JP2016162469A - 半導体集積回路装置及び電子機器 - Google Patents

半導体集積回路装置及び電子機器 Download PDF

Info

Publication number
JP2016162469A
JP2016162469A JP2015037884A JP2015037884A JP2016162469A JP 2016162469 A JP2016162469 A JP 2016162469A JP 2015037884 A JP2015037884 A JP 2015037884A JP 2015037884 A JP2015037884 A JP 2015037884A JP 2016162469 A JP2016162469 A JP 2016162469A
Authority
JP
Japan
Prior art keywords
memory
memory cells
memory cell
data
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037884A
Other languages
English (en)
Other versions
JP6477013B2 (ja
Inventor
長谷川 崇
Takashi Hasegawa
崇 長谷川
徳田 泰信
Yasunobu Tokuda
泰信 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015037884A priority Critical patent/JP6477013B2/ja
Publication of JP2016162469A publication Critical patent/JP2016162469A/ja
Application granted granted Critical
Publication of JP6477013B2 publication Critical patent/JP6477013B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】ビット線が延在する方向に隣接して配置される2つのメモリーセルのトランジスターのソースが1本のソース線に共通に接続された不揮発性メモリーを含む半導体集積回路装置において、記憶容量と書き換え回数との内の一方を優先した書き込みモードを選択可能とする。
【解決手段】この半導体集積回路装置は、メモリーセルアレイに配置され、各メモリーセルが不揮発性メモリーを構成するトランジスターを含み、トランジスターのソースが1本のソース線に共通に接続され、ビット線が延在する方向に隣接して配置される2つのメモリーセルと、第1の書き込みモードにおいて、2つのメモリーセルに2ビットのデータを記憶させ、第2の書き込みモードにおいて、2つのメモリーセルの両方又は一方に1ビットのデータを記憶させるメモリー制御回路とを含む。
【選択図】図1

Description

本発明は、フラッシュメモリーやEEPROM(Electrically Erasable Programmable Read-Only Memory)等の電気的に書き換え可能な不揮発性メモリーを内蔵した半導体集積回路装置に関する。さらに、本発明は、そのような半導体集積回路装置を用いた電子機器等に関する。
近年においては、電気的に書き換え可能な不揮発性メモリーとして、NOR型フラッシュメモリーが広く普及している。そのような不揮発性メモリーにおいて、ビット線が延在する方向に隣接して配置される2つのメモリーセルのトランジスターのソースを1本のソース線に共通に接続することにより、メモリーセルを高集積化して単位面積当りの記憶容量を増加させることが行われている。その場合に、1本のソース線に共通に接続された2つのメモリーセルは、それらのメモリーセルに接続されたワード線を個別に選択するか、又は、異なるビット線に接続されることによって、個別に制御されていた。
関連する技術として、特許文献1には、メモリーアレイの面積の増大を抑えて、記憶情報の書き換えの信頼性を向上させることができる不揮発性メモリーを備える半導体装置が開示されている。この半導体装置は、MIS・FETを含んで構成される複数のメモリーセルが2次元格子状に配列されたメモリーアレイを備える半導体装置であって、ソースを共有し、第1方向に沿って対称の位置に隣接する第1メモリーセル及び第2メモリーセルと、第1メモリーセルのドレインと第2メモリーセルのドレインとに、それぞれ別個に電気的に接続されたビット線と、複数の第1メモリーセルに共通の第1ゲートと、第1ゲートと同電位である複数の第2メモリーセルに共通の第2ゲートとを有する。
即ち、特許文献1の半導体装置においては、ビット線が延在する方向に隣接する2つのメモリーセルのトランジスターのコントロールゲートが1本のコントロールゲート制御線に共通に接続されており、また、それらのトランジスターのメモリーゲートが1本のメモリーゲート制御線に共通に接続されている。一方、それらのトランジスターのドレインは、2本の異なるビット線に接続されている。
特開2006−86286号公報(段落0008、請求項1、図2)
しかしながら、ビット線が延在する方向に隣接して配置される2つのメモリーセルのトランジスターのソースが1本のソース線に共通に接続された不揮発性メモリーにおいては、それらのメモリーセルの内の一方のみにデータを書き込む際に、共通のソース線に高電位が印加されるので、他方のメモリーセルが消去状態になり易い。その結果、他方のメモリーセルが劣化して、書き換え可能な回数が制限されてしまう。そのような隣接メモリーセルからのディスターブを抑制するためには、精度良く電圧制御を行うか、あるいは、ディスターブに対して十分な耐性を有するデバイスを用いることが必要になる。
そこで、上記の点に鑑み、本発明の第1の目的は、ビット線が延在する方向に隣接して配置される2つのメモリーセルのトランジスターのソースが1本のソース線に共通に接続された不揮発性メモリーを含む半導体集積回路装置において、単位面積当りの記憶容量と書き換え可能な回数との内の一方を優先した書き込みモードを、用途に合わせてフレキシブルに選択可能とすることである。
また、本発明の第2の目的は、1本のソース線に共通に接続された2つのメモリーセルの内の一方のメモリーセルのみにデータを書き込む際に、共通のビット線に印加される高電位による他方のメモリーセルの劣化を抑制することである。さらに、本発明の第3の目的は、そのような半導体集積回路装置を用いた電子機器等を提供することである。
以上の課題の少なくとも一部を解決するため、本発明の1つの観点に係る半導体集積回路装置は、メモリーセルアレイに配置され、各メモリーセルが不揮発性メモリーを構成するトランジスターを含み、トランジスターのソースが1本のソース線に共通に接続され、ビット線が延在する方向に隣接して配置される2つのメモリーセルと、第1の書き込みモードにおいて、2つのメモリーセルに2ビットのデータを記憶させ、第2の書き込みモードにおいて、2つのメモリーセルの両方又は一方に1ビットのデータを記憶させるメモリー制御回路とを備える。
本発明の1つの観点によれば、第1の書き込みモードにおいて2つのメモリーセルに2ビットのデータを記憶させ、第2の書き込みモードにおいて2つのメモリーセルに1ビットのデータを記憶させるメモリー制御回路を設けることにより、単位面積当りの記憶容量と書き換え可能な回数との内の一方を優先した書き込みモードを、用途に合わせてフレキシブルに選択することが可能になる。
ここで、メモリー制御回路が、メモリーセルアレイの第1の領域において2つのメモリーセルに2ビットのデータを記憶させ、メモリーセルアレイの第2の領域において2つのメモリーセルの両方又は一方に1ビットのデータを記憶させるようにしても良い。それにより、同一構造を有する複数のメモリーセルで構成される1つのメモリーセルアレイにおいて、単位面積当りの記憶容量が書き換え可能な回数よりも優先される記憶領域と、書き換え可能な回数が単位面積当りの記憶容量よりも優先される記憶領域とを使い分けることができる。
その場合に、半導体集積回路装置が、メモリーセルアレイの第1の領域及び第2の領域を指定するデータを保持するメモリーセルをさらに備えるようにしても良い。それにより、第1の領域及び第2の領域をフレキシブルに設定することができる。
また、半導体集積回路装置が、第1の書き込みモードにおいて、2つのメモリーセルのトランジスターのコントロールゲートにそれぞれ接続された2本のワード線を個別に駆動し、第2の書き込みモードにおいて、2つのメモリーセルのトランジスターのコントロールゲートにそれぞれ接続された2本のワード線を共通に駆動するワード線駆動回路と、2つのメモリーセルのトランジスターのコントロールゲートにそれぞれ接続された2本のワード線の内の少なくとも一方に基準電位よりも高い所定の電位が印加されたときに、2つのメモリーセルのトランジスターのソースに共通に接続されたソース線に所定の電位を印加し、2本のワード線のいずれにも所定の電位が印加されないときに、ソース線に所定の電位を印加しないソース線駆動回路とをさらに備えるようにしても良い。
それにより、第1の書き込みモードにおいて、1つのメモリーセルに1ビットのデータが記憶されるので、単位面積当りの記憶容量が大きくなる。一方、第2の書き込みモードにおいては、1本のソース線に共通に接続された2つのメモリーセル間の干渉がなくなるので、隣接メモリーセルからのディスターブによるメモリーセルの劣化を抑制することができる。
また、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルに同一のデータが記憶されるので、それらのメモリーセルの内の選択された一方のメモリーセルからデータを読み出すことができる。従って、不揮発性メモリーに記憶されるデータの冗長度が高くなり、誤り検出等に利用することができる。
あるいは、半導体集積回路装置が、第1の書き込みモードにおいて、2つのメモリーセルのトランジスターのコントロールゲートにそれぞれ接続された2本のワード線を個別に駆動し、第2の書き込みモードにおいて、2つのメモリーセルの内の一方のメモリーセルのトランジスターのコントロールゲートに接続されたワード線を駆動すると共に、他方のメモリーセルのトランジスターのコントロールゲートに接続されたワード線にトランジスターがオンしない電位を印加するワード線駆動回路と、2つのメモリーセルのトランジスターのコントロールゲートにそれぞれ接続された2本のワード線の内の少なくとも一方に基準電位よりも高い所定の電位が印加されたときに、2つのメモリーセルのトランジスターのソースに共通に接続されたソース線に所定の電位を印加し、2本のワード線のいずれにも所定の電位が印加されないときに、ソース線に所定の電位を印加しないソース線駆動回路とをさらに備えるようにしても良い。
それにより、第2の書き込みモードにおいて、一方のメモリーセルに所定のデータを書き込まない場合には、共通のソース線に基準電位よりも高い所定の電位が印加されないので、隣接メモリーセルからのディスターブによるメモリーセルの劣化を抑制することができる。
さらに、第1の書き込みモードにおいて、2つのメモリーセルの内の一方のメモリーセルに所定のデータを書き込み、他方のメモリーセルに所定のデータを書き込まない場合に、ワード線駆動回路が、一方のメモリーセルのトランジスターのコントロールゲートに接続されたワード線に所定の電位を印加し、他方のメモリーセルのトランジスターのコントロールゲートに接続されたワード線に基準電位よりも高く所定の電位よりも低い第3の電位を印加するようにしても良い。
それにより、所定のデータを書き込まないメモリーセルのトランジスターのコントロールゲートに印加される電位が従来の電位(基準電位)よりも高くなり、ソース・コントロールゲート間の電位差が従来の値よりも小さくなる。従って、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内の一方のメモリーセルのみに所定のデータを書き込む際に、他方のメモリーセルが消去状態になり難くなるので、他方のメモリーセルの劣化を抑制することができる。
以上において、半導体集積回路装置が、第2の書き込みモードにおいて1ビットのデータを記憶した2つのメモリーセルの内のどちらからデータを読み出すかをワード線の対毎に指定し、又は、第2の書き込みモードにおいて2つのメモリーセルの内のどちらにデータを記憶させるかをワード線の対毎に指定するデータを保存するメモリーセルをさらに備えるようにしても良い。
このように、データを読み出すメモリーセル又はデータを記憶させるメモリーセルを指定するデータを保存するメモリーセルを設けることにより、一方のメモリーセルが初期不良であったり、使用途中で不良になった場合には、一方のメモリーセルを他方のメモリーセルで置き換えることができる。
本発明の1つの観点に係る電子機器は、上記いずれかの半導体集積回路装置を備える。それにより、不揮発性メモリーにおける単位面積当りの記憶容量と書き換え可能な回数との内の一方を優先した書き込みモードを用途に合わせてフレキシブルに選択することが可能な電子機器を提供することができる。
本発明の一実施形態における不揮発性メモリーの構成例を示すブロック図。 図1に示す不揮発性メモリーのメモリーセル周辺の構成例を示す回路図。 メモリーセルアレイにおける第1の領域及び第2の領域の設定例を示す図。 本発明の一実施形態に係る半導体集積回路装置の一部の構成例を示す図。 本発明の一実施形態に係る電子機器の構成例を示すブロック図。
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
<不揮発性メモリー>
図1は、本発明の一実施形態に係る半導体集積回路装置に内蔵された不揮発性メモリーの構成例を示すブロック図である。本発明の一実施形態に係る半導体集積回路装置は、フラッシュメモリーやEEPROM等の電気的に書き換え可能な不揮発性メモリーのみを内蔵しても良いし、不揮発性メモリーに加えて、所定の機能を有する回路ブロック又はCPU(中央演算装置)等の機能回路を内蔵しても良い。以下においては、不揮発性メモリーの一例として、NOR型フラッシュメモリーについて説明する。
図1に示すように、この不揮発性メモリーは、メモリーセルアレイ10と、電源回路20と、ワード線昇圧回路30と、ワード線駆動回路40と、ソース線駆動回路50と、スイッチ回路60と、メモリー制御回路70とを含んでいる。メモリー制御回路70は、メモリーセルアレイ10に含まれている複数のメモリーセルに消去動作、書き込み動作、又は、読み出し動作を行わせるように、電源回路20〜スイッチ回路60を制御する。
メモリーセルアレイ10の複数のメモリーセルは、m行n列のマトリックス状に配置されている(m及びnは、2以上の整数)。例えば、メモリーセルアレイ10は、2048行のメモリーセルを含んでいる。また、1行のメモリーセルは、1024個のメモリーセルを含み、128個の8ビットデータを記憶することができる。
また、メモリーセルアレイ10は、複数のワード線WL0、WL1、・・・、WLmと、複数のソース線SL0、SL1、・・・、SLkと、複数のビット線BL0、BL1、・・・、BLnとを含んでいる。それらのワード線の各々は、それぞれの行に配置された複数のメモリーセルに接続されている。また、それらのビット線の各々は、それぞれの列に配置された複数のメモリーセルに接続されている。
電源回路20には、例えば、基準電源電位VSSと、データ消去及びデータ書き込み用の高電源電位VPPと、ロジック回路用のロジック電源電位VDDとが、外部から供給される。あるいは、電源回路20は、外部から供給される複数の電源電位の内の1つの電源電位を昇圧又は降圧することにより、他の電源電位を生成しても良い。
基準電源電位VSSは、他の電位に対して相対的な基準となる基準電位であり、以下においては、基準電源電位VSSが接地電位(0V)である場合について説明する。高電源電位VPPは、基準電源電位VSSよりも高い所定の電位であり、例えば、5V〜10V程度である。ロジック電源電位VDDは、基準電源電位VSSよりも高く高電源電位VPPよりも低い電位であり、例えば、1.2V〜1.8V程度である。ロジック電源電位VDDは、半導体集積回路装置において不揮発性メモリーと共に使用される機能回路の電源電位と共用されても良い。
電源回路20は、ロジック電源電位VDDをメモリー制御回路70に供給すると共に、メモリー制御回路70の制御の下で、高電源電位VPP及びロジック電源電位VDDを、必要に応じて不揮発性メモリーの各部に供給する。図1においては、電源回路20からワード線昇圧回路30に供給される電源電位がワード線電源電位VWLとして示されており、電源回路20からソース線駆動回路50に供給される電源電位がソース線電源電位VSLとして示されている。
メモリーセルを消去状態にする消去モードにおいて、電源回路20は、ロジック電源電位VDDをワード線昇圧回路30に供給すると共に、高電源電位VPPをソース線駆動回路50に供給する。ワード線昇圧回路30は、ロジック電源電位VDDをワード線駆動回路40に供給する。
メモリーセルにデータを書き込む書き込みモードにおいて、電源回路20は、高電源電位VPP及びロジック電源電位VDDをワード線昇圧回路30に供給すると共に、高電源電位VPPをソース線駆動回路50に供給する。ワード線昇圧回路30は、高電源電位VPP及びロジック電源電位VDDをワード線駆動回路40に供給する。
メモリーセルからデータを読み出す読み出しモードにおいて、電源回路20は、ロジック電源電位VDDをワード線昇圧回路30及びソース線駆動回路50に供給する。ワード線昇圧回路30は、ロジック電源電位VDDを上昇させてワード線昇圧電位VUP(例えば、2.8V)を生成し、ワード線昇圧電位VUPをワード線駆動回路40に供給する。
ワード線駆動回路40は、複数のワード線WL0、WL1、・・・、WLmに接続されており、メモリー制御回路70によって選択されるメモリーセルに接続されたワード線を駆動する。ソース線駆動回路50は、複数のソース線SL1、SL2、・・・、SLkに接続されており、メモリー制御回路70によって選択されるメモリーセルに接続されたソース線を駆動する。
スイッチ回路60は、例えば、複数のビット線BL0、BL1、・・・、BLnの経路にそれぞれ接続された複数のトランジスターを含み、それらのトランジスターは、メモリー制御回路70の制御の下でオン又はオフする。メモリー制御回路70は、スイッチ回路60を介して、複数のビット線BL0、BL1、・・・、BLnに接続されたメモリーセルに接続可能となっている。
メモリー制御回路70は、例えば、組み合わせ回路及び順序回路を含む論理回路や、アナログ回路等で構成される。メモリー制御回路70には、チップセレクト信号CS、モードセレクト信号MS、動作クロック信号CK、及び、アドレス信号ADが供給される。メモリー制御回路70は、チップセレクト信号CSによって不揮発性メモリーが選択されたときに、モードセレクト信号MSに従って、不揮発性メモリーを、消去モード、書き込みモード、又は、読み出しモードに設定する。
書き込みモード及び読み出しモードにおいて、メモリー制御回路70は、動作クロック信号CKに同期して、アドレス信号ADによって指定されたメモリーセルにアクセスするように不揮発性メモリーの各部を制御する。例えば、書き込みモードにおいて、メモリー制御回路70は、書き込みデータを入力し、アドレス信号ADによって指定されたメモリーセルにデータを書き込むように不揮発性メモリーの各部を制御する。また、読み出しモードにおいて、メモリー制御回路70は、アドレス信号ADによって指定されたメモリーセルからデータを読み出すように不揮発性メモリーの各部を制御し、読み出しデータを出力する。
読み出しモードにおいて、メモリー制御回路70は、アドレス信号ADによって指定されたメモリーセルに接続されたスイッチ回路60のトランジスターをオンさせて、そのメモリーセルに流れる読み出し電流に基づいてデータを読み出す。その際に、メモリー制御回路70は、アドレス信号ADによって指定されたメモリーセルに流れる読み出し電流をリファレンスセル70aに流れる読み出し電流と比較することにより、指定されたメモリーセルに記憶されているデータが「0」であるか「1」であるかを判定しても良い。
<メモリーセル周辺の構成>
図2は、図1に示す不揮発性メモリーのメモリーセル周辺の構成例を示す回路図である。図2には、メモリーセルアレイの一部の領域に配置された4つのメモリーセルMC00〜MC11と、ワード線駆動回路40の一部と、ソース線駆動回路50の一部とが示されている。
各々のメモリーセルは、不揮発性メモリーを構成するトランジスター(図2においては、一例として、NチャネルMOSトランジスターを示す)を含んでいる。メモリーセルのトランジスターは、ドレインD、ソースS、コントロールゲートCG、及び、フローティングゲートを有し、フローティングゲートに蓄積される電荷に応じてデータを記憶する。
図2に示すように、第1行のメモリーセルMC00、MC01、・・・のトランジスターのコントロールゲートCGが、ワード線WL0に接続されており、第2行のメモリーセルMC10、MC11、・・・のトランジスターのコントロールゲートCGが、ワード線WL1に接続されている。
また、ビット線が延在する方向に隣接して配置される2つのメモリーセルMC00及びMC10のトランジスターのソースSが、1本のソース線SL0に共通に接続されており、ビット線が延在する方向に隣接して配置される2つのメモリーセルMC01及びMC11のトランジスターのソースSも、1本のソース線SL0に共通に接続されている。
さらに、第1列のメモリーセルMC00、MC10、・・・のトランジスターのドレインDが、ビット線BL0に接続されており、第2列のメモリーセルMC01、MC11、・・・のトランジスターのドレインDが、ビット線BL1に接続されている。
ワード線駆動回路40は、ワード線WL0、WL1、・・・を駆動する複数のワード線ドライバーを含んでいる。それらのワード線ドライバーの入力端子には、メモリーセルアレイを構成する複数のメモリーセルの内から1行又は複数行のメモリーセルを選択する際にローレベルに活性化されるローアクティブの行選択信号SW0、SW1、・・・が、メモリー制御回路70(図1)から入力される。
また、ワード線駆動回路40には、ワード線昇圧回路30(図1)から各種の電源電位が供給される。図2に示す電源電位VHは、消去モードにおいてロジック電源電位VDDであり、書き込みモードにおいて高電源電位VPPであり、読み出しモードにおいてワード線昇圧電位VUPである。また、図2に示す電源電位VLは、消去モード及び読み出しモードにおいて基準電源電位VSSであり、書き込みモードにおいてロジック電源電位VDDである。
各々のワード線ドライバーは、例えば、レベルシフター41と、インバーター42とを含み、さらに、インバーター43と、トランスミッションゲート44及び45とを含んでも良い。レベルシフター41は、行選択信号のハイレベルの電位を電源電位VHにシフトする。インバーター42の一方の電源端子には、電源電位VHが供給される。また、インバーター42の他方の電源端子には、基準電源電位VSSが供給されても良いし、図2に示すように、トランスミッションゲート44又は45によって電源電位VLと基準電源電位VSSとの内から選択された一方が供給されても良い。
トランスミッションゲート44のPチャネルトランジスターのゲート、及び、トランスミッションゲート45のNチャネルトランジスターのゲートには、ソース線が共通の隣接する行の行選択信号が印加される。インバーター43は、その行選択信号を反転して、反転された信号を、トランスミッションゲート44のNチャネルトランジスターのゲート、及び、トランスミッションゲート45のPチャネルトランジスターのゲートに出力する。
ワード線ドライバーは、書き込みモードにおいて、行選択信号がアクティブであるときに、高電源電位VPPをワード線に出力し、行選択信号がノンアクティブであるときに、基準電源電位VSS又はロジック電源電位VDDをワード線に出力する。また、ワード線ドライバーは、読み出しモードにおいて、行選択信号がアクティブであるときに、ワード線昇圧電位VUPをワード線に出力し、行選択信号がノンアクティブであるときに、基準電源電位VSSをワード線に出力する。
例えば、書き込みモードにおいて、ワード線WL0を駆動するワード線ドライバーは、行選択信号SW0がアクティブであるときに、高電源電位VPPをワード線WL0に出力する。また、ワード線WL0を駆動するワード線ドライバーは、行選択信号SW0及びSW1がノンアクティブであるときに、基準電源電位VSSをワード線WL0に出力し、行選択信号SW0がノンアクティブで行選択信号SW1がアクティブであるときに、ロジック電源電位VDDをワード線WL0に出力する。
ソース線駆動回路50には、電源回路20(図1)からソース線電源電位VSLが供給される。ソース線電源電位VSLは、消去モード及び書き込みモードにおいて高電源電位VPPであり、読み出しモードにおいて基準電源電位VSSである。ソース線駆動回路50は、ソース線SL0、・・・に接続されたメモリーセルのトランジスターのソースSを駆動するために、複数のトランスミッションゲート51と、複数のOR回路52と、複数のインバーター53とを含んでいる。
OR回路52の一方の入力端子は、ワード線WL0に接続され、OR回路52の他方の入力端子は、ワード線WL1に接続されている。OR回路52の出力端子は、トランスミッションゲート51のNチャネルトランジスターのゲートに接続されている。インバーター53は、OR回路52の出力信号を反転して、反転された信号をトランスミッションゲート51のPチャネルトランジスターのゲートに出力する。
OR回路52は、書き込みモードにおいて、ソース線が共通の隣接する2行のワード線の内の少なくとも一方のワード線の電位がハイレベル(高電源電位VPP)であるときに、ハイレベルの信号を出力し、両方のワード線の電位がローレベル(基準電源電位VSS又はロジック電源電位VDD)であるときに、基準電源電位VSSを出力する。
また、OR回路52は、読み出しモードにおいて、ソース線が共通の隣接する2行のワード線の内の少なくとも一方のワード線の電位がハイレベル(ワード線昇圧電位VUP)であるときに、ハイレベルの信号を出力し、両方のワード線の電位がローレベル(基準電源電位VSS)であるときに、基準電源電位VSSを出力する。
それにより、トランスミッションゲート51は、ソース線が共通の隣接する2行のワード線の内の少なくとも一方のワード線の行選択信号がアクティブであるときに、ソース線電源電位VSLをソース線に出力する。
以下においては、一例として、図2に示す4つのメモリーセルMC00〜MC11の動作について説明する。
<消去モード>
消去モードにおいては、ワード線駆動回路40が、ワード線WL0及びWL1に基準電源電位VSSを印加し、ソース線駆動回路50が、図示しない経路を介して、ソース線SL0に高電源電位VPPを印加する。また、メモリー制御回路70が、スイッチ回路60をオフさせて、ビット線BL0及びBL1をオープン状態(ハイ・インピーダンス状態)にする。
それにより、メモリーセルMC00〜MC11のトランジスターのコントロールゲートCGに基準電源電位VSSが印加され、ソースSに高電源電位VPPが印加され、ドレインDがオープン状態にされる。その結果、フローティングゲートに蓄積された電子がソースS側に放出されて、メモリーセルMC00〜MC11に記憶されているデータが「1」になる。
<第1の書き込みモード>
第1の書き込みモードにおいて、メモリー制御回路70は、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルに2ビットのデータを記憶させる。メモリー制御回路70は、書き込みデータに従って、それらのメモリーセルを制御する行選択信号を個別に活性化又は非活性化する。
ワード線駆動回路40は、メモリー制御回路70から供給される行選択信号に従って、第1の書き込みモードにおいて、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルのトランジスターのコントロールゲートCGにそれぞれ接続された2本のワード線を個別に駆動する。
また、ソース線駆動回路50は、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルのトランジスターのコントロールゲートCGにそれぞれ接続された2本のワード線の内の少なくとも一方に高電源電位VPPが印加されたときに、それらのメモリーセルのトランジスターのソースSに共通に接続されたソース線に高電源電位VPPを印加する。一方、ソース線駆動回路50は、それらのワード線のいずれにも高電源電位VPPが印加されないときに、ソース線に高電源電位VPPを印加せずに、ソース線SL0をオープン状態とする。
それにより、第1の書き込みモードにおいては、1つのメモリーセルに1ビットのデータが記憶されるので、単位面積当りの記憶容量が大きくなる。例えば、メモリーセルMC00に所定のデータ「0」を書き込み、メモリーセルMC10に所定のデータ「0」を書き込まない場合に、メモリー制御回路70は、行選択信号SW0をローレベルに活性化すると共に、行選択信号SW1をハイレベルに非活性化する。ワード線駆動回路40は、ワード線WL0に高電源電位VPPを印加し、ワード線WL1にメモリーセルMC10のトランジスターがオンしない電位を印加する。
ソース線駆動回路50は、ビット線が延在する方向に隣接して配置される2つのメモリーセルMC00及びMC10のトランジスターのソースSに共通に接続されたソース線SL0に高電源電位VPPを印加する。また、メモリー制御回路70は、スイッチ回路60をオンさせて、メモリーセルMC00及びMC10のトランジスターのドレインDに接続されたビット線BL0に基準電源電位VSSを印加する。
それにより、メモリーセルMC00のトランジスターのコントロールゲートCGに高電源電位VPPが印加され、ソースSに高電源電位VPPが印加され、ドレインDに基準電源電位VSSが印加される。その結果、メモリーセルMC00のトランジスターのソースSからドレインDに向けて電流が流れる。その電流によって発生したホットキャリア(本実施形態においては、電子)がフローティングゲートに注入されることにより、フローティングゲートに負の電荷が蓄積されるので、トランジスターの閾値電圧が上昇する。このようにして、メモリーセルMC00にデータ「0」が書き込まれる。
一方、メモリーセルMC10のトランジスターのコントロールゲートCGには、トランジスターがオンしない電位が印加される。従って、メモリーセルMC10のトランジスターのソース・ドレイン間には電流が流れないので、トランジスターの閾値電圧は変化しない。このように、メモリーセルMC10にはデータ「0」が書き込まれないので、消去状態におけるデータ「1」が維持される。
その際に、ワード線駆動回路40は、メモリーセルMC10のトランジスターのコントロールゲートCGに接続されたワード線WL1に基準電源電位VSSを印加しても良い。しかしながら、共通のソース線SL0に高電源電位VPPが印加されるので、メモリーセルMC10が消去状態になり易く、メモリーセルMC10の劣化によって書き換え可能な回数が制限されてしまう。
そこで、ワード線駆動回路40は、メモリーセルMC10のトランジスターのコントロールゲートCGに接続されたワード線WL1に、基準電源電位VSSよりも高く高電源電位VPPよりも低い第3の電位を印加しても良い。第3の電位は、データ「0」を書き込まないメモリーセルのトランジスターがオンしない電位であり、例えば、ロジック電源電位VDDとしても良い。
それにより、データ「0」を書き込まないメモリーセルのトランジスターのコントロールゲートCGに印加される電位が従来の電位(基準電源電位VSS)よりも高くなり、ソース・コントロールゲート間の電位差が、従来の値(VPP−VSS)よりも小さくなる。従って、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内の一方のメモリーセルのみに所定のデータを書き込む際に、他方のメモリーセルが消去状態になり難くなるので、他方のメモリーセルの劣化を抑制することができる。
<第2の書き込みモード>
第2の書き込みモードにおいて、メモリー制御回路70は、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの両方又は一方に1ビットのデータを記憶させる。
まず、第2の書き込みモードにおいて、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの両方に1ビットのデータを記憶させる場合について説明する。その場合に、メモリー制御回路70は、書き込みデータに従って、それらのメモリーセルを制御する行選択信号を共通に活性化又は非活性化する。
ワード線駆動回路40は、メモリー制御回路70から供給される行選択信号に従って、第2の書き込みモードにおいて、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルのトランジスターのコントロールゲートCGにそれぞれ接続された2本のワード線を共通に駆動する。
また、ソース線駆動回路50は、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルのトランジスターのコントロールゲートCGにそれぞれ接続された2本のワード線の内の少なくとも一方に高電源電位VPPが印加されたときに、それらのメモリーセルのトランジスターのソースSに共通に接続されたソース線に高電源電位VPPを印加する。一方、ソース線駆動回路50は、それらのワード線のいずれにも高電源電位VPPが印加されないときに、ソース線に高電源電位VPPを印加せずに、ソース線SL0をオープン状態とする。
それにより、1本のソース線に共通に接続された2つのメモリーセルの間の干渉がなくなるので、隣接メモリーセルからのディスターブによるメモリーセルの劣化を抑制することができる。また、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルに同一のデータが記憶されるので、それらのメモリーセルの内の選択された一方からデータを読み出すことができる。従って、不揮発性メモリーに記憶されるデータの冗長度が高くなり、誤り検出等に利用することができる。
例えば、メモリーセルMC00及びMC10にデータ「0」を書き込む場合に、メモリー制御回路70は、行選択信号SW0及びSW1をローレベルに活性化する。ワード線駆動回路40は、メモリーセルMC00のトランジスターのコントロールゲートCGに接続されたワード線WL0、及び、メモリーセルMC10のトランジスターのコントロールゲートCGに接続されたワード線WL1に、高電源電位VPPを印加する。
ソース線駆動回路50は、メモリーセルMC00及びMC10のトランジスターのソースSに共通に接続されたソース線SL0に高電源電位VPPを印加する。また、メモリー制御回路70は、スイッチ回路60をオンさせて、メモリーセルMC00及びMC10のトランジスターのドレインDに接続されたビット線BL0に基準電源電位VSSを印加する。
それにより、メモリーセルMC00及びMC10のトランジスターのコントロールゲートCGに高電源電位VPPが印加され、ソースSに高電源電位VPPが印加され、ドレインDに基準電源電位VSSが印加される。その結果、メモリーセルMC00及びMC10のトランジスターのソースSからドレインDに向けて電流が流れて、フローティングゲートに負の電荷が蓄積されるので、トランジスターの閾値電圧が上昇する。このようにして、メモリーセルMC00及びMC10にデータ「0」が書き込まれる。
一方、メモリーセルMC00及びMC10にデータ「0」を書き込まない場合に、メモリー制御回路70は、行選択信号SW0及びSW1をハイレベルに非活性化する。ワード線駆動回路40は、メモリーセルMC00のトランジスターのコントロールゲートCGに接続されたワード線WL0、及び、メモリーセルMC10のトランジスターのコントロールゲートCGに接続されたワード線WL1に、基準電源電位VSSを印加する。
ソース線駆動回路50は、メモリーセルMC00及びMC10のトランジスターのソースSに共通に接続されたソース線SL0をオープン状態にする。また、メモリー制御回路70は、スイッチ回路60をオンさせて、メモリーセルMC00及びMC10のトランジスターのドレインDに接続されたビット線BL0に基準電源電位VSSを印加する。
それにより、メモリーセルMC00及びMC10のトランジスターのソース・ドレイン間には電流が流れないので、トランジスターの閾値電圧は変化しない。このように、メモリーセルMC00及びMC10にはデータ「0」が書き込まれないので、消去状態におけるデータ「1」が維持される。
次に、第2の書き込みモードにおいて、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内の一方のメモリーセルに1ビットのデータを記憶させる場合について説明する。その場合に、メモリー制御回路70は、書き込みデータに従って、一方のメモリーセルを制御する行選択信号を活性化又は非活性化すると共に、他方のメモリーセルを制御する行選択信号を非活性化する。
ワード線駆動回路40は、メモリー制御回路70から供給される行選択信号に従って、第2の書き込みモードにおいて、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内の一方のメモリーセルのトランジスターのコントロールゲートCGに接続されたワード線を駆動すると共に、他方のメモリーセルのトランジスターのコントロールゲートCGに接続されたワード線にトランジスターがオンしない電位を印加する。
また、ソース線駆動回路50は、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルのトランジスターのコントロールゲートCGにそれぞれ接続された2本のワード線の内の少なくとも一方に高電源電位VPPが印加されたときに、それらのメモリーセルのトランジスターのソースSに共通に接続されたソース線に高電源電位VPPを印加する。一方、ソース線駆動回路50は、それらのワード線のいずれにも高電源電位VPPが印加されないときに、ソース線に高電源電位VPPを印加せずに、ソース線SL0をオープン状態とする。
それにより、第2の書き込みモードにおいて、一方のメモリーセルに所定のデータを書き込まない場合には、共通のソース線に高電源電位VPPが印加されないので、隣接メモリーセルからのディスターブによるメモリーセルの劣化を抑制することができる。
例えば、ビット線が延在する方向に隣接して配置されて1本のソース線SL0に共通に接続された2つのメモリーセルMC00及びMC10の内から選択された一方のメモリーセルMC00にデータ「0」を書き込む場合に、メモリー制御回路70は、行選択信号SW0をローレベルに活性化すると共に、行選択信号SW1をハイレベルに非活性化する。
ワード線駆動回路40は、メモリーセルMC00のトランジスターのコントロールゲートCGに接続されたワード線WL0に高電源電位VPPを印加すると共に、メモリーセルMC10のトランジスターのコントロールゲートCGに接続されたワード線WL1に、基準電源電位VSS又はロジック電源電位VDDを印加する。
ソース線駆動回路50は、ビット線が延在する方向に隣接して配置される2つのメモリーセルMC00及びMC10のトランジスターのソースSに共通に接続されたソース線SL0に高電源電位VPPを印加する。また、メモリー制御回路70は、スイッチ回路60をオンさせて、メモリーセルMC00のトランジスターのドレインDに接続されたビット線BL0に基準電源電位VSSを印加する。
それにより、メモリーセルMC00のトランジスターのコントロールゲートCGに高電源電位VPPが印加され、ソースSに高電源電位VPPが印加され、ドレインDに基準電源電位VSSが印加される。その結果、メモリーセルMC00のトランジスターのソースSからドレインDに向けて電流が流れて、フローティングゲートに負の電荷が蓄積されるので、トランジスターの閾値電圧が上昇する。このようにして、メモリーセルMC00にデータ「0」が書き込まれる。
一方、選択されたメモリーセルMC00に消去状態のデータ「1」を残す場合には、メモリー制御回路70が、行選択信号SW0及びSW1をハイレベルに非活性化する。ワード線駆動回路40は、メモリーセルMC00のトランジスターのコントロールゲートCGに接続されたワード線WL0、及び、メモリーセルMC10のトランジスターのコントロールゲートCGに接続されたワード線WL1に、基準電源電位VSSを印加する。
ソース線駆動回路50は、メモリーセルMC00及びMC10のトランジスターのソースSに共通に接続されたソース線SL0に高電源電位VPPを印加せずに、ソース線SL0をオープン状態とする。また、メモリー制御回路70は、スイッチ回路60をオンさせて、メモリーセルMC00及びMC10のトランジスターのドレインDに接続されたビット線BL0に基準電源電位VSSを印加する。
それにより、メモリーセルMC00のトランジスターのソース・ドレイン間には電流が流れないので、トランジスターの閾値電圧は変化しない。このように、メモリーセルMC00にはデータ「0」が書き込まれないので、消去状態におけるデータ「1」が維持される。
<読み出しモード>
読み出しモードにおいては、メモリー制御回路70が、アドレス信号によって指定された行の行選択信号をローレベルに活性化すると共に、それ以外の行選択信号をハイレベルに非活性化する。ワード線駆動回路40は、アドレス信号によって指定された行のワード線にワード線昇圧電位VUPを印加すると共に、それ以外のワード線に基準電源電位VSSを印加する。
また、ソース線駆動回路50は、アドレス信号によって指定された行のワード線に接続されたメモリーセルのトランジスターのソースSに接続されたソース線に基準電源電位VSSを印加する。さらに、メモリー制御回路70は、アドレス信号によって指定された列のビット線に接続されたスイッチ回路60をオンさせて、基準電源電位VSSよりも高い1V程度のビット線電位をビット線に印加する。
それにより、アドレス信号によって指定されたメモリーセルのトランジスターのコントロールゲートCGにワード線昇圧電位VUPが印加され、ソースSに基準電源電位VSSが印加され、ドレインDにビット線電位が印加される。その結果、アドレス信号によって指定されるメモリーセルにおいて、メモリーセルのトランジスターのドレインDからソースSに向けてドレイン電流が流れる。ドレイン電流の大きさは、フローティングゲートに蓄積されている負の電荷の量によって異なるので、メモリー制御回路70は、ドレイン電流の大きさに基づいてメモリーセルからデータを読み出すことができる。
本実施形態によれば、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルに2ビットのデータを記憶させる第1の書き込みモードと、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルに1ビットのデータを記憶させる第2の書き込みモードとを設けることにより、単位面積当りの記憶容量と書き換え可能な回数との内の一方を優先した書き込みモードを用途に合わせてフレキシブルに選択することが可能になる。
<書き込みモードの選択>
第1の書き込みモードと第2の書き込みモードとは、半導体集積回路装置が適用される製品の用途に応じてフレキシブルに選択されても良い。例えば、第1の書き込みモードと第2の書き込みモードとの内のどちらを選択するかを指定する書き込みモード指定データを保存する指定データ保存メモリーセルが、図1に示すメモリーセルアレイ10内に設けられる。
半導体集積回路装置に内蔵された機能回路は、外部からの指示に従って、書き込みモード指定データを指定データ保存メモリーセルに保存させる。メモリー制御回路70は、例えば、起動時に指定データ保存メモリーセルから書き込みモード指定データを読み出すことにより、書き込みモード指定データに従って、第1の書き込みモードと第2の書き込みモードとの内の一方を選択する。
あるいは、メモリーセルアレイ10の領域毎に第1の書き込みモードと第2の書き込みモードとが選択されても良い。例えば、第1の書き込みモードが適用される第1の領域と、第2の書き込みモードが適用される第2の領域とを指定する領域指定データを保存する指定データ保存メモリーセルが、図1に示すメモリーセルアレイ10内に設けられる。
半導体集積回路装置に内蔵された機能回路は、外部からの指示に従って、領域指定データを指定データ保存メモリーセルに保存させる。メモリー制御回路70は、例えば、起動時に指定データ保存メモリーセルから領域指定データを読み出すことにより、領域指定データに従って、第1の領域及び第2の領域を設定する。それにより、第1の領域及び第2の領域をフレキシブルに設定することができる。
図3は、メモリーセルアレイにおける第1の領域及び第2の領域の設定例を示す図である。図3に示すように、メモリーセルアレイ10内の一部の領域が、第1の書き込みモードが適用される第1の領域として設定される。また、メモリーセルアレイ10内の他の一部の領域が、第2の書き込みモードが適用される第2の領域として設定される。
例えば、メモリーセルアレイ10の第1の領域は、書き換え回数が少ないプログラムメモリーとして使用される。プログラムメモリーにおいては、単位面積当りの記憶容量が書き換え可能な回数よりも優先される。一方、メモリーセルアレイ10の第2の領域は、書き換え回数が多いデータメモリーとして使用される。データメモリーにおいては、書き換え可能な回数が単位面積当りの記憶容量よりも優先される。
メモリー制御回路70は、メモリーセルアレイ10の第1の領域においてビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルに2ビットのデータを記憶させ、メモリーセルアレイ10の第2の領域においてビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの両方又は一方に1ビットのデータを記憶させる。
それにより、同一構造を有する複数のメモリーセルで構成される1つのメモリーセルアレイ10において、単位面積当りの記憶容量が書き換え可能な回数よりも優先される記憶領域と、書き換え可能な回数が単位面積当りの記憶容量よりも優先される記憶領域とを使い分けることができる。
<メモリーセルの置き換え>
ところで、第2の書き込みモードにおいては、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルに同一のデータを記憶させることが可能である。従って、一方のメモリーセルが初期不良であったり、使用途中で不良になった場合には、一方のメモリーセルを他方のメモリーセルで置き換えることができる。
図4は、本発明の一実施形態に係る半導体集積回路装置の一部の構成例を示すブロック図である。図4には、図1に示す不揮発性メモリーの一部に加えて、機能回路として、レジスター80及びベリファイ回路90が示されている。ベリファイ回路90は、例えば、AND回路等を含む論理回路で構成される。以下においては、半導体集積回路装置に入力される書き込みデータが8ビットである場合について説明する。
図4に示すように、半導体集積回路装置に入力される書き込みデータは、レジスター80に保持された後、レジスター80からメモリー制御回路70に供給される。メモリー制御回路70は、第2の書き込みモードにおいて、不揮発性メモリーの各部を制御することにより、メモリーセルアレイ10の一部の領域においてビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2行のメモリーセルに書き込みデータを記憶させる。例えば、メモリー制御回路70は、図2に示す第1行(8個)のメモリーセルMC00、MC01、・・・と、第2行(8個)のメモリーセルMC10、MC11、・・・とに、同一の8ビットの書き込みデータを記憶させる。
半導体集積回路装置は、第2の書き込みモードにおいて1ビットのデータを記憶した2つのメモリーセルの内のどちらからデータを読み出すかをワード線の対毎に指定する指定データを保存する指定データ保存メモリーセルを、メモリーセルアレイ10に備えている。例えば、指定データ保存メモリーセルには、ワード線WL0及びWL1の対に対応する指定データの初期値として、2つのメモリーセルの内の第1のメモリーセルを指定する値が保存されている。
その場合に、メモリー制御回路70は、ワード線WL0に接続された第1行のメモリーセルMC00、MC01、・・・からデータを読み出して、読み出しデータをベリファイ回路90に供給する。ベリファイ回路90は、レジスター80から供給される書き込みデータと、メモリー制御回路70から供給される読み出しデータとを比較して、両者が一致するか否かを判定し、判定結果をメモリー制御回路70に出力する。
両者が一致する場合には、メモリー制御回路70は、ワード線WL0に接続された第1行のメモリーセルMC00、MC01、・・・を、データを読み出すメモリーセルとして決定する。一方、両者が一致しない場合には、メモリー制御回路70は、ワード線WL1に接続された第2行のメモリーセルMC10、MC11、・・・からデータを読み出して、読み出しデータをベリファイ回路90に供給する。ベリファイ回路90は、レジスター80から供給される書き込みデータと、メモリー制御回路70から供給される読み出しデータとを比較して、両者が一致するか否かを判定し、判定結果をメモリー制御回路70に出力する。
両者が一致する場合には、メモリー制御回路70は、ワード線WL1に接続された第2行のメモリーセルMC10、MC11、・・・を、データを読み出すメモリーセルとして決定する。その場合に、メモリー制御回路70は、ワード線WL0及びWL1の対に対応する指定データの値を、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内の第2のメモリーセルを指定する値に書き換える。
あるいは、半導体集積回路装置は、第2の書き込みモードにおいてビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内のどちらにデータを記憶させるかをワード線の対毎に指定する指定データを保存する指定データ保存メモリーセルを、メモリーセルアレイ10に備えても良い。例えば、指定データ保存メモリーセルには、指定データの初期値として、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内の第1のメモリーセルを指定する値が保存されている。
その場合に、メモリー制御回路70は、第2の書き込みモードにおいて、不揮発性メモリーの各部を制御することにより、メモリーセルアレイ10の一部の領域においてビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2行のメモリーセルの内の第1行のメモリーセルに書き込みデータを記憶させる。例えば、メモリー制御回路70は、図2に示すワード線WL0に接続された第1行(8個)のメモリーセルMC00、MC01、・・・に、8ビットの書き込みデータを記憶させる。
また、メモリー制御回路70は、第1行のメモリーセルMC00、MC01、・・・からデータを読み出して、読み出しデータをベリファイ回路90に供給する。ベリファイ回路90は、レジスター80から供給される書き込みデータと、メモリー制御回路70から供給される読み出しデータとを比較して、両者が一致するか否かを判定し、判定結果をメモリー制御回路70に出力する。
両者が一致する場合には、メモリー制御回路70は、ワード線WL0に接続された第1行のメモリーセルMC00、MC01、・・・を、データを記憶させるメモリーセルとして決定する。一方、両者が一致しない場合には、メモリー制御回路70は、ワード線WL1に接続された第2行のメモリーセルMC10、MC11、・・・に、8ビットの書き込みデータを記憶させる。
メモリー制御回路70は、第2行のメモリーセルMC10、MC11、・・・からデータを読み出して、読み出しデータをベリファイ回路90に供給する。ベリファイ回路90は、レジスター80から供給される書き込みデータと、メモリー制御回路70から供給される読み出しデータとを比較して、両者が一致するか否かを判定し、判定結果をメモリー制御回路70に出力する。
両者が一致する場合には、メモリー制御回路70は、ワード線WL1に接続された第2行のメモリーセルMC10、MC11、・・・を、データを記憶させるメモリーセルとして決定する。その場合に、メモリー制御回路70は、ワード線WL0及びWL1の対に対応する指定データの値を、ビット線が延在する方向に隣接して配置されて1本のソース線に共通に接続された2つのメモリーセルの内の第2のメモリーセルを指定する値に書き換える。
このように、データを読み出すメモリーセル又はデータを記憶させるメモリーセルを指定する指定データを保存するメモリーセルを設けることにより、一方のメモリーセルが初期不良であったり、使用途中で不良になった場合には、一方のメモリーセルを他方のメモリーセルで置き換えることができる。
<電子機器>
次に、本発明の一実施形態に係る電子機器について、図5を参照しながら説明する。
図5は、本発明の一実施形態に係る電子機器の構成例を示すブロック図である。電子機器100は、本発明の一実施形態に係る半導体集積回路装置110と、CPU120と、操作部130と、ROM(リードオンリー・メモリー)140と、RAM(ランダムアクセス・メモリー)150と、通信部160と、表示部170と、音声出力部180とを含んでも良い。なお、図5に示す構成要素の一部を省略又は変更しても良いし、あるいは、図5に示す構成要素に他の構成要素を付加しても良い。
半導体集積回路装置110は、不揮発性メモリーを含んでおり、CPU120からのコマンドに応じて各種の処理を行う。例えば、半導体集積回路装置110は、不揮発性メモリーに記憶されているパラメーターに基づいて、入力されたデータを補正したり、データのフォーマットを変換したりする。
CPU120は、ROM140等に記憶されているプログラムに従って、半導体集積回路装置110から供給されるデータ等を用いて各種の演算処理や制御処理を行う。例えば、CPU120は、操作部130から供給される操作信号に応じて各種のデータ処理を行ったり、外部との間でデータ通信を行うために通信部160を制御したり、表示部170に各種の画像を表示させるための画像信号を生成したり、音声出力部180に各種の音声を出力させるための音声信号を生成したりする。
操作部130は、例えば、操作キーやボタンスイッチ等を含む入力装置であり、ユーザーによる操作に応じた操作信号をCPU120に出力する。ROM140は、CPU120が各種の演算処理や制御処理を行うためのプログラムやデータ等を記憶している。また、RAM150は、CPU120の作業領域として用いられ、ROM140から読み出されたプログラムやデータ、操作部130を用いて入力されたデータ、又は、CPU120がプログラムに従って実行した演算結果等を一時的に記憶する。
通信部160は、例えば、アナログ回路及びデジタル回路で構成され、CPU120と外部装置との間のデータ通信を行う。表示部170は、例えば、LCD(液晶表示装置)等を含み、CPU120から供給される表示信号に基づいて各種の情報を表示する。また、音声出力部180は、例えば、スピーカー等を含み、CPU120から供給される音声信号に基づいて音声を出力する。
電子機器100としては、例えば、スマートカード、電卓、電子辞書、電子ゲーム機器、携帯電話機等の移動端末、デジタルスチルカメラ、デジタルムービー、テレビ、テレビ電話、防犯用テレビモニター、ヘッドマウント・ディスプレイ、パーソナルコンピューター、プリンター、ネットワーク機器、カーナビゲーション装置、測定機器、及び、医療機器(例えば、電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、及び、電子内視鏡)等が該当する。
本実施形態によれば、単位面積当りの記憶容量と書き換え可能な回数との内の一方を優先した書き込みモードを用途に合わせてフレキシブルに選択することが可能な電子機器を提供することができる。従って、単位面積当りの記憶容量を大きくして半導体集積回路装置110の不揮発性メモリーにプログラムを記憶させることによりROM140を省略したり、書き換え可能な回数を多くして半導体集積回路装置110の不揮発性メモリーにデータを記憶させることによりRAM150を省略したりすることができる。
上記の実施形態においては、本発明をNOR型フラッシュメモリーに適用した場合について説明したが、本発明は、以上説明した実施形態に限定されるものではなく、当該技術分野において通常の知識を有する者によって、本発明の技術的思想内で多くの変形が可能である。
10…メモリーセルアレイ、20…電源回路、30…ワード線昇圧回路、40…ワード線駆動回路、41…レベルシフター、42、43、53…インバーター、44、45、51…トランスミッションゲート、50…ソース線駆動回路、52…OR回路、60…スイッチ回路、70…メモリー制御回路、70a…リファレンスセル、80…レジスター、90…ベリファイ回路、100…電子機器、110…半導体集積回路装置、120…CPU、130…操作部、140…ROM、150…RAM、160…通信部、170…表示部、180…音声出力部、WL0〜WLm…ワード線、SL0〜SLk…ソース線、BL0〜BLn…ビット線、MC00〜MC11…メモリーセル、D…ドレイン、S…ソース、CG…コントロールゲート

Claims (8)

  1. メモリーセルアレイに配置され、各メモリーセルが不揮発性メモリーを構成するトランジスターを含み、前記トランジスターのソースが1本のソース線に共通に接続され、ビット線が延在する方向に隣接して配置される2つのメモリーセルと、
    第1の書き込みモードにおいて、前記2つのメモリーセルに2ビットのデータを記憶させ、第2の書き込みモードにおいて、前記2つのメモリーセルの両方又は一方に1ビットのデータを記憶させるメモリー制御回路と、
    を備える半導体集積回路装置。
  2. 前記メモリー制御回路が、前記メモリーセルアレイの第1の領域において前記2つのメモリーセルに2ビットのデータを記憶させ、前記メモリーセルアレイの第2の領域において前記2つのメモリーセルの両方又は一方に1ビットのデータを記憶させる、請求項1記載の半導体集積回路装置。
  3. 第1の書き込みモードにおいて、前記2つのメモリーセルの前記トランジスターのコントロールゲートにそれぞれ接続された2本のワード線を個別に駆動し、第2の書き込みモードにおいて、前記2つのメモリーセルの前記トランジスターのコントロールゲートにそれぞれ接続された2本のワード線を共通に駆動するワード線駆動回路と、
    前記2つのメモリーセルの前記トランジスターのコントロールゲートにそれぞれ接続された2本のワード線の内の少なくとも一方に基準電位よりも高い所定の電位が印加されたときに、前記2つのメモリーセルの前記トランジスターのソースに共通に接続されたソース線に前記所定の電位を印加し、前記2本のワード線のいずれにも前記所定の電位が印加されないときに、前記ソース線に前記所定の電位を印加しないソース線駆動回路と、
    をさらに備える、請求項1又は2記載の半導体集積回路装置。
  4. 第1の書き込みモードにおいて、前記2つのメモリーセルの前記トランジスターのコントロールゲートにそれぞれ接続された2本のワード線を個別に駆動し、第2の書き込みモードにおいて、前記2つのメモリーセルの内の一方のメモリーセルの前記トランジスターのコントロールゲートに接続されたワード線を駆動すると共に、他方のメモリーセルの前記トランジスターのコントロールゲートに接続されたワード線にトランジスターがオンしない電位を印加するワード線駆動回路と、
    前記2つのメモリーセルのトランジスターのコントロールゲートにそれぞれ接続された2本のワード線の内の少なくとも一方に基準電位よりも高い所定の電位が印加されたときに、前記2つのメモリーセルの前記トランジスターのソースに共通に接続されたソース線に前記所定の電位を印加し、前記2本のワード線のいずれにも前記所定の電位が印加されないときに、前記ソース線に前記所定の電位を印加しないソース線駆動回路と、
    をさらに備える、請求項1又は2記載の半導体集積回路装置。
  5. 第1の書き込みモードにおいて、前記2つのメモリーセルの内の一方のメモリーセルに所定のデータを書き込み、他方のメモリーセルに所定のデータを書き込まない場合に、前記ワード線駆動回路が、前記一方のメモリーセルの前記トランジスターのコントロールゲートに接続されたワード線に前記所定の電位を印加し、前記他方のメモリーセルの前記トランジスターのコントロールゲートに接続されたワード線に基準電位よりも高く前記所定の電位よりも低い第3の電位を印加する、請求項3又は4記載の半導体集積回路装置。
  6. 第2の書き込みモードにおいて1ビットのデータを記憶した前記2つのメモリーセルの内のどちらからデータを読み出すかをワード線の対毎に指定し、又は、第2の書き込みモードにおいて前記2つのメモリーセルの内のどちらにデータを記憶させるかをワード線の対毎に指定するデータを保存するメモリーセルをさらに備える、請求項1〜5のいずれか1項記載の半導体集積回路装置。
  7. 前記メモリーセルアレイの前記第1の領域及び前記第2の領域を指定するデータを保持するメモリーセルをさらに備える、請求項2記載の半導体集積回路装置。
  8. 請求項1〜7のいずれか1項記載の半導体集積回路装置を備える電子機器。
JP2015037884A 2015-02-27 2015-02-27 半導体集積回路装置及び電子機器 Active JP6477013B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037884A JP6477013B2 (ja) 2015-02-27 2015-02-27 半導体集積回路装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037884A JP6477013B2 (ja) 2015-02-27 2015-02-27 半導体集積回路装置及び電子機器

Publications (2)

Publication Number Publication Date
JP2016162469A true JP2016162469A (ja) 2016-09-05
JP6477013B2 JP6477013B2 (ja) 2019-03-06

Family

ID=56847208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037884A Active JP6477013B2 (ja) 2015-02-27 2015-02-27 半導体集積回路装置及び電子機器

Country Status (1)

Country Link
JP (1) JP6477013B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11110980A (ja) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd 不揮発性半導体メモリ装置
JP2001043691A (ja) * 1999-07-28 2001-02-16 Hitachi Ltd 不揮発性記憶回路およびマイクロコンピュータ
JP2002367390A (ja) * 2001-06-13 2002-12-20 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置
JP2005078685A (ja) * 2003-08-29 2005-03-24 Seiko Epson Corp 不揮発性半導体記憶装置及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11110980A (ja) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd 不揮発性半導体メモリ装置
JP2001043691A (ja) * 1999-07-28 2001-02-16 Hitachi Ltd 不揮発性記憶回路およびマイクロコンピュータ
JP2002367390A (ja) * 2001-06-13 2002-12-20 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置
JP2005078685A (ja) * 2003-08-29 2005-03-24 Seiko Epson Corp 不揮発性半導体記憶装置及びその制御方法

Also Published As

Publication number Publication date
JP6477013B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
US10614893B2 (en) Nonvolatile memory device, semiconductor device, and electronic apparatus
JP4545423B2 (ja) 半導体装置
US7212439B2 (en) NAND flash memory device and method of programming the same
JP2010257551A (ja) アンチヒューズメモリセル及び半導体記憶装置
US10566064B2 (en) Nonvolatile memory device, semiconductor device, and electronic apparatus
JP4203372B2 (ja) 不揮発性半導体記憶装置及びそれを備えてなる液晶表示装置
US20040196695A1 (en) Nonvolatile memory device and semiconductor device
JP2018190477A (ja) 不揮発性半導体記憶装置
JPH047870A (ja) 不揮発性半導体記憶装置
JP6515606B2 (ja) 半導体集積回路装置及びそれを用いた電子機器
JP6515607B2 (ja) 半導体集積回路装置及びそれを用いた電子機器
JP6035422B2 (ja) 半導体装置
US5504707A (en) Semiconductor device
JP6477013B2 (ja) 半導体集積回路装置及び電子機器
JPWO2004093091A1 (ja) 不揮発性半導体記憶装置
JP6235153B2 (ja) 半導体装置
JP2017147005A (ja) フラッシュメモリ
JP2011175708A (ja) 半導体記憶装置のデコーダ回路
JP2019117673A (ja) 不揮発性記憶装置、半導体集積回路装置、及び、電子機器
US9312012B2 (en) EEPROM programming with first and second programming modes
JP2007058973A (ja) 半導体集積回路
JP5672051B2 (ja) ワードライン昇圧回路、記憶装置、集積回路装置、及び電子機器
JP2009301703A (ja) 半導体装置
JP6914148B2 (ja) メモリ装置
JP2017152069A (ja) ワード線駆動電圧生成回路、記憶装置、集積回路装置、及び、電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250