコンデンサとなり、固定子92Dと回転子91Dを含む箇所P18は、キャパシタンスC6を有するコンデンサとなる。
図19は、一実施形態に係る回転コネクタの高周波に対する等価回路を示す図である。図18を参照して説明したコンデンサ、及び上述した接触抵抗の合成抵抗は、高周波に対して図19に示す等価回路を構成する。この等価回路では、端子J1及び端子J2との間に、箇所P11のコンデンサが接続されており、箇所P15のコンデンサ、箇所P16のコンデンサ、箇所P14のコンデンサ、箇所P17のコンデンサ、及び、箇所P18のコンデンサが、箇所P11のコンデンサに対して並列に接続されている。箇所P15のコンデンサと箇所P16のコンデンサは並列に設けられており、箇所P15のコンデンサと箇所P16のコンデンサには、合成抵抗値R03/nの合成抵抗が並列に接続している。また、箇所P17のコンデンサと箇所P18のコンデンサは並列に設けられており、箇所P17のコンデンサと箇所P18のコンデンサには合成抵抗値R03/nの合成抵抗が並列に接続している。さらに、箇所P14のコンデンサには、処理容器12内に生じる負荷といった高周波に対する負荷Ldが並列に接続されている。
キャパシタンスC5及びキャパシタンスC6は、回転子と固定子との間の狭いギャップによってもたらされるものであるので、小さいキャパシタンスである。一方、キャパシタンスC1及びキャパシタンスC4は、アイソレータ87及びアイソレータ88が、例えば、例えば、ポリテトラフルオロエチレンから構成されていることから、大きいキャパシタンスである。したがって、端子J1から箇所P11のコンデンサ及び箇所P14のコンデンサに分流される電流を低減させることができ、高周波を負荷Ldに効率良く供給することが可能である。
例えば、回転コネクタ54によれば、端子J1と端子J2との間のキャパシタンスを46pFに調整することができる。46pFのキャパシタンスは、13.56MHzの高周波に対しては、255Ωのインピーダンスとなる。したがって、負荷Ldのインピーダンスを1Ωとすると、端子J1に与えられる電流のうち1/255の電流が、箇所P11のコンデンサ及び箇所P14のコンデンサに分流される。このように、回転コネクタ54によれば、高周波の損失を抑制することが可能である。
なお、キャパシタンスC1及びキャパシタンスC4は、アイソレータ87及びアイソレータ88の厚さに依存する。例えば、アイソレータ87及びアイソレータ88の厚さを大きくすることで、キャパシタンスC1及びキャパシタンスC4を大きくすることができる。しかしながら、アイソレータ87及びアイソレータ88の厚さが大きくなると、回転コネクタ54が大型化する。したがって、回転コネクタ54の許容可能なサイズの範囲内で、アイソレータ87及びアイソレータ88の厚さは設定され得る。
また、回転コネクタ54では、複数のスリップリング間での絶縁破壊や沿面放電を防止することが望まれる。このような絶縁破壊や沿面放電にも、アイソレータ87及びアイソレータ88の材料及び厚さが影響する。したがって、絶縁破壊や沿面放電を防止可能とするよう、アイソレータ87及びアイソレータ88の材料及び厚さが選択される。なお、ポリテトラフルオロエチレンは、20kV/mmの直流絶縁耐圧を有し、例えば、2kV/mmの直流沿面放電耐圧を有しており、アイソレータ87及びアイソレータ88の材料として優れている。このような、アイソレータ87及びアイソレータ88の材料として採用され得るこのような材質としては、その他に、ポリエーテルエーテルケトン(PEEK)も例示される。
以上種々の実施形態について説明してきたが、上述の実施形態に限定されることなく種々の変形態様を構成することが可能である。例えば、コイルバネ95及びコイルバネ96の配列はラジアル配列に限定されるものではない。例えば、コイルバネ95及びコイルバネ96の配列は、図20に示すように、アキシャル(Axial)配列であってもよい。具体的には、図20に示す回転コネクタ54では、コイルバネ95及びコイルバネ96は、回転軸線RX1が延在する方向に配列されている。
ラジアル配列を採用したスリップリングでは、図9に示すように、コイルバネ96よりも回転軸線RX1の近くに設けられたコイルバネ95と複数の球体93との間のスリップ量が、コイルバネ96と複数の球体93との間のスリップ量よりも大きくなる。したがって、コイルバネ95の摩耗がコイルバネ96の摩耗よりも多くなる。
一方、図20に示すように、アキシャル配列を採用したスリップリングでは、コイルバネ95及びコイルバネ96の回転軸線RX1からの距離が略同様の距離となる。したがって、コイルバネ95と複数の球体93との間のスリップ量、及び、コイルバネ96と複数の球体93との間のスリップ量と略同等となり、且つ、小さくなる。したがって、コイルバネ95及びコイルバネ96の摩耗が少なくなり、スリップリングの寿命が長くなる。
また、上述した実施形態のスリープリングは、回転子が固定子の内側に設けられている。即ち、内輪が回転子であり、外輪が固定子となっている。しかしながら、内輪が固定子であり、外輪が回転子であってもよい。
また、上述したプラズマ処理装置10は、誘導結合型のプラズマ処理装置であったが、本明細書に開示された思想は、容量結合型のプラズマ処理装置、マイクロ波といった表面波を利用するプラズマ処理装置のように、任意のプラズマ処理装置に適用可能である。
10…プラズマ処理装置、12…処理容器、14…ガス供給系、14a…第1のガス供給部、14b…第2のガス供給部、16…プラズマ源、18…支持機構、20…排気系、20b…ターボ分子ポンプ、22…バイアス電力供給部、22a…第1電源、22b…第2電源、24…駆動装置、26…整流部材、27…直流電源、28…ヒータ電源、30…保持部、32…静電チャック、32b…ヒータ、34…下部電極、34c…温度センサ、34f…冷媒流路、36…回転軸部、36A…導体部、36a,36b,36c,36d,36e…導体、40…容器部、50…傾斜軸部、52…磁性流体シール部、54…回転コネクタ、57a,57b,57c,57d,57e…配線、56,56A,56B,56C,56D,56E…スリップリング、66…配管、70…回転継手、72…配管、74…配管、76…チラーユニット、78…駆動装置、80…プーリ、82…伝導ベルト、91,91A,91B,91C,91D,91E…回転子、92,92A,92B,92C,92D,92E…固定子、93…球体、95…コイルバネ、96…コイルバネ、150A,150B…高周波電源、AX1…第1軸線、AX2…第2軸線、Cnt…制御部、W…ウエハ。

Claims (14)

  1. 回転軸線周りで回転可能な導電性の回転子と、
    前記回転子と同軸に設けられた導電性の固定子と、
    前記回転子と前記固定子との間に配置される導電性の球体であり、前記回転子と前記固定子との間の電気的パスを形成する、該球体と、
    前記回転子及び前記固定子のうち一方と前記球体との間において設けられ、前記回転軸線に対して周方向に延在する導電性のコイルバネであり、前記回転子及び前記固定子のうち前記一方と前記球体とに接触する、該コイルバネと、を備えるスリップリング。
  2. 導電性の別のコイルバネを更に備え、
    該別のコイルバネは、前記回転子及び前記固定子のうち他方と前記球体との間に設けられ、前記回転軸線に対して周方向に延在しており、前記回転子及び前記固定子のうち前記他方と前記球体とに接触する、請求項1に記載のスリップリング。
  3. 前記コイルバネ及び前記別のコイルバネは、前記回転軸線が延在する方向に配列されている、請求項2に記載のスリップリング。
  4. 前記コイルバネ及び前記別のコイルバネは、前記回転軸線に対して放射方向に配列されている、請求項2に記載のスリップリング。
  5. 前記コイルバネは、斜め巻きスプリングである、請求項1に記載のスリップリング。
  6. 前記コイルバネ及び前記別のコイルバネは、斜め巻きスプリングである、請求項2〜4の何れか一項に記載のスリップリング。
  7. プラズマ処理装置の処理容器内において被処理体を支持するための支持機構であって、
    被処理体を保持するための保持部であり、第1軸線中心に回転可能な該保持部と、
    前記保持部を回転させる駆動装置と、
    各々が請求項1〜6の何れか一項に記載されたスリップリングであり、前記第1軸線に前記回転軸線が一致するように設けられた複数のスリップリングを有する回転コネクタと、
    を備え、
    前記保持部は、
    下部電極と、
    前記下部電極上に設けられた静電チャックと、
    各々の中心軸線が前記第1軸線に一致するように同軸に設けられた複数の導体であり、前記静電チャックの電極膜に接続された第1導体、及び、前記下部電極に接続された第2導体を含む、該複数の導体と、
    を有し、
    前記複数のスリップリングのうち第1のスリップリングは前記第1導体に電気的に接続されており、前記複数のスリップリングのうち第2のスリップリングは前記第2導体に電気的に接続されている、支持機構。
  8. 前記保持部と共に密閉された空間を画成する容器部と、
    前記容器部に結合され、前記第1軸線に直交する第2軸線に沿って延びる中空の傾斜軸部と、
    前記傾斜軸部を前記第2軸線周りで回転させる別の駆動装置と、
    を更に備え、
    前記複数の導体、前記保持部を回転させる前記駆動装置、及び前記回転コネクタは、前記空間内に設けられている、請求項7に記載の支持機構。
  9. 被処理体に対してプラズマ処理を行うためのプラズマ処理装置であって、
    処理容器と、
    前記処理容器内にガスを供給するガス供給系と、
    前記処理容器内に供給されたガスを励起させるプラズマ源と、
    請求項7又は8に記載された支持機構であり、前記処理容器内において前記保持部により被処理体を保持する、該支持機構と、
    前記処理容器内の空間の排気のための排気系と、
    前記処理容器の外部に設けられ、前記静電チャックの前記電極膜に与えられる電圧を発生する直流電源と、
    前記処理容器の外部に設けられ、前記下部電極に与えられるバイアスを発生するバイアス電力供給部と、
    を備え、
    前記直流電源は、第1配線を介して前記第1のスリップリングに接続されており、
    前記バイアス電力供給部は、第2配線を介して前記第2のスリップリングに接続されている、プラズマ処理装置。
  10. 前記支持機構は、請求項8に記載された支持機構であり、
    前記保持部及び前記容器部は、前記処理容器内に設けられており、
    前記傾斜軸部は、前記処理容器の内部から該処理容器の外部まで延びるように設けられており、
    前記第1配線は、前記傾斜軸部内を通って、前記直流電源と前記第1のスリップリングとを接続しており、
    前記第2配線は、前記傾斜軸部内を通って、前記バイアス電力供給部と前記第2のスリップリングとを接続している、請求項9に記載のプラズマ処理装置。
  11. 前記保持部は、ヒータを更に有し、
    前記複数の導体は、前記ヒータに接続する第3導体及び第4導体を更に有し、
    前記複数のスリップリングは、前記第3導体に接続する第3のスリップリングと前記第4導体に接続する第4のスリップリングとを更に含み、
    該プラズマ処理装置は、前記処理容器の外部に設けられ前記ヒータに電力を供給するヒータ電源を更に備え、
    前記ヒータ電源は、前記傾斜軸部内を通る第3配線及び第4配線を介して、それぞれ前記第3のスリップリング及び前記第4のスリップリングに電気的に接続されている、請求項10に記載のプラズマ処理装置。
  12. 前記支持機構は、前記保持部に設けられた温度センサを更に含み、
    前記複数の導体は、前記温度センサに接続する第5導体を更に有し、
    前記複数のスリップリングは、前記第5導体に接続する第5のスリップリングを更に含み、
    該プラズマ処理装置は、制御部を更に有し、
    前記制御部は、前記傾斜軸部内を通る第5配線を介して前記第5のスリップリングに電気的に接続されている、請求項10又は11に記載のプラズマ処理装置。
  13. 前記バイアス電力供給部は、パルス変調された直流電圧を前記下部電極に供給する請求項9〜12の何れか一項に記載のプラズマ処理装置。
  14. 前記バイアス電力供給部は、前記パルス変調された直流電圧及び高周波バイアスを選択的に前記下部電極に供給する請求項13に記載のプラズマ処理装置。
JP2015085881A 2015-04-20 2015-04-20 スリップリング、支持機構及びプラズマ処理装置 Active JP6449091B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015085881A JP6449091B2 (ja) 2015-04-20 2015-04-20 スリップリング、支持機構及びプラズマ処理装置
US15/558,126 US10665434B2 (en) 2015-04-20 2016-04-07 Slip ring, support mechanism, and plasma processing apparatus
KR1020177026316A KR102383360B1 (ko) 2015-04-20 2016-04-07 슬립 링, 지지 기구 및 플라즈마 처리 장치
CN201680014297.4A CN107408529B (zh) 2015-04-20 2016-04-07 集电环、支承机构以及等离子体处理装置
PCT/JP2016/061338 WO2016170989A1 (ja) 2015-04-20 2016-04-07 スリップリング、支持機構及びプラズマ処理装置
TW105111966A TWI685013B (zh) 2015-04-20 2016-04-18 滑環、支撐機構及電漿處理裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085881A JP6449091B2 (ja) 2015-04-20 2015-04-20 スリップリング、支持機構及びプラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2016207769A true JP2016207769A (ja) 2016-12-08
JP6449091B2 JP6449091B2 (ja) 2019-01-09

Family

ID=57143921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085881A Active JP6449091B2 (ja) 2015-04-20 2015-04-20 スリップリング、支持機構及びプラズマ処理装置

Country Status (6)

Country Link
US (1) US10665434B2 (ja)
JP (1) JP6449091B2 (ja)
KR (1) KR102383360B1 (ja)
CN (1) CN107408529B (ja)
TW (1) TWI685013B (ja)
WO (1) WO2016170989A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234643A1 (ja) * 2021-05-07 2022-11-10 東京エレクトロン株式会社 エッチング方法及びエッチング装置
WO2023149300A1 (ja) * 2022-02-01 2023-08-10 東京エレクトロン株式会社 基板処理装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660936B2 (ja) * 2014-04-09 2020-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 改良されたフロー均一性/ガスコンダクタンスを備えた可変処理容積に対処するための対称チャンバ本体設計アーキテクチャ
US11495932B2 (en) * 2017-06-09 2022-11-08 Applied Materials, Inc. Slip ring for use in rotatable substrate support
US11149345B2 (en) * 2017-12-11 2021-10-19 Applied Materials, Inc. Cryogenically cooled rotatable electrostatic chuck
WO2019179159A1 (zh) * 2018-03-19 2019-09-26 北京北方华创微电子装备有限公司 功率馈入机构、旋转基座装置及半导体加工设备
CN108461387B (zh) * 2018-03-19 2020-06-19 北京北方华创微电子装备有限公司 功率馈入机构、旋转基座装置及半导体加工设备
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
JP7345382B2 (ja) * 2018-12-28 2023-09-15 東京エレクトロン株式会社 プラズマ処理装置及び制御方法
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
TWI710179B (zh) * 2019-08-28 2020-11-11 普京精密工業有限公司 訊號保護裝置及電纜接頭
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
DE102021210211A1 (de) 2021-09-15 2023-03-16 Zf Friedrichshafen Ag Kontaktierungsring zum elektrischen Potenzialausgleich an rotierenden Wellen
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
CN116951003A (zh) * 2022-04-20 2023-10-27 江苏鲁汶仪器股份有限公司 一种磁流体轴
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132111U (ja) * 1983-02-24 1984-09-04 株式会社東芝 摺動接触装置
JPH01117317A (ja) * 1987-10-30 1989-05-10 Sumitomo Metal Ind Ltd プラズマ装置
JPH0229161U (ja) * 1988-08-16 1990-02-26
JPH0547432A (ja) * 1991-08-16 1993-02-26 Nec Corp 電気的コネクタ
JPH09186141A (ja) * 1995-10-30 1997-07-15 Tokyo Electron Ltd プラズマ処理装置
JPH11214108A (ja) * 1998-01-23 1999-08-06 Toshiba Corp スリップリング機構
WO2009128134A1 (ja) * 2008-04-14 2009-10-22 三菱電機株式会社 接触子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087038A (en) * 1959-10-19 1963-04-23 Raymond W Bethke Electric current interchange contact
JPS5599332A (en) * 1979-01-25 1980-07-29 Matsushita Electric Ind Co Ltd Rotary table
EP0628644B1 (en) * 1993-05-27 2003-04-02 Applied Materials, Inc. Improvements in or relating to susceptors suitable for use in chemical vapour deposition devices
JPH10143791A (ja) 1996-11-12 1998-05-29 Toshiba Corp スリップリング機構
JP3650248B2 (ja) * 1997-03-19 2005-05-18 東京エレクトロン株式会社 プラズマ処理装置
KR100516776B1 (ko) * 1998-11-28 2005-09-26 에이씨엠 리서치, 인코포레이티드 반도체 물품을 전기연마 및/또는 전기도금하는 동안 반도체 물품을 보유하고 위치시키는 방법 및 장치
KR100782380B1 (ko) * 2005-01-24 2007-12-07 삼성전자주식회사 반도체 제조장치
JP4768699B2 (ja) * 2006-11-30 2011-09-07 キヤノンアネルバ株式会社 電力導入装置及び成膜方法
JP5224272B2 (ja) 2008-03-17 2013-07-03 三菱電機株式会社 スリップリング装置
JP2010147003A (ja) 2008-12-22 2010-07-01 Molex Inc 電気コネクタ
JP2010165472A (ja) 2009-01-13 2010-07-29 Molex Inc ロータリコネクタ
US8404598B2 (en) * 2009-08-07 2013-03-26 Applied Materials, Inc. Synchronized radio frequency pulsing for plasma etching

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132111U (ja) * 1983-02-24 1984-09-04 株式会社東芝 摺動接触装置
JPH01117317A (ja) * 1987-10-30 1989-05-10 Sumitomo Metal Ind Ltd プラズマ装置
JPH0229161U (ja) * 1988-08-16 1990-02-26
JPH0547432A (ja) * 1991-08-16 1993-02-26 Nec Corp 電気的コネクタ
JPH09186141A (ja) * 1995-10-30 1997-07-15 Tokyo Electron Ltd プラズマ処理装置
JPH11214108A (ja) * 1998-01-23 1999-08-06 Toshiba Corp スリップリング機構
WO2009128134A1 (ja) * 2008-04-14 2009-10-22 三菱電機株式会社 接触子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234643A1 (ja) * 2021-05-07 2022-11-10 東京エレクトロン株式会社 エッチング方法及びエッチング装置
WO2023149300A1 (ja) * 2022-02-01 2023-08-10 東京エレクトロン株式会社 基板処理装置

Also Published As

Publication number Publication date
CN107408529A (zh) 2017-11-28
TW201703100A (zh) 2017-01-16
JP6449091B2 (ja) 2019-01-09
KR102383360B1 (ko) 2022-04-07
US20180047547A1 (en) 2018-02-15
WO2016170989A1 (ja) 2016-10-27
CN107408529B (zh) 2020-09-22
KR20170137719A (ko) 2017-12-13
TWI685013B (zh) 2020-02-11
US10665434B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
JP6449091B2 (ja) スリップリング、支持機構及びプラズマ処理装置
TWI522013B (zh) Plasma processing device and plasma processing method
KR102340222B1 (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
JP2006210726A (ja) プラズマ処理方法およびプラズマ処理装置
JP2011096689A (ja) プラズマ処理装置
TWI753457B (zh) 電漿處理裝置及電漿處理方法
JP6804392B2 (ja) プラズマ処理装置及びガスシャワーヘッド
JP2020077785A (ja) 基板支持器、プラズマ処理装置、及びフォーカスリング
KR20200144488A (ko) 배치대 및 플라즈마 처리 장치
TW201903819A (zh) 具有電極燈絲的電漿反應器
KR102651285B1 (ko) 피처리체를 에칭하는 방법
JP2015082384A (ja) プラズマ処理装置、給電ユニット、及び載置台システム
JP6595396B2 (ja) プラズマ処理装置
JP2020096136A (ja) 給電構造及びプラズマ処理装置
KR101484652B1 (ko) 플라즈마 처리 장치
JP5097074B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2015506055A (ja) 対称的なrf供給のための周囲rfフィードおよび対称rfリターン
JP3169134U (ja) プラズマ処理装置
JP2019216163A (ja) 静電チャック、フォーカスリング、支持台、プラズマ処理装置、及びプラズマ処理方法
JP2022078684A (ja) プラズマ処理装置とその製造方法、及びプラズマ処理方法
US20230282506A1 (en) Biasable rotating pedestal
JP4854235B2 (ja) プラズマ処理装置
JP2022118626A (ja) 処理容器とプラズマ処理装置、及び処理容器の製造方法
JP2020145137A (ja) プラズマ処理装置及びプラズマ処理方法
JP5800937B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181205

R150 Certificate of patent or registration of utility model

Ref document number: 6449091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250